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Introduction

The aim of this talk is to review and compare the spectral
properties of (the closed extension of ) −∆ + U (U ≥ 0) and
−∆ + iV in L2(Rd) for C∞ potentials U or V with polynomial
behavior.
The case with magnetic field is also considered. More precisely, the
aim is to compare the criteria for:

I essential selfadjointness (esa) or maximal accretivity
(maxacc)

I Compactness of the resolvent.

I Maximal inequalities,

for these operators.
The most recent results devoted to the Schrödinger operator with
complex potential have been obtained in collaboration with Y.
Almog (2016) and J. Nourrigat (2017).

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrödinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yébé, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).



Maximal inequalities

By L2-maximal inequalities, we mean the existence of C > 0 s. t.

||u||2H2 + ||Uu||2L2 ≤ C
(
||(−∆ + U)u||2L2 + ||u||2L2

)
, ∀u ∈ C∞0 (Rd) ,

(1)
or

||u||2H2 + ||Vu||2 ≤ C
(
||(−∆ + iV )u||2 + ||u||2

)
, ∀u ∈ C∞0 (Rd) .

(2)
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We will also discuss the magnetic case:

PA,V = −∆A + W :=
d∑

j=1

(Dxj − Aj(x))2 + W (x) ,

(with W = U + iV ) and the notion of maximal regularity is
expressed in terms of the magnetic Sobolev spaces:

||(D − A)u||2
L2(Rd,Cd)

+
∑

j ,` ||(Dj − Aj)(D` − A`)u||2L2(Rd )

+|| |W |u||2
L2(Rd )

≤ C
(
||PA,Wu||2

L2(Rd )
+ ||u||2

L2(Rd )

)
,

(3)
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The question of analyzing −∆ + iV or more generally
PA,iV := −∆A + iV appears in many situations [2, 3, 1]:

I Time dependent Ginzburg-Landau theory leads for example to
the spectral analysis of

D2
x + (Dy −

x2

2
)2 + iy

Here curl A = x vanishes along a line.

I Control theory (see Beauchard-Helffer-Henry-Robbiano
(2015))

I Bloch-Torrey (complex Airy) equation

−∆ + ix

I Fluid dynamics

Moreover, V does not satisfy necessarily a sign condition V ≤ 0 as
for dissipative systems.
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One origin of our problem

The physical problem is posed in a domain Ω with specific
boundary conditions. We will only analyze here limiting situations
where the domain possibly after a blowing argument becomes the
whole space (or the half-space). We work in dimension 2 for
simplification. We assume that a magnetic field of magnitude He

is applied perpendicularly to the sample and identified (via its
intensity) with a function. We denote the Ginzburg-Landau
parameter of the superconductor by κ (κ > 0) and the normal
conductivity of the sample by σ.
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Then the time-dependent Ginzburg-Landau system (also known as
the Gorkov-Eliashberg equations) is in ]0,T [×Ω :{

∂tψ + iκΦψ = ∆κAψ + κ2(1− |ψ|2)ψ ,

κ2 curl 2A + σ(∂tA +∇Φ) = κIm (ψ̄∇κAψ) + κ2 curl He ,

(4)
where ψ is the order parameter, A the magnetic potential, Φ the
electric potential, ∇κA = ∇+ iκA and ∆κA = (∇+ iκA)2 is the
magnetic Laplacian associated with magnetic potential κA. In
addition (ψ,A,Φ) satisfies an initial condition at t = 0.

The linearization of the first line near a time-independent solution
leads to a magnetic Schrödinger operator with complex potential
iΦ and magnetic potential κA.
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Our goal
It seems therefore useful to present in a unified way, what is known
on the subject. If we assume that the potential W is C∞, we know
that

I the operator is essentially selfadjoint (esa) starting from
C∞0 (Rd) in the first situation (W = U)

and

I the operator is maximally accretive (maxacc) in the second
case (W = U + iV with U ≥ 0).

