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Abstract. We discuss the recent progress about positive solutions of the semi-
linear equation ∆u = up in a domain, which has involved a combination of
probabilistic and analytic methods. We emphasize the main ideas that have
been used in the probabilistic approach. Special attention is given to the
boundary trace problem, which consists in obtaining a one-to-one correspon-
dence between the set of all solutions and a suitable set of admissible traces
on the boundary. A few important open questions are also listed.


1. Introduction


It has been known for a long time that properties of random systems of branch-
ing particles are related to solutions of certain semilinear partial differential equa-
tions. In the last 15 years, these connections have given rise to fruitful developments
in the setting of the theory of measure-valued branching processes, also called su-
perprocesses. A major step was accomplished by Dynkin [7], who provided a simple
probabilistic representation of the solution of the Dirichlet problem for the equation
∆u = up, 1 < p ≤ 2 in a domain of R


d, in terms of the so-called exit measure of
the associated superprocess (see Theorem 2.1 below). A very interesting feature of
this representation, in contrast to other probabilistic approaches, is its robustness:
A formula that is a priori only valid for solutions with a given continuous boundary
value can be generalized, by means of various limiting procedures, to yield similar
representations for many other solutions whose behavior at the boundary can be
very singular. In fact, as will be explained in Section 6 below, a generalized ver-
sion of the probabilistic formula applies to any nonnegative solution of ∆u = up,
1 < p ≤ 2.


Our goal in this work is to give an account of these developments, including the
important recent contributions of Dynkin and Kuznetsov from the probabilistic side,
and Marcus and Véron from the analytic side. We made no attempt at exhaustivity,
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and for instance we do not discuss parabolic equations which can also be handled
by the same probabilistic tools. Rather, we try to explain as simply as possible the
basic probabilistic ideas and the way these ideas can lead to analytic results. For
this reason, we often concentrate on the particular case p = 2, where the random
process called the Brownian snake can be used in the probabilistic representation
of solutions. The Brownian snake was introduced in [22], and its connections with
equation ∆u = u2 were first discussed in [24] (see also the monograph [27]). The
Brownian snake is a simpler object than superprocesses and is sometimes more
tractable for analytic applications, even though most of the analytic results that
have been obtained for p = 2 via the Brownian snake could then be extended to
the case 1 < p ≤ 2 using superprocesses. We do not discuss analytic methods here.
The reader who is interested in the analytic approach to the problems discussed
below should look at Laurent Véron’s recent paper [40].


Above all, we tried to emphasize the nice interplay between analytic and prob-
abilistic concepts. Already in [7], Dynkin used the characterization of removable
singularities from Baras and Pierre [2] to solve the important problem of the de-
scription of polar sets for super-Brownian motion (see Theorem 4.1 below). In the
reverse direction, we give examples of theorems that were first proved for p = 2
via the probabilistic approach, and then extended to arbitrary p > 1 by analytic
methods. See Theorem 3.3 and its generalization Theorem 3.4 by Labutin, or The-
orem 6.1 and its generalization Theorem 6.2 by Marcus and Véron. Obviously, the
probabilistic approach, which does not apply to the case p > 2, does not replace
analytic methods. Still we believe that in some particular cases the probabilistic
intuition can help guessing or even proving new analytic results, which can then be
generalized.


Section 2 below gives a brief presentation of the Brownian snake and states the
key Theorem 2.1, from which the different probabilistic representation formulas can
be deduced. This section should provide sufficient background to understand the
probabilistic ideas that are explained in the remainder of the paper. Analytic ques-
tions, namely solutions with boundary blow-up, removable singularities, solutions
with measure boundary data, and the trace problem are discussed in Sections 3 to
6. We have emphasized the boundary trace problem, which has given rise to recent
major advances by Dynkin, Kuznetsov, Mselati, Marcus and Véron.


2. A probabilistic tool: The Brownian snake


In this section, we give a brief presentation of the Brownian snake, which will be
our main tool in the probabilistic analysis of semilinear partial differential equations.
We refer to the monograph [27] for a more detailed presentation. At an informal
level, our aim is to construct a “tree of Brownian paths” originating from a given
point x ∈ R


d. More precisely, we will construct a collection (Ws) of random paths,
indexed by a real parameter s varying in some interval. For each fixed value of
the parameter s, Ws = (Ws(t), 0 ≤ t ≤ ζs) is thus a finite path in R


d starting
from x, with lifetime denoted by ζs. If s 6= s′, the paths Ws and Ws′ coincide over
an interval of the form [0,m(s, s′)], where m(s, s′) ≤ ζs ∧ ζs′ . In this sense, the
collection (Ws) forms a “tree” of paths. Assuming that x belongs to a domain D,
a key role in our applications is played by the set ED of all exit points from D of
the paths Ws (more precisely of those paths Ws that do exit D), and by the exit
measure from D, which is a finite measure supported on ED.
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Let us turn to more rigorous definitions. The Brownian snake is a Markov
process taking values in the set of finite paths in R


d. By definition, a finite path in
R


d is a continuous mapping w : [0, ζ] → R
d. The number ζ = ζ(w) ≥ 0 is called the


lifetime of the path. We denote by W the set of all finite paths in R
d. This set is


equipped with the distance


d(w,w′) = |ζ(w) − ζ(w′)| + sup
t≥0


|w(t ∧ ζ(w)) − w′(t ∧ ζ(w′))|.


Let us fix x ∈ R
d and denote by Wx the set of all finite paths with initial point


w(0) = x. The Brownian snake with initial point x is the continuous strong Markov
process W = (Ws, s ≥ 0) in Wx whose law is characterized as follows.


