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Introduction

If the analysis of the double well problem is one of the standard
examples treated in Quantum Mechnaics (this is an exercise in
Landau-Lifshitz book in the (1D) situation), its solution in general
dimension for the Schrödinger operator −h2∆ + V is obtained in
the beginning of the eighties (B. Simon, B.Helffer and
J. Sjöstrand). In the case with magnetic field, the magnetic
Schrödinger operator reads (hD − A)2 + V and many various
problems appear which are still unsolved or only solved recently.



Our mini-course will be two-fold:

I on one hand explain the general techniques for treating this
kind of questions. Here we can mention Helffer-Sjöstrand
[HelSjPise1987], Matsumoto, Martinez-Sordoni,... when V is
creating a well or multiple wells.

I on the other hand focus on a recent paper by Charles
Fefferman, Jakob Shapiro and Michael Weinstein [FSW2022],
recently improved in three papers Helffer-Kachmar
[HelKa2022-23], Helffer-Kachmar-Sundqvist [HKS2023] and
Leo Morin [Mor2023], which under restrictive but physical
conditions give a complete answer to the problem.



We will not discuss the case when V = 0 and the wells are created
by the magnetic fields (see Helffer, Mohamed, Kordyukov,
Raymond, Vu Ngoc,....., Colbois, Savo, Provenziano, Léna,...) and
particularly the recent paper by Fournais-Morin-Raymond
[FoMoRa2023]. The case with boundary will also not be discussed
(see Lu, Pan, Helffer, Mohamed, Fournais, Bonnaillie, Hérau,
Raymond,....). The ”magnetic” book by N. Raymond [Raybook]
presents many other results.



The harmonic oscillator

Let us first consider the ”semi-classical” harmonic oscillator.

−h2 d2

dx2
+ x2 ,

on the line, with h > 0. Its spectrum is explicitly known. It
consists of a sequence of eigenvalues

λn(h) = (2n − 1)h , n ∈ N \ {0}

and a corresponding system of eigenfunctions are given (note
some homogeneity by dilation) by

φn(x ; h) = Pn(x/
√
h)e−x

2/h .



Considering later more general operators, we will lose explicit
expressions but we should keep in mind the following properties

I For fixed n, λn(h) tends to 0 (which should be interpreted as
the minimum of the function x 7→ V (x) = x2) as h tends to 0

I For fixed n, φn(x ; h) is localized at x = 0.



The single well problem

We consider on R

Ph := −h2 d2

dx2
+ V (x) ,

where

I h > 0 is the ”semi-classical parameter.

I V is a simple well real potential with a unique non degenerate
minimum xmin,

I lim|x |→+∞ V (x) = +∞. (to simplify)

The typical examples are V (x) = x2, or V (x) = (x2 + 1)2.



Under these assumptions, there is a unique selfadjoint extension of
Ph (whose initial domain was C∞0 (R)) as an unbounded operator
on L2(R), which has a compact resolvent. Hence there is an
infinite sequence λj(h) of eigenvalues tending to +∞ and simple
(by Sturm-Liouville theory).
As h→ 0,

λj(h)→ V (xmin)

and

λj(h) = V (xmin) + (2j − 1)
√

V ′′(xmin)/2 h + oj(h) .

The philosophy is simply that we get the asymptotics as h→ 0 of
a fixed number of eigenvalues by replacing V (x) by its quadratic
approximation at the minimum. Note in particular that

λ2(h)− λ1(h) =
√

2V ′′(xmin) h + o(h) .



The double well problem
We consider on R

Ph := −h2 d2

dx2
+ V (x) ,

where

I h > 0 is the ”semi-classical parameter.

I V is a double well real potential with two non degenerate
minima ±xmin,

I V is symmetric V (−x) = V (x)

I lim|x |→+∞ V (x) = +∞.

The typical example is V (x) = (x2 − 1)2.
Notice that when considering a fixed number of eigenvalues the
last condition can be replaced by

V (xmin) < lim inf
|x |→+∞

V (x) .



Under these assumptions, there is a unique selfadjoint extension of
Ph (whose initial domain was C∞0 (R)) as an unbounded operator
on L2(R), which has a compact resolvent. Hence there is an
infinite sequence λj(h) of eigenvalues tending to +∞ and simple
(by Sturm-Liouville theory).
As h→ 0, λj(h)→ inf V for fixed j . Now the ”exercise” in
Landau-Lifschitz leads to the following result

λ1(h) = inf V +
√

V ′′(xmin)/2h + o(h) .

λ2(h)− λ1(h) ∼ ch−ν exp−S/h ,
where

S =

∫ +xmin

−xmin

√
V (x)− inf Vdx .

Mathematically the complete proof appears only in the paper of
E. Harrell in 1980 [Ha1980]. Note that

λ3(h)− λ2(h) =
√

2V ′′(xmin) h + o(h) .



The magnetic Laplacian

We limit ourselves to the case d = 2 and consider the self-adjoint
realization in L2(R2) of

Lh,b = (−ih∇− bA)2 + V

where b, h > 0,

A(x) =
1

2
(−x2 , x1) (1)

and V ∈ C∞(R2,R).
Notice that A generates the constant magnetic field curlA = 1.
We assume that

V ≤ 0 , and inf V < 0 (2a)

and that

V is invariant by rotation by
2π

n
. (2b)

The symmetry σ̃ by (x1, x2) 7→ (−x1, x2) can also be considered.
Note that in this case the two-form bdx1 ∧ dx2 is not preserved.



At the quantum level

ΣnLh,b = Lh,bΣn

where Σnu(x) = u(g−1
n x).

But
Σ̃Lh,b = Lh,−bΣ̃ .

where Σ̃u(x) = u(−x1, x2).



Coming back to the assumptions on V

Moreover, we assume that the minimum of V is attained at n
non-degenerate minima and it results from the invariance property
of V that these are n equidistant points of R2 \ {0}.

What we call the wells are the points where V attains its minimum.



Earlier results

The pure electric case where b = 0 was settled for any n and any d
in [HelSj2-1985]. So we would like to address the case where
d = 2, b > 0 and n ≥ 2. For n = 2, this problem was considered in
[HelSjPise1987] and revisited recently in
[FSW2022, HelKa2022-23, HKS2023, Mor2023].
The paper [HelSjPise1987] follows a perturbative approach (i.e. for
b relatively small) under an analytic hypothesis on the electric
potential V , while the results in
[FSW2022, HelKa2022-23, HKS2023, Mor2023] hold for any b > 0
but under the assumption that V is a superposition of radially
symmetric compactly supported functions.



