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Abstract

We show that a recent spectral flow approach proposed by
Berkolaiko–Cox–Marzuola for analyzing the nodal deficiency of the
nodal partition associated to an eigenfunction can be extended to
more general partitions. To be more precise, we work with spectral
equipartitions that satisfy a pair compatible condition. Nodal
partitions and spectral minimal partitions are examples of such
partitions.

Along the way, we discuss, using former collaborations with M. and
T. Hoffmann-Ostenhof, M. Owen, V. Bonnaillie, S. Terracini,
different approaches to the Dirichlet-to-Neumann operators: via
Aharonov–Bohm operators, via a double covering argument, and
via a slitting of the domain. For lack of time, we will focus on the
first approach.

This work is in collaboration with M. Persson Sundqvist (University
of Lund).



Main goals

We consider the Dirichlet Laplacian −∆Ω = −∆ in a bounded
domain Ω ⊂ R2, where ∂Ω is piecewise C 1.

Our goal is to analyze the relations between spectral properties of
this Laplacian and partitions D of Ω by k open sets {Di}ki=1,
which are spectral equipartitions in the sense that:
In each Di ’s the ground state energy λ1(Di ) of the Dirichlet
realization of the Laplacian in Di is the same;
In addition they satisfy a pair compatibility condition (PCC):
For any pair of neighbors Di ,Dj , there is a linear combination of
the ground states in Di and Dj which is an eigenfunction of the
Dirichlet problem in Int(Di ∪ Dj).



Nodal partitions and minimal partitions are typical examples of
these PCC-equipartitions.
A difficult question is to recognize which PCC-equipartitions are
minimal. This problem has been solved in the bipartite case (which
corresponds to the Courant sharp situation) but the problem
remains open in the general case.

Our main goal is to extend the construction and analysis of the
spectral flow and Dirichlet-to-Neumann operators, which was done
for nodal partitions in Berkolaiko-Cox-Marzuola [BCM], to
spectral equipartitions that satisfy PCC.



The construction of [BCM]

Let Ω ⊂ R2 and λ∗ be some eigenvalue of the Dirichlet Laplacian
−∆Ω, with corresponding eigenfunction φ∗.
We define

Γ = {x ∈ Ω : φ∗(x) = 0} ,

and
Ω± = {x ∈ Ω : ± φ∗(x) > 0} .

Let k∗ be the the minimal label of λ∗ and ν(φ∗) the number of
connected components of the set Ω \ Γ.



The Dirichlet-to-Neumann operator

Assume that E ⊂ R2 is a bounded domain with Lipschitz boundary
(nodal domains and later our more general partitions) have this
property), and that λ is not in the spectrum of −∆E . Given g on
∂E , let u be the unique solution to{

−∆u = λu in E ,

u = g on ∂E .

Then the Dirichlet-to-Neumann operator ΛE (λ) is defined as an
unbounded operator on L2(∂E )

ΛE (λ)g :=
∂u

∂ν
,

where ν is a unit normal vector pointing out of E .



Theorem BCM

If ε > 0 is sufficiently small, then

k∗ − ν(φ∗) = 1− dim ker(−∆Ω − λ∗)
+Mor

(
RΓΩ,Γ

(
ΛΩ+(λ∗ + ε) + ΛΩ−(λ∗ + ε)

)
iΓ,ΓΩ

)
,
(1)

where

I Mor counts the number of negative eigenvalues of an operator
(the so-called Morse index of the operator),

I ΓΩ = Γ ∪ ∂Ω,

I iΓ,ΓΩ
is the extension by 0 operator from Γ to ΓΩ,

I RΓΩ,Γ is the restriction to Γ operator.



The operator

Λ(Γ, λ∗ + ε) := RΓ∪∂Ω,Γ

(
ΛΩ+(λ∗ + ε) + ΛΩ−(λ∗ + ε)

)
iΓ,Γ∪∂Ω

is considered as an unbounded operator on L2(Γ).
Actually it is defined through a quadratic form with form domain

H
1
2 (Γ) (see later).

