Exercices M2 "The Brauer group"

David Harari

M2 2023-2024

1. Chapters 1 and 2

1. Let G be a finite group. Let H be a subgroup of G. Let A be an H-module and B be a G-module. Check the formula $\operatorname{Hom}_{H}(B, A)=\operatorname{Hom}_{G}\left(B, I_{G}^{H}(A)\right)$. How does this extend to a profinite group G ?
2. Let G be a finite group. Let A be an abelian group. Consider the induced module $I_{G}(A) \simeq \mathbf{Z}[G] \otimes A$. Show that the groups $\widehat{H}^{0}\left(G, I_{G}(A)\right)$ and $\widehat{H}^{-1}\left(G, I_{G}(A)\right)$ are zero.
3. Let G be a finite group. Let $\left(A_{j}\right)$ be an inductive system of G-modules, set $A=\xrightarrow[\longrightarrow]{\lim }\left(A_{j}\right)$. Show by induction on i and dimension shifting that

$$
\underset{j}{\lim } H^{i}\left(G, A_{j}\right) \simeq H^{i}(G, A)
$$

for all $i \in \mathbf{N}$.
4. Let G be a finite group. Let $\left(A_{n}\right)_{n \in \mathbf{N}}$ be a projective system of finite G-modules, set $A=\lim _{\leftarrow} A_{n}$.
a) Show that for all $i \geq 0$, there is an isomorphism

$$
H^{i}(G, A) \simeq \underset{n}{\underset{\underbrace{}_{n}}{\lim }} H^{i}\left(G, A_{n}\right) .
$$

(embed each A_{n} into $I_{G}\left(A_{n}\right)$ and compare $\lim _{\leftarrow} I_{G}\left(A_{n}\right)$ with $\left.I_{G}(A)\right)$.
b) Take $G=\mathbf{Z} / p$ with p prime. Let M_{n} be the G-module \mathbf{Z} with trivial action of G. Let ℓ be a prime with $\ell \neq p$, consider the projective system $\left(M_{n}\right)$, the transition maps being multiplication by ℓ. Compare ${\underset{\longleftarrow}{\leftrightarrows}}_{n} H^{2}\left(G, M_{n}\right)$ and $H^{2}(G, M)$, where $M=\lim _{\ddagger} M_{n}$.
c) Show that the analogue of a) is false for a profinite group G, even if A is assumed to be discrete (take $G=\mathbf{Z}_{p}$ and $A_{n}=\mathbf{Z} / p^{n}$ endowed with the trivial action of G).
5. Let G be a finite group. Let H be a subgroup of G. Show that if a G module is injective, it is also injective as an H-module (reduce to the same statement for "induced" instead of "injective"). Deduce that an injective G-module is divisible as an abelian group.
6. Let G be a finite group. Let H be a subgroup of G. Let A be a G-module. Check directly (using cocycles) the exactness of

$$
0 \rightarrow H^{1}\left(G / H, A^{H}\right) \xrightarrow{\text { Inf }} H^{1}(G, A) \xrightarrow{\text { Res }} H^{1}(H, A) .
$$