Notice that, when dealing with a fixed b > 0 we can reduce to the
case where b = 1 by introducing an effective semi-classical
parameter ~ = b−1h so that

Lh,b = b2
(
(−i~∇− A)2 + b−2V

)
,

so we will assume henceforth that b = 1. Note that the symmetry
assumption for V implies that Lh,b commutes with M(gn), where

M(gn)u(x) = u(g−1
n x) .



The [FSW2022] Hamiltonian

We start from v0 ∈ C∞c (R2) such that
v0(x) = v0(|x |) is radial & vmin

0 := min
r≥0

v0(r) < 0 ,

supp v0 ⊂ D(0, a) := {x ∈ R2 : |x | ≤ a} ,
U0 := {v0(x) = vmin

0 } = {0} & v ′′0 (0) > 0 .

(3)

We suppose that D(0, a) is the smallest disc containing supp v0,
i.e.

a = a(v0) := inf{r > 0 : supp v0 ⊂ D(0, r)} . (4)



We introduce the double well potential

V (x) = v0(x − z`) + v0(x − z r ) , (5)

where

z` =
(
− L

2
, 0
)
, zr =

(L
2
, 0
)
. (6)

and
L > 2a(v0) .

The potential wells of V associated with the energy vmin
0 are z`

and zr .



Consider a constant magnetic field b > 0, so

b = curl (bA)

where A is defined in polar coordinates (r , θ) as follows,

A(r , θ) =
r

2

[
− sin θ

cos θ

]
. (7)



More generally, when the magnetic field is then no more constant
but still radial, one should consider above the case when r/2 is
replaced by φ′(r), where φ is a solution of ∆φ = B = b(r) > 0.
This reads

φ′′(r) +
1

r
φ′(r) = b(r) .

One has

φ′(r) =
1

r

∫ r

0
b(ρ)ρ dρ . (8)

A(r , θ) = φ′(r)

[
− sin θ

cos θ

]
. (9)



The potential function considered in [FSW2022] is not analytic,
thereby making our setting significantly different from the one of
[HelSjPise1987]. This will induce difficulties in deriving accurate
bounds on the magnitude of the tunnel effect and highlights
another interesting new phenomenon related to tunneling under a
magnetic field compared to recent results:

I by Bonnaillie-Hérau-Raymond [BonHerRay2022] (tunneling
inside the boundary Γ for the Neumann realization of the
Schrödinger operator with constant magnetic field in an open
set Ω)

I by Fournais-Helffer-Kachmar [FoHelKa2022] (tunneling along
the discontinuity Γ of a magnetic step).

I see also a recent work (ArXiv Dec. 2022) by Khaled Abou
Alfa [AbAl2022] who is considering a case where the magnetic
field vanishes along a curve Γ.

Of course, in these questions an assumption of symmetry (or more
generally the action of a finite group) should be done leading to
the existence of symmetric (mini)-wells in Γ.



Similar problems were also appearing in papers of
V. Bonnaillie-Noël and collaborators (M. Dauge, S. Fournais)
(tunneling in regular polygons) (see the book of Fournais-Helffer
[FoHel2010] and additional references therein). But the problem is
OPEN for this example but can be solved in the [FSW2022]
context (see [HKS2023]).
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Figure: Braid structure in the case n = 3 associated with a magnetic flux
(Bonnaillie-Dauge-Martin-Vial and Bonnaillie)



In order to exploit the connection with semi-classical analysis we
consider instead

Lh := (hD − A)2 + V , (10)

where h = λ−1 � 1.
With (ev0

j (h))j≥1 the sequence of eigenvalues of Lh, we will
investigate the semi-classical asymptotics of

ev0
2 (h)− ev0

1 (h) , (11)

and prove that, if v0 does not vanish in D
(
0, a
)
, an asymptotics of

the form

ev0
2 (h)− ev0

1 (h) =
h→0

exp

(
−S(v0) + o(1)

h

)
Our proof will be based on a mixing between what we get from the
semi-classical analysis initiated in Helffer-Sjöstrand and Simon in
the eighties with the approach of Fefferman-Shapiro-Weinstein.



We will also implement a recent improvement by Leo Morin
[Mor2023] in order to get, for c 6= 0,

ev0
2 (h)− ev0

1 (h) =
h→0

c hν exp

(
−S(v0)

h

)
like in the case without magnetic field [HelSj1984, Sim1984].



Analysis of the Single well operator

Our investigation relies first on expanding the ground state esw(h)
of the single well Hamiltonian

Lswh := (hD − A)2 + v0 , (12)

under the additional assumption that v0 is radial.



We show that:

Theorem OW: Existence of radial ground states and precise
expansions

1. The ground state energy esw(h) of Lswh , is a simple eigenvalue
and

esw(h) = vmin
0 + h

√
1 + 2v ′′0 (0) +O(h3/2) . (13)

2. There exists a unique positive ground state uh, with the
properties

I uh(x) = uh(|x |) is a radial function ;
I
∫
R2 |uh(x)|2dx = 1 .



Theorem continued

3. There exists a positive radial function a0 on R2 satisfying

a0(0) =
1

2

√
1 + 2v ′′0 (0)

π
, (14)

and s. t. ∀R > 0, the ground state uh satisfies, unif. in B(0,R),∣∣∣ed(x)/huh(x)− h−1/2a0(x)
∣∣∣ = O(h1/2) , (15)

where

d(x) = d(|x |) =

∫ |x |
0

√
ρ2

4
+ v0(ρ)− vmin

0 dρ . (16)



More generally, for radial positive magnetic fields (see (8)), one
will have

d(r) =

∫ r

0

√
φ′(ρ)2 + v0(ρ)− vmin

0 dρ . (17)

choosing φ such that φ′(0) = 0.



Proof of Theorem OW

Except the ”radial” statement, this is rather standard in
semi-classical analysis since the works of [HelSj1984] and
[Sim1983]. Let us recall the main tools.



The magnetic harmonic approximation

Consider the case where v0(x) = µ|x |2, where µ is a positive
constant. This means that we have replaced v0 by its quadratic
approximation at 0. The single well operator Lswh becomes
approximated by

Lswaph = (hD − A)2 + µ|x |2 .

After rescaling1 we get

σ(Lswaph ) = hσ(Lmag
µ )

where
Lmag
µ = (D − A)2 + µ|x |2 .

1We do the change of variable y = h−1/2x .



We decompose the operator Lmag
µ via the orthogonal projections on

the Fourier modes as follows

Lmag
µ '

⊕
m∈Z

Hm,µ

where

Hm,µ := πmL
mag
µ π∗m = − ∂2

∂r2
− 1

r

∂

∂r
+
(1

4
+ µ

)
r2 +

m2

r2
−m .



The min-max principle yields for m < 0

λ1(Hm,µ) > inf
u 6=0

〈
(−∆ +

(
1
4 + µ

)
|x |2)u, u

〉
L2(R2)

‖u‖L2(R2)
= 2

√
1

4
+ µ .