1. If ζs = ζ(Ws) denotes the lifetime of Ws, the process (ζs, s ≥ 0) is a
reflecting Brownian motion in R+.


2. Conditionally on (ζs, s ≥ 0), the process W is a (time-inhomogeneous)
Markov process. Its conditional transition kernels are described by the
following properties: For s < s′,
• Ws′(t) = Ws(t) for every t ≤ m(s, s′) := inf [s,s′] ζr ;
• (Ws′ (m(s, s′) + t) −Ws′ (m(s, s′)), 0 ≤ t ≤ ζs′ −m(s, s′)) is a standard
Brownian motion in R


d independent of Ws.


Informally, one should think of Ws as a Brownian path in R
d with a random


lifetime ζs evolving like (reflecting) linear Brownian motion. When ζs decreases,
the path Ws is “erased” from its tip. When ζs increases, the path Ws is extended
(independently of the past) by adding “small pieces” of Brownian motion at its tip.
From this informal explanation, it should be clear that the evolution of the Brown-
ian snake generates a “tree of Brownian paths” in the sense that was explained at
the beginning of this section.


Denote by x the trivial path in Wx with lifetime 0. It is immediate that x is a
regular recurrent point for the Markov process W . We denote by Nx the associated
excursion measure. Under Nx the law of W is described by properties analogous to
1. and 2., with the only difference that the law of reflecting Brownian motion in 1.


is replaced by the (infinite) Itô measure of positive excursions of linear Brownian
motion (see [27]). In other words, the “lifetime process” (ζs, s ≥ 0) is under Nx


a positive Brownian excursion: It starts from 0, comes back to 0 at a finite time
η > 0 called the duration of the excursion (and then stays at 0 over the time interval
[η,+∞)), whereas between times 0 and η it takes positive values and behaves like
linear Brownian motion. Knowing the lifetime process (ζs, s ≥ 0), the behavior of
the Brownian snake under Nx is given by property 2., as was informally described
above.


From our definitions, it is clear that Ws = x for all s ≥ η, Nx a.e. Thus under
Nx, we will only be interested in the paths Ws for 0 ≤ s ≤ η. We can normalize Nx


so that, for every ε > 0, Nx(sups≥0 ζs > ε) = (2ε)−1. Although Nx is an infinite
measure, we have for every δ > 0


(2.1) Nx


(
sup


s≥0, 0≤t≤ζs


|Ws(t) − x| ≥ δ
)


= cd δ
−2 <∞,


where cd is a positive constant (see [27], Proposition V.9).
For every fixed s ≥ 0, conditionally on ζs, Ws is distributed under Nx as a d-


dimensional Brownian path started at x and stopped at time ζs. If 0 < s < s′ < η,
the paths Ws and Ws′ coincide up to time m(s, s′) > 0, by Property 2., and this
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again corresponds to our concept of a tree of paths. In what follows, we always
consider the Brownian snake under its excursion measure Nx, for some x ∈ R


d.
Next, consider a domain D such that x ∈ D. For any finite path w ∈ Wx, set


τ(w) = inf{t ∈ [0, ζ(w)] : w(t) /∈ D}


with the usual convention inf ∅ = ∞. An important role in this work is played by
the set of exit points


ED = {Ws(τ(Ws)) : s ≥ 0, τ(Ws) <∞}.


Notice that ED is a random closed subset of ∂D. The exit measure ZD from D is
a random finite measure supported on the set ED. This measure can be defined by
the following approximation ([27], Chapter V):


〈ZD, ϕ〉 = lim
ε↓0


1


ε


∫ η


0


dsϕ(Ws(τ(Ws))) 1{τ(Ws)<ζs<τ(Ws)+ε}


for any continuous function ϕ on ∂D, Nx a.e.
The following theorem is the basic ingredient needed for connections between


the Brownian snake and semilinear partial differential equations. We let D be a
bounded domain in R


d. We say that D is Dirichlet regular if for every continuous
function g on ∂D, the classical Dirichlet problem for the Laplace equation ∆u = 0
in D with boundary value g has a (unique) solution. In probabilistic terms, this is
equivalent to saying that for a Brownian motion (Bt, t ≥ 0) started at any point
y ∈ ∂D, the first exit time inf{t > 0 : Bt /∈ D} is zero a.s.


Theorem 2.1. Let D be a bounded domain in R
d. Assume that D is Dirichlet


regular and let g be a nonnegative continuous function on ∂D. For every x ∈ D,
set


u(x) = Nx(1 − exp−〈ZD, g〉).


Then the function u is the unique nonnegative solution of the boundary value prob-
lem


(2.2)


{
∆u = 4 u2 in D ,
u|∂D = g .


Remark. The boundary value u|∂D = g should be understood in the pointwise
sense


lim
x→y,x∈D


u(x) = g(y)


for every y ∈ ∂D. The uniqueness of the nonnegative solution of (2.2) is an easy
application of the maximum principle for elliptic equations. The factor 4 in (2.2)
is an unimportant scaling constant due to our specific normalization.


Theorem 2.1 is a reformulation in terms of the Brownian snake of a more general
result due to Dynkin ([7], Theorem 1.1). Dynkin’s result, which is formulated in
the setting of the theory of superprocesses, applies to the equation ∆u = up when
1 < p ≤ 2. Here we chose to concentrate on the case p = 2, where the description
of the relevant probabilistic objects is easier to understand. See [27], Theorem V.6,
for a proof of Theorem 2.1 in the present setting. For 1 < p ≤ 2, and equation
∆u = 4 u2 replaced by ∆u = up, the statement of Theorem 2.1 remains valid if we
use the so-called p-stable Lévy snake instead of the Brownian snake (see Proposition
4.5.1 in [6]). On the other hand, it seems that no such probabilistic tool can be
used to handle equation ∆u = up when p > 2.
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In order to prove Theorem 2.1, one establishes the equivalent integral equation


(2.3) u(x) + 2


∫


D


dy GD(x, y)u2(y) =


∫


∂D


KD(x, dz) g(z), x ∈ D


where GD is the usual Green function (for 1
2∆) in D and KD(x, dz) is the harmonic


measure on ∂D relative to the point x. In probabilistic terms, this equation can be
rewritten in the form


(2.4) u(x) + 2Ex


[ ∫ τ


0


ds u2(Bs)
]


= Ex[g(Bτ )], x ∈ D


where (Bt, t ≥ 0) is a d-dimensional Brownian motion that starts from x under
the probability measure Px, and τ = inf{t ≥ 0 : Bt /∈ D}. A computational
way of proving (2.4) is to expand the exponential in the formula u(x) = Nx(1 −
exp−〈ZD, g〉), and then to use recursion formulas for the moments of 〈ZD, g〉,
which follow from the tree structure of the Brownian snake paths.