Hence in the two cases the closed operator in consideration is
uniquely defined by its restriction to C∞0 .
For the oldest contributions on the subject one can mention the
papers by Ikebe-Kato (1962) [21], T. Kato (1972) [23] and the
work of Avron-Herbst-Simon (1978) [5] which in particular
popularizes the question of magnetic bottles. A very complete
survey is in preparation by Barry Simon [40] (see the lectures of B.
Simon in this conference).
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Compactness of the resolvent
For the compactness of the resolvent, outside the easy case when
U → +∞, the story starts around the eighties with the treatment
of instructive examples (Simon [39] (1983), Robert [34] (1982))
and in the case with magnetic field [5] (the simplest example being
for d = 2 and U = 0, when B(x)→ +∞).
In the polynomial case, many results are deduced as a byproduct of
the analysis of left-invariant operators on nilpotent groups (proof
of the Rockland conjecture (1979)) see the book of
Helffer-Nourrigat [17] (1985), at least in the case when U is a sum
of square of polynomials.
Using Kohn’s type inequalities (initially developed for the proof of
hypoellipticity), B. Helffer and A. Morame (Mohamed) [15] (1988)
obtain more general results which can be combined with the
analysis of A. Iwatsuka [22] (1986).

Another family of results using the notion of capacity can be found
in Kondratiev-Mazya-Shubin [27, 26]...
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Maximal regularity

T. Kato proves, as a consequence of a contractive inequality, the
inequality

||∆u||L1 + ||Uu||L1 ≤ 3 ||(−∆ + U)u||L1 , ∀u ∈ C∞0 (Rd) , (5)

under the condition that U ≥ 0 and U ∈ L1
loc .

The generalization to the Lp (p > 1) is only possible under
stronger conditions on U.
We will mention some of the results with emphasis on L2 estimates.

In the case, when U =
∑

j Uj(x)2, the maximal L2 estimate is
obtained as a byproduct of the analysis of the hypoellipticity (see
Hörmander [19] (1967), Rothschild-Stein (1977) [35] and the book
by Helffer-Nourrigat [17] (including polynomial magnetic
potentials) (1985) together with some idea of Folland (1977)).
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This was then generalized to the case when U is a positive
polynomial by J. Nourrigat in 1990 (unpublished) and used in the
PHD of D. Guibourg [12, 13] defended in 1992, which considers
the case when the electric potential is real W = U ≥ 0 and the
magnetic potential A are polynomials (or some class of polynomial
like potentials).
In his thesis Zhong (1993) proves the same result by showing that
∇2(−∆ + U)−1 is a Calderon-Zygmund operator.
We also mention the unpublished thesis of Nourrigat’s student
Mba-Yébé [28] (1995), whose techniques are re-used in our recent
work.
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Z. Shen (1995) [36] generalizes the result to the case when U is in
the reverse Hölder class RHq (q ≥ d

2 and d ≥ 3), a class which
contains the positive polynomials.

Definition

For 1 < q < +∞, a locally Lq, a.e. strongly positive, function ω
belongs to RHq if
∃ C > 0 s.t. for any cube Q ⊂ Rd

(
1

|Q|

∫
ωq dx

) 1
q

≤ C

(
1

|Q|

∫
ω dx

)
.

There is a local version of this class (Shen) which could be
sufficient.
The proof also involves techniques of C. Fefferman.
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Extension to Schrödinger with magnetic field

This can be extended to the case with magnetic field.
The main conditions for maximal L2-estimates are U ≥ 0 and
U + | curl A| ∈ RH d

2
. Additional conditions on the magnetic field

or on the structure of U are added, depending on the authors
(Helffer-Nourrigat, Guibourg, Nourrigat, Shen, Auscher-Ben Ali)
and on the proved result.
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Kohn’s approach–ESA-case
This approach was mainly used for getting the compactness of the
resolvent. Except in a few cases, these estimates do not lead to
the maximal regularity but are enough for getting the compactness.
Here we mainly refer to [15] (see also [29], [16]).
We first analyze the problem for

PA,U =
d∑

j=1

(Dxj − Aj(x))2 +

p∑
`=1

U`(x)2 . (6)

Under these conditions, the operator is esa on C∞0 (Rd). We note
also that:

PA,U =

d+p∑
j=1

X 2
j =

d∑
j=1

X 2
j +

p∑
`=1

Y 2
` ,

with

Xj = (Dxj − Aj(x)) , j = 1, . . . , d , Y` = U` , ` = 1, . . . , p .
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In particular, the magnetic field is recovered by

