Q-process and genealogy

Olivier Hénard

Cermics, Université Paris-Est

Jean Bertoin	Examiner
Jean-François Delmas	Advisor
Jean-Stéphane Dhersin	Examiner
Thomas Duquesne	Referee
Peter Pfaffelhuber	Referee

Outline

(1) Constant size population models

- Introduction to the lookdown model
- A constant size population model with non-fixation
(2) Branching population models
- Branching population models process with immigration
- An inhomogeneous branching population with non-extinction

The Moran model (1958)

Let $\{1,2, \ldots, n\}$ be the individuals in a finite population of size n.
(1) Initially, each individual is either black or blue, and the k black types are randomly distributed among the n individuals.
(2) For every ordered couple of individuals (i, j), i reproduces over j at the times of independent Poisson processes with unit rate, and i gives its type to j.
We are interested in the process $X^{n}(t)=\sum_{1 \leqslant i \leqslant n} \mathbf{1}_{\{\text {individual }}$ i black at t $\}$
Question: Does one type fixate? What about the distribution of this fixation time?

Graphical representation

Figure: The blue type fixates the whole population

The lookdown particle system, [Donnelly Kurtz 96]

Figure: The black type fixates the whole population

A basic population model

In these two models, the Markov chain

$$
X^{n}(t)=\sum_{1 \leqslant i \leqslant n} \mathbf{1}_{\{\text {individual i black at } \mathrm{t}\}}
$$

has the same law. From the second model:

$$
\left.\lim _{t \rightarrow \infty} X^{n}(t)=n \mathbf{1}_{\{\text {individual }} 1 \text { black at } 0\right\}
$$

Therefore,

$$
\lim _{t \rightarrow \infty} X^{n}(t)= \begin{cases}n & \text { with probability } k / n \\ 0 & \text { with probability }(n-k) / n\end{cases}
$$

The modified lookdown particle system, [Donnelly Kurtz 99]

Figure: The black type (will) fixate the whole population

A basic population model

From the third model:

$$
\inf \left\{t \geqslant 0, X^{n}(t) \in\{0, n\}\right\}=\sum_{i=L(0)}^{n} \mathbf{e}_{i}
$$

where:

- $L(0)=\inf \{i \geqslant 1$, $\{$ black, blue $\} \subset$ the types of $\{1,2, \ldots, i\}$ at time 0$\}$ is a random variable with law:

$$
\mathbb{P}(L(0)=\ell)=\frac{\binom{n-k}{\ell-1} k+\binom{k}{\ell-1}(n-k)}{\binom{n}{\ell} \ell} .
$$

- the $\left(\mathbf{e}_{i}, 2 \leqslant i \leqslant n\right)$ are independent exponential random variables with parameter $2\binom{i}{2}=i(i-1)$.

We now switch to infinite constant size population.

A more general process, [Bertoin Le Gall 03]

A pure jump Generalized Fleming Viot (GFV) process $X_{t} \in[0,1]$ has generator:

$$
\begin{aligned}
& f(x) \rightarrow \quad x \int_{(0,1]} v(d y)[f(x(1-y)+y)-f(x)] \\
& \quad+(1-x) \int_{(0,1]} v(d y)[f(x(1-y))-f(x)] .
\end{aligned}
$$

At rate $v(d y)$, a reproduction event with size y affects the population, currently at state x.

- with probability x, black type reproduces.
- with probability $1-x$, blue type reproduces.
- the past population x is rescaled by a factor $(1-y)$.

Figure: The dynamic of the GFV process

Figure: The associated lookdown process

We define the first level at which the two types are encountered:

$$
L(t)=\inf \{i \geqslant 1,\{\text { black, blue }\} \subset \text { the types of }\{1,2, \ldots, i\} \text { at time } t\},
$$

which forms a Markov chain in continuous time, started at ℓ under \mathbb{P}_{ℓ}. Notice that

$$
\{T>t\}=\{L(t)<\infty\} \text { a.s. }
$$

Under the condition:

$$
\begin{equation*}
\mathbb{P}_{3}(L(t)<\infty) / \mathbb{P}_{2}(L(t)<\infty) \rightarrow 0 \text { as } t \rightarrow \infty, \tag{1}
\end{equation*}
$$

the fixation time $T=\inf \left\{t>0, X_{t} \in\{0,1\}\right\}$ is a.s. finite, and:

$$
\begin{aligned}
\mathbb{P}(L(t)<\infty) & =\sum_{k \geqslant 2} \mathbb{P}(L(s)=k) \mathbb{P}_{k}(L(t-s)<\infty) \\
& \sim \mathbb{P}(L(s)=2) \mathbb{P}_{2}(L(t-s)<\infty) \text { as } t \rightarrow \infty
\end{aligned}
$$