Let us summarize the contents of this section. Under the measure Nx, the paths
(Ws, 0 ≤ s ≤ η) form a tree of Brownian paths started from x, each individual path
Ws having a finite lifetime ζs. The set ED consists of all exit points from D of
the paths Ws (for those that do exit D), and the exit measure ZD is in a sense
uniformly spread over ED. We will also use the range R, which is defined by


R := {y = Ws(t); 0 ≤ s ≤ η, 0 ≤ t ≤ ζs}.


This is simply the union of the Brownian snake paths.


3. Solutions with boundary blow-up


According to Keller [18] and Osserman [38], if D is a bounded smooth domain
and ψ is a function that satisfies an appropriate integral condition, there exists a
nonnegative solution of equation ∆u = ψ(u) in D that blows up everywhere at the
boundary. This holds in particular if ψ(u) = up for some p > 1. This raises the
following two questions:


(a) For which non-smooth domains does there exist a solution that blows up
everywhere at the boundary ?


(b) Assuming that there exists a solution with boundary blow-up, is it unique ?


The probabilistic approach turns out to be rather efficient in providing answers
to these questions. Let us start by reformulating in terms of the Brownian snake
two key theorems again due to Dynkin [7].


Theorem 3.1. Let D be a bounded domain. Assume that D is Dirichlet regular.
Then u1(x) = Nx(ZD 6= 0), x ∈ D is the minimal nonnegative solution of the
problem


(3.1)


{
∆u = 4u2 in D


u|∂D = +∞.


The proof of this theorem is easy from Theorem 2.1. Simply consider for every
n ≥ 1 the function vn(x) = Nx(1 − exp−n〈ZD, 1〉) that solves (2.2) with g = n.
Clearly, vn ↑ u1 as n ↑ ∞, and it follows that u1 also solves ∆u = 4u2 in D. Since
u1 ≥ vn for every n, we have u1|∂D = +∞. Finally, if u is any (nonnegative)
solution of (3.1), the maximum principle implies that u ≥ vn for every n and so
u ≥ u1.
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To state the second theorem, recall our notation R for the range of the Brownian
snake.


Theorem 3.2. Let D be any open set in R
d and u2(x) = Nx(R∩Dc 6= ∅) for


x ∈ D. Then u2 is the maximal nonnegative solution of ∆u = 4u2 in D (in the
sense that u ≤ u2 for any other nonnegative function u of class C2 in D such that
∆u = 4u2 in D).


Remark. By combining Theorem 3.2 and (2.1), we recover the classical a priori
bound


u(x) ≤ u2(x) ≤ cd dist(x, ∂D)−2 , x ∈ D


which holds for any nonnegative solution of ∆u = 4 u2 in D.
Again the proof of Theorem 3.2 is relatively easy from the preceding theorem.


One can argue separately on each connected component of D, and thus assume that
D is connected (notice that by construction the range R is also connected). It is
then easy to construct an increasing sequence (Dn)n≥1 of bounded Dirichlet regular


subdomains of D such that Dn ⊂ Dn+1 for every n, and D = ∪Dn. By Theorem
3.1, un


1 (x) = Nx(ZDn 6= 0) is a solution in Dn with infinite boundary conditions.
On the other hand, from the probabilistic formulas of Theorems 3.1 and 3.2, one
can check that un


1 (x) ↓ u2(x) as n ↑ ∞, for every x ∈ D. It follows that u2 is also a
solution of ∆u = 4u2 in D. Moreover any other nonnegative solution u is bounded
above by un


1 in Dn (by the maximum principle in Dn) and therefore is bounded
above by u2.


The previous theorems already shed some light on questions (a) and (b). From
Theorem 3.1, a solution with boundary blow-up exists as soon as D is Dirichlet
regular. Under this assumption, question (b) reduces to giving conditions ensuring
that u1 = u2. In the case when D is not Dirichlet regular, it is easy to construct
examples where u1 6= u2. Let B(x, r) denote the open ball with radius r centered
at x. Then if d = 2 or 3 and if D = B(0, 1)\{0} is the punctured unit ball (which is
not Dirichlet regular), the function u2 blows up near the origin, as a consequence of
Theorem 3.3 below, whereas the function u1 stays bounded near the origin, because
the exit measure “does not see” the origin.


To state conditions ensuring that u1 = u2, assume that d ≥ 2 (the case d = 1 is
trivial) and denote by Cd−2(K) the Newtonian capacity (or the logarithmic capacity
if d = 2) of a compact subset K of R


d. According to Theorem IV.9 of [27], the
answer to question (b) is positive under the following assumption: For every y ∈ ∂D,
there exists a positive constant c(y) such that the inequality


(3.2) Cd−2(D
c ∩ B̄(y, 2−n)) ≥ c(y) Cd−2(B̄(y, 2−n))


holds for all n belonging to a sequence of positive density in N (here B̄(x, r) is the
closed ball of radius r centered at x). See also Marcus and Véron [29] for related
results obtained by analytic methods for the more general equation ∆u = up.


It is interesting to compare (3.2) with the classical Wiener test, which gives a
necessary and sufficient condition for the Dirichlet regularity: The bounded domain
D is Dirichlet regular if and only if for every y ∈ ∂D,


(3.3)


∞∑


n=1


Cd−2(D
c ∩ B̄(y, 2−n))


Cd−2(B̄(y, 2−n))
= ∞.
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Clearly, assumption (3.2) is stronger than (3.3). However, it is very plausible that
(3.2) is not the best possible assumption, and this leads to the following question.