Moreover, the rescaling r 7→ (1 + 4µ)1/4r yields the reduction to
the unitary equivalent Landau Hamiltonian,

Ĥm,µ =
√

1 + 4µHm,0 +
(√

1 + 4µ− 1
)
m .

Consequently, we get

inf
m∈Z

λ1(Hm) = λ1(H0) =
√

1 + 4µ , inf
m∈Z
m 6=0

λ1(Hm) >
√

1 + 4µ .



This implies that
λ1(Lmag

µ ) =
√

1 + 4µ

is a simple eigenvalue and that its (normalized) associated
eigenfunction is radial:

φmag
µ (x) = π−1/2(1 + 4µ)1/4 exp

(
−
√

1 + 4µ

2
|x |2
)
.



The case with magnetic field

Let us consider two situations.



V has a non degenerate minimum.

The first case is the case when V has a non degenerate minimum
at 0. In this case the model which gives the approximation is

n∑
j=1

(hDxj − A0
j )2 +

1

2
〈V ′′(0)x | x〉 ,

where A0
j is a linear magnetic potential attached to the constant

magnetic field Bjk = Bjk(0),

A0
j (x) =

1

2

(∑
k

Bjkxk

)
,

so that in a suitable gauge (note that by a linear gauge, one can
first reduce to the case when A(0) = 0) is such that
A(x)− A0(x) = O(|x |2).



After the dilation x = h
1
2 y , we get

h

 n∑
j=1

(Dyj − A0
j )2 +

1

2
〈V ′′(0)y | y〉

 ,

whose spectrum can be determined explicitly (see [Mel],
Hörmander (Vol III) and more specifically for this case [Mat]). One
then get easily the upper bound.



2-dimensional harmonic oscillator.

Let us treat the 2-dimensional case as an exercice. [Mat] gives an
alternative explicit computation (after another gauge
transformation). We start from

D2
x1

+ (Dx2 + Bx1)2 +
λ1

2
x2

1 +
λ2

2
x2

2 .

A partial Fourier transform, leads to

D2
x1

+ (ξ2 + Bx1)2 +
λ1

2
x2

1 +
λ2

2
D2
ξ2
.

A dilation leads to the standard Schrödinger operator

D2
t + D2

s + (

√
λ2

2
s + Bt)2 +

λ1

2
t2 .



So we have proved the isospectrality of the initial operator to a
standard Schrödinger operator, with potential

V new (s, t) = (

√
λ2

2
s + Bt)2 +

λ1

2
t2

Its groundstate is immediately computed as

λ(B) =
√
λ(0)2 + B2 with λ(0) =

(√
λ1 +

√
λ2

)
/
√

2 .

On this explicit formula, one immediately observes what is called
the diamagnetic effect. One also recovers the property that the
ground state energy is simple.



Lower bounds.

The lower bound is obtained similarly once we have observed that

<〈Ph,A,V u | u〉
=
∑

j〈Ph,A,Vφ
R
j u | φRj u〉 − h2

∑
j ,` |||Dx`φ

R
j |u||2 .

(18)



Magnetic wells

We would also like to describe the rather generic case when
B(z) ∈ C∞(Ω) satisfies, for some z0 ∈ Ω :

B(z) > b := B(z0) > 0, ∀ z ∈ Ω \ {z0}, (19)

and we assume that the minimum is non degenerate :

HessB(z0) > 0 . (20)

We introduce in this case the notation :

a = Tr

(
1

2
HessB(z0)

)1/2

. (21)



Theorem Helffer-Mohamed

If A ∈ C∞(Ω;R2), and if the hypotheses (19) and (20) are
satisfied, then

µ(h) = [b +
a2

2b
h]h + o(h2) . (22)



The detailed proof can be found in [HelMo1996]. It is based on the
analysis of the simpler model where near 0

B(z) = b + αx2 + βy2. (23)

In this case, we can also choose a gauge A(z) such that

A1(z) = 0 and A2(z) = bx +
α

3
x3 + βxy2 . (24)

This has been later improved in papers by Helffer, Kordyukov, Vu
Ngoc, Raymond,...
The associated tunneling effect for the corresponding magnetic
double wells in analyzed in [FoMoRa2023] with techniques similar
to what we will present in this course.
The radial case can get (α = β) special care ! But after a gauge
transform, one can again show that the ground state energy (=
lowest eigenvalue) is simple !



Eigenvalue asymptotics and radial ground states

We come back to the [FSW] case.
We now have an accurate description of the spectrum of the
operator Lswh but only keeps here:

Proposition [OW1]

For every fixed j ∈ N, the j ’th eigenvalue of Lswh satisfies,

λj(Lswh ) = vmin
0 + h λj(L

mag
µ ) +O(h3/2) (h→ 0+) ,

with µ =
v ′′0 (0)

2 .
Moreover, the lowest eigenvalue of Lswh is simple with a radial
ground state.



Agmon estimates
If f is a radial function, then

Lswh f = −h2∆f + wf (25)

with

w(ρ) = v0(ρ) +
1

4
ρ2 .

Recall that the free Laplacian in polar coordinates reads

∆ =
1

ρ

d

dρ
ρ
d

dρ
+

1

ρ2

d2

dθ2
.

Therefore, when restricting the action of Lswh to radial functions,
we consider w as the effective potential.
Hence, we can apply the semi-classical analysis relative to the
Schrödinger operator without magnetic potential as considered in
[HelSj1984] or [Sim1983] (see [Hel1988] or [DS1999] for a more
pedagogical presentation). Another way would be to use the
(1D)-technique but we have less developed techniques in
semi-classical context (outside a huge literature in physics).



Radial case, b non constant (see (8))

More generally, we get with b non constant

w(ρ) = v0(ρ) + a(ρ)2 .

with

a(r) =
1

r

∫ r

0
b(ρ)ρ dρ .

When v0 = 0, we have simply w(ρ) = a(ρ)2.



Energy identity and Agmon estimates

The identity above and an integration by parts yield the following
result

Proposition

For all R > 0, if φ ∈ C 0(DR ;R) and u ∈ C 2(DR ;R) are radial
functions such that φ is Lipschitz and u = 0 on ∂DR , then∫
DR

(
h2|∇(eφ/hu)|2+(w−|∇φ|2|eφ/hu|2

)
dx =

∫
DR

e2φ/hu Lswh u dx .



Application to the decay

We have the following standard application of this proposition on
the decay.

