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Main goals

We would like to determine the cases where there is equality in
Courant’s nodal domain theorem in the case of the realization of
the Laplacian in a square with a Robin boundary condition.

The initial motivation was the analysis of the problem of minimal
partitions, see Helffer–Hoffmann-0stenhof–Terracini (2009) who
prove that minimal partitions which are nodal correspond to
Courant sharp eigenvalues, but beyond this motivation this is a
natural question in spectral theory involving the analysis of the
nodal structure of eigenfunctions in case of multiplicity.

One of the new points here is to try to understand the transition
between the Dirichlet case and the Neumann case by analysing the
deformation of the nodal structure when the Robin parameter
varies.
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For the square, we partially extend the results that were obtained
by Pleijel (1956), Bérard–Helffer (2015) for the Dirichlet problem
and Helffer–Persson–Sundqvist (2015) for the Neumann problem.

After proving some general results that hold for any value of the
Robin parameter h, we focus on the case when h is large.

We also obtain some semi-stability results for the number of nodal
domains of a Robin eigenfunction of a domain with C 2,+ boundary
as h large varies.

This is joint work with Katie Gittins (Neuchâtel University).
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The Robin problem

Let Ω ⊂ R2, be a bounded, connected, open set with Lipschitz
boundary and let h ∈ R+.
The Robin eigenvalues of the Laplacian on Ω with parameter h are
λk,h(Ω) ∈ R, k ∈ N, s.t. there exists a function uk ∈ H1(Ω) which
satisfies

−∆uk(x) = λk,h(Ω)uk(x) , x ∈ Ω ,

∂

∂ν
uk(x) + h uk(x) = 0 , x ∈ ∂Ω ,

where ν is the outward-pointing unit normal to ∂Ω.
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The Robin problem is associated with the quadratic form:

H1(Ω) 3 u 7→
∫

Ω
|∇u|2 + h

∫
∂Ω
|u∂Ω|2dσ ,

where u∂Ω is the trace of u.
So the spectrum is monotonically increasing with respect to h for
h ∈ [0,+∞).
Hence the Robin eigenvalues with h > 0 interpolate between the
Neumann eigenvalues (h = 0) and the Dirichlet eigenvalues
(h = +∞).
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The Robin eigenvalues satisfy the Courant nodal domain theorem
(1923) stating that any eigenfunction corresponding to λk,h(Ω) has
at most k nodal domains. We consider the Courant-sharp Robin
eigenvalues of Ω.

We call a Robin eigenvalue λk,h(Ω) Courant-sharp if it has a
corresponding eigenfunction that has exactly k nodal domains.

As for the Dirichlet and Neumann eigenvalues, λ1,h(Ω) and
λ2,h(Ω) are Courant-sharp for all h ≥ 0.

It is not too difficult to verify that λ4,h(Ω) is also Courant sharp
for any h ∈ [0,+∞].
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Another interesting question is whether it is possible to follow the
Courant-sharp (Neumann) eigenvalues with h = 0 to
Courant-sharp (Dirichlet) eigenvalues as h→ +∞.

In other words, we can ask whether there are some critical values
h∗(k ,Ω) after which the Robin eigenvalues λk,h(Ω), h ≥ h∗(k ,Ω)
become Courant-sharp or are no longer Courant-sharp.

With this respect the cases k = 5 and k = 9 are quite interesting
and presumably the only ones.
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We denote the Dirichlet eigenvalues by λDk and the Neumann
eigenvalues by λNk .
We consider the particular example where Ω is a square in R2 of
side-length ` = π and the main question is:
Is it possible to determine the Courant-sharp Robin eigenvalues of
the square S := (0, π)× (0, π)?

It was asserted by Pleijel in [33] (1956) that the only
Courant-sharp Dirichlet eigenvalues of the square are for
k = 1, 2, 4. This was shown rigorously in Bérard-Helffer [4].