Figure: The lookdown process conditioned on non-fixation

Figure: The lookdown process conditioned on non-fixation

Set $r_{2}=\int_{(0,1]} v(d y) y^{2}$. The process

$$
\begin{aligned}
h\left(t, X_{t}\right) & =X_{t}\left(1-X_{t}\right) \mathrm{e}^{r_{2} t} \\
& =\frac{1}{2} \mathbb{P}\left(L(t)=2 \mid X_{[0, t]}\right) \mathrm{e}^{r_{2} t}
\end{aligned}
$$

defines a non-negative martingale. We therefore consistently define a new process by setting:

$$
\mathbb{P}\left(X^{h} \in A\right)=\mathbb{E}\left(\frac{h\left(t, X_{t}\right)}{h\left(0, X_{0}\right)}, A\right)
$$

for any event $A \in \sigma\left(X_{s}, s \leqslant t\right)$.
Theorem (H. 12)
If the condition (1) holds, then:

$$
\mathbb{P}(X \in A \mid T>t) \rightarrow \mathbb{P}\left(X^{h} \in A\right), \text { as } t \rightarrow \infty .
$$

The dynamic of the process X^{h}

Proposition (H. 12)

The generator of X^{h} is:

$$
\begin{aligned}
& f(x) \rightarrow \int_{(0,1]} v(d y) y(1-y)\{f(x(1-y)+y)-f(x)\} \\
& +\int_{(0,1]} v(d y) y(1-y)\{f(x(1-y))-f(x)\} \\
& +x \int_{(0,1]} v(d y)(1-y)^{2}\{f(x(1-y)+y)-f(x)\} \\
& +(1-x) \int_{(0,1]} v(d y)(1-y)^{2}\{f(x(1-y))-f(x)\}
\end{aligned}
$$

Outline

(1) Constant size population models

- Introduction to the lookdown model
- A constant size population model with non-fixation
(2) Branching population models
- Branching population models process with immigration
- An inhomogeneous branching population with non-extinction

A continuous state branching process, [Jirina58,Lamperti67]

- A (critical) pure jump continuous state branching process (CB) $Y_{t} \in[0, \infty)$ has generator:

$$
f(x) \rightarrow x \int_{(0, \infty)} \pi(d y)\left[f(x+y)-f(x)-y f^{\prime}(x)\right]
$$

- At rate $x \pi(d y)$, a reproduction event with size y affects a population with size $x ; y$ is simply added to the size of the (non-constrained) population.
- Due to the branching property, a family of CB processes $\left(Y_{t}(x), t \geqslant 0, x \geqslant 0\right)$ starting from $x \geqslant 0$ may be constructed.

Figure: The pure jump CB process, and its ratio process $Y_{t}(x) / Y_{t}(1)$

First similarities between the ratio process of a CB and a GFV

- The ratio $Y_{t}(x) / Y_{t}(1) \in[0,1]$ is a pure jump martingale, with absorbing points $\{0,1\}$.
- At the time of a reproduction event, the father is chosen to be blue or black according to the respective proportions of blue and black types.

A link with GFV processes

How to cook up from the ratio process a GFV process?
(1) A reproduction of size y arises with rate $z \pi(d y)$ in the total population with size z.
(2) Therefore, for the ratio, a reproduction event of size r arises at rate

$$
z \phi_{z}^{\star}(\pi)(d r) \text { with } \phi_{z}(y)=\frac{y}{y+z} \in(0,1) .
$$

(3) There exists $\lambda:(0, \infty) \rightarrow(0, \infty)$ and a measure v on $(0,1)$ such that:

$$
\phi_{z}^{\star}(\pi)(d r)=\lambda(z) v(d r)
$$

iff π belongs to the family of stable measures, $\pi(d y)=y^{-1-\alpha} d y$ for some $0<\alpha<2$, in which case $\gamma(d r)=r^{-2} \operatorname{Beta}(2-\alpha, \alpha)(d r)$ and $\lambda(z)=z^{-\alpha}$, see [Birkner \& al 05].