7. Let G be a profinite group. Let H be a closed subgroup of G. Let A be an abelian group.
a) Show that H is the projective limit of the H / V, where V runs over the open subgroups of H that are normal in G.
b) Let V be as above. Show that $I_{G}(A)^{V} \simeq I_{G / V}(A)$ is the inductive limit of a family of induced H / V-modules.
c) Deduce that for all $n>0$, we have $H^{n}\left(H, I_{G}(A)\right)=0$.
8. Let G be a profinite group. Let A be a finite G-module.
a) Show that for every $f \in I_{G}(A)$, there exists a normal open subgroup U of G such that for every $x \in G$, the value $f(x)$ depends only on the class of x in G / U.
b) Deduce that $I_{G}(A)$ is the direct limit of the $I_{G}^{U}(A)$, the limit being taken over all open normal subgroups U of G.
9. Let G be a profinite group. Let A be a finite G-module. Let $n>0$.
a) Assume that $H^{n}(G, A)$ is finite. Show that there exists a finite G module B and an injective morphism of G-modules $f: A \rightarrow B$ such that the map $H^{n}(G, A) \rightarrow H^{n}(G, B)$ induced by f is zero.
b) Give an example where the conclusion of a) is no longer valid if $H^{n}(G, A)$ is not assumed to be finite.
10. Let G be a profinite abelian group. Assume that for all positive integers $n>0$, the group $G / n G$ is finite.
a) Show that $n G$ is open in G.
b) Let U be an open subgroup of G. Compare G / U and $n G / n U$, and deduce that $n U$ is open in G.
c) Deduce that if A is a discrete finite G-module, then $H^{1}(G, A)$ is finite.
11. Let G be a profinite group. Let A be a discrete G-module. Assume that A is isomorphic to \mathbf{Z}^{r} as an abelian group, for some $r \in \mathbf{N}$.
a) Show that if the action of G on A is trivial, then $H^{1}(G, A)=0$.
b) Show that there exists an open normal subgroup U of G such that the inflation map $H^{1}\left(G / U, A^{U}\right) \rightarrow H^{1}(G, A)$ is an isomorphism.
c) Show that $H^{1}(G, A)$ is finite. Does this result extend to $H^{r}(G, A)$ for $r>1$?
12. Let G be a profinite group. Let p be a prime number. Let M be a G-module, denote by $N=M[p]$ the p-torsion submodule of M and set $Q:=M / p M, I:=p M$. Let $n=\operatorname{cd}_{p}(G)$ (assumed to be finite). Let $q>n+1$.
a) Show that the map $H^{q}(G, M) \rightarrow H^{q}(G, I)$ induced by multiplication by p and the map $H^{q}(G, I) \rightarrow H^{q}(G, M)$ induced by the inclusion $I \rightarrow M$ are both injective.
b) Deduce that $H^{q}(G, M)[p]=0$ and that $\operatorname{scd}_{p}(G) \leq n+1$.
13. Let G be a profinite group. Let p be a prime number.
a) Show that if $\operatorname{cd}_{p}(G)$ is neither zero nor infinite, then the exponent of p in the order of G is infinite.
b) Show that the strict p-cohomological dimension of G cannot be 1 .
14. Let G be a profnite group of cohomological dimension $n \in \mathbf{N}$.
a) Let M be finite type discrete G-module. Show that there exists an open normal subgroup U of G and an exact sequence of G-modules:

$$
0 \rightarrow B \rightarrow \mathbf{Z}[G / U]^{r} \rightarrow M \rightarrow 0
$$

for some $r \in \mathbf{N}$.
b) Show that if $H^{n+1}(U, \mathbf{Z})=0$, then $H^{n+1}(G, M)=0$.
c) Deduce that $\operatorname{scd}(G)=n$ if and only if for every (normal) open subgroup U of G, we have $H^{n+1}(U, \mathbf{Z})=0$. How does this result extend to strict p cohomological dimension?
15. Let G be a profinite group of finite cohomological dimension. Show that every element $s \neq 1$ of G is of infinite order.
16. Let G be a profinite group of cohomological dimension n. Let A be a divisible discrete G-modules. Show that $H^{q}(G, A)=0$ for all $q>n$.
17. Let p be a prime number. Let k be a field of characteristic $\neq p$ with separable closure \bar{k}. Let $n \in \mathbf{N}^{*}$. Prove the equivalence of the following:
a) $\mathrm{cd}_{p}(k) \leq n$;
b) For every algebraic separable extension $K \subset \bar{k}$ of k, we have

$$
H^{n+1}\left(K, \bar{k}^{*}\right)[p]=0
$$

and the p-primary group $H^{n+1}\left(K, \bar{k}^{*}\right)\{p\}=0$ is divisible;
c) Same as b), but restricted to extensions K / k that are finite and of degree prime to p.
18. Let k be a field. Let n be a positive integer, not divisible by the characteristic of k. Assume that k contains a primitive n-th root of unity. Show that every Galois extension of k with Galois group \mathbf{Z} / n can be written $k\left({ }^{n} \sqrt{a}\right)$ with $a \in k^{*}$. Is there an analog for extension of Galois group \mathbf{Z} / p in characteristic p ?
19. Let k be a field of characteristic zero. Assume that the algebraic closure \bar{k} of k is a finite extension of k of prime degree p.
a) Show that $\operatorname{Br} k$ is a p-torsion group.
b) Show that $\operatorname{Br} k$ is isomorphic to $H^{2}\left(k, \mu_{p}\right)$ and to $H^{3}\left(k, \mu_{p}\right)$.
c) Deduce that $N_{\bar{k} / k}\left(\bar{k}^{*}\right)=k^{* p}$.
d) Show that k contains a primitive p-th root ζ of 1 and that $\bar{k}=k(\alpha)$ with $\alpha \notin k$ and $a:=\alpha^{p} \in k$.
e) By computing the norm of α, deduce that $p=2$ and $\bar{k}=k(\sqrt{-1})$.
20. Deduce from the previous exercise that if G is the absolute Galois group of a field of characteristic zero, then every non trivial element of finite order in G is of order 2. Deduce that every subgroup of finite order of G is trivial or of order 2 .

