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1. Preliminaries

The aim of this section is to recall a few basic facts on Galois theory and
profinite groups. Since they are quite standard, we will not give detailed
proofs, but references will be included.

1.1. Infinite Galois theory

Let k be a field with separable closure k̄ (which coincides with the algebraic
closure if k is perfect, e.g. k finite or k of characteristic zero).

Definition 1.1 A separable and algebraic extension K ⊂ k̄ of k is Ga-
lois over k if it is normal, that is: if α ∈ K, then all roots (in k̄) of the
minimal polynomial of α still lie in K. When K/k is Galois, the group of
k-automorphisms of K is denoted by Gal (K/k).

Remark 1.2 a) This coincides with the classical notion of Galois extension
when K is a finite and separable extension of k.

b) The extension k̄ itself is Galois over k. The group Gal (k̄/k) is the
absolute Galois group of the field k.

c) A Galois extension K ⊂ k̄ of k is the union of finite Galois extensions
of k. Indeed for every α ∈ K, the splitting field of the minimal polynomial
of α over k is a finite Galois extension of k contained in K. We will soon
refine this remark.

Definition 1.3 A (filtered) inverse system of groups (Gi, fij) consists of:

• a partially ordered set (Λ,≤) such that for all i, j ∈ Λ, there is a k ∈ Λ
such that i ≤ k and j ≤ k ("directed poset").

• for each i ∈ Λ a group Gi.

• For each i ≤ j a morphism fij : Gj → Gj ("transition map") such that
fii = Id and fik = fij ◦ fjk for all i ≤ j ≤ k.

The inverse limit lim←−i∈ΛGi is the subgroup of
∏

i∈ΛGi consisting of fam-
ilies (gi) such that fij(gj) = gi for all i ≤ j.

Proposition 1.4 Let K/k be a Galois extension of fields. Then the groups
Gal (L/k) of finite Galois subextensions L/k of K/k together with the canon-
ical surjective morphisms Gal (M/k) → Gal (L/k) (defined when L ⊂ M)
form an inverse system. The map

Gal (K/k)→
∏

L

Gal (L/k)
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(defined by restricting σ ∈ Gal (K/k) to all finite Galois subextensions L/k of
K/k) induces an isomorphism between Gal (K/k) and lim←−LGal (L/k). The
corresponding projection Gal (K/k) → Gal (L/k) is surjective for all L as
above.

Proof : This follows easily from Galois theory of finite field extensions,
cf. [2], Prop. 4.1.3. and Cor. 4.1.4.

Thus the Galois group Gal (K/k) appears as an inverse limit of finite
groups. Such a group is called profinite. We will study the main properties
of general profinite groups in the next paragraph.

Example 1.5 Assume that F is a finite field with algebraic closure F. Then
Gal (F/F) is isomorphic to the inverse limit

Ẑ := lim←−
n∈N∗

Z/n,

as for every n ∈ N∗, there is a unique extension Ln ⊂ F of F of degree n and
we have Gal (Ln/F) ≃ Z/n with the transition maps corresponding to the
canonical surjections Z/m→ Z/n when n|m. The group Ẑ is isomorphic to
the direct product (over all prime numbers p) of the additive groups of the
p-adic rings Zp (each Zp being the inverse limit of the Z/prZ, r ∈ N∗).

Definition 1.6 Let K/k be a Galois extension. We equip

Gal (K/k) ≃ lim←−
L

Gal (L/k) ⊂
∏

L

Gal (L/k)

with the Krull topology, that is: the subspace topology associated to the
product of discrete topologies on each finite group Gal (L/k).

The main theorem of infinite Galois theory can now be stated:

Theorem 1.7 (Krull) Let K/k be a Galois extension. The map F 7→
Gal (K/F ) is a bijection between intermediate extensions F and closed sub-
groups of Gal (K/k). In this bijection, open subgroups correspond to finite ex-
tensions of k contained in K and normal subgroups correspond to extensions
that are Galois over k. The converse bijection is given by H 7→ KH , where
KH is the subfield of K consisting of those elements x such that σ(x) = x
for all σ ∈ H.
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Proof : [2], Th. 4.1.12.

Remark 1.8 In general Gal (K/k) has many non closed subgroups. For
instance subgroups generated by one element are not closed in Ẑ. It can
even happen that some finite index subgroups of Gal (K/k) are not closed
(see Remark 1.12 below).

1.2. Profinite groups

Recall that if (Xi) is a family of topological spaces, the set
∏
Xi is equipped

with the direct product topology, meaning that a basis of open subsets consists
of the

∏
Ui, where Ui is open in Xi and Xi = Ui for all but finitely many i.

Definition 1.9 A topological group G is profinite if it is an inverse limit
lim←−Gi of finite groups (each Gi endowed with the discrete topology), the
topology on the inverse limit being defined as the subspace topology associ-
ated to the inclusion lim←−Gi ⊂

∏
Gi.

Recall that in any topological group, every open subgroup is closed and
a finite index subgroup is open if and only if it is closed. A subgroup is open
if and only if it is a neighborhood of the identity element 1.

Proposition 1.10 a) Let G be a profinite group. Then 1 admits a basis (Gi)
of neighborhoods which are open, normal, finite index subgroups. Moreover
G identifies with lim←−(G/Gi).

b) A topological group is profinite if and only if it is compact and totally
disconnected. Changing the projective system defining G does not change its
structure as a topological group.

c) A closed subgroup H of a profinite group G is profinite, and the topo-
logical space G is isomorphic to the space H × (G/H). If H is closed and
normal in G, then the quotient topological group G/H is profinite.

Proof : See [8], Prop 1.1.3, [10], Prop I.1.1., and [5], Prop. 4.2.

Example 1.11 a) A finite group is obviously profinite.
b) As seen in the previous paragraph, the Galois group Gal (K/k) of a

Galois extension of fields is profinite
c) If M is a discrete torsion abelian group, then its Pontryagin dual

M∗ = Hom(M,Q/Z) is a profinite group when endowed with the simple
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convergence topology (that is: the "compact open" topology). ActuallyM 7→
M∗ induces an anti-equivalence of categories between discrete torsion groups
and profinite groups. For instance the dual of Q/Z is Ẑ.

d) The additive group of the ring of integers OK of a local field (=field
complete for a discrete version with finite residue field) is profinite. For
instance Zp is profinite. Same for the multiplicative group O∗

K .
e) Let K be a p-adic field (that is: K is a finite field extension of Qp

for some prime number p). Let A be an abelian variety over K, namely
a connected projective algebraic group over K. Then the group A(K) of
K-points of A is a profinite group.

Remark 1.12 In a profinite group, all open subgroups are of finite index
but the converse is not true in general. For instance take the profinite group
OK = Fq[[t]], which is the ring of integers of the local fieldK = Fq((t)). Then
the kernel of a non continuous Fq-linear form on OK is a non-closed finite
index subgroup. Using class field theory, a similar example can be given
with the profinite group Gal (Kab/K), where Kab is the maximal abelian
extension of K.

It turns out that it is possible (and useful) to extend the notion of index
to any closed subgroup of a profinite group:

Definition 1.13 A supernatural number is a formal product
∏

p p
np, where p

ranges through the set of prime numbers and np ∈ N∪{+∞}. The product,
the gcd, and the lcm of an arbitrary family of supernatural numbers are
obviously defined.

Definition 1.14 Let G be a profinite group and H a closed subgroup of G.
The index [G : H ] of H in G is the supernatural number defined as the lcm
of the (finite) indexes [G/U : H/(H ∩ U)] when U ranges through the open
normal subgroups of G. The order of G is the index of {1} in G.

Proposition 1.15 Let H be a closed subgroup of a profinite group G.

a) The supernatural number [G : H ] is a natural number if and only if H
is of finite index (in the usual sense), which is equivalent to saying that H is
open in G. In this case [G : H ] is the usual index of H in G.

b) Let P ⊂ H ⊂ G be profinite groups. Then

[G : P ] = [G : H ].[H : P ].
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Proof : [5], Lemma 4.7 and Prop 4.10.

Definition 1.16 Let p be a prime number. A pro-p-group is a profinite
group G whose order is a power of p (equivalently, this means that G is a
projective limit of finite p-groups). A p-Sylow subgroup (or simply a p-Sylow)
of a profinite group G is a closed pro-p-group H of G such that the index
[G : H ] is prime to p.

The next result follows easily from the similar statement for finite groups
(plus the well-known lemma that a projective limit of non-empty finite sets
is non empty).

Proposition 1.17 Let G be a profinite group. Let p be a prime number.

a) The group G has a p-Sylow, and p-Sylow are pairwise conjugated.

b) Every pro-p-subgroup of G is a subgroup of some p-Sylow of G.

c) If G is abelian, it is isomorphic to the direct product of its pro-p-Sylow.
This extends to pro-nilpotent groups (inverse limit of finite nilpotent groups).

Proof : [5], Prop 4.10.

Example 1.18 a) The additive group Zp is a pro-p-group, as the inverse
limit of the Z/pn for n ∈ N∗. It is the p-Sylow subgroup of Ẑ.

b) Let G be a group. The profinite completion (resp. p-completion) Ĝ
(resp. Ĝp) of G is the inverse limit of the G/Gi, where Gi runs over the
normal finite index subgroups (resp. normal subgroups of index pn with
n ∈ N∗) of G. The group Ĝp is the largest pro-p quotient of Ĝ.

c) Let K be a p-adic field with maximal unramified extension Knr and
maximal tamely ramified extension Ktr. The group Gal (Knr/K) is isomor-
phic to Ẑ. The theory of ramification groups yields that Ip := Gal (K/Ktr) is
the unique p-Sylow of the inertia group I = Gal (K/Knr), and the quotient
I/Ip is isomorphic to

∏
ℓ 6=pZl.

2. Group cohomology

2.1. Cohomology of finite groups

In this paragraph, we recall the main properties of cohomology of finite
groups. This will be extended to profinite groups by a limit process in the
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next paragraph. A comprehensive reference is the first chapter of [5]. Most
results hold without the assumption G finite, but to avoid confusion with
the cohomology of profinite groups (which will be defined in the next para-
graph), we will always assume G finite when we speak of G-modules in this
paragraph.

Definition 2.1 Let G be a finite group. A G-module A is an abelian group
equipped with an action by automorphisms of groups. In other words, for
every g ∈ G, the map x 7→ g.x is an automorphism of the group A. A
morphism of G-modules is a morphism f : A → A′ compatible with the
action of G, namely f(g.x) = g.f(x) for all g ∈ G, x ∈ A.

Equivalently, a G-module is a left-module on the (non commutative if
G is not commutative) ring Z[G] (and likewise a morphism of G-modules
corresponds to a morphism of Z[G]-modules; similarly for a sub-G-module,
an exact sequence of G-modules and so on).