Open problem. Is the solution with boundary blow-up unique in the case of a
general Dirichlet regular domain ?


Let us discuss question (a). Here Theorem 3.2 immediately tells us that for a
general open set D in R


d, the existence of a nonnegative solution of ∆u = u2 in D
that blows up everywhere at the boundary of D is equivalent to the property


(3.4) lim
x→y,x∈D


Nx(R ∩Dc 6= ∅) = +∞


for every y ∈ ∂D. It is not hard to see that this condition holds if and only if for
every y ∈ ∂D,


Ny(Ws(t) /∈ D for some s ≥ 0 and t ∈ (0, ζs]) = +∞.


In this form, (3.2) is quite similar to the probabilistic version of the characterization
of the Dirichlet regularity, with the difference that a single Brownian path started
from y is replaced by a tree of Brownian paths started from the same point.


In order to state the next result, we need to introduce some notation. If a ≥ 0
and K is a compact subset of R


d, we define the capacity Ca(K) by setting


Ca(K) =
(


inf
ν∈M1(K)


∫ ∫
ν(dy)ν(dz)fa(|y − z|)


)−1


wehere M1(K) is the set of all probability measures on K, and


fa(r) =


{
1 + log+ 1


r if a = 0 ,
ra if a > 0 .


Theorem 3.3. [4] Let D be a domain in R
d. Then the following two properties


are equivalent.


(i) The problem {
∆u = u2 in D


u|∂D = +∞


has a nonnegative solution.
(ii) Either d ≤ 3, or d ≥ 4 and for every y ∈ ∂D,


∞∑


n=1


2n(d−2) Cd−4(D
c ∩ B̄(y, 2−n)) = +∞.


This theorem, which was proved in [4] by probabilistic methods involving the
Brownian snake, thus gives a complete answer to question (a) above.


Theorem 3.3 was generalized a few years later by Labutin [21] using purely
analytic methods. To state Labutin’s result, and in view of further statements, we
introduce Bessel capacities in R


d. For every γ > 0, consider the classical Bessel
kernel


(3.5) G(d)
γ (x) = aγ


∫ ∞


0


t
γ−d


2 exp(−
π|x|2


2
−


t


4π
)
dt


t


where aγ = (4π)−γ/2Γ(γ/2)−1. For any compact subset K of R
d, and every p > 1,


we then set


(3.6) Cγ,p(K) = sup
µ∈M1(K)


(∫


Rd


dx
( ∫


µ(dy)G(d)
γ (y − x)


)p′)−p/p′
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where 1
p + 1


p′
= 1 as usual. The capacity Cγ,p can also be viewed as the capacity


associated with the Sobolov space W γ,p: See Theorem 2.2.7 in [1].


Theorem 3.4. [21] Let D be a bounded domain in R
d, d ≥ 3 and p > 1. Let


p′ be defined by 1
p + 1


p′
= 1. Then the following two properties are equivalent.


(i) The problem {
∆u = up in D


u|∂D = +∞


has a nonnegative solution.
(ii) Either p < d


d−2 , or p ≥ d
d−2 and for every y ∈ ∂D,


∞∑


n=1


2n(d−2)C2,p′(Dc ∩ B̄(y, 2−n)) = +∞.


In the case p = 2, we recover the preceding result. Indeed, a few lines of
calculations show that, if d ≥ 4, there exist two positive constants a1 and a2 such
that, for every compact subset K of the unit ball,


(3.7) a1 C2,2(K) ≤ Cd−4(K) ≤ a2 C2,2(K).


4. Removable singularities


Let K be a compact subset of R
d. We say that K is an interior removable


singularity for ∆u = u2 if the only nonnegative solution of ∆u = u2 in R
d\K is the


function identically equal to 0. This turns out to be equivalent to saying that for
any open set O containing K, any nonnegative solution on O\K can be extended
to a solution on O.


From the probabilistic point of view, interior removable singularities correspond
to (interior) polar sets. The compact set K is said to be polar if for every x ∈ R


d\K,


Nx(R∩K 6= ∅) = 0.


In other words, the compact set K will never be hit by the tree of Brownian paths
which is the range of the Brownian snake.


Theorem 4.1. Let d ≥ 4 and let K be a compact subset of R
d. The following


are equivalent.


(i) K is an interior removable singularity for ∆u = u2.
(ii) K is polar.
(iii) Cd−4(K) = 0.


In dimension d ≤ 3, the equivalence (i)⇔(ii) also holds trivially, since (i) or (ii)
can only be true if K is empty.


The equivalence (i)⇔(ii) is an immediate consequence of Theorem 3.2 above
applied with D = Kc. The equivalence (i)⇔(iii) was obtained by Baras and Pierre
[2]: More generally, Baras and Pierre have shown that K is a removable singularity
for ∆u = up if and only if C2,p′(K) = 0 (see also [3] for an earlier discussion of
removable singularities for semilinear equations).


From the probabilistic viewpoint, it is worthwile to look for a direct proof of
the equivalence (ii)⇔(iii). A simple argument gives the implication (ii)⇒(iii) (this
implication was first obtained, independently of [2], by Perkins [39], and later the
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connection with [2] was made by Dynkin [7]). Indeed, suppose that Cd−4(K) > 0,
and so that there is a probability measure ν supported on K such that


(4.1)


∫ ∫
ν(dy)ν(dz)fd−4(|y − z|) <∞


where fd−4(r) is as above in the definition of Ca(K). Let h be a radial nonnegative
continuous function on R


d with compact support contained in the unit ball, and
for every ε ∈ (0, 1], set hε(x) = ε−dh(x/ε). Finally let I be the “total occupation”
measure of the Brownian snake defined by


〈I, g〉 =


∫ η


0


ds g(Ŵs)


where Ŵs = Ws(ζs) is the terminal point of the finite path Ws, and we recall
that η is the duration of the excursion under Nx. Notice that by construction I
is supported on R. If x ∈ R


d\K is fixed, explicit moment calculations using (4.1)
give the bounds


Nx(〈I, hε ∗ ν〉) ≥ c1 > 0 , Nx(〈I, hε ∗ ν〉
2) ≤ c2 <∞ ,


where the constants c1 and c2 do not depend on ε ∈ (0, 1] (see Chapter VI in [27]
for details). Let Kε denote the closed tubular neighborhood of radius ε of the set
K. From an application of the Cauchy-Schwarz inequality, it follows that


Nx(R∩Kε 6= ∅) ≥ Nx(〈I, hε ∗ ν〉 > 0) ≥
(Nx(〈I, hε ∗ ν〉))2


Nx(〈I, hε ∗ ν〉2)
≥
c21
c2
.