2. Chapter 3

In all exercises, the symbol G denotes a profinite group.
21. Let A be a G-group. A principal homogeneous space of A is a non empty G-set P, equipped with a simply transitive right-action

$$
(x, a) \mapsto x . a, x \in P, a \in A
$$

of A which is compatible with the G-structures (that is: ${ }^{s}(x \cdot a)=\left({ }^{s} x\right) .\left({ }^{s} a\right)$ for all $s \in G, x \in P, a \in A$). An isomorphism between two principal homogeneous spaces P, P^{\prime} is a bijective map $u: P \rightarrow P^{\prime}$ compatible (in an obvious sense) with the left-action of G and the right action of A. Denote by $P(A)$ the set of isomorphism classes of principal homogeneous spaces of A.
a) Show that one can define a map $u: P(A) \rightarrow H^{1}(G, A)$ as follows: for $P \in P(A)$, choose $x \in A$; for each $s \in G$, denote by a_{s} the unique element of A such that ${ }^{s} x=x . a_{s}$. Then take for $u(P)$ the class of the cocycle $s \mapsto a_{s}$.
b) Let $a \in Z^{1}(G, A)$ be a cocycle. Let P_{a} be the group A with the "twisted" action of G given by $s(x)=a_{s} \cdot{ }^{s} x$. Show that the operation of A on P_{a} by right translations yields a structure of principal homogenous space of A on P_{a}.
c) Show that u is bijective, with inverse map $v: H^{1}(G, A) \rightarrow P(A)$ induced by $a \mapsto P_{a}, a \in Z^{1}(G, A)$. Thus the pointed set $H^{1}(G, A)$ classifies principal homogeneous spaces of A.
22. Let B be a G-group. Let A be a G-subgroup of B. Give a definition of the coboundary $H^{0}(G, B / A) \rightarrow H^{1}(G, A)$ using the definition of $H^{1}(G, A)$ in terms of principal homogeneous spaces (see exercise 21).
23. Let B be a G-group. Let A be a G-subgroup of B.
a) Show that the kernel of the map $f: H^{1}(G, A) \rightarrow H^{1}(G, B)$ identifies with the quotient of $H^{0}(G, B / A)$ by the action of $H^{0}(G, B)$.
b) Let $b \in Z^{1}(G, B)$ be a cocycle with class $\beta \in H^{1}(G, B)$. Define the G-set ${ }_{b}(B / A)$ as the set B / A with the twisted action of G given by $s(x)=$ $b_{s} .{ }^{s} x, s \in G, x \in B / A$. Show that $\beta \in \operatorname{Im} f$ if and only if $H^{0}(G, b(B / A)) \neq \emptyset$.
c) Assume that G is a finite p-group (with p prime) and the index $[B: A]$ is finite, not divisible by p. Show that f is surjective. Does this extend to G profinite ?

Assume further that A is normal in B and set $C=B / A$.
d) Show that there is a right operation of C^{G} on $H^{1}(G, A)$ defined as follows: lift $c \in C^{G}$ to $b \in B$ and write ${ }^{s} b=b . x_{s}$ with $x_{s} \in A$ for each $s \in G$. Then for every cocycle $a \in Z^{1}(G, A)$, define the class [a].c as the class of the cocycle $s \mapsto b^{-1} a_{s}{ }^{s} b$.
e) Show that two elements α, α^{\prime} of $H^{1}(G, A)$ have the same image by f if and only if there exists $c \in C^{G}$ such that $\alpha^{\prime}=\alpha . c$.
24. Let B be a G-group. Let A be an abelian and normal G-subgroup of B, set $C=B / A$. Define by $(c, \alpha) \mapsto c . \alpha$ the left action of C^{G} on $H^{1}(G, A)$ induced by the G-morphism $C^{G} \rightarrow$ Aut ${ }_{G}(A)$ given by the action of C^{G} on A
(associated to the extension $1 \rightarrow A \rightarrow B \rightarrow C \rightarrow 1$). Let $\delta: C^{G} \rightarrow H^{1}(G, A)$ be the coboundary map.
a) Show that $\alpha^{c}=c^{-1} . \alpha+\delta(c)$ for all $c \in C^{G}, \alpha \in H^{1}(G, A)$, where α^{c} is defined by the right action of C^{G} on $H^{1}(G, A)$ defined on Exercice 23 d).
b) Show that $\delta\left(c^{\prime} c\right)=\delta(c)+c^{-1} . \delta\left(c^{\prime}\right)$ for all $c, c^{\prime} \in C^{G}$.
c) Deduce that if A is contained in the center of B, then δ is a morphism of groups.
25. Let A be a G-group. Let H be a closed normal subgroup of G. Show that there is an exact sequence of pointed sets