Example 2.2 a) If A is an abelian group, it is a G-module for the trivial
action g.x := x, ∀x ∈ A, ∀g ∈ G.

b) Let G = {±1}, then Z is a G-module for the action g.x = gx.
c) Let L/K be a finite Galois field extension and G := Gal (L/K). Then

both (L,+) and (L∗,×) are G-modules for the natural action of G.
d) Let A and B be G-modules. Then the group M := HomZ(A,B) of

group homomorphisms from A to B is a G-module for the action

(g.f)(x) := g.f(g−1.x), ∀f ∈M, ∀g ∈ G, ∀x ∈ A.

e) Let H be a (not necessarily normal) subgroup of G. Then the abelian
group Z[G/H ] :=

⊕
ḡ∈G/H Z.ḡ is a G-module for the natural left-action of

G, where G/H is the set of left-cosets.
f) Let A be an abelian group. Define IG(A) as the abelian group consisting

of maps f : G→ A, equipped with the action of G given by (g.f)(x) = f(xg)
for all f ∈ IG(A), g ∈ G, x ∈ G. An induced G-module is a G-module
isomorphic to IG(A) for some abelian group A. One can check that IG(A)
is isomorphic to HomZ(Z[G], A), or (non canonically; this uses G finite) to
Z[G] ⊗Z A, the action of G being on the first factor. One also checks easily
(cf. [5], Cor. 1.13) that

HomZ(B,A) = HomG(B, IG(A))

for every abelian group A and every G-module B, where HomG means the
set of morphisms of G-modules.
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The category of G-modules is abelian, we denote it byModG. As in any
abelian category, the covariant functor HomG(A, .) and the contravariant
functor HomG(., A

′) (from ModG to the category Ab of abelian groups) are
left-exact, and we have the following definition:

Definition 2.3 A G-module A is injective if HomG(., A) is exact, projective
if HomG(A, .) is exact.

For instance, a free Z[G]-module is projective (and being projective is
equivalent to being a direct factor of a free Z[G]-module). A direct sum
(resp. direct product) of projective G-modules (resp. injective G-modules)
is projective (resp. injective). As every category of modules, the category of
G-modules has enough injectives, that is: every G-module can be embedded
into an injective module. Therefore, for any additive, covariant and left-exact
functor F :ModG → B (where B is an abelian category), the right derived
functors RiF are defined for i ∈ N, with the following properties :

Proposition 2.4 a) Let A be a G-module. Let

0→ A→ I0 → I1 → I2 → ...

be an injective resolution of A (that is: the sequence is exact and all Ij are
injective, j ∈ N). Then the objects (RiF )(A) are given as the cohomology
groups of the complex :

0→ F (I0)→ F (I1)→ F (I2)→ ...

In particular R0F = F (recall that F is left-exact).

b) A short exact sequence

0→ A′ → A→ A′′ → 0

of G-modules induces a long exact sequence

RiF (A′)→ RiF (A)→ RiF (A′′)
δi→ Ri+1F (A′)→ ...

and the maps δi are functorial with respect of morphisms of exact sequence.

c) In a), the (RiF )(A) can be computed using a resolution by any family
of acyclic objects (Ij)j≥0 (this means that RiF (Ij) = 0 for every i > 0, which
is a bit more general than all Ij being injective).

For every G-module A, define

AG := {x ∈ A, ∀g ∈ G, g.x = x}.
Then:

8



Definition 2.5 The cohomology groups H i(G,A) of a G-module A are the
right derived functors of the left-exact functor A 7→ AG from ModG to the
category Ab of abelian groups.

The category of G-modules also has enough projectives (as every Z[G]-
module is a quotient of a free Z[G]-module). It turns out that it is easier to
compute the H i(G,A) using a projective resolution as follows :

Theorem 2.6 Let

...→ Pi → Pi−1 → ...→ P1 → P0 → Z→ 0 (1)

be a projective resolution of the G-module Z. Let A be a G-module. Then
the H i(G,A) are the cohomology groups of the complex

0→ HomG(P
0, A)→ HomG(P1, A)→ HomG(P2, A)→ ...

Proof (sketch of): The functor A 7→ AG identifies with the functor
A 7→ HomG(Z, A), hence H i(G,A) = ExtiG(Z, A), where the ExtiG are by
definition the derived functors of the functor HomG(Z, .). A general property
of the Ext ([12], Th. 2.7.6) shows that the ExtiG(Z, A) are also obtained
as derived functors (applied to Z) of the contravariant functor HomG(., A),
whence the result.

Proposition 2.7 Let I be an induced A-module. Then it is acyclic for the
functor A 7→ AG.

Proof : Take a projective resolution (exact sequence (1) as above) of Z.
As the Pi are projective Z[G]-modules, they are free as Z-modules (as direct
factors of free Z-modules), so the kernel and cokernels of the maps Pi → Pi−1

are free Z-modules. A short sequence

0→ M1 →M2 →M3 → 0

of free Z-modules is split, hence induces an exact sequence

0→ HomZ(M1, X)→ HomZ(M2, X)→ HomZ(M3, X)→ 0.

for every abelian group X. Set I = IG(X) for some abelian group X, then
HomG(Pi, I) = HomZ(Pi, X), hence the sequence

0→ HomG(P
0, I)→ HomG(P1, I)→ HomG(P2, I)→ ...

remains exact. Now apply Theorem 2.6.

Corollary 2.8 Let 0→ A→ I → B → 0 be an exact sequence of G-modules
with I injective. Then H i(G,B) ≃ H i+1(G,A) for all i > 0.
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Proof : This follows from acyclicity of I combined with the long exact
sequence of cohomology.

The previous corollary is especially useful, as every G-module A embeds
into IG(A) as follows: send each a ∈ A to the function g 7→ g.a from G
to A (A is even a direct factor of IG(A) as a Z-module via the retraction
f 7→ f(1)). Embedding A into an injective G-module will often be useful to
obtain results by dimension shifting.

Observe also that H i(G,A⊕B) = H i(G,A)⊕H i(G,B) (as a finite direct
sums of injectives is injectives), and multiplication by an integer n on A
induces multiplication by n on the groups H i(G,A). In particular, if A is
n-torsion, so is H i(G,A) for all i ∈ N.

We will now compute the cohomology groups explicitely using cochains,
thanks to Theorem 2.6, which will be convenient for small degrees. We define
an explicit resolution of the G-module Z (equipped with the trivial action
of G) as follows. For all i ≥ 0, let Ei = Gi+1 be the set of (i + 1)-tuples of
elements of G. The action of G on Ei by left-translation

s.(g0, ..., gi) := (s.g0, ..., s.gi), s ∈ G, (g0, ..., gi) ∈ Ei

induces a structure of G-module on the free Z-module Li with basis Ei.
Observe that Li is then a free Z[G]-module (a basis is obtained by choosing
an element in each orbit for the action of G on Ei, as G acts withoud fixed
point on Ei). We define a morphism of G-modules di : Li → Li−1 by the
formula:

di(g0, ..., gi) =

i∑

j=0

(−1)j(g0, ..., ĝj, ...., gi)

for i > 0 and d0 : L0 → Z sends every g0 ∈ G to 1.

Lemma 2.9 The sequence

...→ L2
d2→ L1

d1→ L0
d0→ Z→ 0

is exact, hence it is a resolution of Z by free (hence projective) Z[G]-modules.

Proof (sketch of): (cf. [5], Lemma 1.26). The fact that the sequence is a
complex is shown by an explicit computation; then one constructs morphisms
of abelian groups ui : Li → Li+1 such that ui−1 ◦ di + di+1 ◦ ui = IdLi

via the
formula ui(g0, ..., gi) = (1, g0, ..., gi).
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We now observe that ifA is aG-module, an element ofKi := HomG(Li, A)
identifes itself with a function f : Gi+1 → A satisfying

f(s.g0, ..., s.gi) = s.f(g0, ..., gi)

("homogeneous cochain"). Such a function is uniquely determined by the
value it takes at the elements of Gi+1 of the form (1, g1, g1g2, ..., g1...gi), hence
we can also identifiy Ki with the set of "non homogeneous cochains", namely
the set of functions from Gi to A (with the convention G0 = {1}, hence
K0 = A). Applying Theorem 2.6, this yields:

Theorem 2.10 The groups H i(G,A) for i ≥ 1 are obtained as the cohomol-
ogy groups of the complex of non homogeneous cochains

0→ K0 → K1 → K2 → ...,

the differential di : Ki → Ki+1 being given by the formula

(dif)(g1, ...gi+1) := g1.f(g2, ..., gi+1) +

i∑

j=1

(−1)jf(g1, ..., gjgj+1, ...gi+1)

+(−1)i+1f(g1, ..., gi).

As G is assumed to be finite, this implies the following statement (which
can also be proved by dimension shifting):

Corollary 2.11 If A is finite, then the groups H i(G,A) are finite.

The (non homogeneous) cochains of ker di are called i-cocycles and the
i-coycles in the image of di−1 are called i-coboundaries.

Example 2.12 a) The groupH1(G,A) is the quotient of the group Z1(G,A)
of functions f : G→ A satisfying f(g1g2) = f(g1)+g1.f(g2) for all g1, g2 ∈ G
("crossed homomorphisms") by the group of functions of the form g 7→ g.a−a
for some a ∈ a. For instance if the action of G on A is trivial, then H1(G,A)
identifies with the group homomorphisms from G to A.

b) A 2-cocycle is a system of factors, that is a map f : G × G → A
satisfying

g1.f(g2, g3)− f(g1g2, g3) + f(g1, g2g3)− f(g1, g2) = 0

for all g1, g2, g3 ∈ G. The theory of group extensions (cf. [12], §6.6) shows
that H2(G,A) classifies group extensions E of G by A such that the action
(by conjugation in E) of G on A corresponding to E is the action given
by the G-module structure on A. The trivial action corresponds to central
extensions.
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We will sometimes need Tate modified cohomology groups, defined as fol-
lows.

Definition 2.13 Let A be a G-module. Let NG = N : A→ A be the norm
map, defined as

N(x) =
∑

g∈G

g.x.

Let IG be the kernel of the augmentation map :

Z[G]→ Z,
∑

agg 7→
∑

ag.

It is also the subgroup of Z[G] generated by the (g − 1), g ∈ G. We set
Ĥ0(G,A) = AG/NA. We also define Ĥ−1(G,A) = kerN/IGA. For q > 0,
we set Ĥq(G,A) = Hq(G,A). It is also possible to define Ĥq(G,A) for
q < −1, using homology groups (see [5], §2.1), such that (Ĥq(G, .))q∈Z is a
cohomological functor.

The main theorem on these modified groups is the 2-periodicity of coho-
mology when G is cyclic:

Theorem 2.14 Assume that G is cyclic, generated by some s. Let A be a
G-module. Then the group Ĥq(G,A) is isomorphic to Ĥ0(G,A) if q is even,
and to Ĥ−1(G,A) (or H1(G,A)) if q is odd.

Proof (sketch of): Let n be the order of G. Let D = (s − 1) ∈ Z[G].
Observe that the norm map is the multiplication by N =

∑n−1
i=0 s

i, with
NA = kerD and IGA = ImD. As DN = ND = 0, we define a com-
plex K(A) by Ki(A) = A for all i ∈ Z, the differentials di being defined
as: di is multiplication by D (resp. by N) if i is even (resp. odd). Now
A 7→ (Hq(K(A))) is a cohomological functor, which coincides (including the
coboundary operator between q = 0 and q = 1) with (Ĥq(G, .)) in degrees
−1 and 0. One concludes by dimension shifting that they coincide for all
q, whence the result because cohomology of the complex K(A) is obviously
2-periodic.