Remark
The nodal deficiency k∗ − ν(φ∗) is non-negative due to Courant’s
nodal theorem.



Spectral flow for a family with delta potentials on Γ

To characterize the negative eigenvalues of Λ(Γ, λ∗ + ε) it is
fruitful to study the family of operators −∆Ω,σ, 0 ≤ σ < +∞,
induced by the bilinear form

Bσ(u, v) =

∫
Ω
∇u · ∇v dx + σ

∫
Γ
u v ds, u, v ∈ H1

0 (Ω).

Indeed, if we denote by {λk(σ)}+∞
k=1 the set of eigenvalues of

−∆Ω,σ, in increasing order, then [BCM] shows that if ε > 0 is
sufficiently small, then −σ is an eigenvalue of Λ(Γ, λ∗ + ε) if, and
only if, λ∗ + ε = λk(σ) for some k ∈ N.

They also show that each analytic branch of the eigenvalues is
increasing with σ. Moreover, as σ → +∞, the eigenvalues λk(σ)
converges to the eigenvalues of −∆Ω,+∞ which is the Laplacian in
Ω with Dirichlet boundary conditions imposed on ∂Ω ∪ Γ.



Due to the construction, the eigenvalue λ∗ is in fact the lowest
eigenvalue of −∆Ω,+∞, with multiplicity ν(φ∗).

Thus,

lim
σ→+∞

λk(σ)

{
= λ∗, if 1 ≤ k ≤ ν(φ∗),

> λ∗, if k > ν(φ∗).

By the definition of k∗, the operator −∆Ω,0 = −∆Ω has exactly
≤ k∗ − 1 + dim ker(−∆Ω − λ∗) eigenvalues ≤ λ∗, and so exactly
k∗ − 1 + dim ker(−∆Ω − λ∗)− ν(φ∗) of them will pass λ∗ + ε,
where ε > 0 is sufficiently small.



Examples: Equipartitions of the unit circle

We assume that N is odd (N even corresponds to a nodal
situation) and consider an N-equipartition D

k(D) = N

of the unit circle.
Then we consider the angular part of the Laplacian, − d2

dθ2 ,
with Dirichlet conditions at each sub-dividing point.

Each interval have length Θ = 2π/N, and the smallest
eigenvalue—the energy of the partition—is given by
E(D) = (N/2)2.
This partition is NOT a nodal partition associated with an
eigenfunction of − d2

dθ2 .



One should instead consider the magnetic operator on the circle is
given by

T = −
( d

dθ
− i π

2

)2
,

and its spectrum consist of eigenvalues
{(

2n−1
2

)2}+∞
n=1

, each with
multiplicity two,

dim ker
[
T −

(2n − 1

2

)2]
= 2.

In particular, the minimal label `(D) of the eigenvalue
E(D) = (N/2)2 is

`(D) = N.

Alternately, one can consider − d2

dθ2 on ]0, 2π[ but with antiperiodic
condition.
The last possibility is to consider − d2

dx2 on R/(4πZ) restricted to
the functions satisfying u(x + 2π) = −u(x).



As in the nodal case, we look for a formula with the form

`(D)− k(D) = 1− dim ker
(
T − E(D)

)
+τ(ε,D), (2)

where τ(ε,D) denotes the number of negative eigenvalues of some
Dirichlet-to-Neumann operator to be discussed below.

In fact, since `(D) = N, k(D) = N, dim ker
(
T − E(D)

)
= 2, we

need to check that
τ(ε,D) = 1.



First we compute the Dirichlet-to-Neumann operator and the
associated 2× 2 matrix Mλ which associates with the solution u of

− d2

dθ2
u = λu , u(0) = u0 , u(Θ) = u1 ,

the pair
(v0, v1) = (−u′(0), u′(Θ)) .