Bjk =
1

i
[Xj ,Xk ] = ∂jAk − ∂kAj , for j , k = 1, . . . , d .
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We start with two trivial easy cases.
First we consider the case when U → +∞. In this case, it is well
known that the operator has a compact resolvent.
On the opposite, if we assume that U = 0, d = 2 and
B(x) = B12 ≥ 0 , one immediately gets:∫

B(x)|u(x)|2dx ≤ ||X1u||2 + ||X2u||2 = Re 〈PA,iV u | u〉 . (7)

Under the condition that lim|x |→+∞ B(x) = +∞, this implies that
the operator has a compact resolvent.
Example:

A1(x1, x2) = −x2x
2
1 , A2(x1, x2) = +x1x

2
2 .

Here
B(x1, x2) = x2

1 + x2
2 .
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In order to treat more general situations, we introduce (keeping
V = 0 for the moment) the quantities:

m̌q(x) =
∑
`

∑
|α|=q

|∂αx U`|+
∑
j<k

∑
|α|=q−1

|∂αx Bjk(x)| . (8)

It is easy to reinterpret this quantity in terms of commutators of
the Xj ’s.
When q = 0, the convention is that

m̌0(x) =
∑
`

|U`(x)| . (9)

Let us also introduce

m̌r (x) = 1 +
r∑

q=0

m̌q(x) . (10)
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Then a criterion (due to Helffer-Mohamed (1988)) is

Theorem

If there exists r and C s.t.

m̌r+1(x) ≤ C m̌r (x) , ∀x ∈ Rd , (11)

and
m̌r (x)→ +∞ , as |x | → +∞ , (12)

then PA,U(h) has a compact resolvent.
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It is shown in [29], that one can get the same result under the
weaker assumption

m̌r+1(x) ≤ C [m̌r (x)]1+δ , (13)

where δ = 1
2r+1−3

(r ≥ 1).

This result is optimal for r = 1 according to a counterexample by
A. Iwatsuka [22], who gives an example of a Schrödinger operator
which has a non compact resolvent and s.t.

∑
j<k |∇Bjk(x)| has

the same order as
∑

j<k |Bjk |2.
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Other generalizations are given in [36] (Corollary 0.11) .
One can for example replace

∑
j V

2
j by U and the conditions on

the mj ’s can be reformulated in terms of the variation of U and B
in suitable balls (Reverse Hölder property).
In particular A. Iwatsuka [22] showed that a necessary condition is:

∫
B(x ,1)

V (x) +
∑
j<k

Bjk(x)2

 dx → +∞ as |x | → +∞ , (14)

where B(x , 1) is the ball of radius 1 centered at x .
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The accretive case : maximal accretivness and
compactness

There is there a general statement (see [16], [3]) about the
maximal accretiveness of PA,W , when U ≥ 0. Moreover

PA,W = (PA,W̄ )∗ . (15)

We can now extend the previous theorem to the family of
operators:

PA,W =
d∑

j=1

(Dxj − Aj(x))2 +

p∑
`=1

U`(x)2 + iV (x) , (16)

with W = U + iV and V ∈ C∞.
We introduce the new quantity:

m̌q(x) =
∑
`

∑
|α|=q

|∂αx U`|+
∑
j<k

∑
|α|=q−1

|∂αx Bjk(x)|+
∑
|α|=q−1

|∂αx V | .

(17)
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Then the new criterion is

Theorem à la Kohn

If there exist r and C such that

m̌r+1(x) ≤ C0 m̌r (x) , ∀x ∈ Rn , (18)

then there exist δ > 0 and C1 := C1(C0) s. t.

||(m̌r (x))δu||2 ≤ C1

(
||PA,W u||2 + ||u||2

)
. (19)
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The proof shows that we can take δ = 2−r which is in general not
optimal.

Corollary

If in addition

m̌r (x)→ +∞ , as |x | → +∞ . (20)

Then PA,W (h) has a compact resolvent.

When A = U = 0, the choice of δ can be improved
(Almog-Helffer) leading to optimal regularity for r ≤ 2.
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Proof of the theorem (sketch)

We can replace m̌r (x) by an equivalent C∞ function Ψ(x) which
has the property that, ∃C > 0 and ∀α, ∃Cα s.t.