Example 2.15 a) Take G = Z/2Z. Let σ be the non trivial element of G.
Then for i even, the group H i(G,A) is the quotient of Aσ by elements of the
form x+ σ.x, x ∈ A.

b) For an induced G-module I = Z[G] ⊗ X, it is not difficult to check
directly that we have Ĥ0(G, I) = 0. The same holds for H−1.
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We are now going to consider changing the group G acting on a G-module
A. Let G′ be a group endowed with a morphism f : G′ → G. There is now
a structure of G′-module (denoted f ∗A or simply A) on A via

g′.a := f(g′).a, g′ ∈ G′, a ∈ A.
We obtain a morphism of functors from H0(G, .) to H0(G′, f ∗.) and the
universal property of derived functors (cf. [12], Th. 2.4.7) show that there is
a unique family of morphism of functors

f ∗
i : H i(G, .)→ H i(G′, .), i ∈ N

compatible (in an evident way) with the map δi of the long exact cohomology
sequences. Hence we just got a morphism of cohomological functors.

Let now A′ be an arbitrary G′-module, and assume that we are given
a morphism of abelian groups u : A → A′ compatible with the morphism
f : G′ → G, that is:

u(f(g′).a) = g′.u(a), ∀g′ ∈ G′, ∀a ∈ A.
Then u is a G′-homomorphism from f ∗A to A′ and induces (for all i) a homo-
morphism u∗ : H i(G′, f ∗A) → H i(G′, A′). Composing this homomorphism
with the f ∗

i yields a morphism of cohomological functor

H i(G,A)→ H i(G′, A′), i ∈ N,

which has an obvious expression using the computation of H i(G,A) using
the cochains (just use the pushout by u : A → A′ and f : G′ → G of the
cocycles and coboundaries).

Example 2.16 a) Let H be a subgroup of G and A be a G-module. Taking
for f the canonical injection H → G, we obtain the restriction homomor-
phisms Res : H i(G,A)→ H i(H,A).

b) Let H be a normal subgroup of G. Let A be a G-module. Then
AH is equipped with a G/H-module structure, and the inclusion AH → A is
compatible with the canonical surjection G→ G/H . This yields the inflation
homomorphisms Inf : H i(G/H,AH)→ H i(G,A).

Observe that restriction and inflation also have obvious definitions in
terms of cocycles.

c) If H is a subgroup of a cyclic group G, then the inflation map

H2(G/H,AH)→ H2(G,A)

corresponds to the norm map Ĥ0(G/H,AH) = AG/NG/HA
H → Ĥ0(G,A) =

AG/NG(A), which is induced by the multiplication by #H .
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Definition 2.17 Let G be a finite group and H a subgroup of G. Let A be
an H-module. Define the G-module IHG (A) as the set of functions f : G→ A
satisfying f(h.g) = h.f(g) for all h ∈ H, g ∈ G, the action of G on IHG (A)
being given by (g.f)(g′) = f(g′g) for all g, g′ ∈ G. This extends the definition
of the induced module IG(A) (which corresponds to the case H = {1}). In
general IHG (A) is isomorphic to Z[G]⊗Z[H]A with the action of G on the first
factor ([5], Remark 1.6. c).

Theorem 2.18 (Shapiro lemma) There are isomorphisms

H i(G, IHG (A))→ H i(H,A), i ∈ N

induced by the map u 7→ u(1) from IHG (A) to A (which is compatible with the
G-module structure of IHG (A) and the H-module structure of A).

Proof (sketch of): One first checks ([5], Prop 1.12) that for any G-
module B, the group HomH(B,A) identifies with HomG(B, I

H
G (A)). This

implies that the functor F : A 7→ IHG (A) preserves the injectives because its
left-adjoint is the forgetful functor fromModG toModH. On the other hand
it is easy to see that (IHG (A))G = AH . Taking an injective resolution of theH-
module A and applying the functor F , it is sufficient to show that F is exact,
which is straightforward (one can also use the fact that IHG (A) ≃ Z[G]⊗Z[H]A
and Z[G] is a free left Z[H ]-module).

Let A be a G-module. Let t ∈ G, denote by f : g 7→ t−1gt the inner
automorphism associated with t−1. Then the map a 7→ t.a from A to A is
compatible with f , whence (for all i ≥ 0) homomorphisms σit : H

i(G,A) →
H i(G,A) (which yields a cohomological functor).

Proposition 2.19 The map σit is the identity for all i ≥ 0.

Proof : The case i = 0 is trivial. We then argue by induction on i: embed
A into an induced module I and set B := I/A, then the map H i(G,B) →
H i+1(G,A) is surjective. Since the map σit is the identity on H i(G,B) by
induction hypothesis, the map σi+1

t is the identity on H i+1(G,A).

Example 2.20 Let H be a normal subgroup of G. Let A be a G-module.
The action of G on H by conjugation induces an action of G on H i(H,A),
and Proposition 2.19 shows that the subgroup H acts trivially on H i(H,A),

14



whence an action of G/H on H i(H,A). Another way to describe this action
is to take an injective resolution

0→ A→ I0 → I1 → ...

by induced G-modules, which are also induced (hence acyclic for H0(H, .))
H-modules (because Z[G] is free as a Z[H ]-module). Then the H i(H,A) are
computed as cohomology groups of the complex

0→ IH0 → IH1 → ...,

thus they are naturally equipped with an action of G/H . The fact that both
descriptions coincide is easily proved by dimension-shifting.

Theorem 2.21 (Hochschild-Serre) Let A be a G-module. Let H be a
normal subgroup of G. Then there is a spectral sequence

Epq
2 = Hp(G/H,Hq(H,A))⇒ Hp+q(G,A).

Let us recall a few consequences:

Corollary 2.22 a) Each group Hr(G,A) is filtered by abelian groups such
that each successive quotient is a subquotient of Hp(G/H,Hq(H,A)) for some
(p, q) with p+ q = r. In particular if all Hp(G/H,Hq(H,A)) with p+ q = r
are finite (resp. zero), then Hr(G,A) is finite (resp. zero).

b) There is a low degree exact sequence

0→ H1(G/H,AH)
Inf→ H1(G,A)

Res→ H1(H,A)G/H → H2(G/H,AH)
Inf→ ...

...→ ker[H2(G,A)→ H2(H,A)G/H ]→ H1(G/H,H1(H,A))→ ...

....→ ker[H3(G/H,AH)
Inf→ H3(G,A)].

c) Let n ∈ N∗. Assume that Hq(H,A) = 0 for 1 ≤ q ≤ n−1. Then there
is an exact sequence

0→ Hn(G/H,AH)
Inf→ Hn(G,A)

Res→ Hn(H,A)G/H .
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Proof of Theorem 2.21: This is a special case of Grothendieck’s com-
posed functors spectral sequence. The functor A 7→ AG fromModG to Ab is
the composed of F1 : A 7→ AH (fromModG toModG/H) and F2 : B 7→ BG/H

(from ModG/H to Ab). The derived functors of F1 are the H i(H, .) (indeed
a resolution of Z by projective G-modules is also a resolution by projective
H-modules) and the derived functors of F2 are by definition the H i(G/H, .).
It remains to show that F1 preserves the injectives, which follows from the
obvious formula

HomG(B,A) = HomG/H(B,A
H),

which holds for every G-module A and every G/H-module (=G-module with
trivial action of H) B.

Finally, we define for every subgroup H of G and every G-module A
corestriction morphisms H i(H,A)→ H i(G,A) as follows. For i = 0, it is the
norm map:

NG/H : a 7→
∑

s∈G/H

s.a

from AH to AG. We then extend this to a unique morphism of cohomological
functors from H i(H, f ∗.) to H i(G, .), where f is the inclusion map H → G.
This is possible since the functor H i(H, f ∗.) is effaceable in positive degree,
hence universal ([12], ex. 2.4.5). Indeed every G-module A embeds into
a induced G-module, which is also induced as an H-module. We obtain
corestriction morphisms

Cores : H i(H,A)→ H i(G,A),

which are compatible with morphisms of short exact sequences.

Theorem 2.23 Let m = [G : H ]. Then Cores ◦ Res is the multiplication by
m in H i(G,A).

Proof : This is clear for i = 0. The general case is then obtained by
dimension shifting.

Corollary 2.24 Let m the order of G. Let A be a G-module. Then H i(G,A)
is m-torsion for all i > 0.
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Proof : Apply the previous theorem to H = {1}.

Corollary 2.25 Let A be a G-module. Then if A is of finite type (over Z),
the groups H i(G,A) are finite for i > 0.

Proof : The cochain description shows that these groups are of finite type,
and they are torsion by the previous corollary.

Corollary 2.26 Let A be a G-module. Assume that it is uniquely divisible
(as an abelian group). Then H i(G,A) = 0 for all i > 0.

Proof : Let m be the order of G. Then the groupsH i(G,A) arem-torsion,
but multiplication by m is a bijection on A, hence also on H i(G,A).

Example 2.27 The G-module Q (with trivial action is uniquely divisible.
Therefore H i(G,Q/Z) ≃ H i+1(G,Z) for all i > 0. In particular H2(G,Z) is
isomorphic to the group of characters H1(G,Q/Z) = Hom(G,Q/Z) of the
finite group G.

2.2. Extension to profinite groups

From now on, G denotes a profinite group.

Definition 2.28 A discrete G-module A is an abelian group endowed with
an action of G by automorphism, such that for every x ∈ A the map g 7→ g.x
from G to A is continuous, where A is equipped with the discrete topology.
The abelian category of discrete G-modules is denoted by CG.

The continuity condition (which is of course obvious if G is finite) is
equivalent to saying that the stabilizer of every element of A is an open
subgroup of G. In this course, we will consider only discrete G-modules,
hence we will often simply say "G-module" for "discrete G-module". If A is
a discrete G-module, then we have A =

⋃
U A

U , were U runs over all open
subgroups of G. Observe also that A is of finite type as a Z[G]-module if and
only if it is of finite type as a Z-module, thanks to the continuity condition.
Therefore, "of finite type" is not ambiguous for a discrete G-module.

Example 2.29 We are mainly interested in the cas when G = Gal (k̄/k) is
the absolute Galois group of a field k.

a) The trivial action makes every abelian group A a discrete G-module,
e.g. A = Z or A = Z/n.
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b) We can consider the additive group k̄ or the multiplicative group k̄∗

with the natural action of G, or the group µn of n-roots of unity in k̄ (when n
is a positive integer not divisible by the characteristic of k). More generally,
if G is a commutative algebraic group (=group scheme of finite type) over
k, the group G(k̄) of k̄-points is a discrete G-module. The modules k̄ and
k̄∗ correspond respectively to the additive group Ga and the multiplicative
group Gm.

c) Let M be a finite G-module of order n, with n not divisible by the
characteristic of k. The Cartier dual of M is the group M ′ = Hom(M,µn) =
Hom(M, k̄∗) equipped with the Galois action

(γ.f)(x) = γ.(f(γ−1.x)), f ∈M ′, γ ∈ G, x ∈ A.

This definition is made so that the tensor product M ⊗M ′ is equipped with
a natural G-equivariant perfect pairing to k̄∗.

The category CG of discrete G-modules has enough injectives ([5], Ex-
ample A.35. c), so it is possible to define the cohomology groups H i(G, .)
as derived functors of the functor A 7→ AG from CG to Ab. However, since
the category CG for G infinite does not have enough projectives (loc. cit.,
exercise 4.2; observe that for instance Z[G] is not a discrete G-module in this
case), it is more convenient to adapt the cochain definition as follows.