Proposition D

For all δ ∈ (0, 1), there exist a(δ),Cδ, h0 > 0 such that
lim
δ→0+

a(δ) = 0 and, if uh is a ground state of Lswh and h ∈ (0, h0],

then we have,∥∥∥∇(e(1−δ)d(x)/huh

)∥∥∥2
+
∥∥∥e(1−δ)d(x)/huh

∥∥∥2
≤ Cδ e

a(δ)/h ‖uh‖2 ,

where d is the Agmon distance associated with w− vmin
0 .



WKB approximation
For all S > 0, we introduce the set
Bd(S) = {x ∈ R2 : d(x) < S} , where d is the Agmon distance to
0. We can then perform the WKB construction:

Proposition WKB1

There exist N0 ≥ 1 and two sequences (Ek)k≥0 ⊂ R and
(ak)k≥0 ⊂ C∞(R2) s. t. , for all N ≥ 1 and S > 0,

ed(x)/h
(
Lswh − EN(h)

)
ϑN = O(hN−N0) on Bd(S) ,

where

EN(h) =
N∑

k=0

Ekh
k , E0 = vmin

0 , E1 =
√

1 + 2v ′′0 (0)

ϑN(x) = h−1/2

(
N∑

k=0

ak(x)hk

)
e−d(x)/h, a0(0) =

1

2

√
1 + 2v ′′0 (0)

π
.

Moreover a0(x) > 0 and for every k , the function ak is radial.



The function a0 satisfies the transport equation

2∇d · ∇a0 + (∆d− E1)a0 = 0 .

Since d and a0 are radial, we get

a0(x) = a0(|x |) :=
1

2

√
1 + 2v ′′0 (0)

π
exp

(
−
∫ |x |

0
f (ρ)dρ

)
,

where

f (ρ) =
1

4

u′(ρ)

u(ρ)
+

1

2ρ
− E1

2
√
u(ρ)

,

and

u(ρ) =
ρ2

4
+ v0(ρ)− vmin

0 .



Proposition WKB2

There exists N0 ≥ 1, and for all h ∈ (0, h0], there exists a
normalized ground state uh of Lswh s. t. for any N and any R > 0
the following holds∥∥∥ed(x)/h(uh − ϑN)

∥∥∥
H2(D(0,R))

= O(hN−N0) .

This ends the sketch of the proof of Theorem OW.



Coming back to the main theorem
Our ”one well” theorem OW in particular clarifies the hypotheses
imposed in Fefferman-Shapiro-Weinstein which states then that
when

v0 ≤ 0 and L > 4

(√
|vmin

0 |+ a(v0)

)
, (26)

then

exp

−L2 + 4
√
|vmin

0 |L + γ(v0)

4h

 ≤ ev0
2 (h)− ev0

1 (h) (27)

where γ(v0) is a positive constant, and

ev0
2 (h)− ev0

1 (h) ≤ Ch−5/2 exp

(
−(L− a(v0))2 − a(v0)2

4h

)
. (28)

The most important was here to give a lower bound (non optimal
upper bounds are easy using Agmon estimates) but we will see
that these estimates are far from optimal.
We will also improve the assumption on L.



Interaction matrix or hopping coefficient

The bounds above follow from the asymptotics [FSW2022]

ev0
2 (h)− ev0

1 (h) ∼
h→0

∣∣∣2 ∫
D(0,a)

v0(x)uh(x)uh(x1 + L, x2)e
iLx2
2h dx

∣∣∣
(29)

where uh is the radial ground state of Lswh .
The integral in the right hand side is called in Solid State Physics
the hopping coefficient which can be written in a more symmetric
way as

Hop(v0, h, L) :=

∫
v0(x − z`)uh(x − z`)uh(x − zr )e

iLx2
2h dx



Heuristics leading to the hopping coefficient
We explain first the case without magnetic field. We have two
approximate states u` and ur constructed by using u0 eigenfunction
of the one well operator with eigenvalue λ0

u`(x) = u0(x − z`) , ur (x) = u0(x − zr ) ,

and we admit that ”essentially” the true eigenspace is very close
to the span of u` and ur and that u` and ur are ”essentially”
orthogonal. Then to compute the matrix of

Lh − λ0 = −h2∆ + V − λ0

relative to this eigenspace in this ”essentially orthogonal” basis,
we just consider the off diagonal term

〈(Lh − λ0)u`, ur 〉 .

But by construction

(Lh − λ0)u` = vru` ,with vr (x) = v0(x − zr ) .

Note here that ur (x) = u`(−x) = u0(x − zr ) .



This is no more the case in the magnetic case, where we have to
use the magnetic translation for defining ur and u`

ur (x) = e iLx2/2hu0(x − zr )

L

2
x2 =

L

2
e1 ∧ (x − zr ) .

u`(x) = e−iLx2/2hu0(x − zr )



Interaction matrix

Under different conditions, it can be derived through a reduction
to the restriction of Lh on a two dimensional space, yielding an
interaction matrix like in [Hel1988] or [DS1999].
The hopping coefficient corresponds with the off diagonal term in
the 2× 2 interaction matrix.
The question is effectively (see at the end of the notes the details
if time permit) is to measure the errors which are done in the
heuristic discusssion (each time that I have written ”esssentially”).



Coming back to the hopping coefficient

Using the improved expansion of the ground state uh, we improve
the bounds on the hopping coefficient and thereby on
ev0

2 (h)− ev0
1 (h) provided v0 satisfies the conditions in (3).

Besides its role in capturing the tunneling asymptotics, precise
estimates of the hopping coefficient (or the so-called interaction
matrix) are key ingredients in the understanding of tight binding
reductions in Solid State Physics (see [ShWe2022] and earlier
[Out1987, Dau1994, DS1999] for mathematical contributions).



Our main result, on the eigenvalue splitting, is

[HK]-Theorem: Sharp asymptotics of the eigenvalue splitting

Under the previous assumptions, if v0 < 0 in D
(
0, a)

)
, then we

have
h ln

(
ev0

2 (h)− ev0
1 (h)

)
∼

h→0
−S(v0) ,

where S(v0) is a positive explicit constant.

Leo Morin [Mor2023] improves the result a few weeks ago by
proving that

ev0
2 (h)− ev0

1 (h) ∼
h→0

c hν e−S(v0)/h ,

with explicit c and ν.



The formula for S(v0)

S(v0) = −F (v0) + inf
r∈[0,a]

t∈(0,+∞)

Ψ(r , t) ,

where

Ψ(r , t) := d(r)+
r2 + L2

4
(2t+1)+

|vmin
0 |
2

ln

(
1 +

1

t

)
−Lr

√
t(t + 1)

(30)
and

F (v0) =
a

4

√
a2 + 4|vmin

0 |+ 1

2
|vmin

0 | ln

(√
a2 + 4|vmin

0 |+ a
)2

4|vmin
0 |

− d(a)

(31)



Analyzing the infimum of Ψ

If L > 2a, then

min
(r ,t)∈[0,a]×R+

Ψ(r , t) = Ψ(a, ta) ,

where

ta =

√
1

4
+ s+(a, L, vmin

0 )− 1

2

and

s+(a, L, vmin
0 ) :=

2|vmin
0 |(L2 + a2) + L2a2

2(L2 − a2)2

+
1

L2 − a2

√
(2|vmin

0 |(L2 + a2) + L2a2)2

4(L2 − a2)2
− |vmin

0 |2 .