On the other hand the only Courant-sharp Neumann eigenvalues of
the square are for k = 1, 2, 4, 5, 9, as shown in
Helffer–Persson-Sundqvist [27] (see the talk in this conference).
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The first step is to reduce the number of potential Courant-sharp
eigenvalues by invoking an argument inspired by the founding
paper of Pleijel [33].

Uniform Reduction Theorem

Let h ≥ 0. If k ≥ 520, then λk,h(S) is not Courant-sharp.

In the case of a Dirichlet boundary condition, the equivalent
statement in [33] gives k ≥ 48 and in the case of a Neumann
boundary condition, [27], k ≥ 209.

The strategies of [4, 27] are then either to re-implement the
Faber-Krahn inequality, or to use symmetry properties of the
corresponding eigenfunctions to further eliminate potential
Courant-sharp eigenvalues.

One is then reduced to the analysis of the nodal structure of very
few families of eigenfunctions (one for Dirichlet, much more for
Neumann) that belong to two-dimensional spectral spaces.
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The proof of this theorem is rather close to the proof given for
Neumann. Note that the bound is independent of h. In the
asymptotic situations h→ 0 and h→ +∞ one can improve the
theorem. This will be detailed in this talk in the limit h large.

In Gittins-Léna [21], upper bounds (related to the geometry of the
domain) are obtained for the Courant-sharp Neumann and Robin
eigenvalues with h > 0 of a bounded, connected, open set Ω ⊂ Rn

with C 2 boundary, extending previous results by Bérard-Helffer and
Gittins-Van den Berg for the Dirichlet case).
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Our main result

In this talk we show that for h large enough the only
Courant-sharp Robin eigenvalues are for k = 1, 2, 4.

h large Theorem

There exists h1 > 0 such that for h ≥ h1, the Courant-sharp cases
for the Robin problem are the same as those for h = +∞ (i.e. the
Dirichlet case).

In order to prove this theorem, it is necessary to estimate the
number of nodal domains whose boundaries intersect the boundary
of the square on at least a non-trivial interval.
For such nodal domains, we cannot use the Faber-Krahn inequality
for the Dirichlet problem.
Nevertheless, there is a Faber-Krahn inequality for the Robin
problem when h > 0 (see Bossel (1988), Daners (2006),
Bucur-Giacomini ((2010) and (2015)) [8, 10, 13]).
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On the way for the proof of this theorem, we obtain some
semi-stability results for the number of nodal domains as the Robin
parameter (h large) varies for general domains.

One can also look at the situation when the Robin parameter h
tends to 0 and study the following conjecture.

h small Conjecture

There exists h0 > 0 such that for 0 < h ≤ h0, the Courant-sharp
cases for the Robin problem are the same, except the fifth one, as
those for h = 0 (i.e. the Neumann case for which k = 1, 2, 4, 5, 9
were shown as the only Courant Sharp eigenvalues) .

As will be seen in Mikael Persson Sundqvist’s talk for Neumann,
there are many cases to consider after the first reduction. We have
to control the stability by perturbation. At the moment, we have
only partial results with K. Gittins.
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Formulas for the eigenvalues and eigenfunctions of the
Robin Laplacian for a rectangle

For rectangles Ω = (0, `1)× (0, `2) ⊂ R2 and (x , y) ∈ Ω, an
orthonormal basis for the Robin problem is given by

up,q(x , y) = up(x)uq(y), (1)

where, for p, q ∈ N, up is the (p + 1)-st eigenfunction of the Robin
problem in (0, `1).

We will mainly consider the case of the square with `1 = `2 = π.
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The Robin eigenvalues are given by(
αp

`1

)2

+

(
αq

`2

)2

.

So in two dimensions, the Robin eigenvalues correspond to pairs
λp,q(h) of non-negative integers (p, q).

If we consider the symmetric case (p even), we have

αp(h) tan

(
αp(h)

2

)
= h`1 . (2)

Similarly, if we consider the antisymmetric case (p odd) we get

αp(h)

h`1
= − tan

(
αp(h)

2

)
. (3)
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With these formulas in mind, we get in the first case

up(x) =
1

sin
αp

2

cos(
αp

x
`− αp

2
) ,

and in the second case

up(x) =
1

cos
αp

2

sin(
αp

x
`− αp

2
) .