This leads to [
v0

v1

]
= Mλ

[
u0

u1

]
,

where Mλ is the matrix

Mλ =


√
λ cot(

√
λΘ) −

√
λ

sin(
√
λΘ)

−
√
λ

sin(
√
λΘ)

√
λ cot(

√
λΘ)

 =

[
α(λ) β(λ)
β(λ) α(λ)

]
,



We continue in the same way along the circle. With

(uk , uk+1) = (u(kΘ), u((k + 1)Θ))

and
(vk , vk+1) = (−u′(kΘ), u′((k + 1)Θ)) ,

we find [
vk
vk+1

]
= Mλ

[
uk
uk+1

]
, 0 ≤ k ≤ N − 1.



But when we come to (uN , vN) we have walked around the circle,
and are back at the point we started. We are in a magnetic
situation. We shoud replace (uN , vN) by (−u0,−v0).
Thus, our Dirichlet-t- Neumann operator which associates with
(u0, u1, . . . , uN−1) the N-tuple (v0, v1, . . . , vN−1), is given by the
matrix

Mλ :=
1

2



2α(λ) β(λ) 0 0 · · · −β(λ)
β(λ) 2α(λ) β(λ) 0 · · · 0

0 β(λ) 2α(λ) β(λ) · · · 0

0 0 β(λ) 2α(λ) · · ·
...

...
...

...
. . .

. . . β(λ)
−β(λ) 0 0 · · · β(λ) 2α(λ)


.



The eigenvalues of Mλ are given by

µk = α− β cos(2kπ/N) , k = 0, . . . ,N − 1 . (3)

The lowest one is µ0 = α(λ)− β(λ), and this eigenvalue is
negative if

√
λ = N/2 + ε, with ε > 0 sufficiently small. The other

eigenvalues are positive.
We conclude that if

√
λ = N/2 + ε, with ε > 0 sufficiently small,

then the matrix Mλ has exactly 1 negative eigenvalue. This means
that Formula (2) is indeed true.



Equipartitions: Notation and definitions

We consider a bounded connected open set Ω in R2. A k-partition
of Ω is a family D = {Di}ki=1 of mutually disjoint, connected, open

sets in Ω such that Ω = ∪ki=1Di . We denote by Ok(Ω) the set of
k-partitions of Ω. If D = {Di}ki=1 ∈ Ok(Ω) and the eigenvalues
λ1(Di ) of the Dirichlet Laplacian in Di are equal for 1 ≤ i ≤ k, we
say that the partition D is a spectral equipartition. We give two
examples of how such partitions occur.



Nodal partitions

We denote by {λj(Ω)}+∞
j=1 the increasing sequence of eigenvalues

of the Dirichlet Laplacian in Ω and by {uj}+∞
j=1 some associated

orthonormal basis of real-valued eigenfunctions.

For a function u ∈ C 0(Ω), we define the zero set of u as

N(u) = {x ∈ Ω
∣∣ u(x) = 0},

and call the components of Ω \ N(u) the nodal domains of u. We
denote the number of nodal domains of u by µ(u). These µ(u)
nodal domains define a k-partition of Ω, with k = µ(u).

Since an eigenfunction uj , restricted to each nodal domain Di

satisfy the eigenvalue equation −∆uj = λjuj , with the Dirichlet
boundary condition on ∂Di , each nodal partition is indeed a
spectral equipartition.
By the Courant nodal theorem, µ(uj) ≤ j . We say that the pair
(λj , uj) is Courant sharp if µ(uj) = j , i.e. has nodal deficiency 0.



Minimal partitions

For any integer k ≥ 1, and for D in Ok(Ω), we introduce the
energy of the partition,

E(D) = max
i
λ1(Di ).

Then we define
Lk(Ω) = inf

D∈Ok

E(D) .

We call D ∈ Ok a minimal spectral k-partition if Lk(Ω) = E(D).