By letting ε go to 0, it follows that Nx(R∩K 6= ∅) > 0, and thus K is not polar.
In view of the simplicity of the preceding argument, one would expect that


similar probabilistic proof should also give the converse implication (iii)⇒(ii). Sur-
prisingly this is not the case, and the only known way to obtain this implication is
via Baras and Pierre’s result (i)⇔(iii).


Open problem. Give a direct probabilistic proof of the implication (iii)⇒(ii) in
Theorem 4.1.


Finding such a proof would be of interest for other related problems where
the analogues of the results of [2] are not always available. An example of such
problems is provided by the notion of boundary removable singularity.


From now on, consider a bounded domain D in R
d, with a smooth (C∞)


boundary ∂D. A compact subsetK of ∂D is called boundary removable for ∆u = up


(in D) if the only nonnegative function u of class C2 in D such that ∆u = up and
u tends to 0 pointwise at every point of ∂D\K is the function identically equal to
0. Boundary singularities were studied first by Gmira and Véron [17], who proved
in particular that singletons are removable if p ≥ d+1


d−1 .


To introduce the corresponding probabilistic notion, recall that ED is the set
of all exit points from D of the Brownian snake paths. The compact set K ⊂ ∂D
is said to be boundary polar if


Nx(ED ∩K 6= ∅) = 0


for every x ∈ D. The following analogue of Theorem 4.1 was obtained in [25],
confirming a conjecture of Dynkin [8].


Theorem 4.2. Suppose that d ≥ 3 and let K be a compact subset of R
d. Then


the following are equivalent.
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(i) K is a boundary removable singularity for ∆u = u2 in D.
(ii) K is boundary polar.
(iii) Cd−3(K) = 0.


If d < 3, (i) and (ii) only hold if K = ∅. The equivalence (i)⇔(ii) is an
immediate consequence of the following lemma (Proposition VII.1 in [27]), which
is analogous to Theorem 3.2.


Lemma 4.3. If K is a compact subset of D, the function


uK(x) = Nx(ED ∩K 6= ∅), x ∈ D


is the maximal nonnegative solution of the problem


(4.2)


{
∆u = 4u2 in D


u|∂D\K = 0.


Lemma 4.3 is essentially a consequence of Theorem 2.1 above. Roughly speak-
ing, one can find a sequence a sequence (gn) of continuous functions on ∂D, such
that 〈ZD, gn〉 converges to +∞ on the event {ED ∩K 6= ∅}, and to 0 on the com-
plementary event. It follows that uK solves ∆u = 4u2 and it is also not hard to
see that uK vanishes on ∂D\K. A suitable application of the maximum principle
gives the maximality property stated in the lemma.


Coming back to Theorem 4.2, the implication (ii)⇒(iii) can be established in
a way very similar to the probabilistic proof of (ii)⇒(iii) in Theorem 4.1 that was
described above (compute the first and second moments of 〈ZD, g〉 for suitable func-
tions g that vanish outside a small neighborhood of K). The implication (iii)⇒(i)
was obtained in [25] by Fourier analytic methods, using some ideas from [2].


The analytic part of Theorem 4.2, that is the equivalence (i)⇔(iii), can in fact
be extended to equation ∆u = up. This extension again involves the Bessel capac-
ities that were introduced above, but now considered for subsets of the boundary
∂D. If K is a compact subset of ∂D, we set


(4.3) C∂D
γ,p (K) = sup


µ∈M1(K)


(∫


∂D


σ(dx)
( ∫


µ(dy)G(d−1)
γ (y − x)


)p′)−p/p′


where σ(dx) stands for Lebesgue measure on ∂D, and the Bessel kernels G(d) were
defined in (3.5). This is of course analogous to (3.6), but R


d is replaced by the
(d− 1)-dimensional manifold ∂D, and consequently G(d) is replaced by G(d−1).


Theorem 4.4. Let K be a compact subset of ∂D. Then the following are
equivalent.


(i) K is a boundary removable singularity for ∆u = up in D.
(ii) C∂D


2/p,p′(K) = 0.


In the case p = 2, we recover the preceding theorem, since an easy calculation
shows that C∂D


1,2 (K) = 0 if and only if Cd−3(K) = 0. Theorem 4.4 was proved in the
case 1 < p ≤ 2 by Dynkin and Kuznetsov [13] using a combination of probabilistic
and analytic techniques (in the case 1 < p ≤ 2, boundary removable singularities
still have a probabilistic interpretation in terms of superprocesses with a p-stable
branching mechanism). The case p > 2 of Theorem 4.4 was obtained by Marcus
and Véron [31]. Rather surprisingly, the analytic techniques of [31] did not apply
to the case p < 2 treated in [13]. In a subsequent paper [32], Marcus and Véron
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developed a different approach that allowed them to give a unified treatment of all
cases of Theorem 4.4.


5. Solutions with measure boundary data


In this section, as well as in the next one, we keep assuming that D is a bounded
domain in R


d with a smooth boundary ∂D. Many of the subsequent results hold
under weaker regularity assumptions on D, but for the sake of simplicity we will
omit the precise minimal assumptions.