Definition 2.30 Let A ∈ CG. For q ≥ 0, denote by Kq(G,A) the set of
continuous (i.e. locally constant) maps from Gq to A. Let d : Kq(G,A) →
Kq+1(G,A) be the differential (defined with the usual formula, as in Theo-
rem 2.10). The cohomology groups Hq(G,A) are defined as the cohomology
groups of the complex (Kq(G,A))q∈N.

Recall that an inductive system of abelian groups (or G-modules) consists
of the data of: a directed poset Λ; for each i ∈ Λ, an abelian group Ai; for
each pair i, j ∈ Λ with i ≤ j, a homomorphism fij : Ai → Aj such that
fii = Id and fjk ◦ fij = fik for all i ≤ j ≤ k. The direct limit (or inductive
limit, or colimit) lim−→i∈Λ

Ai is then defined as the quotient of the disjoint union
of the Ai by the equivalence relation ai ∼ aj (with ai ∈ Ai and aj ∈ Aj) if
there exists k ∈ Λ such that k ≥ i, k ≥ j, and fik(ai) = fjk(aj).

Theorem 2.31 Let (Gi) be a projective system of profinite groups. Let (Ai)
be an inductive system of discrete Gi-modules, the transition maps being com-
patible with those of the Gi. Let G = lim←−Gi and A = lim−→Ai. Then for all
q ∈ N:

Hq(G,A) ≃ lim−→Hq(Gi, Ai).
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Proof (sketch of): As the direct limit functor is exact, it is sufficient to
show that the canonical homomorphisms

lim−→Kq(Gi, Ai)→ Kq(G,A)

are isomorphisms, which is tedious but not difficult, see [5], Prop 4.18.

Corollary 2.32 Let A be a discrete G-module. Then
a) We have

Hq(G,A) = lim−→
U

Hq(G/U,AU),

where U runs over all normal open subgroups of G.

b) We also have
Hq(G,A) = lim−→

B

Hq(G,B),

where B runs over all finite type sub-G-modules of A.

Proof : For a), we apply the previous theorem to G = lim←−U(G/U) and
A =

⋃
U A

U = lim−→U
AU . For b), we use A =

⋃
B B = lim−→B

B.

Corollary 2.33 For q ≥ 1, the groups Hq(G,A) are torsion.

Proof : This follows from Corollary 2.32 a), and Corollary 2.24.

Remark 2.34 Our definition of the groups Hq(G,A) coincides with the def-
inition as derived functors of A 7→ AG from CG to Ab. This follows from
Corollary 2.32, a) and the easy fact that if I is injective in CG, then IU is
injective in CG/U for every open normal subgroup U of G.

Using Corollary 2.32 a), most properties of the cohomology of finite
groups immediately extend to profinite groups, provided we work with closed
subgroups and continuous cochains. We list them in the following theorem:

Theorem 2.35 Let G be a profinite group. Let H be a closed subgroup of
G.

a) For an abelian group (resp. an H-module) A, the G-modules IG(A)
and IHG (A) are defined the same way (with the restriction that the functions
have to be taken continuous), and IG(A) is acyclic for the functor H0(G, .).
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b) The restriction and inflation (if H is normal) homomorphisms are still
defined as in the previous paragraph, and Shapiro’s lemma is still valid.

c) For H normal, Hochschild-Serre spectral sequence and its consequences
still hold 1.

d) If H is open (hence of finite index) in G, the corestriction maps are
defined and formula 2.23 holds.

Definition 2.36 Let G be a profinite group. Let p be a prime number.
The cohomological p-dimension of G (denoted cdp(G) is the lower bound (in
N ∪ {+∞}) for the set of integers n ∈ N satisfying:

For any discrete torsion G-module A and any q > n, the p-primary com-
ponent (or the p-torsion subgroup) of Hq(G,A) is zero. The cohomological
dimension of G is cd(G) = supp cdp(G).

Example 2.37 If p does not divide the order of G, then cdp(G) = 0 by
Corollaries 2.24 and 2.32, a). The notion is actually not interesting when G
is finite, because in this case cdp(G) = +∞ as soon as p divides the order of
G ([5], exercice 5.1). This follows rather easily from Proposition 2.42 below
and the fact that for every odd positive integer q, we have (by Theorem 2.14)

Hq(Z/p,Z/p) ≃ H1(Z/p,Z/p) ≃ Z/p 6= 0.

Recall that a non-zero G-module is simple if it has no sub-G-module
except {0} and itself.

Theorem 2.38 Let G be a profinite group. Let p be a prime number and
n ∈ N. The following conditions are equivalent:

i) cdp(G) ≤ n.
ii) For all q > n and every discrete G-modules A which is a p-primary

abelian group, we have Hq(G,A) = 0.
iii) We have Hn+1(G,A) = 0 for every discrete G-module A which is

simple and p-torsion.

Proof : A torsion G-module A is the direct sum of its primary components
A{p} (where p runs over all prime numbers). The equivalence of i) and ii)
comes from the fact that by Corollary 2.32 b), the p-primary abelian group
Hq(G,A{p}) is the p-primary component of Hq(G,A). Obviously ii) implies
iii). Assume iii) and let’s prove that ii) holds. Assume first that the p-primary

1It is a little bit more difficult to check that an injective object of CG remains injective
in CH , see [5], Prop .4.25.
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G-module A is finite. We show by induction on #A that Hn+1(G,A) = 0.
If A is simple, then A = A[p] (since A[p] is a non-trivial sub-G-module of
A), whence the result with iii). Otherwise, we have an exact sequence of
G-modules

0→ A1 → A2 → A3 → 0

with A1 and A2 of cardinality strictly smaller than #A, and the result fol-
lows from the induction assumption and the cohomology long exact sequence.
Now Hn+1(G,A) = 0 holds for every p-primary G-module A thanks to Corol-
lary 2.32, b) (indeed a finite type submodule of A is torsion and of finite type
over Z, hence finite). Finally we prove ii) by induction on q > n, using an
embedding of A into the induced module IG(A) (which is indeed p-primary
thanks to the continuity condition on elements of IG(A)) and applying the
induction assumption to A/IG(A).

Theorem 2.39 Let G be a pro-p-group and n ∈ N. Then cdp(G) ≤ n if and
only if Hn+1(G,Z/p) = 0.

Proof : Obviously if cdp(G) ≤ n, then Hn+1(G,Z/p) = 0. Conversely,
assume the latter. Let A be a simple discrete p-torsion module. By Theo-
rem 2.38, it is sufficient to show that such an A is isomorphic to Z/p as a
G-module. We observe that A is finite (indeed the G-module generated by a
non-zero element of A is torsion and of finite type, hence finite, and it coin-
cides with A because A is simple). In particular A is a G/U -module for some
normal open subgroup U of G. As A still is simple as a G/U -module, we
can assume that G is a finite p-group. It is then well-known that AG 6= {0}
(use the class formula for the action of G on A), hence AG = A by simplicity
of A, namely the action of G on A is trivial. It is then clear that A = Z/p
(otherwise A has a non-trivial subgroup).

Remark 2.40 There is also a notion of strict cohomological p-dimension
scdp(G) and strict cohomological dimension scd(G): they are defined as in
Definition 2.36, except that the G-module A is not assumed to be torsion.
Actually scdp(G) is at most cdp(G) + 1 ([5], Prop 5.8).

Example 2.41 The group Zp is of p-cohomological dimension 1. Indeed

H1(Zp,Z/p) = Homc(Zp,Z/p) = Z/p 6= 0,
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hence cdp(Zp) ≥ 1. On the other hand

H2(Zp,Z/p) = lim−→
n

H2(Z/pn,Z/p) ≃ lim−→
n

Ĥ0(Z/pn,Z/p) = lim−→
n

Z/p,

the transition map being multiplication by p (this follows from the easy fact
that for a finite group G, a normal subgroup H , and a G-module A, the
inflation map Ĥ0(G/H,AH) = AG/NG/HA

H → Ĥ0(G,A) = AG/NGA is
induced by multiplication by #H). The latter is zero, so cdp(Zp) = 1 by
Proposition 2.39.

Proposition 2.42 Let G be a profinite group. Let H be a closed subgroup
of G. Then cdp(H) ≤ cdp(G). The equality holds if [G : H ] is prime to p,
or if H is open in G and cdp(G) < +∞. The same holds for cd(G), scdp(G)
etc.

Proof : The inequality cdp(H) ≤ cdp(G) follows from Shapiro’s lemma
Hq(H,A) = Hq(G, IHG (A)) and the fact that IHG (A)) is p-primary as soon as
A is p-primary. If [G : H ] is prime to p, then the restriction map Hq(G,A)→
Hq(H,A) is injective for every p-primary G-module A by Corollary 2.32 and
Theorem 2.23, whence cdp(H) = cdp(G).

Assume now that n := cdp(G) < +∞ and H is open in G. Let A
be a p-primary G-module. Let us show that the corestriction morphism
Cor : Hn(H,A)→ Hn(G,A) is surjective, which will prove that cdp(H) = n
(since we already know that cdp(H) ≤ n and a p-primary G-module A such
that Hn(G,A) 6= 0 will provide one with Hn(H,A) 6= 0). We observe that
Cor identifies with the map Hn(G, IHG (A))→ Hn(G,A) induced by Shapiro’s
lemma and the surjective map

f 7→ π(f) =
∑

g∈G/H

g.f(g−1)

from IHG (A) to A (as usual, it is sufficient to check this in degree 0 to compare
the two corresponding natural transformations of cohomological functors). It
remains to apply the long exact cohomological sequence associated to

0→ ker π → IHG (A)→ A→ 0

an the definition of p-cohomological dimension, observing that IHG (A) and
ker π are still p-primary.
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Remark 2.43 In general there is no control on the cohomological dimension
of a quotient G/H if we know cdp(G). For instance Zp is of p-cohomological
dimension 1, but the quotient Z/p has infinite p-cohomological dimension.
Also the last statement of Propositionn 2.42 is false if cdp(G) is not finite:
take G = Z/2, p = 2, and H = {0}.

Proposition 2.44 Let G be a profinite group. Let H be a closed normal
subgroup of G. Then

cdp(G) ≤ cdp(H) + cdp(G/H)

(and same for cd(G) etc.).

Proof : This follows easily from Hochschild-Serre spectral sequence (The-
orem 2.35, c).

2.3. Abelian Galois cohomology

In this paragraph, k is a field with separable closure k̄ and absolute Ga-
lois group Γk = Gal (k̄/k). For every discrete Γk-module M , the cohomology
groupsHq(Γk,M) have been defined. Using Proposition 2.19, we see that two
different separable closures define canonically isomorphic groups Hq(Γk,M),
that we can denote by Hq(k,M). More generally, if A is a commutative alge-
braic group (or even group scheme) over k, we set Hq(k, A) := Hq(Γk, A(k̄));
for every field extension k1/k, this induces a canonical map Hq(k, A) →
Hq(k1, A). This applies for instance to the additive group Ga (defined by
Γ = Spec (k[t]), so Ga(k1) = k1) and the multiplicative group Gm (defined
by Gm = Spec (k[t, t−1]), so Gm(k1) = k∗1).