Moreover, (a, ta) is the unique minimum of Ψ.



New formulas for S(v0)

This was motivated by the discussions between the authors of
[HelKa2022-23] and [FoMoRa2023] in order to compare the
formulations of [HelKa2022-23], [HKS2023] and [Mor2023].



Lemma [HKS2023]

Assume that L > 2a. Let (r0, t0) ∈ (0, L)× R+. Then t0 is a
critical point of Ψ with respect to t if, and only if, the following
condition holds:

t0 = t(r0, L, v
min
0 ) :=

√
1

4
+ s(r0, L, vmin

0 )− 1

2
(32)

with

s(r0, L, v
min
0 ) :=

2|vmin
0 |(L2 + r2

0 ) + L2r2
0

2(L2 − r2
0 )2

+
1

L2 − r2
0

√
(2|vmin

0 |(L2 + r2
0 ) + L2r2

0 )2

4(L2 − r2
0 )2

− |vmin
0 |2 . (33)

Moreover, this critical point is non degenerate.



In particular, for each r0 ∈ [a, L] we have

Ψmin = Ψ(r0, t(r0, L, v
min
0 ))

Hence we can play with r0 for getting various expressions for
S(v0).



Proof of the lemma
Starting with

∂tΨ(r0, t) :=
r2
0 + L2

2
− |vmin

0 |
2t(t + 1)

− Lr0(2t + 1)

2
√
t(t + 1)

we get

∂tΨ(r0, t) =
1

2s
g(s) ,

where s = t2 + t > 0 and

g(s) = (L2 + r2
0 )s − |vmin

0 | − Lr0
√
s
√

4s + 1 .

The equation g(s) = 0 reads

(∗) (L2 + r2
0 )s − |vmin

0 | = Lr0
√

s(4s + 1) .

This implies that a zero ŝ of g necessarily satisfies

(L2 + r2
0 )ŝ − |vmin

0 | > 0 .



This also implies by taking the square on both sides of (*),

(L2 − r2
0 )2ŝ2 −

(
2(L2 + r2

0 )|vmin
0 |+ L2r2

0

)
ŝ + |vmin

0 |2 = 0 ,

which has two solutions s± of opposite sign given by explicit
formulas.
Notice that, if g(ŝ) = 0, then

g ′(ŝ) =
(L2 − r2

0 )2

(L2 + r2
0 )ŝ − |vmin

0 |

(
ŝ − 2(L2 + r2

0 )|vmin
0 |+ L2r2

0

2(L2 − r2
0 )2

)
.

So we get assuming that s+ or s− are zeroes of g

g ′(s±) = ± L2 − r2
0

(L2 + r2
0 )s± − |vmin

0 |

√
(2|vmin

0 |(L2 + r2
0 ) + L2r2

0 )2

4(L2 − r2
0 )2

− |vmin
0 |2 .



At this stage we know, since g(0) < 0 and lim
s→+∞

g(s) = +∞, that

g has at least one zero and we can show that the unique zero of g
is s+.
We also get that

g ′(s+) > 0 .



Coming back to Ψ, this yields that ∂tΨ(r0, t) = 0 if, and only if, t
satisfies

t2 + t = s+(r0, L, v
min
0 )

Solving the previous equation, we end up with a unique positive
solution

t0 := t+(r0, L, v
min
0 ) = −1

2
+

√
1

4
+ s+(L, r0, vmin

0 ) .

We get also that for all r0 ∈ [a, L), t 7→ Ψ(r0, t) has a unique non
degenerate minimum at t = t+(r0, L, v

min
0 ).

This will be useful later when applying Laplace integral method.



Reminder on Laplace integrals

Laplace Integral Theorem (LIT)

Let Φ be a real C∞ phase defined in a neighborhood V of the
closure of the ball B(0, 1) in Rn such that

I Φ ≥ 0 on B(0, 1), Φ > 0 on ∂B(0, 1)

I Φ(0) = ∇Φ(0) = 0

I Φ has a unique non degenerate minimum at 0.

Let a be a C∞ function defined on V and let us consider, for
h ∈ (0, h0] the Laplace integral

I (a,Φ, h) =

∫
B(0,1)

a(x) e−Φ(x)/h dx .



theorem continued

Then, as h→ 0,

I (a,Φ, h) ∼ hn/2
∑
j≥0

αjh
j ,

with
α0 = (2π)n/2a(0)(detHessΦ(0))−1/2 .

When Φ is complex valued, holomorphic, with <Φ ≥ 0, there are
similar results obtained by deformation of contour in the complex.
Although we will meet Laplace integral with complex phase, we
will avoid this kind of theorem or more precisely, we will use it in
very special cases.



An important representation formula for the first one well
eigenfunction

This is a combination of

I an observation of [FSW2022] about the solution of the
Kummer equation

I the existence of a WKB expansion.

The first one is very particular and related to solutions in [a,+∞)
tending to 0 at +∞ of

−1

r

d

dr
r
d

dr
+

r2

4
− λ .

The second one is quite general and not related to 1D.



This leads to

Representation formula [RF1]

The radial ground state uh has the following representation for
ρ ≥ a,

uh(ρ) = Ch exp

(
−ρ

2

4h

)∫ +∞

0
exp

(
−ρ

2t

2h

)
tα−1(1 + t)−αdt ,

where

α =
1

2h
|vmin

0 | − 1

2

(√
1 + 2v ′′0 (0)− 1

)
+O(h1/2) ∼

h→0

1

2h
|vmin

0 | ,

and

Ch ∼
h→0

C asy
h := m(v0)h−1 exp

(
F (v0)

h

)
.



Here a = a(v0) and

F (v0) =
a

4

√
a2 + 4|vmin

0 |+ 1

2
|vmin

0 | ln

(√
a2 + 4|vmin

0 |+ a
)2

4|vmin
0 |

− d(a)

m(v0) = a0(0)

√
2a|vmin

0 |
π

(
a2 + 4|vmin

0 |
)1/4

(√
a2 + 4|vmin

0 |+ a
)−1

.

α =
1

2
− 1

2h
esw(h) .



Proof

The representation is obtained in [FSW2022, Eq. (2.9)], with

α =
1

2
− 1

2h
esw(h) . (34)

So the asymptotics of α is just a consequence of the harmonic
approximation.