If k = 2, L2(Ω) = λ2(Ω) and the associated minimal 2-partition
consists of the nodal domains of some second eigenfunction u2 In
general, every minimal spectral partition is an equipartition (see
[HHOT2009]).



Regularity assumptions on partitions

Attached to D, we associate the boundary set of the partition:

N (D) = ∪i (∂Di ∩ Ω) ,

which plays the role of the nodal set (in the case of a nodal
partition).



A partition D is said regular if K := N (D) is regular in the
following sense

(i) Except for finitely many critical points {x`} ⊂ K ∩ Ω, K is
locally diffeomorphic to a regular curve. In the neighd. of
each x` K consists of a union of ν` ≥ 3 smooth half-curves
with one end at x`.

(ii) K ∩ ∂Ω consists of a finite set of boundary points {zm}.
Moreover, in a neighd of each zm, K is a union of ρm distinct
smooth half-curves with one end at zm.

(iii) K has the equal angle meeting property.

Nodal sets are regular (by Bers [Be1955] ) and it is proven in
[HHOT2009] that minimal partitions are also regular (modulo a set
of capacity 0).



Example

𝑥1

𝑧1

𝑧2

𝑧3
𝑧4

𝑧5

Figure: Partition of a set Ω with three holes. Non admisssible case.



Odd and even points

Given a partition D of Ω, we denote by X odd(D) the set of odd
critical points, i.e. points x` for which ν` is odd. When ∂Ω has one
exterior boundary and m interior boundaries (corresponding to m
holes), we should also impose (see [HHOO1999]) that an odd
number of lines arrives at some component of the interior
boundary. We should distinguish between the odd interior
boundaries and the even interior boundaries.

To simplify in this talk we assume from now on that Ω is simply
connected.
Hence we have no interior boundaries (no holes).



Pair compatibility condition

Given a partition D = {Di} of Ω, we say that Di and Dj are
neighbors, which we write Di ∼ Dj , if the set
Dij := Int(Di ∪ Dj) \ ∂Ω is connected.
We associate with D a graph G (D) by associating with each Di a
vertex and to each pair Di ∼ Dj an edge.
We recall that a graph is said to be bipartite if its vertices can be
colored by two colors so that all pairs of neighbors have different
colors.
We say that D is admissible (or bipartite) if the associated graph
G (D) is bipartite.

Nodal partitions are always admissible, since the eigenfunction
changes sign when going from one nodal domain to a neighbor
nodal domain.



Compatibility condition between neighbors

Let D = {Di}ki=1 be a regular equipartition of energy λ := E(D).
Given Di ∼ Dj , E(D) is the groundstate energy −∆Di

and −∆Dj
.

There is, however, in general no way to construct a function uij in
the domain of −∆Dij

s. t. uij = ciui in Di and uij = cjuj in Dj .

Definition of PCC

A regular equipartition D = {Di}ki=1 satisfies the pair compatibility
condition, (for short PCC), if, for any pair (i , j) such that Di ∼ Dj ,
there is an eigenfunction uij 6≡ 0 of −∆Dij

s. t. −∆Dij
uij = λuij ,

and where the nodal set of uij is given by ∂Di ∩ ∂Dj .

Nodal partitions and spectral minimal partitions satisfy the PCC.
Hence it is quite natural to consider the equipartitions satisfying
this property.



Admissible k-partitions and Courant sharp eigenvalues

It has been proved by Conti–Terracini–Verzini [13, 14, 15] and
Helffer–T. Hoffmann-Ostenhof–Terracini [HHOT2009], that, for
any k ∈ N, there exists a minimal regular k-partition.

It is also proven (see [HHO2007], [HHOT2009]) that if the graph
of a minimal partition is bipartite, then this partition is nodal.

A natural question was to determine how general the previous
situation is. Surprisingly this only occurs in the Courant sharp
situation, i.e. when the nodal deficiency is 0.