In this way, we clearly see the symmetry properties of the
(1D)-eigenfunctions :

up(`− x) = (−1)pup(x) .
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Graphs of αp(h)

20 40 60 80 100
h

2

4

6

8

α(h)

α0(h)
α1(h)
α2(h)

Figure: Solutions α0(h), α1(h), α2(h) for h ≤ 100 .
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Symmetry properties

The use of symmetries was quite powerful in the context of the
Neumann case, [27], via an argument due to Leydold, [32]. That
is, a Courant nodal theorem for eigenfunctions that satisfy certain
symmetry properties. In addition, the number of nodal domains
inherits some particular properties from these symmetries.
This invariance by symmetry is actually common to all the Robin
problems.
See the talk by Mikael P. Sundqvist for details in the Neumann
case.
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Upper bounds for the number of Courant-sharp Robin
eigenvalues of a square

This was the first step proposed by Pleijel [33] in the Dirichlet case
to reduce the analysis of the Courant-sharp cases to the analysis of
finitely many eigenvalues.
His proof was a combination of the Faber-Krahn inequality and the
Weyl formula.
In the Neumann case considered in [27], a new difficulty arises as it
is not possible to apply the Faber-Krahn inequality to the elements
of the nodal partition whose boundaries touch the boundary of the
square at more than isolated points.

We can extend the analysis to the Robin case.
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Lower bound for the Robin counting function

Recall that for λ > 0, the Robin counting function for the
corresponding eigenvalues of Ω is defined as

NR,h
Ω (λ) := #{k ∈ N : λk,h(Ω) < λ}. (4)

Similarly we have the Dirichlet counting function

ND
Ω (λ) := #{k ∈ N : λDk (Ω) < λ}, (5)

and the Neumann counting function

NNe
Ω (λ) := #{k ∈ N : λNk (Ω) < λ}. (6)
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Due to the monotonicity of the Robin eigenvalues with respect to
h ∈ [0,+∞), it is rather easy to have a lower bound for the

NR,h
Ω (λ). In particular, we have

NR,h
Ω (λ) ≥ NR,+∞

Ω (λ) = ND
Ω (λ) .

For the Neumann counting function of S , we have

π

4
λ+ 2b

√
λc+ 1 ≥ NNe

S (λ) >
π

4
λ, (7)

and for the Dirichlet counting function of S , if λ ≥ 2, we have by
[33],

ND
S (λ) >

π

4
λ− 2

√
λ+ 1 . (8)
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Assume that λ ≥ 2 (this is true for k ≥ 4). Then, by (8) and
monotonicity of the Robin eigenvalues with respect to h,

NR,h
S (λ) ≥ ND

S (λ) >
π

4
λ− 2

√
λ+ 1. (9)
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We now work analogously to the proof of the Neumann case.
Denote by Ωinn the union of nodal domains of the eigenfunction Ψ
whose boundaries do not touch the boundary of Ω (except at
isolated points), and µinn(Ψ) the number of nodal domains of Ψ in
Ωinn. We denote by Ωout the nodal domains in Ω \ Ωinn, and
µout(Ψ) the number of nodal domains in Ωout. We have

µinn(Ψ) = µ(Ψ)− µout(Ψ)

and we require an upper bound for µout(Ψ).
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Counting the number of nodal domains touching the
boundary for the Robin problem

We observe (Pleijel remark) that he restriction to one side of the
square, say x = 0, of the eigenfunction

u(x , y) =
∑

i ,j :λn,h(S)=π−2(α2
i +α2

j )

aij ui (x)uj(y) .

is a linear combination of eigenfunctions on the segment (0, π):

u(0, y) =
∑

i ,j :λn,h(S)=π−2(α2
i +α2

j )

aij ui (0)uj(y) .