1
C Ψ(x) ≤ m̌r (x) ≤ CΨ(x) ,
|Dα

x Ψ(x)| ≤ CαΨ(x) .
(21)

In the same spirit as in Kohn’s proof, let us introduce

Definition

For s > 0 , Ms is the space of C∞ functions T s.t. ∃Cs s.t.

||Ψ−1+sTu||2 ≤ Cs

(
||PAu|| ||u||+ ||u||2

)
, ∀u ∈ C∞0 (Rd) . (22)
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We first observe that
U` ∈ M1 , (23)

[Xj ,Xk ] ∈ M
1
2 , ∀j , k = 1, . . . , d , (24)

and
V ∈ M

1
2 . (25)
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Another claim (integration by part) is:
If T is in Ms and |∂αx T | ≤ CαΨ , then [Xk ,T ] ∈ M

s
2 , when |α| = 1

or |α| = 2 .
Assuming these two properties, it is clear that

Ψ(x) ∈ M2−r
.

The claim and (23) lead to

∂αx U` ∈ M2−|α| ,

and we deduce:
∂αx Bjk ∈ M2−(|α|+1)

.

The proof of the theorem then becomes easy.
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Maximal estimates: Main assumptions
For V ∈ C∞, we introduce:

I (H1) ∃C2 ≥ 1 and ∃r ∈ N s.t. , ∀x ∈ Rd , ∀R > 0,

1

C2
sup

|y−x |≤R
|V (y)| ≤

∑
|α|≤r

R |α||∂αV (x)| ≤ C2 sup
|y−x |≤R

|V (y)| .

I (H2(r)) ∃C0 > 0 and ∃r ∈ N s.t.

max
|β|=r+1

|Dβ
x V (x)| ≤ C0 m(x) ,

where

m(x) := m
(r)
V (x) =

√∑
|α|≤r

|Dα
x V (x)|2 + 1 .

We note that any polynomial of degree r satisfies these conditions.
With an extra effort (see [18]) we can remove (H1).
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Main theorem

Theorem (Helffer-Nourrigat 2017)

If V satisfies for some r ∈ N assumptions (H1) and (H2), there
exists C > 0 s.t. ∀u ∈ C∞0

‖Vu‖2 + ‖|V |1/2∇u‖2 ≤ C
(
‖PiV u‖2 + ||u||2

)
. (26)

One gets the complete regularity statement using the regularity of
the Laplacian.
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Hörmander’s metrics and partition of unity.
As in the PHD of Mba Yébé, we introduce a parameter µ ≥ 1 to
be determined later and an associate metrics.
For any x ∈ Rd , ∃R > 0 unique, denoted by R(x , µ), s.t.

sup
|y−x |≤R

|V (y)| =
µ

R2
. (27)

Proposition (slow variation)

With K = C2 2r/2,

|y − x | ≤ R(x , µ)

K
=⇒ 1

K
≤ R(y , µ)

R(x , µ)
≤ K .

This proposition shows that the metric defined on Rd by
gx(t) = |t|2/R(x , µ)2 (x ∈ Rd , t ∈ Rd), is slowly varying in the
sense of Hörmander.
Moreover, the constant in the definition is independent of µ.
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We deduce from Lemma 18.4.4 in the book of Hörmander

Proposition: Partition of unity

For any µ ≥ 1, there exist (ϕj) in C∞0 , and (xj) in Rd , s.t. :

I ∑
j

ϕj(x)2 = 1 , ∀x ∈ Rd . (28)

I With K the constant of previous proposition ,

suppϕj ⊂ B(xj ,R(xj , µ)/K ) . (29)
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Partition of unity (continued)

I ∀α, ∃Ĉα > 0, independent of µ, s.t.

∑
j

|∂αϕj(x)|2 ≤ Ĉα
R(x , µ)2|α| . (30)

I ∃Ĉ > 0, independent of µ, s. t., ∀u ∈ C∞0 ,

∫
Rd

|u(x)|2

R(x , µ)4
dx ≤ Ĉ

‖u‖2 +
∑

R(xj ,µ)≤1

∫
Rd

ϕj(x)2|u(x)|2

R(xj , µ)4
dx

 .

(31)
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Proof of Main Theorem.