CB process with immigration, [Kawazu Watanabe 71]

- A (pure jump) CB process with immigration $Y_{t} \in[0, \infty]$-called CBI process- has generator:

$$
\begin{aligned}
f(x) \rightarrow & x \int_{(0, \infty)} \pi(d y)\left[f(x+y)-f(x)-y f^{\prime}(x)\right] \\
& +\int_{(0, \infty)} \pi^{0}(d y)[f(x+y)-f(x)]
\end{aligned}
$$

At constant rate $\pi^{0}(d y)$, independently of the population size, additional immigration events with size y affects the population.

- Once again, a family $\left(Y_{t}(x), t \geqslant 0, x \geqslant 0\right)$ of such CBI processes can be constructed, $\left(Y_{t}(0), t \geqslant 0\right)$ counts the immigrants.

A GFV process with immigration, [Foucart 11]

- A (pure jump) GFV process with immigration $X_{t} \in[0,1]$-called a GFVI process- has generator:

$$
\begin{aligned}
& f(x) \rightarrow \quad x \int_{(0,1]} v(d y)[f(x(1-y)+y)-f(x)] \\
& +(1-x) \int_{(0,1]} v(d y)[f(x(1-y))-f(x)] \\
& \quad+\int_{(0,1]} v^{0}(d y)[f(x(1-y)+y)-f(x)] .
\end{aligned}
$$

- At constant rate $v^{0}(d y)$, independently of x, an immigration event with size y affects the population.

Let Y be a CBI with reproduction and immigration measures:

$$
\pi(d y)=y^{-1-\alpha} d y \text { and } \pi^{0}(d y)=y^{-\alpha} d y
$$

for $1<\alpha<2$. We also set:

$$
C(t)=\int_{0}^{t} d s Y_{s}(1)^{1-\alpha}
$$

Theorem (Foucart, H., 12)

The process:

$$
\left(\frac{Y_{C^{-1}(t)}(x)}{Y_{C^{-1}(t)}(1)}, t \geqslant 0\right)
$$

is a GFVI starting at x, with reproduction and immigration measures:

$$
v(d r)=r^{-2} \operatorname{Beta}(2-\alpha, \alpha)(d r) \text { and } v^{0}(d r)=r^{-1} \operatorname{Beta}(2-\alpha, \alpha-1)(d r)
$$

Another presentation of branching processes

Figure: A (discrete) branching process, with one (blue) type

- Let Y_{t} be our branching process.

$$
\mathbb{E}_{x}\left(\mathrm{e}^{-\lambda Y_{t}}\right)=\mathrm{e}^{-x u_{t}^{\lambda}}, t \geqslant 0,
$$

- where u_{t} satisfies:

$$
u_{t}^{\lambda}+\int_{0}^{t} d s \psi\left(u_{t-s}^{\lambda}\right)=\lambda
$$

- with the branching mechanism:

$$
\psi(\lambda)=\int_{(0, \infty)}\left[\mathrm{e}^{-\lambda y}-1+\lambda y\right] \pi(d y)
$$

Another presentation of branching processes

Figure: A (discrete) branching process, with one (blue) type

- Let Y_{t} be a branching process.

$$
\mathbb{E}_{x}\left(\mathrm{e}^{-\lambda Y_{t}}\right)=\mathrm{e}^{-x u_{t}^{\lambda}}, t \geqslant 0
$$

- where u_{t} satisfies:

$$
u_{t}^{\lambda}+\int_{0}^{t} d s \psi\left(u_{t-s}^{\lambda}\right)=\lambda
$$

- with the branching mechanism:

$$
\begin{aligned}
\psi(\lambda)= & \int_{(0, \infty)}\left[e^{-\lambda y}-1+\lambda y\right] \pi(d y) \\
& +\alpha \lambda+\beta \lambda^{2}
\end{aligned}
$$