We can then use Sturm’s theorem which gives bounds on the
number of zeros of u(0, y) in (0, π) by

in(h) := min(i : λn,h(S) = π−2(α2
i + α2

j )) ,

and
jn(h) := max(j : λn,h(S) = π−2(α2

i + α2
j )) . (10)
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We have

λn,h(S) = (α2
in(h) + α2

jn(h))/π2 ≥ in(h)2 + jn(h)2 ≥ jn(h)2,

which gives

jn(h) ≤
√
λn,h(S) .

We can argue in the same way for the other sides of the square
and get

Lemma A

Let λ be a Robin eigenvalue of S with h < +∞. If ψ is a Robin
eigenfunction associated to λ, then

µout(ψ) ≤ 4
√
λ . (11)

So, following the proof given for Neumann, we obtain our uniform
reduction theorem.
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Analysis as h→ +∞.
We have to show that for h sufficiently large, the Courant-sharp
Robin eigenvalues of the square are the same as those in the
Dirichlet case, [33, 4].
Let us first revisit the Pleijel’s argument in the Dirichlet case. We
recall from (8) that if λn is Courant-sharp, then

n >
π

4
λn − 2

√
λn + 2 . (12)

On the other hand, if λn is Courant-sharp, the Faber-Krahn
inequality gives

n

λn
≤ πj−2 < 0.54323 . (13)

Recall that πj2 is the ground state energy of the disc of area 1.
Combining (12) and (13), leads to

πj−2 >
π

4
− 2λ

− 1
2

n + 2λ−1
n , (14)

and to
λn ≤ 50 . (15)

B. Helffer Laboratoire Jean Leray, Université de Nantes and LMO (Univ. Paris-Sud)Courant-sharp Robin eigenvalues for the square and other planar domains (after K. Gittins and B. Helffer)



Then the proof is achieved in the following steps (see
Bérard-Helffer [4] for the full details).

I By a direct computation of the quotient of n
λn

, it is possible to
eliminate all the eigenvalues except for n = 1, 2, 4, 5, 7 and 9 .

I The eigenvalues for n = 7 and n = 9 are eliminated by
symmetry arguments.

I The final step is to analyse the fifth eigenvalue for which a
specific analysis of the nodal structure can be done (see [4]).

We now follow these steps and investigate the extension for h large.
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Faber-Krahn for the Robin case

We recall the result of Bossel-Daners which asserts that the Robin
eigenvalues of the Laplacian satisfy the following Faber-Krahn
inequality. For a Lipschitz domain ω ⊂ R2 and h > 0,

λ1,h(ω) ≥ λ1,h(Dω), (16)

where Dω ⊂ R2 is a disc such that A(Dω) = A(ω).

For the interior nodal domains, the best approach is to use the
standard Faber-Krahn inequality.

For the boundary domains, we have mixed boundary conditions
with Robin on some arcs and Dirichlet on the remaining arcs.
But for a lower bound, by monotonicity, it is enough to use the
Robin Faber-Krahn inequality.
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Scaling

The Robin eigenvalues satisfy the following scaling property.

λn,h(ω) = t2λn,h/t(t ω), (17)

where t ω := {tx ∈ R2 : x ∈ ω}.
Hence the scaling also affects the Robin parameter. So, in
particular, replacing D by D1, the disc of area 1, we have

λ1,h(Dω) = λ
1,hA(ω)

1
2

(D1)/A(ω) . (18)

When h = +∞, the reference is λ1,+∞(D1).

In the Robin case, if we start from h large, we will not necessarily

have hA(ω)
1
2 large if we use this inequality with ω a “boundary”

nodal domain.
Hence we have to be careful in the application of the Faber-Krahn
argument. This is actually the main difficulty.
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Asymptotics in the case of the disk

In the case of the disk, there exists c > 0 such that, as h̃ tends to
+∞,

λ1,h̃(D1) = λ1,+∞(D1)− c

h̃
+O

(
1

h̃2

)
. (19)

As h̃ tends to 0, there exists d > 0 such that,

λ1,h̃(D1) = d h̃ +O(h̃2) . (20)
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We will apply the Faber-Krahn inequality to a nodal domain of a
Robin eigenfunction u = un,h associated with λn,h.
We have no time to discuss the question of the regularity of the
nodal domains and the corresponding regularity needed for
Faber-Krahn (see in addition Bucur-Giacomini for a version with
very weak assumptions).
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Pleijel’s approach as h→ +∞ .