For any k ≥ 1, we denote by Lk(Ω) the smallest eigenvalue of LΩ,
whose eigenspace contains an eigenfunction with k nodal domains.
In general, one can show that

λk(Ω) ≤ Lk(Ω) ≤ Lk(Ω) .

The following result gives the full picture of the equality cases:

Theorem HHOT

Suppose that Ω ⊂ R2 is smooth and that k ∈ N. If
Lk(Ω) = Lk(Ω) or Lk(Ω) = λk(Ω) then

λk(Ω) = Lk(Ω) = Lk(Ω),

and one can find a Courant sharp eigenpair (λk , uk).



The Aharonov–Bohm operator

Let Ω ⊂ R2 be a bounded connected domain. We recall some
definitions and results about the Aharonov–Bohm (AB)
Hamiltonian with poles at a finite number of points. These results
were initially motivated by the work of Berger–Rubinstein [BeRu]
and further developed in [1, HHOO1999, 6, BH2011].
Following Helffer–Hoffmann-Ostenhof M.&T., Owen, we begin
with the case of one pole.



Simply connected Ω, one AB pole
We assume one AB pole X = (x0, y0) ∈ Ω and introduce the
magnetic vector potential

AX (x , y) = (AX
1 (x , y),AX

2 (x , y)) =
Φ

2π

(
−y − y0

r2
,
x − x0

r2

)
,

with Φ ∈ R and r2 = |x − x0|2 + |y − y0|2.
The associated magnetic field vanishes identically in
Ω̇X = Ω \ {X} . We introduce

∇AX = ∇− i AX ,

and consider the self-adjoint AB Hamiltonian

TAX = −(∇AX )2 .

This operator is defined as the Friedrichs extension associated with
the quadratic form

C+∞
0 (Ω̇X ) 3 u 7→

∫
Ω

∣∣∇AX u
∣∣2 dx .



We introduce next the multi-valued complex argument function

φX (x , y) = arg
(
x − x0 + i (y − y0)

)
.

This function satisfies

AX =
Φ

2π
∇φX .

This implies that with the flux condition

Φ

2π
=

1

2

one has
−AX = AX −∇φX ,

and that multiplication with the function e i φX , uni-valued in Ω̇X ,
is a gauge transformation intertwining TAX and T−AX .



The anti-linear operator KX : L2(Ω)→ L2(Ω), defined by

u 7→ KXu = exp(i φX )ū

satisfies
KXTAX = TAXKX .

We say that u is KX -real, if it satisfies

KXu = u

and we note that:
The operator TAX is preserving the KX - real functions.



Simply connected Ω, several AB poles

We can extend our construction in the case of a configuration
with ` distinct points X = {Xj}`j=1 in Ω (putting a flux Φ = π at
each of these points). We can just take as magnetic potential

AX =
∑̀
j=1

AXj .

The corresponding AB Hamiltonian TAX is defined as the Friedrichs
extension, via the quadratic form in C+∞

0 (Ω̇X), where Ω̇X = Ω \X.

We also construct the anti-linear operator KX. As in the case of
one AB pole, we can consider the (real) subspace of the KX-real
functions in L2

KX
(Ω̇X), and our operator as an unbounded

selfadjoint operator in L2
KX

(Ω̇X).



It was shown in [HHOO1999] (Helffer–Hoffmann-Ostenhof
(M.&T.), Owen) that the nodal set of a KX-real eigenfunction has
the same structure as the nodal set of a real-valued eigenfunction
of the Dirichlet Laplacian
except that an odd number of half-lines meet at each pole.



Equipartitions and nodal partitions of AB Hamiltonians

Let D be a regular k-equipartition with energy E(D) = lk(Ω)
satisfying the Pair Compatibility Condition.