$$
0 \rightarrow H^{1}\left(G / H, A^{H}\right) \rightarrow H^{1}(G, A) \rightarrow H^{1}(H, A) .
$$

26. Let G be a finite group. Let A be a finite G-group whose order is prime to the order of G.
a) Assume that G is a p-group. Show that $H^{1}(G, A)=0$ (use Exercise 23 c).
b) Deduce that if G is solvable, then $H^{1}(G, A)=0$ (proceed by induction on $\# G$ and use Exercise 25).
c) Assume that A is a solvable group. Show by induction on $\# A$ that $H^{1}(G, A)=0$.
d) Using Feit-Thomson Theorem (which says that every finite group of odd order is solvable), show that $H^{1}(G, A)=0$ without additional assumption.
e) Does this extend to G profinite ?
27. Let K / k be a Galois extension of fields with group G. Compute $H^{1}\left(G, S L_{n}(K)\right)$.
28. Let V be a quasi projective variety over a field k. Let K be a finite Galois extension of k with group G. Set $V_{K}=V \times_{k} K$. Let $A(K)$ be the group of K-automorphisms of V_{K}, which is a G-group for the action

$$
(s . f)(x)=s . f\left(s^{-1} . x\right), f \in A(K), s \in G, x \in V .
$$

a) Show that for every k-variety V^{\prime} such that V_{K}^{\prime} is isomorphic to V_{K}, the set P of K-isomorphisms between V_{K}^{\prime} and V_{K} is a principal homogeneous space of $A(K)$.
b) Deduce from a) and Exercise 21 an injective map

$$
\theta: E(K / k, V) \rightarrow H^{1}(G, A(K))
$$

between the k-isomorphisms classes of V^{\prime} as in a) and the cohomology set $H^{1}(G, A(K))$.
c) Let $s \mapsto c_{s}$ be a cocycle of $Z^{1}(G, A(K))$. Define a new operation of G on V_{K} by

$$
s(x)=c_{s}\left({ }^{s} x\right), s \in G, x \in V_{K},
$$

and denote by ${ }_{c} V$ the quotient of V_{K} by this new action of G (the existence of this quotient as a k-variety is ensured by the assumption that V is quasiprojective). Show that the image of the class of ${ }_{c} V$ by θ is the class of the cocycle c in $H^{1}(G, A(K))$.
d) Deduce from c) that k-forms of V are classified by the pointed set $H^{1}\left(k, \operatorname{Aut}\left(V_{\bar{k}}\right)\right.$.
e) Take for V the projective space \mathbf{P}_{k}^{n}. What does d) say about classification of its k-forms? Describe the special case when k is a finite field.