Proposition 2.45 Let k be a field. Let L be a finite Galois extension of
k with group G. Then Hq(G,L) = 0 for all q > 0 and Ĥq(G,L) = 0 for
q ∈ {−1, 0}. Similarly Hq(k,Ga) = 0 for all q > 0.

Proof : The first statement comes from the fact that by the normal basis
theorem, the G-module L is induced (isomorphic to Z[G] ⊗Z k). Now the
second statement follows, by Corollary 2.32.

More interesting is the celebrated following result:

Theorem 2.46 (Hilbert 90) Let L/k be a finite Galois extension with Ga-
lois group G. Then H1(G,L∗) = 0, and H1(k,Gm) = 0.
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Proof : Thanks to Corollary 2.32, it is sufficient to prove the first asser-
tion. Let (s 7→ as) ∈ Z1(G,L∗) be a 1-cocycle. By Dedekind’s theorem on
linear independence (as maps L∗ → L) of the morphisms L∗ → L∗, there
exists c ∈ L∗ such that

b =
∑

t∈G

att(c)

is not zero. Now for every s ∈ G, we have:

s(b) =
∑

t∈G

s(at).(st)(c) =
∑

t∈G

a−1
s ast.(st)(c) = a−1

s

∑

t∈G

ast(st)(c),

thanks to the cocycle condition. Thus s(b) = a−1
s b, which implies that as =

s(b−1)/b−1 for every s ∈ G. Namely s 7→ as is a 1-coboundary.

The two previous results have important corollaries. Denote by µn the
k-group scheme of n-roots of unity (thus µn(k̄) = {x ∈ k̄, xn = 1}). If k is of
positive characteristic p, denote by Φ the map x 7→ xp − x from k̄ to k̄.

Theorem 2.47 Let k be a field with separable closure k̄.

a) (Kummer theory) Let n be a positive integer not divisible by the char-
acteristic of k. Then H1(k, µn) = k∗/k∗

n

,

b) (Artin-Schreier theory) Assume that k is of characteristic p > 0. Then
H1(k,Z/p) = k/Φ(k) and Hq(k,Z/p) = 0 if q ≤ 2.

c) If k is of positive characteristic p, then cdp(Γk) ≤ 1 (hence scdp(Γk) ≤
2).

Proof : a) The exact sequence of Γk-modules (the last map being surjec-
tive because n does not divide Char k, hence all n-roots of an element of k̄
are in the separable closure k̄)

1→ µn(k̄)→ k̄∗
.n→ k̄∗ → 1

induces an exact sequence

H0(Γk, k̄
∗) = k∗

.n→ k∗ → H1(k, µn)→ 0,

thanks to Hilbert 90. The result follows.
b) There is an exact sequence of Γk-modules

0→ Fp = Z/p→ k̄
Φ→ k̄ → 0.
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Indeed the map Φ : k̄ → k̄ is onto (the polynomial Xp −X being separable
because its derivative is −1) and elements of ker Φ are exactly the elements
of the prime subfield Fp of k̄. Thanks to Proposition 2.45, we obtain an exact
sequence

H0(Γk, k̄) = k
Φ→ k → H1(Γk,Z/p)→ 0,

hence H1(k,Z/p) = k/Φ(k). By loc. cit., we also have Hq(k,Z/p) = 0 for
q ≥ 2 via the long exact sequence of cohomology.

c) Let H be a p-Sylow of Γk. By infinite Galois theory, we have H =
Gal (k̄/K), where K is some algebraic separable extension of k. By Propo-
sition 2.42, we have cdp(Γk) = cdp(H) and by Theorem 2.39, it is sufficient
to show that H2(H,Z/p) = 0. But H2(H,Z/p) = H2(K,Z/p) = 0 by b),
whence the result.

2.4. The Brauer group of a field: first properties

Definition 2.48 Let k be a field with separable closure k. The Brauer group
of k is the abelian group Br k := H2(k,Gm) = H2(k, k̄∗).

Observe that by Corollary 2.32, we can compute Br k as the direct limit
of the Br (L/k) := H2(Gal (L/k), L∗), where L ⊂ k̄ runs over all finite Galois
extensions of k. Also a homomorphism k → k1 of fields induces a homomor-
phism Br k → Br k1, hence k 7→ Br k is a functor from the category of fields
to the category of abelian groups.

Proposition 2.49 a) For any finite Galois extension L of k, we have

Br (L/k) = ker[Br k → BrL].

b) Let n be a positive integer not divisible by the characteristic of k. Then
H2(k, µn) is the n-torsion subgroup (Br k)[n] of Br k.

Proof : a) Let G = Gal (L/k). By Hilbert 90, we have H1(G,L∗) = 0.
Applying the profinite version of Corollary 2.22 c) to the open subgroup
H := Gal (k̄/L) ⊂ Γk := Gal (k̄/k), we get an exact sequence

0→ H2(G,L∗)→ H2(Γk, k̄
∗) = Br k → H2(H, k̄∗) = BrL.

b) follows from the exact sequence

1→ µn(k̄)→ k̄∗ → k̄∗ → 1
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and Hilbert’s 90, which yield an exact sequence

0→ H2(k, µn)→ Br k
.n→ Br k.

Example 2.50 a) By definition, we have Br k = 0 for every separably closed
field k.

b) We have BrR ≃ Z/2. Indeed, let G = Gal (C/R) ≃ Z/2. Then

H2(G,C∗) ≃ Ĥ0(G,C∗) = R∗/NC/RC
∗ = R∗/R∗

+ ≃ Z/2.

c) Local class field theory yields that the Brauer group of a p-adic field is
isomorphic to Q/Z.

In the next chapter, we will see another description of the Brauer group
of a field, using central simple algebras and non-abelian cohomology.

Definition 2.51 Let k be a field with absolute Galois group Γk. Let p be
a prime number. Assume that k is either of characteristic 6= p, or perfect
of characteristic p. The cohomological p-dimension cdp(k) is by definition
cdp(Γk). If k is perfect (e.g. of characteristic zero), the cohomological di-
mension of k is cd(k) := cd(Γk).

Remark 2.52 The previous definition is not "the right one" for imperfect
fields of characteristic p because of Theorem 2.47, c). Typically (Br k)[p] ≃
Z/p 6= 0 if k is a local field of characteristic p, so we don’t want k to be of
p-dimension ≤ 1, although Γk is.

Theorem 2.53 Let k be a field. Let p be a prime number different from the
characteristic of k. The following are equivalent:

i) We have cdp(k) ≤ 1.
ii) For every separable algebraic extension K of k, the p-torsion (BrK)[p]

of BrK is trivial.
iii) For every finite separable extension K of k, the p-torsion (BrK)[p]

of BrK is trivial.

If k is perfect (e.g. of characteristic zero), the theorem holds for all prime
p, and one can replace everywhere cdp(k) by cd(k) and (BrK)[p] by BrK.
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Proof : Let us first assume that the prime p is not the characteristic of the
field k. Suppose i), and let K ⊂ k̄ be an algebraic separable extension of k.
Then by Proposition 2.42, the cohomological p-dimension of H := Gal (k̄/K)
is at most 1, which implies

(BrK)[p] = H2(K,µp) = H2(H, µp) = 0.

The implication ii) ⇒ iii) is trivial. Suppose iii). Let Gp be a p-Sylow of
Γk = Gal (k̄/k) and Kp ⊂ k̄ its corresponding fixed field. We observe that
Kp contains the group µp of p-roots of unity in k̄ (indeed [Kp(µp) : Kp] is
a p-power and divides p − 1). Therefore H2(Kp,Z/p) = H2(Kp, µp). As
cdp(Γk) = cdp(Gp) by Proposition 2.42, it is now sufficient (in order to get
i)) to prove that H2(Kp, µp) = 0 via Theorem 2.39. We observe that

H2(Kp, µp) = H2(Gp, µp) = lim−→
L

H2(L, µp),

where L ⊂ Kp runs over all finite subextensions of Kp/k. Indeed the group
Gp = Gal (k̄/Kp) is the intersection (hence the projective limit, the transi-
tions maps being the inclusions) of all open subgroups Gal (k̄/L) ⊂ Γk for
such L, and Theorem 2.31 applies. Assumption iii) tells that H2(L, µp) =
(BrL)[p] = 0, so i) holds.

Assume further that k is perfect. As cdp(k) = cdp(Γk) ≤ 1 by The-
orem 2.47 c), it remains to prove that if k is of characteristic p, we still
have (BrK)[p] = 0 for any algebraic extension K of k. We observe that
K and its separable closure K still are perfect fields, hence x 7→ xp is a
group isomorphism from K

∗
to K

∗
, which implies that multiplication by p

in BrK = H2(K,K
∗
) is a bijection, so (BrK)[p] = 0.

Example 2.54 We already saw that Ẑ and Zp are of cohomological dimen-
sion 1, so cdp(F) = 1 for any finite field F and any prime p. In particular the
Brauer group of a finite field is trivial. To get more examples, we will show
that a C1 field is also of cohomological dimension at most 1, but this is more
difficult and requires either consequences of the Tate-Nakayama Theorem (cf.
[5], chapter 3) or a reinterpretation of the Brauer group via central simple
algebras. We will discuss the latter in the next chapter.
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3. Non-abelian cohomology, central simple al-

gebras

Let k be a field. By convention, a k-algebra is a ring A equipped with a
k-vector space structure such that the product in A is k-bilinear, namely

(α.x)y = α.(xy) = x(α.y)

for all α ∈ k, x ∈ A, y ∈ A. In particular, if A 6= {0}, the map α 7→ α.1 is a
bijection from k to a subalgebra of the center of A.

3.1. Central simple algebras

In this paragraph, we recall (without proofs) the main results on central
simple algebras. A good reference is [2], chapter 2.

Definition 3.1 A division algebra (or skew field) is a non-zero ring D such
that every x 6= 0 in D is invertible. Equivalently, a division algebra is a
ring D such that the set of non-zero elements of D is a (not necessarily
commutative) multiplicative group.

Obvisously the center of a division algebra D is a field k, and D is a
k-algebra.

Definition 3.2 Let k be a field. A central simple algebra over k is a finite
dimensional k-algebra A such that:

i) α 7→ α.1 is a bijection from k to the center of A.
ii) The only two-sided ideals of A are {0} and A.

Example 3.3 a) A division algebra is a central simple algebra over its center
k provided it is finite-dimensional over k.

b) Let D be a division algebra (assumed to be finite-dimensional over its
center k). Then it is a classical exercise that for n ∈ N∗, the ring Mn(D)
of (n, n) matrices with entries in D is a central simple algebra over k. In
particular Mn(k) is a central simple k-algebra.

c) Let k be a field with Char k 6= 2. Let a, b ∈ k∗. The quaternion algebra
A = (a, b) is the 4-dimensional k-algebra with basis (1, i, j, k = ij) with the
multiplication rules:

i2 = a, j2 = b, ij = −ji.
One easily checks that an element q = x+ yi+ zj + wk (with x, y, z, w ∈ k)
is invertible if and only if its norm N(q) = x2− ay2− bz2 + abw2 is not zero.
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Observe that N(q) = qq̄, where q̄ = x−yi−zj−wk. The classical example of
Hamilton’s quaternions H corresponds to k = R, a = b = −1, in which case
H is a division algebra because the norm has no non trivial zero. In general
(a, b) is either a division algebra or is isomorphic to M2(k) (depending on
whether the quadratic form f(x, y, z, w) := x2−ay2−bz2+abw2 is anisotropic
or not on k4), hence it is always a central simple algebra. Observe that f
isotropic is equivalent to the assumption that b is a norm of the field extension
k(
√
a)/k, which in turn is equivalent to saying that the three-variable form

x2 − ay2 − bz2 is isotropic.