Proposition

For µ ≥ 1 let (xj) be a sequence in Rd as above. ∃µ0 > 1 and ∃C3

(depending only on C0 and C2) s.t., ∀µ ≥ µ0, ∀j s.t. R(xj , µ) ≤ 1,
and ∀f ∈ C∞0 supported in Bj = B(xj ,R(xj , µ)/K ),

µδ

R(xj , µ)2
‖f ‖+

µδ/2

R(xj , µ)
‖∇f ‖ ≤ C3 ‖PiV f ‖ , (32)

where δ > 0 (coming from Kohn’s estimate).

Idea of the proof:
Apply Kohn’s like estimate with

Vj(y) = R2
j V (xj + Rj y) with Rj = R(xj , µ) .

Observe that the Vj satisfy the condition for this estimate with
constants which are independent of j and that the resulting
estimates are obtained with constants independent of j .
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End of the proof of Main Theorem.

Let u ∈ C∞0 (Rd). For all µ ≥ 1, we apply (31) and obtain:∫
Rd

[
|u(x)|2

R(x , µ)4
+
|∇u(x)|2

R(x , µ)2

]
dx ≤ Ĉ (‖u‖2 + ‖∇u‖2) + R ,

with

R = Ĉ
∑

R(xj ,µ)≤1

‖ϕju‖2

R(xj , µ)4
+
‖∇(ϕju)‖2

R(xj , µ)2
.
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We have also used (30). For any j s.t. R(xj , µ) ≤ 1, we apply the
local estimate (32) to f = ϕju.
We get for µ ≥ µ0

R ≤ Cµ−2δ
∑

R(xj ,µ)≤1 ‖PiV (ϕju)‖2

≤ Cµ−2δ‖PiV u‖2 + Cµ−2δ
∑

j

[
‖∇ϕj · ∇u‖2 + ‖u(∆ϕj)‖2

]
.
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Using (30), we obtain for a new C > 0:

R ≤ Cµ−2δ‖PiV u‖2 + Cµ−2δ

∫
Rd

[
|u(x)|2

R(x , µ)4
+
|∇u(x)|2

R(x , µ)2

]
dx .

For µ ≥ µ1 (with µ1 ≥ µ0 large enough), we get for some new
C > 0∫
Rd

[
|u(x)|2

R(x , µ)4
+
|∇u(x)|2

R(x , µ)2

]
dx ≤ C (‖u‖2+‖∇u‖2)+Cµ−2δ‖PiV u‖2 .
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Using
‖∇f ‖2 ≤ ‖PiV f ‖ ‖f ‖ ,

we then get∫
Rd

[
|u(x)|2

R(x , µ)4
+
|∇u(x)|2

R(x , µ)2

]
dx ≤ C‖u‖2 + C (1 + µ−2δ)‖PiV u‖2 .

Main Theorem follows by observing (see (27)) that

|V (x)| ≤ R(x , µ)−2µ .
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It is actually possible (Helffer-Nourrigat) to extend our main
Theorem to the case with magnetic field:

W =
∑
`

U2
` + iV ,

and the associated complex Schrödinger operator PA,W .

Main theorem with magnetic fields (Helffer-Nourrigat (2017)

Under the assumptions of the theorem ”à la Kohn”, there exists
C > 0 such that, for all u ∈ C∞0 (Rd):

‖|W |u‖2 ≤ C
(
‖PA,W u‖2 + ||u||2

)
. (33)
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We introduce, for t ∈ [0, 1] and x ∈ Rd ,

Φ(x , t) =
∑

`

∑
|α|≤r t |α|+1 |∂αx U`(x)|

+
∑

j<k

∑
|α|≤r−1 t

|α|+2 |∂αx Bjk(x)|
+
∑
|α|≤r−1 t

|α|+2|∂αx V (x)| .
(34)

This time for µ ≥ 1 we define

R(x , µ) = sup{t ∈ [0, 1], Φ(x , t) ≤ µ} .

Then the proof goes on along the same scheme as before, with
additional technicalities.
To complete the regularity result, we should use a ”self-adjoint”
statement of optimal regularity for PA,|W | or for the magnetic
Laplacian PA,0 and use either Helffer-Nourrigat (if A is a
polynomial) or Shen (see above) for more general cases.
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Inégalités maximales et estimations Lp des transformées de
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Inégalités maximales pour l’opérateur de Schrödinger,
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