We are now interested in the problem


(5.1)


{
∆u = up in D ,
u|∂D = ν ,


where ν is a finite (positive) measure on ∂D. Similarly as for (2.2), the boundary
condition u|∂D = ν may be interpreted via the integral equation


(5.2) u(x) +
1


2


∫


D


dy GD(x, y)up(y) =


∫


∂D


ν(dz)PD(x, z) , x ∈ D ,


where GD is as in (2.3) the Green function of D, and PD is the Poisson kernel of D
(in the notation of (2.3), KD(x, dz) = PD(x, z)σ(dz)). (5.2) makes it obvious that
u is bounded above by the harmonic function PDν. Conversely, any nonnegative
solution of ∆u = up in D which is bounded above by a harmonic function solves
a problem of the type (5.2), for some finite measure ν on the boundary: See e.g.
Proposition 4.1 in [25], for an argument in the case p = 2 which is easily extended.
A nonnegative solution that is bounded above by a harmonic function will be called
moderate.


Gmira and Véron [17] considered the problem (5.1) (in fact for more general
nonlinearities). They proved in particular that (5.1) has a unique solution for any
finite measure µ on the boundary if p < d+1


d−1 . Notice that this condition corresponds
to the case when singletons are not boundary polar.


We fix p > 1 and to simplify terminology, we call boundary polar any compact
subset K of ∂D that satisfies the equivalent conditions of Theorem 4.4. This is of
course consistent with our preceding terminology for p = 2.


Theorem 5.1. Suppose that p ≥ d+1
d−1 and let µ be a finite measure on ∂D. The


following two conditions are equivalent:


(i) The problem (5.1), or equivalently the integral equation (5.2), has a unique
nonnegative solution.


(ii) The measure µ does not charge boundary polar sets.


Consequently, there is a one-to-one correspondence between the set of all moderate
solutions of ∆u = up in D and the class of all finite measures on ∂D that do not
charge boundary polar sets.


In the case p = 2, this theorem was proved in [25] (again confirming a conjecture
of Dynkin [8]) using both analytic and probabilistic arguments. In that case, there
is a probabilistic representation of the solution in terms of the Brownian snake:
This is analogous to Theorem 2.1 with the difference that the quantity 〈ZD, g〉
should be replaced by a suitable additive functional of the Brownian snake.


Similarly as for Theorem 4.4, the general form of Theorem 5.1 was obtained
by Dynkin and Kuznetsov (see [13] and [14]) when 1 < p < 2 and by Marcus and
Véron [31] when p > 2. A unified treatment was provided in [32].







12 JEAN-FRANÇOIS LE GALL


6. The boundary trace problem


The classical Poisson representation states that nonnegative harmonic functions
h in D are in one-to-one correspondence with finite measures ν on ∂D, and this
correspondence is made explicit by the formula h = PDν, where PD is as above the
Poisson kernel of ν. We may say that the measure ν is the trace of the harmonic
function h on the boundary.


Our goal in this section is to discuss a similar trace representation for nonneg-
ative solutions of ∆u = up in D. We will deal separately with the subcritical case
p < d+1


d−1 (where there are no nonempty boundary polar sets) and the supercritical


case p ≥ d+1
d−1 .


6.1. The subcritical case. We first consider p = 2, so that the Brownian
snake approach is available. Then the subcritical case holds if and only if d ≤ 2.
Since the case d = 1 is trivial, we concentrate on d = 2, where we have the following
theorem ([23], [26]). Recall that σ(dz) denotes Lebesgue measure on ∂D.


Theorem 6.1. Assume that d = 2. There is a one-to-one correspondence
between nonnegative solutions of ∆u = 4 u2 in D and pairs (K, ν), where K is a
(possibly empty) compact subset of ∂D, and ν is a Radon measure on ∂D\K.


If a solution u is given, the associated pair (K, ν) is determined as follows. For
every z ∈ ∂D, denote by Nz the inward-pointing normal unit vector to ∂D at z,
then:


(i) A point y ∈ ∂D belongs to K if and only if, for every neighborhood U of
y in ∂D,


lim
r↓0


∫


U


σ(dz)u(z + rNz) = +∞.


(ii) For every continuous function g with compact support on ∂D\K,


lim
r↓0


∫


∂D\K


σ(dz)u(z + rNz) g(z) =


∫
ν(dz) g(z).


Conversely, if the pair (K, ν) is given, the solution u can be obtained by the
formula


(6.1) u(x) = Nx


(
1 − 1{ED∩K=∅}e


−〈ν,ZD〉
)
, x ∈ D


where (ZD(z), z ∈ ∂D) is the continuous density of the exit measure ZD with respect
to Lebesgue measure σ(dz) on ∂D.


The pair (K, ν) will be called the trace of u on the boundary. Informally, K
is a set of singular points on the boundary (this is the set of points where u blows
up as the square of the inverse of the distance from the boundary) and ν is a
measure corresponding to the boundary value of u on ∂D\K. The formula (6.1)
contains as special cases the other probabilistic representations that have appeared
previously. The formula of Theorem 2.1 corresponds to K = ∅, ν(dz) = g(z)σ(dz).
The function u2 of Theorem 3.2 (which here coincides with u1 of Theorem 3.1)
is obtained by taking K = ∂D. More generally the functions uK in Lemma 4.3
correspond to the case ν = 0. Finally, the moderate solutions of Theorem 5.1 are
obtained when K = ∅.