The main theorem on central simple algebras is the following, essentially
due to Wedderburn:

Theorem 3.4 Let A be a finite-dimensional algebra over a field k. The
following are equivalent:

i) A is a central simple k-algebra.
ii) The k̄-algebra A ⊗k k̄ is isomorphic to Mn(k̄) for some n (variant:

replace k̄ by the algebraic closure of k instead of the separable closure k̄).
iii) There exists a finite Galois field extension L of k such that A⊗k L is

isomorphic to Mn(L) for some n.
iv) There exists a division algebra D with center k such that the k-algebras

A and Mn(D) are isomorphic for some n.

A finite field extension L/k such that A⊗k L is isomorphic to Mn(L) for
some n is called a splitting field of A.

Corollary 3.5 a) If A is a central simple algebra over k, then A ⊗k L is a
central simple algebra over L for every field extension L/k.

b) If A and B are two central simple algebras over k, then A⊗kB is again
a central simple algebra over k.

c) The dimension as a k-vector space of a central simple algebra A is
necessarily the square of a positive integer n. We say that n :=

√
dimk A is

the degree (it is sometimes called the reduced degree) of A.

Definition 3.6 Two central simple algebras A and A′ are Morita-equivalent
(or simply equivalent) if they are respectively isomorphic to Mm(D) and
Mn(D

′) for some integers m,n with the division algebra D k-isomorphic to
D′.

Observe that two equivalent algebras are isomorphic if and only if they
have the same degree.
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Theorem 3.7 The set of equivalence classes of central simple k-algebras,
equipped with the tensor product ⊗k, is an abelian group, denoted Bk. The
neutral element is the class of Mn(k) (for an arbitrary positive n). If A is a
central simple k-algebra, the opposite of its class [A] ∈ Bk is the class of the
opposite algebra A◦ (which has the same underlying abelian group as A, but
a multiplication defined by x.y = yx, where yx is a product in A).

Our goal in this chapter is to show that Bk is the same as the Brauer
group Br k defined via Galois cohomology. To do this, we need to extend the
definition of H0 and H1 to a (possibly non commutative) group A equipped
with a continuous action of a profinite group G. We will also use the notion
of twisted form via Galois descent.

3.2. Non-abelian cohomology

In this paragraph, G denotes a profinite group.

Definition 3.8 A G-set is a discrete topological space A with an action of
G such that for all x ∈ E, the map g 7→ g.x is continuous. A G-group is a
G-set equipped with a (multiplicative) group structure such that

s.(xy) = (s.x)(s.y)

for all s ∈ G, x ∈ A, y ∈ A.

The continuity condition again means that all stabilizers are open, or that
A =

⋃
U A

U , where U runs over the normal open subgroups of G. A (discrete)
G-module is nothing but a commutative G-group. We will sometimes write
sa for s(a) when s ∈ G and a ∈ A. A morphism of G-sets (resp. of G-groups)
f : A→ A′ is a map (resp. a homomorphism of groups) compatible with the
action of G.

Definition 3.9 Let A be a G-group. Set H0(G,A) = AG. A 1-cocycle (or
cocycle) from G to A is a continuous map s 7→ as satisfying

ast = as.
sat

for all s, t ∈ G. The set of cocycles is denoted Z1(G,A).

Definition 3.10 Two cocycles a, a′ ∈ Z1(G,A) are cohomologous if there
exists b ∈ A such that a′s = b−1as

sb for all s ∈ G. The quotient of Z1(G,A)
by this equivalence relation is the cohomology set H1(G,A).
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Obviously, this definition coincides with the previous one when the group
A is abelian. In general, H1(G,A) has no natural group structure, it is only a
pointed set, the distinguished element 1 being the class of the trivial cocycle
s 7→ 1. The sets H0(G,A) and H1(G,A) are covariantly functorial in A. It is
easy to see that the analog of Corollary 2.32 a) still holds for the non-abelian
H0 and H1.

Theorem 3.11 Let B be a G-group. Let A be a sub-G-group of B. Denote
by B/A the set of left cosets (which is a G-set).

a) There is an exact sequence of pointed sets

0→ H0(G,A)→ H0(G,B)→ H0(G,B/A)
δ→ H1(G,A)→ H1(G,B).

b) Assume further that A is normal in B and set C = B/A (it is now a
G-group). Then the previous exact sequence can be extended with an exact
sequence

H1(G,A)→ H1(G,B)→ H1(G,C).

c) Assume further that the extension

1→ A→ B → C → 1

is central. Then the previous exact sequence can be extended with an exact
sequence

H1(G,B)→ H1(G,C)
∆→ H2(G,A).

Proof : a) Let c ∈ H0(G,B/A). Lift c to some b ∈ B and set as = b−1.sb
for all s ∈ G. We have as ∈ A (as sb and b have same image in B/A
because c is fixed by G) and the map s 7→ as is clearly a cocycle. One
immediately checks that the class of this cocycle does not depend on the
choice of b (replacing b by ba with a ∈ A replaces as by a−1asa), so we get a
map c 7→ δ(c) from H0(G,B/A) to H1(G,A).

By definition the class of the cocycle s 7→ as is cohomologous to zero
in B, hence δ(c) ∈ ker[H1(G,A) → H1(G,B)]; conversely every cocycle of
Z1(G,A) which becomes cohomologous to zero in Z1(G,B) can be written
s 7→ b−1.sb for some b ∈ B, and the fact that this cocycle takes value in
A means that the image of b in B/A belongs to H0(G,B/A). Whence the
exactness of

H0(G,B/A)
δ→ H1(G,A)→ H1(G,B).

On the other hand, the element c ∈ H0(G,B/A) is in ker δ if and only if we
can choose b such that b−1.sb = 1 for all s ∈ G, that is: if and only if c can
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be lifted to a b ∈ H0(G,B). This shows that ker δ is exactly the image of
H0(G,B) in H0(G,B/A). Finally the exactness of

0→ H0(G,A)→ H0(G,B)→ H0(G,B/A)

is straightforward.
b) Let s 7→ bs be a cocycle in Z1(G,B). Then it becomes cohomologous

to zero in Z1(G,C) if and only if there exists c ∈ C such that b̄s = c−1.sc
for all s ∈ G, where b̄s is the class of bs in C = B/A. As A is normal in B,
this is equivalent to the existence of a lifting b′ ∈ B of c and a map s 7→ as
from G to A such that bs = (b′)−1.as.

sb′ for all s ∈ G, that is to the fact that
s 7→ bs is cohomologous (in Z1(G,B)) to some cocycle of Z1(G,A). Whence
the result.

c) Let s 7→ cs be a cocycle in Z1(G,C). Lift cs to some bs ∈ B. Since
bst = bs.s(bt) modulo A for all s, t ∈ G, one defines as,t ∈ A by the formula

as,t = bs.s(bt).b
−1
st .

One tediously checks that (s, t)) 7→ as,t is a 2-cocycle whose class in H2(G,A)
does not depend on the choices of cs in its class of 1-cocycle and of the lifting
bs. This yields a map ∆ : H1(G,C) → H2(G,A). It is immediate that
the image of an element of H1(G,C) coming from a cocycle of Z1(G,B) is
trivial. Conversely, assume that the class of c 7→ cs is in ker∆. Then the
lifting bs of cs yields a 2-cocycle (s, t) 7→ bs.s(bt).b

−1
st cohomologous to zero,

which means that it can be written ass(at)a−1
st for some map s 7→ as from G

to A. Replacing bs by a−1
s bs, we reduce the case when as,t = 1, which means

that s 7→ bs is a cocycle of Z1(G,B) whose class is mapped to the class of
s 7→ cs. This is what we wanted to prove.

Remark 3.12 One should be careful about the fact that even if A is central
in B and C is abelian, the map ∆ is not in general a group homomorphism if
B is not assumed to be abelian (it is even possible that the image of ∆ is not
a subgroup of H2(G,A)). Also, an exact sequence of pointed sets does not
give information about the fibers of the maps, unlike an exact sequence of
abelian groups. For instance a map with trivial kernel is not always injective.

Theorem 3.13 (Hilbert 90, non-abelian version) Let L/k be a Galois
field extension, set G = Gal (L/k). Then H1(G,GLn(L)) = 0. In particular
H1(k,GLn) = H1(Gal (k̄/k), GLn(k̄)) is trivial.
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Proof (sketch of): This is very similar to the case n = 1. Let s 7→ as be
a cocycle with values in GLn(L). For any matrix c ∈ Mn(L), set

b =
∑

s∈G

as.s(c).

As s(b) = a−1
s .b, it is sufficient to show that c can be chosen such that the

matrix b is invertible. This is a (slightly more complicated than in the case
n = 1) application of Dirichlet’s Theorem on independence of morphisms,
see [9], Chapter X, Proposition 3.

Corollary 3.14 Let L/K be a Galois field extension, let G = Gal (L/K).
There is a functorial map with trivial kernel H1(G,PGLn(L)) → Br (L/k).
In particular there is a canonical map H1(k, PGLn) → Br k with trivial
kernel.

Proof : It is sufficient to deal with the case of a finite extension L/k.
Using the central exact sequence of G-groups

1→ L∗ → GLn(L)→ PGLn(L)→ 1

and Theorem 3.11 c), we get an exact sequence of pointed sets

H1(G,GLn(L))→ H1(G,PGLn(L))→ H2(G,L∗) = Br (L/k).

Now apply Theorem 3.13.

This corollary will be refined later (Theorem 3.24).

3.3. Galois descent

In this paragraph, we will give examples of the following general (vague)
principle: let X be an "object" defined over a field k. Let K/k be a Galois
extension with group G. Then (under certain conditions) objects defined
over k that become isomorphic to X over K are classified by the cohomology
set H1(G, Aut (XK)), where XK = X⊗kK and the action of G on the group
of automorphisms Aut (XK) of XK is given by

(g.f)(x) = g.f(g−1.x), g ∈ G, f ∈ Aut (XK), x ∈ XK .

A k-form (or twisted form over k) of X is an object that becomes isomorphic
to X over some Galois extension K (or over k̄).
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More precisely, let (V, x) be a pair consisting of a finite-dimensional
k-vector space V and a (p, q)-tensor x ∈ ⊗p V ⊗ ⊗q V ∗. Here V ∗ :=
Homk(V, k) is the dual of V and tensor products are over k. For instance, a bi-
linear map V ×V → V (resp. a bilinear form on V ) is nothing but an element
of Homk(V,Homk(V, V )) ≃ V ⊗ V ∗ ⊗ V ∗ (resp. of Homk(V, V

∗) = V ∗ ⊗ V ∗;
recall that if W is a k-vector space, then Homk(V,W ) ≃ W ⊗ V ∗), hence
it is a (1, 2)-tensor (resp. a (0, 2)-tensor). A k-isomorphism between (V, x)
and (V ′, x′) is a k-linear isomorphism f : V → V ′ such that the induced
isomorphism

p⊗
V ⊗

q⊗
V ∗ →

p⊗
V ′ ⊗

q⊗
V

′∗

sends x to x′.
For every finite field extension K of k, set VK = V ⊗k K, this induces a

tensor x := xK = x ⊗ 1. We say that two pairs (V, x) and (V ′, x′) are K-
isomorphic if there exists a K-isomorphism between (VK , xK) and (V ′

K , x
′
K).