3. Chapters 4 and 5

29. Let X be an affine \mathbf{F}_{p}-scheme of finite type.
a) Show that $H^{i}(X, \mathbf{Z} / p)=0$ for every integer $i \geq 2$.
b) Assume that X is the affine space over \mathbf{F}_{p}. Show that $H^{1}(X, \mathbf{Z} / p) \neq 0$.
c) Let Y be a normal, connected and noetherian scheme. Let \mathcal{F} be a constant sheaf on Y. Show that for any $r>0$, the group $H^{r}(Y, \mathcal{F})$ is torsion, and that is is zero if \mathcal{F} is uniquely divisible.
d) Deduce that $H^{2}(Y, \mathbf{Z})$ is isomorphic to $H^{1}(Y, \mathbf{Q} / \mathbf{Z})$, and that for every $n>0$, there is an isomorphism $H^{1}(Y, \mathbf{Z} / n) \simeq_{n} H^{1}(Y, \mathbf{Q} / \mathbf{Z})$.
30. Let X be a smooth and integral variety over a field of characteristic zero k. Let A be an abelian variety (that is: a projective, smooth and connected algebraic group over k). Recall (Chevalley) that any k-rational map from X to A extends to a k-morphism $X \rightarrow A$. Let $j: \eta \rightarrow X$ be the inclusion of the generic point of X, set $A_{\eta}=A \times_{k} \eta$ and $A_{X}=A \times_{k} X$.
a) Show that $j_{*} A_{\eta}=A_{X}$ as étale sheaves on X.
b) Show that for all integers $q>0$, the sheaves $R^{q} j_{*} A_{\eta}$ are torsion.
c) Deduce that the groups $H^{i}(X, A):=H^{i}\left(X, A_{X}\right)$ are torsion for all $i>0$.
d) Let $i>0$. Let $\alpha \in H^{i}(X, A)$. Show that there exists $n>0$ such that α is in the image of the natural map $H^{i}(X, A[n]) \rightarrow H^{i}(X, A)$, where $A[n]$ is the n-torsion subgroup of A.
31. Let X be a noetherian scheme. Let $x \in X$ be a point of X; denote by $i: \operatorname{Spec}(k(x)) \rightarrow X$ the corresponding morphism. Let \mathcal{F} be a sheaf of abelian groups on $\operatorname{Spec}(k(x))$.
a) Show that for every $q \geq 1$, the sheaves $\left(R^{q} i_{*}\right)(\mathcal{F})$ are torsion on $X_{\text {ét }}$.
b) Deduce that for all $p>0$, the groups $H^{p}\left(X, i_{*} \mathcal{F}\right)$ are torsion.
c) Assume further that X is integral and regular. Show that the groups $H^{q}\left(X, \mathbf{G}_{m}\right)$ are torsion for $q \geq 2$ (hint: use the sheaf of divisors D_{X} on X).
32. Let X be a projective, smooth, and geometrically integral variety over a field k of characteristic zero. Set $\bar{X}=X \times{ }_{k} \bar{k}$, where \bar{k} is an algebraic closure of k. Assume that the group $\operatorname{Pic} \bar{X}$ is torsion-free (recall that this implies that it is also of finite type).
a) Show that the Galois cohomology group $H^{1}(k, \operatorname{Pic} \bar{X})$ is finite.
b) Set $\operatorname{Br}_{1} X=\operatorname{ker}[\operatorname{Br} X \rightarrow \operatorname{Br} \bar{X}]$. Show that the cokernel of the map $\operatorname{Br} k \rightarrow \operatorname{Br}_{1} X$ is finite.
33. Let X be a smooth variety over a field of characteristic zero k. Let \bar{k} be an algebraic closure of k. Denote by $\mu_{n} \subset \bar{k}^{*}$ the Galois module of n-roots of unity and by $\mu=\bigcup_{n \geq 1} \mu_{n}$ the Galois module of all roots of unity in \bar{k}^{*}. The corresponding étale sheaves on X are still denoted respectively by μ_{n} and μ.
a) Let i be an integer with $i \geq 2$. Show that there is an exact sequence

$$
0 \rightarrow H^{i-1}\left(X, \mathbf{G}_{m}\right) / n \rightarrow H^{i}\left(X, \mu_{n}\right) \rightarrow H^{i}\left(X, \mathbf{G}_{m}\right)[n] \rightarrow 0 .
$$

b) Show that there is an exact sequence

$$
0 \rightarrow \operatorname{Pic} X \otimes_{\mathbf{z}} \mathbf{Q} / \mathbf{Z} \rightarrow H^{2}(X, \mu) \rightarrow \operatorname{Br} X \rightarrow 0
$$

c) Assume k algebraically closed. Compute $H^{2}(X, \mu)$ when X is the affine space \mathbf{A}_{k}^{n} and when X is the projective space \mathbf{P}_{k}^{n}.
d) Show that $H^{3}(X, \mu)$ is the torsion subgroup of $H^{3}\left(X, \mathbf{G}_{m}\right)$.
34. Let X be an integral, regular, and noetherian scheme with function field K. Show that for every element $\alpha \in \operatorname{Br} K$, there exists a non empty Zariski open subset $U \subset X$ such that $\alpha \in \operatorname{Br} U$.
35. Let X be a smooth and geometrically integral variety over a perfect field k. Let T be a k-torus, that is: a k-group scheme such that $T \times_{k} L$ is isomorphic to \mathbf{G}_{m}^{r} for some finite (Galois) field extension L of k and some $r \geq 0$. Show that the group $H^{2}(X, T)$ is torsion.
36. Let X be a variety over a number field k. Assume that for every completion k_{v} of k, the set $X\left(k_{v}\right)$ of k_{v}-points of X is not empty. Show that the canonical map $\operatorname{Br} k \rightarrow \operatorname{Br} X$ is injective.
37. Let X be a projective conic over a field k, with Char $k \neq 2$, given by the equation in \mathbf{P}_{k}^{2} :