To determine the constant Ch, we have to match the WKB
expansion which gives

uh(a) ∼
h→0

a0(0)h−1/2e−
d(a)
h ,

where a0(0) is given in (14), and what we get by applying the
Laplace method to the representation formula [RF1].



So we get

uh(a) ∼
h→0

Ch

√
2πh

|vmin
0 |(1 + 2t∗(a))

(1 + t∗(a))e−
η(a)
h ,

with

t∗(a) =
1

2

(√
1 +

4

a2
|vmin

0 | − 1

)
and

η(a) =
1

4
(1 + 2t∗(a))a2 +

|vmin
0 |
2

ln

(
1 +

1

t∗(a)

)
.

Consequently, we have

Ch ∼
h→0

√
|vmin

0 |(1 + 2t∗(a))
√

2π(1 + t∗(a))
h−1e−

d(a)−η(a)
h

which eventually yields the announced formula.



Second representation formula for the hopping coefficient

We recall that

Hop(v0, h, L) :=

∫
v0(x − z`)uh(x − z`)uh(x − zr )e

iLx2
2h dx

We start by expressing the hopping coefficient in polar coordinates

Hop(v0, h, L) =

∫ a

0
r v0(r)uh(r)

(∫ 2π

0
Kh(r , θ)dθ

)
dr , (35)

where
Kh(r , θ) := uh(

√
r2 + L2 + 2Lr cos θ)e

iLr sin θ
2h .

After a gauge transformation uh represents the ”left” approximate
eigenfunction (localized at r = 0) and Kh the ” right”
eigenfunction.
Note that with the assumption on v0, it is the same to integrate
over (0, a) or over (0,+∞).



The integral of Kh with respect to θ is computed in [FSW2022,
Prop. 5.1] as follows∫ 2π

0
Kh(r , θ)dθ = Ch exp

(
− r2 + L2

4h

)∫ +∞

0
Gh(r , t)dt , (36)

where

Gh(r , t) = exp

(
−(r2 + L2)t

2h

)
tα−1(1 + t)−αI0

(
Lr
√

t(t + 1)

h

)
(37)

and

z 7→ I0(z) =
1

2π

∫ π

0
ez cos θdθ .



The advantage of the second representation formula is the absence
of the oscillatory complex term and moreover, the integrand Gh is
a positive function.
The function I0(z) has (by Theorem [LIT]) the following
asymptotic for large z > 0,

I0(z) ∼
z→+∞

ez√
2πz

.

In addition we have the universal upper bound

I0(z) ≤ ez .



The complex term disappears by using the following formula, for
β > ξ∫ 2π

0
exp(iξ sin θ + β cos θ) dθ =

∫ 2π

0
exp(−

√
β2 − ξ2 cos θ) dθ ,

which is obtained by translation in the complex.
Let us observe for later that we get similar formulas by partial
differentiation with respect to β or ξ.



Third representation formula

As observed by [FoMoRa2023] and exploited in [Mor2023], it is
better to come back to the trick appearing in [HelSj1984] and in
the magnetic case in [HelSjPise1987].
Here we have the simplification that we can avoid to introduce a
cut-off since our approximate eigenfunctions are defined in R2.



If we consider an open set Ω containing B(z`, a) and with empty
intersection with B(zr , a) and denote its boundary by Σ = ∂Ω, we
can always write [HM2]

Hop(L, v0) = ih

∫
Σ

(
u` ·(−ih∇− A)ur · ~n+ur ·(−ih∇−A)u` ·~n

)
dσ ,

where ~n is the outward normal to Σ.
Notice that the left hand side is independent of Σ, hence we have
the freedom for the choice of Σ.
There are two natural choices for Σ:

I Take the line x1 = 0 with in mind the symmetry
(x1, x2) 7→ (−x1, x2)

I Use the radial character of say the ”left” u` and consider
Ω = B(z`,R) and polar coordinates centered on z`

L. Morin [Mor2023] takes the first choice. In continuation of
[HelKa2022-23], we will consider below the second choice.



Application

As mentioned above, after an integration by parts, we get for
r = R an integral over the circle of radius R with R ∈ [a, L− a)
and consider radial coordinates centered at z`.
Choosing the natural gauge, ~A is tangent to Σ and ~n · ∇ = d

dr .



Hence the hopping matrix appears as the sum of the three terms

1.

Rhu′h(R)

∫ 2π

0
uh(
√
R2 + L2 + 2LR cos θ)e

iR sin θ
2h dθ

2.

−Ruh(R)

∫ 2π

0
(R+L cos θ)(

h u′h
r

)(
√
R2 + L2 + 2LR cos θ)e

iR sin θ
2h dθ

3.

R2uh(R)

∫ 2π

0
sin θuh(

√
R2 + L2 + 2LR cos θ)e

iR sin θ
2h dθ

One also has to verify that there are no cancellation for the main
term. A natural choice for the choice of R could be R = L/2.
Note nevertheless that the two first terms are not symmetric.



We now show that we can proceed essentially like in the
[FSW2022] or [HelKa2022-23] approach with the simplification
that we have no integration with respect to r .
Considering the first term, we will use the semi-classical
approximation of uh(R) and use the second representation formula
for∫ 2π

0
uh(
√

R2 + L2 + 2LR cos θ)e
iR sin θ

2h dθ =

∫ 2π

0
Kh(R, θ)dθ .

Following the [HelKa2022-23] previous proof, we proceed in three
steps

I Go back to a Laplace integral with real phase

I Apply the Laplace method with respect to θ

I Apply the Laplace method with the phase t 7→ Ψ(R, t).



Let us have a look at the other terms.

1. ∫ 2π

0
(
h u′h
r

)(
√
R2 + L2 + 2LR cos θ)e

iR sin θ
2h dθ

2. ∫ 2π

0
cos θ(

h u′h
r

)(
√
R2 + L2 + 2LR cos θ)e

iR sin θ
2h dθ

3. ∫ 2π

0
sin θuh(

√
R2 + L2 + 2LR cos θ)e

iR sin θ
2h dθ



For the first case, the difference is that uh is replaced by hu′h/r .
Coming back to the. representation formula for uh which reads

uh(ρ) = Ch

∫ +∞

0
exp

(
−ρ

2(2t + 1)

4h

)
tα−1(1 + t)−αdt ,

we get

hu′h(ρ)/ρ = −1

2
Ch

∫ +∞

0
exp

(
−ρ

2(2t + 1)

4h

)
(2t+1)tα−1(1+t)−αdt ,

We can then proceed as before (only the amplitude in the Laplace
integral has changed).