Denote by E(K/k) := EV,x(K/k) the set of isomorphism classes of pairs
(V ′, x′) that become K-isomorphic to (V, x) and by AK the group of K-
automorphisms of (VK , xK). Then G = Gal (K/k) acts on VK via its action
on K, then on AK by the formula

(s.f)(y) = s.f(s−1.y), s ∈ G, f ∈ AK , y ∈ VK .

Theorem 3.15 There is a natural bijective map of pointed sets

θ : E(K/k)→ H1(G,AK).

Proof : Let (V ′, x′) ∈ E(K/k). Let f be a K-isomorphism between
(VK , xK) and (V ′

K , x
′
K). We define a map G→ AK by

s 7→ as = f−1 ◦ sf = f−1 ◦ s ◦ f ◦ s−1.

One immediately checks that this defines a cocycle of Z1(G,AK) whose class
in H1(G,AK) does not depend on the choice of f . This yields the required
map θ. Two pairs (V ′

1 , x
′
1) and (V ′

2 , x
′
2) with same image by θ correspond toK-

isomorphisms f1, f2 such that f2f−1
1 is G-invariant, hence is a k-isomorphism.

Hence θ is injective.
Now let s 7→ as be an element of Z1(G,AK). By Hilbert’s 90 (Theo-

rem 3.13), it becomes trivial as an element of H1(G,GL(VK)), whence a
K-automorphism f of VK such that as = f−1 ◦s f for all s ∈ G. We can
extend f to

⊗p VK ⊗
⊗q V ∗

K and set x′ = f(x). Let s ∈ G. As x is defined
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over k, we have s(x) = x and since as is an automorphism of AK (and not
not only of VK), we have as(x) = x). Thus

s(x′) = (sf)(s(x)) = (sf)(x) = f ◦ as(x) = f(x) = x′

for all s ∈ G. Hence x′ is also defined over k and the image of (V ′, x′) by θ
is clearly the class of s 7→ as.

Remark 3.16 The formula for θ shows that (V ′
K , x

′
K) can also be seen as

the same K-pair as (VK , xK) (via a K-isomorphism f), but with a twisted
Galois action: namely the "new" Galois action is given by s(y) := as(

sy),
where (s, y) 7→ sy is the "former’ Galois action and s 7→ as is a cocycle
corresponding to the image of (V ′

K , x
′
K) by θ.

Going over to the limit over all finite Galois extensions K ⊂ k̄ of k, this
yields:

Corollary 3.17 There is a natural bijective map of pointed sets between the
set of isomorphism classes of pairs (V ′, x′) that become k̄-isomorphic to (V, x)
and H1(k, Ak̄).

Example 3.18 Assume Char k 6= 2. Let q be a non-degenerate quadratic
form of rank n on a finite dimensional k-vector space V . Then isomor-
phisms classes of quadratic forms of rank n over k are classified by the set
H1(k,O(q)), where O(q) is the group of automorphisms of q over k̄. Indeed,
two quadratic forms of rank n automatically become isomorphic over k̄.

Proposition 3.19 Let K/k be a (finite) Galois extension with group G. Let
A(n,K/k) be the set of isomorphisms classes of k-algebras such that A⊗kK
is K-isomorphic to Mn(K). Then there is a canonical bijection

A(n,K/k)→ H1(G,PGLn(K)).

Central simple algebras of degree n are classified (up to isomorphism) by the
cohomology set H1(k, PGLn).

Proof : An element of A(n,K/k) can be considered as a pair (V, x),
where V is a k-vector space of dimension n and x is a (1, 2)-tensor. Apply-
ing Theorem 3.15, this yields a canonical bijection between A(n,K/k) and
H1(G,CK), where CK is the automorphism group of the K-algebra Mn(K).
The group CK is known to be isomorphic to PGLn(K) (quotient of GLn(K)
by its center) because every automorphism of Mn(K) is inner. The second
statement comes from Corollary 3.17 and Theorem 3.4.
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Remark 3.20 The tensor product of central simple algebras induces a prod-
uct operation

H1(G,PGLn(K))×H1(G,PGLm(K))→ H1(G,PGLnm(K)),

which can also be described via the product of cocycles associated to the
product

PGLn(K)× PGLm(K)→ PGLnm(K)

induced by the natural map (f, g) 7→ f ⊗ g,

EndK(K
n)× EndK(K

m)→ EndK(K
n ⊗K Km).

Definition 3.21 Let A be a central simple algebra of degree n over k. By
Theorem 3.4 and Proposition 3.19, there is a finite Galois extension K of k
such that A is the twisted form of Mn(K) by a cocycle s 7→ as ∈ PGLn(K),
where s ∈ G := Gal (K/k). Namely (see Remark 3.16) there is a twisted
action of the group G on A ⊗k K ≃K Mn(K) given by s.M = ass(M)a−1

s .
This means that the map det : A⊗kK → K induced by the K-isomorphism
A ⊗k K ≃ Mn(K) is compatible with the action of G. Taking G-invariants,
we obtain a map NrdA : A→ k, called the reduced norm map, which induces
a group homomorphism NrdA : A∗ → k∗. The construction does neither
depend on the choice of the cocycle (indeed replacing it by a cohomologous
cocycle does not affect the expression of det(s.M)) nor on the choice of K
because two splitting fields K,K ′ can be embedded into the same Galois
extension L of k.

For a central simple algebra A over k, the classical norm map NA/k → k
is defined by: NA/k(x) is the determinant of the multiplication by x in the
k-vector space A. The link to the reduced norm is the following:

Proposition 3.22 Let n be the degree of A. Then (NA/k) = (NrdA)
n. In

particular, the reduced norm can be viewed as a polynomial function of degree
n in n2 variables on k, and an element a ∈ A is invertible if and only if
Nrd(a) 6= 0.

Proof : Passing to a splitting field of A, we can assume that A =Mn(k).
For every M ∈ Mn(k), the matrix of the multiplication by M (with respect
to the standard basis of Mn(k)) is the block diagonal matrix Diag(M, ...,M),
whence the formula. Now a ∈ A is invertible if and only if multiplication
by a in A is bijective, which is equivalent to saying that NA/k(a) 6= 0, or
NrdA(a) 6= 0 thanks to the formula.
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Example 3.23 For a quaternion algebra A = (a, b), the reduced norm
(sometimes called simply "norm") of q = x + yi + zj + wk is NrdA(q) =
x2 − ay2 − bz2 + abw2.

3.4. The Brauer group via central simple algebras

Let K/k be a finite Galois extension of fields, set G = Gal (K/k). Combining
Proposition 3.19 and Corollary 3.14, we obtain a map

δn : A(n,K/k)→ Br (K/k) ⊂ Br k,

whose kernel is trivial (consisting of the class of Mn(k)). Denote by B(K/k)
the kernel of the map Bk → BK given by extension of scalars: thus B(K/k)
consists of the equivalence classes of central simple algebras A over k such
that A⊗kK becomes isomorphic to a matrix algebra over K. An easy compu-
tation (using Remark 3.20 and the definition of the map ∆ in Theorem 3.11,
c) shows that for A ∈ A(n,K/k) and A′ ∈ A(n′, K/k), we have

δnn′(A⊗k A′) = δn(A) + δn(A
′).

Therefore all maps δn are compatible and induce an injective (as the kernel
of δn is trivial) group homomorphism δ : B(K/k)→ H2(G,K∗) ⊂ Br k.

Theorem 3.24 The homomorphism δ is an isomorphism. The group Bk

(defined via equivalence classes of central simple k-algebras) is isomorphic to
Br k.

Proof : Let n = [K : k]. It is sufficient to prove that δn is surjective, or
that the coboundary map

∆n : H1(G,PGLn(K))→ H2(G,K∗) = Br (K/k)

is surjective. Indeed, the second assertion of the theorem is then proven by
passing to the limit over all finite Galois extensions K of k. Let (s, t) 7→ as,t
be a cocycle with values in K∗. Take a K-vector space V with basis (es)s∈G
and denote by ps the K-automorphism of V that sends et to as,test. We
compute

(pss(pt))(eu) = as,tus(at,u)estu; as,tpst(eu) = as,tast,uestu.

By the cocycle condition, we have pss(pt) = as,tpst, or as,t = pss(pt)p
−1
st ,

which shows that a is indeed a coboundary via the formula that defines ∆n

(cf. Theorem 3.11, c).
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Example 3.25 a) We saw that a finite field F is of cohomological dimension
1, hence its Brauer group is trivial. Therefore every finite division algebra D
(which is finite-dimensional over its center F) is isomorphic to F, that is: D
is a field (Wedderburn).

b) The Brauer group of R is Z/2. This corresponds to the fact that the
only division algebras of center R and finite-dimensional over R are R itself
and the Hamiltonian quaternions H.

c) Let k be a field complete (or, more generally, henselian) for a discrete
valuation with perfect residue field κ. The first step to compute Br k consists
of showing that a central, finite-dimensional division algebra over k is split by
a finite unramified extension of k, see [9], chapter XII, §2. This implies that
Br knr = 0, hence Br k identifies (by Proposition 2.49, which immediately
extends to an infinite Galois extension) to H2(Gal (knr/k), knr

∗

). One then
shows (loc. cit., Theorem 2) that the latter is a split extension of H1(κ,Q/Z)
by Br κ, hence Br k ≃ Q/Z if the residue field κ is finite because the absolute
Galois group of κ is then isomorphic to Ẑ and Br κ = 0.

Remark 3.26 A central simple k-algebra A of degree n can be split by a
separable extension K of degree n ([2], Theorem 2.2.7). More precisely, if
A ≃ Mr(D) (where D is a division algebra), the smallest (for the usual
order of N∗ or the divisibility relation) positive integer d such that A is split
by a separable extension of degree d is the degree of D over k (loc. cit.,
Prop 4.5.1.). This integer is called the index of A.

The image of δn : H1(k, PGLn)→ Br k is therefore a subset of (Br k)[n],
as it is in ker[Br k → BrK] for some finite separable extension K/k of degree
n. However, the order e of a central simple k-algebra A in Br k (called the
period of A) can be smaller then the index, in other words A cannot always
be split by an extension of degree e. See [2], §2.8 and 4.5. This difficulty
disappears over local fields (loc. cit., Proposition 6.3.8), and also for function
fields of surfaces over C (De Jong, 2004).

Here is a nice consequence of the definition of the Brauer group via the
central simple algebras. Recall that a field k is C1 if every homogeneous
polynomial of degree d in n > d variables has a non-trivial zero. For instance
(see [2], Prop. 6.2.6. and 6.2.8), a finite field is C1 (Chevalley), as well as a
finite extension of C(t) (Tsen).

Theorem 3.27 Let k be a (perfect) C1 field. Then BrK = 0 for every finite
extension K of k. In particular cd(k) ≤ 1.
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Proof : Let D be a division algebra of finite dimension r2 over its center
K. It is sufficient to show that r = 1. Let s = [K : k]. Define

f : D → k, x 7→ NK/k(Nrd(x)).