Let us outline the proof of the probabilistic representation formula (6.1), as-
suming for simplicity that D is the unit disk of the plane. Fix a sequence rn of
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real numbers in (0, 1) such that rn ↑ 1 as n ↑ ∞. For every n ≥ 1 and x ∈ D̄,
set un(x) = r2nu(rnx), so that we have ∆un = 4u2


n in D. Since un obviously has
a continuous boundary value on ∂D, we may use Theorem 2.1 to write, for every
x ∈ D,


(6.2) un(x) = Nx(1 − exp−〈ZD, un〉) = Nx(1 − exp−


∫
σ(dz)ZD(z)un(z))


using the fact that the exit measure ZD has a continuous density ZD with respect
to σ (this property only holds when d = 2). Note that we can identify ∂D with R/Z.
Using a compactness argument and replacing (rn) by a subsequence if necessary,
we may assume that for every open subinterval I of ∂D with rational ends, we have


lim
n→∞


∫


I


σ(dz)un(z) = a(I)


where a(I) ∈ [0,+∞]. We then set


K = {y ∈ ∂D : a(I) = +∞ if y ∈ I}.


Replacing again (rn) by a subsequence, we may also assume that the sequence of
measures 1∂D\K(z)un(z)σ(dz) converges to a limiting measure ν(dz), in the sense
of vague convergence of Radon measures on ∂D\K. From the definition of K and
ν, it can then be proved that, for every x ∈ D,


(6.3) lim
n→∞


∫


∂D


σ(dz)un(z)ZD(z) = +∞ , Nx a.e. on {ED ∩K 6= ∅}


and


(6.4) lim
n→∞


∫


∂D


σ(dz)un(z)ZD(z) = 〈ν, ZD〉 , Nx a.e. on {ED ∩K = ∅}.


Indeed, (6.4) is easy if we observe that the support of ZD is contained in ∂D\K,
on the event {ED ∩ K = ∅}. The proof of (6.3) reduces to checking that on the
event {ED ∩K 6= ∅} there is a (random) point z ∈ ∂D such that ZD(z) > 0.


Using (6.3) and (6.4), we can pass to the limit n → ∞ in the right-hand side
of (6.2), and we arrive at the representation formula (6.1). The other assertions of
Theorem 6.1 then follow rather easily.


Let us come back to the general case of equation ∆u = up. Marcus and Véron
([30], Theorem 1) proved that, for any p > 1 and in any dimension d ≥ 2, the trace
(K, ν) of a nonnegative solution u of ∆u = up in D can be defined by properties (i)
and (ii) of Theorem 6.1. Independently, Dynkin and Kuznetsov [15] gave a slightly
different but equivalent definition of the trace.


The one-to-one correspondence between solutions and their traces can in fact
be extended to the general subcritical case. The following theorem was proved by
Marcus and Véron [30].


Theorem 6.2. Assume that d < p+1
p−1 . Then the mapping u −→ (K, ν) as-


sociating with u its trace (K, ν) (defined by (i) and (ii) of Theorem 6.1) gives a
one-to-one correspondence between the set of all nonnegative solutions of ∆u = up


in D and the set of all pairs (K, ν), where K is a (possibly empty) compact subset
of ∂D, and ν is a Radon measure on ∂D\K.


When 1 < p ≤ 2, the probabilistic representation formula (6.1) can be extended
to this more general setting: See Theorem 1.3 in [28] (which elaborates on preceding
results of Dynkin and Kuznetsov [15], [16]).
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6.2. The supercritical case. The supercritical case p ≥ 1+d
1−d is more compli-


cated and in a sense more interesting. As was mentioned above, properties (i) and
(ii) of Theorem 6.1 can still be used to define the trace of any nonnegative solution
of ∆u = up in D.


However, the fact that there are nontrivial boundary polar sets now suggests
that all pairs (K, ν) cannot occur as possible traces. More precisely, Theorem 4.4
indicates that the pair (K, 0) cannot be a possible trace if K is boundary polar,
and similarly, Theorem 5.1 suggests that ν should not charge boundary polar sets
in order for (∅, ν) to be a possible trace. The characterization of possible traces
was obtained independently by Marcus and Véron [31] and Dynkin and Kuznetsov
[15] (the latter in the case p ≤ 2).


Theorem 6.3. Let K be a compact subset of ∂D, and let ν be a Radon measure
on ∂D\K. Then the pair (K, ν) is the trace of a nonnegative solution of ∆u = up


in D if and only if:


(i) The measure ν does not charge boundary polar sets.
(ii) The set K is the union of the two sets


K∗
p = {y ∈ K : K ∩ U is not boundary polar for every neighborhood U of y}


and


∂νK = {y ∈ K : ν(K ∩ U) = ∞ for every neighborhood U of y}.


Another problem in the supercritical case is the lack of uniqueness of the so-
lution corresponding to a given (admissible) trace. To give an example of this
phenomenon, consider the case p = 2, d ≥ 3. Let (yn) be a dense sequence in ∂D
and, for every n, let (rk


n, k = 1, 2, . . .) be a decreasing sequence of positive numbers.
For every k ≥ 1, set


Hk =


∞⋃


n=1


{y ∈ ∂D : |y − yn| < rk
n} ,


and


uk(x) = Nx(ED ∩Hk 6= ∅) , x ∈ D.


Then it is easy to see that, for every k ≥ 1, uk is a solution with trace (∂D, 0).
On the other hand, the fact that singletons are boundary polar implies that uk ↓ 0
as k ↑ ∞, provided that the sequences (rk


n, k = 1, 2, . . .) decrease sufficiently fast.
Therefore infinitely many of the functions uk must be different.


In view of this nonuniqueness problem, Dynkin and Kuznetsov [19], [16] have
proposed to use a finer definition of the trace, where the set K is no longer closed
with respect to the Euclidean topology. We will explain this definition in the general
case of equation ∆u = up. We first need to introduce the analogue of the singular
part for the fine trace of a solution u.


Let b be a nonnegative continuously differentiable function on D. We can then
consider the Poisson kernel (P b


D(x, y), x ∈ D, y ∈ ∂D) associated with the operator
∆u− bu in D (see Section 11.1.2 in Dynkin [9] for a detailed construction of P b


D).
A point y of the boundary ∂D is called singular for b if P b


D(x, y) = 0 for some,
or equivalently for every, x ∈ D. Informally, this corresponds to points of rapid
growth of b. A simple equivalent probabilistic definition can be given as follows. If
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(Bt, 0 ≤ t ≤ τ) is under Px→y a Brownian motion started from x and conditioned
to exit D at y (in the sense of [5]), the point y is singular for b if and only if


∫ τ


0


dt b(Bt) = +∞ , Px→y a.s.