We denote by X = X odd(D) = {Xj}`j=1 the critical points of the
boundary set N (D) of the partition for which an odd number of
half-curves meet.
For this family of points X, it is shown in [HHOT2009] that lk(Ω)
is an eigenvalue of the AB Hamiltonian associated with Ω̇X, and
we can explicitly construct the corresponding eigenfunction with k
nodal domains Di .



Proof of [HHOT] statement.

There exists a family {ui}ki=1 of functions such that ui is a ground
state of −∆Di

and ui − uj is a second eigenfunction of −∆Dij

when Di ∼ Dj (here we have extended ui and uj by 0 outside of Di

and Dj , respectively, and we recall that Dij = Int(Di ∪ Dj)).

The claim is that one can find a sequence εi (x) of S1-valued
functions, where εi is a suitable square root of exp(iφX) in Di ,
such that

∑
i εi (x)ui (x) is an eigenfunction of the AB Hamiltonian

TAX associated with the eigenvalue lk(Ω) = E(D).



The Berkolaiko–Cox–Marzuola construction in the
Aharonov–Bohm approach

Thus, let D be a k-partition in Ω. We denote by Γ = N (D) the
boundary set of the partition of energy lk(Ω). We denote by mk

the multiplicity of lk(Ω) as eigenvalue of the magnetic AB
Hamiltonian TAX .

We consider the family {Bσ}σ∈R of sesquilinear forms defined on
the magnetic Sobolev space H1

0,A(Ω)× H1
0,A(Ω) (see Léna [24] and

also [18]) by

(u, v) 7→ Bσ(u, v) =

∫
Ω
∇Au · ∇Av + σ

∫
Γ
u v dSΓ,

where A = AX and dSΓ is the induced measure on (each arc of) Γ.



We set H
1/2
A (Γ) := ⊕iH

1/2
A (γi ), and writing∫

Γ
u v dSΓ =

∑
i

∫
γi

u v dSγi ,

we note that the sesquilinear form Bσ is continuous on
H1

0,A(Ω)× H1
0,A(Ω) .

Associated with this sesquilinear form we have the corresponding
magnetic-Robin AB Hamiltonian Lσ.

We also define L+∞ as the corresponding AB magnetic Schrödinger
operator, with Dirichlet boundary conditions at ∂Ω ∪ Γ.



We now collect some properties of the operators Lσ.

Proposition

For each −∞ < σ ≤ +∞, Lσ has compact resolvent.
Moreover if σ < +∞, then

D(Lσ) = {u ∈ H1
0,A(Ω) | (∇A)2u ∈ L2(Ω)+transmission conditions} .

The transmission condition is the following:
If Di ∼ Dj and γ is a regular arc in ∂Di ∩ ∂Dj , then,

νi · ∇Aui + νj · ∇Auj = −σu on γ , (4)

where νi is the exterior normal to Di (at a point of γ) and ui
denotes the restriction of u to Di .



Given −∞ < σ ≤ +∞, we denote by by {λn(σ)}n∈N the
increasing sequence of eigenvalues of Lσ, counted with multiplicity.
These eigenvalues are piecewise analytic by Kato theory. Following
[BCM], a perturbative argument shows that σ 7→ λn(σ) is either
increasing or constant and the latter case only occurs when λn(0)
is an eigenvalue of L+∞.

Proposition

As σ → +∞ ,
λn(σ)→ λn(+∞). (5)



Toward the construction of the magnetic
Neumann-Poincaré operator

We can now construct the magnetic Neumann–Poincaré operator
extending the construction of [BCM].
For each Dj , we consider ∂Dj . We introduce the magnetic
Dirichlet–Neumann operator on ∂Dj which associates, for ε > 0, to

a function h ∈ H
1/2
A (∂Dj), a solution u to{

TAu = (lk + ε)u in Dj ,

u = h on ∂Dj .
(6)

We define a pairing of elements in H
−1/2
A (∂Dj) and H

1/2
A (∂Dj),

inspired by how it is done in the non-magnetic case by the
Green–Riemann formula.