In light of what was done for h = +∞, we now consider the
different steps in the limit h→ +∞.
The eigenvalues depend continuously on h until +∞, in particular

∀n ∈ N, lim
h→+∞

λn,h = λDn . (21)

If we are in the Courant-sharp situation, then µ(u) = n.

If there exists ωinn
i such that A(ωinn

i ) ≤ A(S)/n, we are done like in
the Dirichlet case.
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If not, there exists ωout
j such that

A(ωout
j ) ≤ A(S)/n . (22)

Combining the previous estimates, we find that

A(S)

λ1,hA(ωout
j )1/2(D1)

>
π

4
− 2√

λn,h
+

2

λn,h
. (23)
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Here, comparing with (14), we need to have h̃ := hA(ωout
j )1/2

large enough if we want to arrive at the same conclusion as for the
Dirichlet case.

So we have to find a lower bound for A(ωout
j )1/2. This is difficult,

at least with explicit lower bounds and we use for this proof our
initial h-independent upper bound. Hence, we can assume in this
Courant-sharp situation, that

n ≤ 520 . (24)

and under this assumption we get a uniform lower bound for
A(ωout

j )1/2.
At the end, we get, that for h large enough, λn,h ≤ 50.
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We can now follow essentially the proof of Pleijel for the Dirichlet
case, modulo some relatively easy perturbation arguments and
symmetry arguments.
Hence at this stage, we have proved the following.

Proposition

There exists h1 > 0 such that for h ≥ h1, the Courant-sharp cases
for the Robin problem are the same, except possibly for the fifth
eigenvalue, as those for h = +∞ .

So, having in mind what was done for the Dirichlet case [4], it
remains for h large enough to count the number of nodal domains
of any eigenfunction corresponding to the fifth eigenvalue.
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A general perturbation argument

We analyse a θ-dependent family Φh,θ of eigenfunctions, more
explicitly

Φh,θ,p,q(x , y) = cos θ up,h(x)uq,h(y) + sin θ up,h(y)uq,h(x) .

For most of the arguments we will not use the explicit expression
of the family of eigenfunctions. Hence the arguments extend to
more general bounded, planar domains with piecewise C 2,+

boundary.

Hence the question is to transfer an information that we have for
h = +∞ (or h = h0 > 0) and θ = θ0, to close values of the
parameters.

The proof involves various general statements which are interesting
in a more general context, hence not restricted to the case of the
square.

B. Helffer Laboratoire Jean Leray, Université de Nantes and LMO (Univ. Paris-Sud)Courant-sharp Robin eigenvalues for the square and other planar domains (after K. Gittins and B. Helffer)



An important point, which is a consequence of the Robin
Faber-Krahn inequality, is the following lemma

Lemma on nodal loops

Let h0 > 0 and M > 0. Then there exists ε0 > 0 such that no
nodal domain of an eigenfunction Φh associated with λ(h) for the
Robin problem with parameter h ≥ h0 in some open set Ω (this
includes Dirichlet) and λ(h) ≤ M can have area less than ε0.

Note that our condition excludes the Neumann case which is more
difficult.
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Proof

This follows directly from the h-Faber Krahn inequality. If ω is a
nodal domain of Φh satisfying the assumptions of the lemma, we
have

M ≥ λ(h)
≥ λ(h0)
≥ λ1,h0(Dω)
= λ

1,h0A(ω)
1
2

(D1)/A(ω)

∼ d h0/A(ω)
1
2 .