Consider now a nonnegative solution u of ∆u = up. The singular set of u, which is
denoted by SG(u) is the set of all boundary points that are singular for up−1. Note
that SG(u) is a Borel subset of ∂D, but needs not be closed in general.


We denote by N the set of all finite measures on the boundary that do not
charge boundary polar sets. For every ν ∈ N , we denote by uν the unique solu-
tion of the problem (5.1), or equivalently the solution associated with ν via the
correspondence of Theorem 5.1.


Definition 6.4. Let u be a nonnegative solution of ∆u = up in D. The fine
trace of u is the pair (Γ, µ) that is defined as follows:


(i) Γ = SG(u).
(ii) µ is the σ-finite measure on ∂D\Γ such that, for every Borel subset A of


∂D\Γ,


(6.5) µ(A) = sup{ν(A) : ν ∈ N , uν ≤ u}.


Remark. It is not obvious that formula (6.5) defines a measure. See Theorem 1.3
in [16]. It is clear from (ii) that ν does not charge boundary polar sets.


It can be checked that in the subcritical case this definition is equivalent to the
one given by (i) and (ii) of Theorem 6.1. The interest of this definition comes from
the following theorem (Theorem 1.4 in [16]).


Theorem 6.5. [16] Let us call σ-moderate any nonnegative solution of ∆u = up


that is the increasing limit of a sequence of moderate solutions. Then σ-moderate
solution are characterized by their fine traces.


This theorem shows that the lack of uniqueness mentioned above disappears if
one considers the fine trace instead of the (rough) trace discussed in the previous
subsection. Dynkin and Kuznetsov [16] also give a description of those pairs (Γ, ν)
that can occur as fine traces of solutions. Provided one considers only σ-moderate
solutions, the fine trace thus yields a one-to-one correspondence between solutions
and admissible pairs (Γ, ν). The obvious question, which was stated in the epilogue
of [9] is thus:


Are all nonnegative solutions σ-moderate ?


This question was answered positively first in the case p = 2 in Mselati’s thesis
[36], [37]. In addition, Mselati’s work gives a probabilistic representation of solu-
tions, which is analogous to Theorem 6.1. To state this representation, we need
to introduce some additional notation. Let ν ∈ N , and let hν be the harmonic
function in D associated with ν (hν = PDν in our previous notation). Then, if
(Dn) is an increasing sequence of smooth subdomains of D such that D̄n ⊂ Dn+1


and D = ∪Dn, we can define


Zν := lim
n↑∞


〈ZDn
, hν〉 , Nx a.e.


and the resulting variable Zν does not depend on the choice of the sequence (Dn).
Note that the existence of the limit defining Zν is easy because 〈ZDn


, hν〉 is a
nonnegative martingale. Then, if ν is a σ-finite measure on ∂D that does not
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charge boundary polar sets, we can find an increasing sequence (νk) in N such that
ν = lim ↑ νk, and we set Zν = lim ↑ Zνk


(again this does not depend on the choice
of the sequence (νk)).


Theorem 6.6. [37] All nonnegative solutions of ∆u = 4 u2 are σ-moderate.
Moreover, if u is a solution and (Γ, ν) is its fine trace, we have for every x ∈ D,


(6.6) u(x) = Nx


(
1 − 1{ED∩Γ=∅} exp(−Zν)


)
.


A major step in the proof of Theorem 6.6 was to prove that the solution uK


defined in Lemma 4.3 is σ-moderate, for any compact subset K of ∂D. The proof
depends on delicate upper bounds on uK near the boundary, and analogous lower
bounds for certain σ-moderate solutions, which are obtained via probabilistic meth-
ods. Motivated by Mselati’s work, Marcus and Véron [33], [34] were able to obtain
very precise capacitary estimates in the general case p > 1. Part of their results is
summarized in the following theorem.


Theorem 6.7. [34] Consider the general case p > 1. Let K be a compact
subset of ∂D and assume that K is not boundary polar. Let uK be the maximal
nonnegative solution of ∆u = up in D that vanishes on ∂D\K. Then uK is σ-
moderate. Moreover, for every x ∈ D,


(6.7) uK(x) ≤ c1 ρ(x) ρK(x)−1−2/(p−1) C∂D
2/p,p′(K/ρK(x))


where c1 is a positive constant, ρ(x) = dist(x, ∂D) and ρK(x) = dist(x,K).


In addition to the upper bound (6.7), the main result of [34] also gives a sharp
lower bound, which we omit here.


Recently, Dynkin [10], [11], [12] was able to extend to extend Mselati’s result
to all values p ∈ (1, 2].


Theorem 6.8. [12] If 1 < p ≤ 2, all solutions of ∆u = up are σ-moderate.
Moreover, if u is a solution with fine trace (Γ, ν), we have


u = uΓ ⊕ uν


where:


• uΓ is the supremum of the functions uK for all compact subsets K of Γ.
• uν is the supremum of the functions uµ for all measures µ ∈ N such that
µ ≤ ν.


• The notation uΓ⊕uν stands for the maximal solution dominated by uΓ+uν .


See the monograph [12] for a detailed proof. In addition to some ideas taken
from [37], an important role is played by an upper bound similar to (6.7), which was
obtained by Kuznetsov [20] independently of [34]. A probabilistic representation
formula analogous to (6.6) also holds in the setting of Theorem 6.8.


Open problem. Extend Theorem 6.8 to the case p > 2.


The very recent paper [35] by Marcus and Véron contains important progress
towards the solution of this open problem.
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[32] M. Marcus, L. Véron (2001) Removable singularities and boundary traces. J. Math. Pures


Appl. 80, 879-900.
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