If v0 ∈ H
1/2
A (∂Dj) there exists w0 ∈ H1

A(Dj) such that{
−(∇A)2w0 = 0 in Dj

w0 = v0 on ∂Dj .

The mapping v0 7→ w0 is continuous from H
1/2
A (∂Dj) into H1

A(Dj).
Then, we set〈
νj ·∇Au, v0

〉
H

−1/2
A (∂Dj ),H

1/2
A (∂Dj )

:= −〈∇Au,∇Aw0〉+〈(∇A)2u,w0〉 ,
(7)

where νj is the exterior normal derivative to ∂Dj .



The reduced magnetic Dirichlet to Neuman operator

We then define, for each Dj , the reduced magnetic

Dirichlet–Neumann operator on H
1/2
A (∂Dj ∩ Ω) by restricting the

magnetic Dirichlet–Neumann operator initially defined on

H
1/2
A (∂Dj) and using the identification

H
1/2
A (∂Dj ∩ Ω) ∼ Ĥ

1/2
A := {h ∈ H

1/2
A (∂Dj), h = 0 on ∂Ω ∩ ∂Dj} .

This gives
Λj ,A(ε, lk)h = νj · ∇Au|∂Dj∩Ω .

where u is the solution of (6) in Dj .



The Neumann-Poincaré operator

At this point the Neumann–Poincaré operator ΛNP
A (ε,D) is defined

as an operator from H
1/2
A (Γ) into H

−1/2
A (Γ):

ΛNP
A (ε,D) =

k∑
j=1

ιjΛj ,A(ε, lk)rj , (8)

where rj is the restriction of H
1/2
A (Γ) to H

1/2
A (Ω ∩ ∂Dj) and ιj is

the extension (by 0) of the operator from H
−1/2
A (Ω ∩ ∂Dj) to

H
−1/2
A (Γ).

Proposition

The operator ΛNP
A (ε,D) is self-adjoint.



Following [BCM],
τA(ε,D) denotes the number of negative eigenvalues of ΛNP

A (ε,D).

We introduce the partition deficiency of D as

Def(D) := `(D)− k(D),

where
`(D) denotes the minimal labelling of the eigenvalue lk of the AB
Hamiltonian TA,
and
k(D) is the number of components of the partition D.

We are ready to state our main result.



Main Theorem

Let D be a regular k-equipartition of Ω satisfying PCC with energy
lk = lk(Ω) and A = AX be the associated A-B potential. Then, for
sufficiently small ε > 0,

Def(D) = 1− dim ker(TA − lk) + τA(ε,D).

One ingredient in the proof is:

Lemma

Assume that σ > 0.
Then −σ is an eigenvalue of ΛNP

A (ε,D) if, and only if, lk + ε is an
eigenvalue of Lσ. If this is the case, then the multiplicities agree.



Remark

It would be interesting to understand, like in the case of a nodal
partition, the link between the zero deficiency property

1− dim ker(TA − lk) + τA(ε,D) = 0 ,

and the minimal partition property.

If we have a minimal k-partition then we are in the Courant sharp
situation for the corresponding AB Hamiltonian TA, hence it has
the zero deficiency property.



The converse is true as recalled above for a bipartite partition but
wrong in general.
A counterexample is given for the square and k = 5 in
Bonnaillie-Helffer.

Figure: Three PCC 5-equipartitions with 0 deficiency index. The middle
one has minimal energy among the three.



Conclusion

Other approachs
In the (1D), we have described three approachs.
In the general case, we have explained in this talk only the
magnetic approach.
The two other approachs are also interesting and correspond to

I Working on a double covering of Ω \ {X}.
I Working in Ω \ Γ̂ where Γ̂ is a suitable subset of Γ.

Perspective
It remains unclear if this [BCM] formula will help for a better
understanding of the nodal partitions and by extension of the
(PCC )-equipartitions.



THANK YOU.
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