For the second term, another change is the presence of cos θ in the
integration with respect to θ. Here we have to verify that the
complex phase disappears as previously and come back to the
[FSW2022] lemma. The complex term disappears by using the
following formula∫ 2π

0 cos θ exp(iξ sin θ + β cos θ) dθ

= −
∫ 2π

0
β

(β2−ξ2)
1
2

cos θ exp(−
√
β2 − ξ2 cos θ) dθ ,

which is obtained by partial differentiation with respect to β.
Again we can continue with the main analysis. Only the amplitude
has changed



For the third term, the change is the presence of sin θ in the
integration with respect to θ. Here we have the following formula∫ 2π

0 sin θ exp(iξ sin θ + β cos θ) dθ

=
∫ 2π

0
ξ

(β2−ξ2)
1
2

cos θ exp(−
√
β2 − ξ2 cos θ) dθ ,

which is obtained by partial differentiation with respect to ξ.
Again we can continue with the main analysis. Only the amplitude
has changed !



Conclusion for the hopping coefficient

If L > 2a, we get the Morin’s result for the hopping coefficient.
To solve the initial question, we have to control the errors.



A general abstract result.

Following [HelSj1984, HelSj2-1985] and [HKS2023], we try to
present an abstract procedure permitting to treat the previous case
and many other cases with symmetry.
Here the goal in the application is to determine under which
condition on L (the distance between the wells) the error estimate
appears to be small in comparison with respect to the main term in
the semi-classical limit.
The conjecture is that L > 2a is enough.

I [FSW2022, HelKa2022-23] gets the condition
L > 4(

√
|vmin + a).

I We prove in [HKS2023] the result under condition L > 4a.

I Using the more accurate approach of [HKS2023] which will be
presented below, we get, as announced in [Mor2023], the
result under the condition L ≥ (2 +

√
3)a.



About approximation of the interaction matrix

Consider a Hilbert space H endowed with an inner product 〈·, ·〉
and a family of self-adjoint unbounded operators

Th : Dh → H, h ∈ (0, 1] .

Assume furthermore that Th is semi-bounded from below and has
a sequence of discrete eigenvalues

λ1(h) ≤ λ2(h) ≤ λ3(h) ≤ . . . < Σh := inf σess(Th) ∈ R ∪ {+∞},

counted with multiplicity.



We work under additional assumptions on the operators
(Th)h∈(0,1]. This involves our family of approximate eigenfunctions.

Assumption H1

Let n ≥ 2 be an integer. There exist positive constants
S1,S2,S3, c , p, q and h0 ∈ (0, 1] such that p < q and for all
h ∈ (0, h0], there exists a subspace Eh = Span(uh,1, . . . , uh,n) ⊂ Dh

such that:

1. max1≤i≤n ‖Thuh,i‖ = O(e−S1/h).

2. 〈uh,i , uh,j〉 =

{
1 +O(e−S2/h) i = j ,

O(e−S3/h) i 6= j .

3. λ1(h) ≥ −chq.

4. λn+1(h) ≥ c hp.



It results from the assumption above that dim(Eh) = n for h small
enough. We can prove that the operator Th has precisely n
eigenvalues that are exponentially small in h, and that there is a
gap to λn+1(h).

Proposition A1

There exist positive constants C , h1 such that, for h ∈ (0, h1],

λn(h) ≤ Ce−S1/h. (38)

In particular λn(h) < λn+1(h) for h sufficiently small.



Toward the measure of the error

We want to link the quasi mode constructions {uh,j} to the
low-lying eigenvalues of Th. To do this, we show that the
symmetric matrix

Uj ,k = 〈Thuh,j , uh,k〉,

does not differ much (component-wise) from the matrix Wh that is
the restriction of Th to the eigenspace

Fh :=
n⊕

j=1

Ker(Th − λj(h)),

written in an orthonormal basis.



We do the approximation in two steps.
We first consider the projected functions

vh,j = ΠFh
uh,j

and show that the norms ||vh,j − uh,j || are small.
Since the span of {uh,j} is n-dimensional by Assumption [H1], it
will follow that the {vh,j} are linearly independent, and thus
constitute a basis for Fh.



Proposition A2

For h > 0 sufficiently small, we have dim(Fh) = n, and the vectors

vh,i = ΠFh
uh,i (i ∈ {1, · · · , n}),

form a basis of Fh. Moreover they satisfy

max
1≤i≤n

||vh,i − uh,i || = O(h−pe−S1/h).



Reduction to a matrix through a suitable orthonormal basis

The aim is to find an orthonormal basis for Fh such that the matrix
of the restriction of Th in this basis can be well approximated.
Later in the applications to multiple wells problems this matrix will
be according to the previous literature called the interaction matrix.

The basis {vh,j} of Fh that we just constructed will, in general, not
be orthogonal. We construct, by a symmetry-preserving
Gram–Schmidt procedure an orthonormal basis {wh,j}. The matrix
Wh will be the matrix of Th restricted to Fh, written in this new
basis {wh,j}.

Let us denote by Gh = (gij(h))1≤i ,j≤n the Gram matrix of the basis
{vh,1, . . . , vh,n} of Fh, where

gij = 〈vh,i , vh,j〉.



Since the {vh,j} are linearly independent, the Gram matrix becomes

positive definite, so G
−1/2
h is well defined and positive definite. We

obtain an orthonormal basis Vh = {wh,1, . . . ,wh,n} of Fhwh,1
...

wh,n

 = G
−1/2
h

vh,1
...

vh,n

 .

We consider the restriction of Th to the space Fh and denote by
Wh = (wij)1≤i ,j≤n its matrix in the basis Vh, so

Wij = 〈Thwh,i ,wh,j〉 .

The matrix Wh is hermitian, with eigenvalues {λ1(h), . . . , λn(h)}.



The next proposition controls how Wh is approximated by the
matrix Uh.

Proposition A3

Let
Λh := ‖Th|Fh

‖ = max
1≤i≤n

|λi (h)|,

Ch = h−p e−S1/h + e−min(S2,S3)/h,

εh = (Λh + Ch)Ch.


Then the symmetric ”error” matrix satisfies

Rh := Wh − Uh,= O(εh) .



An immediate consequence of Proposition [A3] is an improved
lower bound on the lowest eigenvalue λ1(h).

Corollary [C]

There exist positive constants C , h1 such that, for h ∈ (0, h1],

λ1(h) ≥ −C e−min(S1,2S2,2S3)/h.



Implementing invariance assumptions

Our task is to analyze the case when the matrix Wh of Th|Fh

enjoys certain invariance properties. This corresponds to what
occurs in the case of symmetric wells in the applications, starting
from the double well case as mathematically considered by
E. Harrell [Ha1980] and later extended to the multiple wells case
in [HelSj1984, HelSj2-1985, Sim1983, Sim1984].
Here we mainly follow in a more abstract way [HelSj2-1985] and
the heuristic presentation given in [FoHel2010]. We denote by Zn

the cyclic group of order n and by g 7→ ρ(g) a faithful unitary
representation of Zn in H. We denote by an its generator, so
ann = e where e is the identity element of the group.