Measure valued branching processes, [Dawson, Dynkin]

Figure: A (discrete) branching process, with black and blue types

$$
\begin{aligned}
\psi(\lambda)= & \int_{(0, \infty)}\left[\mathrm{e}^{-\lambda y}-1+\lambda y\right] \pi(d y) \\
& +\alpha \lambda+\beta \lambda^{2}
\end{aligned}
$$

Measure valued branching processes, [Dawson, Dynkin]

- Let Y_{t} be an inhomogeneous measure-valued branching process.

$$
\mathbb{E}_{\delta_{x}}\left(\mathrm{e}^{-Y_{t}(f)}\right)=\mathrm{e}^{-u_{t}^{f}(x)}, t \geqslant 0
$$

- where u_{t} satisfies:

$$
\begin{gathered}
u_{t}^{f}(x)+\mathrm{E}_{x}\left(\int_{0}^{t} d s \psi\left(Z_{s}, u_{t-s}^{f}\left(Z_{s}\right)\right)\right) \\
=\mathrm{E}_{x}\left(f\left(Z_{t}\right)\right)
\end{gathered}
$$

- with the branching mechanism:

Figure: A (discrete) branching process, with black and blue types

$$
\psi(z, \lambda)=\alpha(z) \lambda+\beta(z) \lambda^{2}
$$

Williams decomposition under \mathbb{N}_{x}

- \mathbb{N}_{X} denotes the canonical measure $=$ "law" of the process started at an infinitesimal individual at x.
- We assume that the height $H_{\text {max }}=\inf \left\{t \geqslant 0, Y_{t}=0\right\} \in[0, \infty]$ is a.e. finite:

$$
\mathbb{N}_{X}\left(H_{\max }=\infty\right)=0
$$

- We define $P_{x}^{(h)}$ by its Radon-Nikodym derivative w.r.t. P_{x} on $\mathcal{D}_{t}, 0 \leqslant t \leqslant h$:

Figure: A branching process decomposed into a trunk and subtrees

$$
\begin{aligned}
& \quad \frac{\partial_{h} v_{h-t}\left(Z_{t}\right)}{\partial_{h} v_{h}(x)} \mathrm{e}^{-\int_{0}^{t} d s \partial_{\lambda} \psi\left(Z_{s}, v_{h-s}\left(Z_{s}\right)\right)}, \\
& \text { with } v_{h}(x):=\mathbb{N}_{x}\left(H_{\max }>h\right),
\end{aligned}
$$

Williams decomposition under \mathbb{N}_{x}

- Conditionally on ($Z_{s}, 0 \leqslant s<h$) with law $\mathrm{P}_{x}^{(h)}$, we define a Poisson point measure $\sum_{i \in \mathcal{J}} \delta_{\left(s_{i}, Y^{i}\right)}(d s, d Y)$ with intensity

$$
\mathbf{1}_{\left\{0 \leqslant s<h, H_{\max }(Y)+s \leqslant h\right\}} d s 2 \beta\left(Z_{s}\right) \mathbb{N}_{Z_{s}}(d Y) .
$$

- Denote by $\mathbb{N}_{x}^{(h)}$ the law of

$$
\left(\sum_{i \in \mathcal{J}} Y_{\left(t-s_{i}\right)^{+}}^{i}, 0 \leqslant t<h\right)
$$

Theorem (Delmas, H., 12)

The following desintegration of the canonical measure holds:
Figure: A branching process decomposed into a trunk and subtrees

$$
\mathbb{N}_{x}=\int_{h>0} d h\left|\partial_{h} v_{h}(x)\right| \mathbb{N}_{x}^{(h)} .
$$

J.-F. Delmas and O. Hénard.

A Williams decomposition for spatially dependent superprocesses.
in revision for EJP, June 2011.
C. Foucart and O. Hénard.

Stable continuous branching processes with immigration and beta-fleming-viot processes with immigration.
ArXiv e-prints, March 2012.
S. Gufler and O. Hénard.

The excursions of the Q-process.
In preparation, 2012.
O. Hénard.

Change of measure in the lookdown particle system.
in revision for SPA, April 2012.