(25)

This shows that as soon as we avoid the Neumann situation, the
ground state energy in a domain ω tends to +∞ as the area of the
domain tends to 0.
The proof is delicate for domains with corners, but a direct proof
can be obtained for the square using that eigenfunctions have an
extension to R2.
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On the variation of the cardinality of the nodal domains by
perturbation.

Our main result is the following proposition.

Proposition B

Let ρ(h, θ) denote the cardinality of the nodal domains of Φh,θ.
For any θ0, h0 ∈ (0,+∞], there exists η0 > 0 such that if
| 1h −

1
h0
|+ |θ − θ0| < η0, then

ρ(h, θ) ≤ ρ(h0, θ0) .

We prove this proposition by analysing what is going on at the
interior critical points and at the boundary points of the zero set.
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Analysis in a neighbourhood of an interior point.

We treat, following a suggestion of T. Hoffman-Ostenhof what is
going on at an interior point z0. We assume that z0 is a critical
point of Φh0,θ0 associated with an eigenvalue λ(h0). We choose
ε0 > 0 small enough such that

I D(z0, ε0) ⊂ Ω;

I Lemma on nodal loops applies with M > λ(h0);

I the circle C(z0, ε0) crosses the 2` half-lines emanating from z0

transversally at 2` points zj(h0, θ0).

Here we have used the general results on the local structure of an
eigenfunction of the Laplacian (see Bers).
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Lemma on local semi-stability

There exists η0 > 0 such that if | 1h −
1
h0
|+ |θ − θ0| < η0, then the

number of nodal domains of Φh,θ intersecting the disk D(z0, ε0)
cannot increase.
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Proof

If we look at the nodal structure inside D(z0, ε0), we have 2` local
nodal domains (i.e nodal domains of the restriction of Φh,θ to
D(z0, ε0)).
Starting from (h0, θ0) we now look at a small perturbation. By
considering the restriction of Φh,θ to the circle ∂D(z0, ε0), we
observe that the 2` zeros zj(h, θ). of Φh,θ in ∂D(z0, ε0) move very
smoothly. Hence the restriction of Φh,θ changes sign at each point
zj(h, θ).
Moreover, there are 2` local domains ωj(h, θ) of Φh,θ with the
property that ∂ωj(h, θ) intersects ∂D(z0, ε0) along the arc
(zj(h, θ), zj+1(h, θ)) (with the convention that j + 1 is 1 for j = 2`).
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We now observe that if ωj(h0, θ0) and ωj ′(h0, θ0) belong to the
same nodal domain (j 6= j ′), the property remains true for (h, θ)
sufficiently close to (h0, θ0) (i.e. for η0 in the lemma sufficiently
small).
If, for (θ0, h0), ωj(h0, θ0) and ωj ′(h0, θ0) do not belong to the same
nodal domain, then there are two cases

I either the situation is unchanged by perturbation;

I or they belong after perturbation to the same nodal domain
via a new path in D(z0, ε0).

In the second case, the number of nodal domains touching
∂D(z0, ε0) is decreasing.
On the other hand, by Lemma on nodal loops, any nodal domain
that intersects D(z0, ε0) crosses ∂D(z0, ε0). This achieves the
proof.
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Analysis at the boundary.

More difficult but no time to detail.
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Application to the square

We come back to the case of the square and achieve the proof of
our main Theorem. To this end, it is sufficient to obtain the
following.

Proposition

There exists h0 > 0 such that for any h > h0, any eigenfunction
corresponding to 1

π2 (α0(h)2 + α2(h))2 has 2, 3, or 4 nodal domains
(as in the Dirichlet case). Hence for h > h0, λ5,h is not
Courant-sharp.

The property is indeed true for h = +∞ and, by the preceding
results, the number of nodal domains cannot increase and is
necessarily > 1.
One can carry out a deeper analysis for the eigenfunction
associated with the fifth eigenvalue, where we count the nodal
domains case by case.
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Analysis of crossings

We analyse the possible crossings of two curves h 7→ λp,q,h(S) and
h 7→ λp′,q′,h(S) defined in an interval of [0,+∞). This is indeed
quite important as we want to follow the labelling of these
eigenvalues when h varies. For this we have the general following
result

Proposition C

For distinct pairs (p, q) and (p′, q′), with p ≤ q and p′ ≤ q′, there
is at most one value of h in [0,+∞) such that
λp,q,h(S) = λp′,q′,h(S).