$$
x^{2}-a y^{2}-b z^{2}=0,
$$

where $a, b \in k^{*}$.
a) Set $\bar{X}=X \times_{k} \bar{k}$. Show that $\operatorname{Br} \bar{X}=0$.
b) Show that the degree map $\operatorname{Pic} \bar{X} \rightarrow \mathbf{Z}$ is an isomorphism.
c) Show that Pic X is generated by the class of a point $x \in X(k)$ if $X(k)$ is not empty, and by the class of a closed point of degree 2 if $X(k)$ is empty.
d) Deduce that there is an exact sequence

$$
0 \rightarrow \mathbf{Z} / d \rightarrow \operatorname{Br} k \rightarrow \operatorname{Br} X \rightarrow 0,
$$

where $d=1$ (resp. $d=2$) if $X(k) \neq \emptyset$ (resp. $X(k)=\emptyset)$.
e) Show that the element $(a, b) \in \operatorname{Br} k$ generates the kernel of the map $\operatorname{Br} k \rightarrow \operatorname{Br} X$.
38. Let X be the projective \mathbf{C}-variety defined by the equation

$$
a_{0} x_{0}^{2}+\ldots+a_{n} x_{n}^{2}=0
$$

in the projective space $\mathbf{P}_{\mathbf{C}}^{n}$, where a_{0}, \ldots, a_{n} are non-zero complex numbers and $n \geq 3$. Show that $\operatorname{Br} X=0$.
39. Let k be a field with separable closure \bar{k}. Let X be a geometrically integral variety over k. Set $\bar{X}=X \times_{k} \bar{k}$ and $\bar{k}[X]^{*}=H^{0}\left(\bar{X}, \mathbf{G}_{m}\right)$. Define $\operatorname{Br}_{1} X:=\operatorname{ker}[\operatorname{Br} X \rightarrow \operatorname{Br} \bar{X}]$ and $U(X)=\bar{k}[X]^{*} / \bar{k}^{*}$.
a) Show that there is an exact sequence
$0 \rightarrow H^{1}\left(k, \bar{k}[X]^{*}\right) \rightarrow \operatorname{Pic} X \rightarrow H^{0}(k, \operatorname{Pic} \bar{X}) \rightarrow H^{2}\left(k, \bar{k}[X]^{*}\right) \rightarrow \operatorname{Br}_{1} X \rightarrow H^{1}(k, \operatorname{Pic} \bar{X})$.
From now on, we assume that the set $X(k)$ of k-points of X is not empty.
b) Show that the inclusion $\bar{k}^{*} \hookrightarrow \bar{k}[X]^{*}$ induces an injective map $\operatorname{Br} k \rightarrow$ $H^{2}\left(k, \bar{k}[X]^{*}\right)$.
c) Deduce that there is an isomorphism $H^{1}\left(k, \bar{k}[X]^{*}\right) \simeq H^{1}(k, U(X))$.
d) Assume further that $\operatorname{Pic} \bar{X}=0$. Show that $\operatorname{Br}_{1} X / \operatorname{Br} k$ is isomorphic to $H^{2}(k, U(X))$.
40. Let X be a smooth and geometrically integral variety over a field of characteristic zero k.
a) Assume k algebraically closed. Show that for every $n>0$, the n-torsion subgroup ${ }_{n} \operatorname{Br} X$ of $\operatorname{Br} X$ is finite.
b) Is it still true if $k=\mathbf{Q}$? If $k=\mathbf{R}$? If k is p-adic ?
c) Let $\alpha \in \operatorname{Br} X$. Assume that for every closed point $x \in X$, we have $\alpha(x)=0$ in $\operatorname{Br}(k(x))$, where $k(x)$ is the residue field of x. Does this imply $\alpha=0$?