In addition to the previous assumptions, we assume

Symmetry Assumption [H2]

1. The operator Th commutes with ρ(g) for all g ∈ Zn.

2. uh,i+1 = ρ(an)uh,i for 1 ≤ i ≤ n − 1.



In the applications considered in this article, the Hilbert space will
be H = L2(Ω) where Ω is a domain in R2. We first consider the
unitary representation ρ0 of Zn as the group Gn of the n-fold
rotations, i.e. the representation such that

ρ0(an) := gn

is the rotation in R2 by 2π/n around the origin in R2.

We let the rotation gn act on functions as(
M(gn)u

)
(x) = u(g−1

n x). (39)

This gives by extension to any element of Gn a representation of
Gn in L2(Ω) if Ω ⊂ R2 is a domain invariant by Gn and we then
define ρ by

ρ(g) = M(ρ0(g)) .



Equivalently we can then write in this case

Assumption [H2bis]

1. Ω ⊂ R2 is a domain invariant by G and H = L2(Ω).

2. The operator Th commutes with M(gn).

3. uh,i+1 = M(gn)uh,i = uh,1(g−in x) for 1 ≤ i ≤ n − 1.



Proposition A4

Under the symmetry assumption [H2], the orthonormal basis
Vh = {wh,1, . . . ,wh,n} of Fh satisfies,

wh,i+1 = ρ(an)wh,i (1 ≤ i ≤ n − 1).



The matrix of ρ(an) in the basis Vh is the same as the matrix of
the shift operator τ on `2(Z/nZ), whose matrix is given by

τj ,k = δj+1,k for 1 ≤ j , k ≤ n (40)

where δi ,k denotes the Kronecker symbol, with i computed in
Z/nZ.
When n = 3, the matrix τ is given by0 1 0

0 0 1
1 0 0

 .



The property that the operator Th commutes with ρ(a) implies
that

Wh =
n−1∑
k=0

Ik(h)τk , (41)

for some coefficients I0(h), . . . , In−1(h) ∈ C.

The Hermitian property of Wh gives, in addition,

I0(h) ∈ R , Ik(h) = In−k(h) for k = 1, . . . , n − 1 . (42)



Notice that the matrix Uh satisfies the same properties as Wh.
Hence we can also write

Uh =
n−1∑
k=0

Jk(h)τk , (43)

for some coefficients J0(h), . . . , Jn−1(h) ∈ C and the Hermitian
property of Uh also implies

J0(h) ∈ R , Jk(h) = Jn−k(h) for k = 1, . . . , n − 1 . (44)



All these invariant matrices (Wh or Uh) share the property to be
diagonalizable in the same orthonormal basis of eigenfunctions εk
(k = 1, . . . , n) whose coordinates in our selected basis are given by

(εk)` = ω
(k−1)`
n , with ωn := exp(2iπ/n) .

It is then easy to compute the corresponding eigenvalues.



n = 3

Wh assumes the form

Wh =

I0 I1 I1
I1 I0 I1
I1 I1 I0


with I1 = ρe i θ, ρ ≥ 0, θ ∈ [0, 2π). This matrix has three
eigenvalues

µk = I0 + 2ρ cos

(
θ + (k − 1)

2π

3

)
, k ∈ {1, 2, 3}. (45)



The case n = 2

A first consequence of the previous analysis is a full understanding
of the case corresponding to n = 2 where the symmetry g2 reads
(x1, x2) 7→ (−x1,−x2). We get

λ2(h)− λ1(h) = 2|J1(h)|+ o
(
|J1(h)|

)
. (46)



The case n = 3, braid structure of eigenvalues
Let I0(h), I1(h) as before and let us write

I1(h) = ρ(h)e i θ(h) where ρ(h) ≥ 0 and θ(h) ∈ [0, 2π).

Then, we have a relabeling µ1(h), µ2(h), µ3(h) of λ1(h), λ2(h),
λ3(h)
Moreover,

I0(h) = J0(h) +O(δh), I1(h) = J1(h) +O(δh) ∼ J1(h) (47a)

with

J0(h) = 〈Thuh,1, uh,1〉, J1(h) = 〈Thuh,1, uh,2〉. (47b)

Notice that there is possibility for eigenvalue crossings between

I µ1(h) and µ2(h) if θ(h) ∈ {2π/3, 5π/3};
I µ2(h) and µ3(h) if θ(h) ∈ {0, π};
I µ1(h) and µ3(h) if θ(h) ∈ {π/3, 4π/3}.

The point is then to seek an accurate approximation of θ(h).



A schematic figure of eigenvalues with a braid structure, occurring
in the presence of trilateral symmetry.

1/ℎ



Additional hypothesis

We can strengthen the estimate of Λh if we assume additionally
that

Assumption [H3]

There exists a positive constant S such that

S < 2 min
1≤j≤3

Sj ,

Jk(h) =
h↘0
O(e−S/h) (k = 0, · · · , n − 1),

and
|J1(h)| =

h↘0
e−(S+o(1))/h.



Proposition A5

There exist positive constants C , h0 > 0 such that if [H1]-[H3]
holds, then for all h ∈ (0, h0], the symmetric matrix Rh = (rij)
satisfies

‖Rh‖ =
h↘0
O
(
e−3S/2h

)
= o

(
|J1(h)|

)
.



Application to [FSW]

Proposition A6

Let Th and λ(h) corresponding to the [FSW2022] operator minus
the ground state energy of the one well problem λ1(Lswh . The
conditions hold with the following choices:

1. L > (2 +
√

3)a

2. uh,1 = uh,` , uh,2 = uh,r ;

3. any constants S1,S2,S3, p, q satisfying

S1 ∈ (0, Ŝa), S2 ∈ (0, 2Ŝa), S3 ∈ (0, Ŝa), p ∈ (0, 1], q ∈ (1, 2),

where Ŝa can be explicitly computed.



This achieves, using the asymptotics of J1 the proof of the
announced result of [Mor2023] (improving [FSW2022] and
[HelKa2022-23]) and their extension to a larger number of wells
[HKS2023].

ev0
2 (h)− ev0

1 (h) =
h→0

c hν exp

(
−S(v0)

h

)



MERCI !
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V. Bonnaillie-Noël, M. Dauge, D. Martin, G. Vial.



Numerical computations of fundamental eigenstates for the
Schrödinger operator under constant magnetic field. Comput.
Methods Appl. Mech. Engng. 196, 3841–3858 (2007).
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