The proof is based on a Wronskian argument.
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k = 5, the Dirichlet case
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Figure: The fifth Dirichlet eigenfunction for various values of θ. The
values θ = 0, θ∗1 = arctan(1/3), π

8 , π
4 , 3π

8 , θ∗2 = π
2 − arctan(1/3), π

2 , 5π
8 ,

θ∗3 = 3π
4 , 7π

8 correspond to the purple, magenta, blue, grey, green, black,
orange, teal, red, navy curves respectively.
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Numerical study for h = 1
In Figure 3, we plot the fifth Robin eigenfunction for h = 1 for
various values of θ.
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Figure: The fifth Robin eigenfunction with h = 1 for various values of θ.
The values θ = 0, π

8 , arctan(−1/q2(1)), π
4 , π

2 − arctan(−1/q2(1)), 3π
8 ,

π
2 , 5π

8 , 3π
4 , 7π

4 correspond to the purple, blue, magenta, grey, black,
green, orange, teal, red, navy curves respectively.
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Figure: The fifth eigenfunction when hπ = 0.4 for
θ = π

8 ,
3π
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7π
32 ,

15π
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16 , 9π
32 , 17π

64 .

The maximal number of nodal domains is three.
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Figure: The fifth eigenfunction when h = 0 for different values of
0 ≤ θ < π. When θ = π

4 , there are five nodal domains (red curve) and
for some θ < π

4 there are three nodal domains (blue curves). We also see
a transition to 3 nodal domains for some θ > π

4 (grey curves). The gold
lines are for θ = 0.
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k = 9

For k = 9 and h = 0, the nine-th eigenvalue corresponds to the
eigenvalue 22 + 22 = 8. This eigenvalue is simple and corresponds
to the labelling (2, 2).
The eigenfunction reads (after translation)
(−π

2 ,
π
2 )2 3 (x , y) 7→ cos 2x cos 2y .

It is easy to see that the Courant-sharp property is still true for h
small enough.

By deformation, the eigenfunction is(
−π

2
,
π

2

)2
3 (x , y) 7→ cos(α2(h)x/π) cos(α2(h)y/π)

with corresponding eigenvalue 2
π2 (α2(h))2.

For h ∈ [0,+∞), we have nine nodal domains.
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The issue is to follow its labelling and we observe that when
h = +∞ the eigenvalue is 18 and has minimal labelling 11. This
eigenfunction is NOT Courant-sharp for h sufficiently large.

On the other hand the eigenvalue 1
π2 (α0(h)2 + α3(h)2) which has

minimal labelling 10 for h = 0 arrives with labelling 9 at h = +∞.
Hence some transition occurs for at least one h∗9 > 0 which satisfies

α0(h)2 + α3(h)2 = 2α2(h)2 .
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Using the mathematics software system “SageMath”, we now plot
the Robin eigenvalues of the square

2 4 6 8 10 12
h

5

10

15

20

25

λh

Figure: The Robin eigenvalues of the square (αm(h)2 + αn(h)2)/π2 for
h ≤ 12 corresponding to the pairs (0, 0), (1, 0), (1, 1), (2, 0), (2, 1),
(2, 2), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1). The intersection between the
curves corresponding to (2, 2) and (3, 0) occurs at (1.6970, 11.4498).
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Finally, we can prove:

Last proposition

There exists h∗9 > 0 such that λ9,h is Courant-sharp for 0 ≤ h ≤ h∗9
and not Courant-sharp for h > h∗9 .
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Inégalités isopérimétriques et applications.
Annales de l’ENS 15 (3), 513–541 (1982).

L. Bers.
Local behavior of solutions of general linear elliptic equations.
CPAM 8 (1955), 473–496.

M.H. Bossel.
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