Taking a basis of the k-vector space D, we see that f can be seen (via
Proposition 3.22) as a homogeneous polynomial function of degree sr in sr2

variables on k. Since D is a division algebra and K is a field, the only zero
of f is 0. The C1 property of k then implies that sr2 ≤ sr, hence r = 1. The
fact that cd(k) ≤ 1 now follows from Theorem 2.53.

4. The Brauer group of a scheme

4.1. Étale sheaves

We recall a few basic facts on étale topology. A comprehensive reference (as
well as for the next paragraph) is [7], chapters II and III. For the properties
of flat and étale morphisms, see for instance loc. cit., chapter I. See also [6].

We recall that a locally finitely presented (=locally of finite type if X
is noetherian) morphism f : Y → X is étale if it is flat and unramified;
unramified means that for all x ∈ X, the fiber Yx is isomorphic to

∐
Spec ki,

where each ki is a finite and separable extension of the residue field k(x)
(and the disjoint union is finite if f is assumed to be finitely presented).
In particular an unramified morphism is quasi-finite as soon as it is finitely
presented. "Étale" is equivalent to smooth of relative dimension zero.

Let X be a scheme. Denote by Sch/X the category of X-schemes. Con-
sider a full subcategory CX of Sch/X (so the morphism between two objects
of CX are the morphisms of X-schemes).

Definition 4.1 A Grothendieck topology on CX consists of the datum of a
subclass E of morphisms in CX (called the open sets) satisfying:

i) Every isomorphism is in E.
ii) A composition of morphism in E is in E.
iii) If V → U is in E and W → U is an arbitrary morphism in CX , then

the pull-back V ×U W →W is in E.
A covering (for this Grothendieck topology) of an object U ∈ CX is a

family of morphisms fi : Ui → U , where every fi is in E and
⋃
i fi(Ui) = U .

The pair consisting of CX and the family of all coverings is called a site, and
is denoted by XE .
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Example 4.2 a) The (small) Zariski site Xzar: CX is the category of open
subschemes of X and E is the class of open immersions.

b) The (small) étale site Xét: CX is the category of all étale X-schemes
and E is the class of étale maps (actually in this example, every morphism
in CX is in E).

c) The (big) flat site Xfppf : CX is the category of all X-schemes and E is
the class of flat and locally finitely presented morphisms.

Definition 4.3 Let X be a scheme. Let XE be a site with underlying cate-
gory CX . A presheaf (of abelian groups) 2 on XE is a contravariant functor
P from CX to the category of abelian groups. The group of sections of P
over Y ∈ CX is Γ(Y,P) := P(Y ). To every morphism u : Y ′ → Y in CX
is associated a restriction map F(Y )→ F(Y ′), which we usually denotes by
s 7→ s|Y ′ when the morphism u is understood.

Definition 4.4 A presheaf F on a site XE is a sheaf if for every scheme
Y ∈ CX and every covering (Ui → Y )i∈I , the following properties hold:

i) Every section s ∈ F(Y ) whose restriction to each Ui is zero satisfies
s = 0.

ii) For every family (si)i∈I (where si ∈ F(Ui)) such that the restriction of
si and sj to Ui ×Y Uj coincide for all pairs i, j ∈ I, there exists an s ∈ F(Y )
whose restriction to each Ui is si.

The category of sheaves is denoted by S(XE) (or sometimes S(X) if E
is understood). It is a full subcategory of the abelian category of presheaves
P (XE).

Example 4.5 a) A commutative group scheme G over X defines a sheaf for
the étale or the flat topology via Y 7→ G(Y ). Examples are: the additive
group Ga,X = X ×Z Z[T ], the multiplicative group Gm,X = X ×Z Z[T±1],
or the group of n-roots of unity µn,X = X ×Z (Z[T ]/(T n − 1)). If A is an
abelian group, the constant sheaf A is the sheaf associated to the constant
group scheme AX (as a scheme AX =

∐
a∈AX; in particular AX(Y ) = A for

every connected X-scheme Y ).
b) A sheaf on the Zariski site of X is just a sheaf on the topological space

X, equipped with Zariski topology.
c) In all our examples, there is an exact sheafification functor

a : P (XE)→ S(XE),

2Similar definitions can be given for sets, rings etc.
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which is a left-adjoint functor for the inclusion functor i : S(XE) → P (XE)
(i is only left-exact). An exact sequence

0→ F ′ → F → F”

of sheaves is exact if and only if the associated sequence of presheaves is
exact.

From now on, all schemes (unless it is clearly specified) are equipped with
the étale topology.

Definition 4.6 A geometric point of a scheme X is a morphism ux : x̄→ X,
where x̄ is the spectrum of some separably closed field. Let F be a sheaf (or
even a presheaf) on X. The stalk of F at x̄ is

Fx̄ = lim−→F(U),

where the limit runs over all étale neighborhoods U of x̄ in X, that is over
all commutative diagram

x̄ //

��
❄

❄

❄

❄

❄

❄

❄

U

��

X
with U → X étale (one can restrict to connected U).

Recall that a local ring (A,M) is henselian if it satisfies the analogue of
Hensel’s lemma, namely: every non-singular zero moduloM of a polynomial
of A[X ] can be lifted to a zero in A. It is strictly henselian (or stricly local) if
its residue field A/M is further assumed to be separably closed. Every local
ring A has a henselization Ah and a strict henselization Ash, the latter being
obtained by a limit process from the A-algebras B with SpecB → SpecA
étale.

Example 4.7 Take F = Ga. Let OX,x̄ := Osh
X,x, where x ∈ X is the image

of x̄ in X. Then OX,x̄ is the stalk of F at x̄. It plays the same role for the
étale topology as the ring OX,x for the Zariski topology. More generally, if F
is defined by a locally finitely presented group scheme G, then Fx̄ = G(OX,x̄).

A map of sheaves φ : F → F ′ is surjective if and only if the map Fx̄ → F ′
x̄

induce on the stalks is surjective for every geometric point x̄ of X (this is in
general weaker than demanding that the corresponding map of presheaves is
surjective). The category S(X) is abelian, but it is not an abelian subcate-
gory of P (X), as the cokernels are not the same.
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Example 4.8 a) The sequence

0→ µn → Gm
.n→ Gm

is clearly exact in P (X), hence also in S(X). For every strictly local ring A
with n ∈ A∗, the map x 7→ xn is surjective from A∗ to A∗ by Hensel’s lemma
which proves that the Kummer sequence

0→ µn → Gm
.n→ Gm → 0

is exact on S(X) as soon as the integer n is invertible on X (it is exact on
Xfppf without any assumption on the residue characteristics of X).

b) Similarly, there is an analog of Artin-Schreier exact sequence

0→ Z/pZ→ Ga
Φ→ Ga → 0

on any scheme of characteristic p (=Fp-scheme). Here Φ is the map x 7→
xp − x on every Fp-algebra.

The following result make the link between étale sheaves on Spec k and
Galois modules:

Theorem 4.9 For every sheaf F on X = Spec k, define

MF := lim−→
K

F(K),

where the limit is taken over all finite (Galois) field extensions K ⊂ k̄. Equip
MF with the action of Γ := Gal (k̄/k) induced by its action on each K. Then
MF is a discrete Γ-module and the functor F 7→ MF induces an equivalence
of categories between S(Xét) and the category CΓ of discrete Γ-modules.

Definition 4.10 Let π : X ′ → X be a morphism of schemes. Let F ′ be a
sheaf on X ′. Its direct image by π is the sheaf defined on X by

(π∗F ′)(U) = F ′(U ×X X ′)

for every U ∈ CX , where the fibred product is relative to π. The functor
π∗ : S(X ′) → S(X) is left-exact, and it has an exact left-adjoint functor
π∗ : S(X)→ S(X ′), the inverse image functor.
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Example 4.11 a) Let G be a commutative group scheme on X. The inverse
image π∗G of the sheaf defined by G is not always represented by the group
scheme GX′ := G ×X X ′; indeed there is only a canonical map (in general
neither injective nor surjective) ΦG : π∗G → GX′ , which is an isomorphism
in two important case: when π is étale, or when G itself is étale over X.

b) Let K ⊂ K ′ be an extension of field, which induces a morphism of
absolute Galois groups ψ : ΓK ′ → ΓK and a morphism π : SpecK ′ → SpecK.
Let N be a ΓK-module, then the ΓK ′-module π∗N corresponds to the group
N with the action of ΓK ′ given by s(x) = φ(s).x for all s ∈ ΓK ′, x ∈ N .
For a ΓK ′-module M , its direct image π∗M is the ΓK-module Iψ(ΓK′ )

ΓK
(Mkerψ),

which is nothing but IΓK′

ΓK
if K ′/K is algebraic (then ψ is injective).

The direct image functor π∗ is exact if π is finite, but not in general.

4.2. Étale cohomology

Let X be a scheme. Then the category S(X) of étale sheaves on X has
enough injectives. Therefore right derived functors Rif(F) of a left-exact
functor f on S(X) are defined: they are computed via an injective resolution

0→ F → I0 → I1 → ...

of F , then by taking the cohomology of the complex

f(I0)→ f(I1)→ ...

The functor S(X)→ Ab defined by F 7→ Γ(X,F) is left-exact, whence:

Definition 4.12 We denote by Hr(X, .) (r ∈ N) the right derived functors
of the functor Γ(X, .) = H0(X, .). For a sheaf F on X, the group Hr(X,F) is
called the r-th étale cohomology group of X with values in F . Similar defini-
tions can be made for flat topology (and of course also for Zariski topology).

As a general property of derived functors, for every short exact sequence
of étale sheaves

0→ F ′ → F → F ′′ → 0

on X, there is a long exact sequence of the related cohomology groups

0→ H0(X,F ′)→ H0(X,F)→ H0(X,F ′′)→ H1(X,F ′)→ ...

...→ Hr−1(X,F ′′)→ Hr(X,F ′)→ Hr(X,F)→ Hr(X,F ′′)→ ...

The special case X = Spec k corresponds to Galois cohomology.
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Example 4.13 a) The groups H i(X,Ga) are the classical coherent coho-
mology groups H i(X,OX).

b) The Picard group PicX of X is H1(X,Gm); it coincides with the group
H1

Zar(X,O∗
X) defined via Zariski topology (extension of Hilbert’s 90). This

coincidence does not extend to higher degrees: we will define the Brauer
group of X as H2(X,Gm), which can be non trivial even when X = Spec k
is the spectrum of a field; of course H2

Zar(Spec k,O∗
X) = 0, as the topological

space Spec k consists of one single point.
c) We have H1(X,Z) = 0 if X is integral, normal and noetherian (slight

extension of H1(k,Z) = 0 for a field k).
d) Étale cohomology over a noetherian scheme commutes with direct limit

of sheaves (e.g. with direct sums). Also, if S is a noetherian scheme, (Xi) is a
projective system of noetherian S-schemes with affine transition morphisms,
and G is a locally finitely presented S-group scheme, then

Hq(X,GX) ≃ lim−→Hq(Xi, GXi
)

for all q ∈ N, whereX := lim←−Xi. this applies in particular when X = SpecK
is the generic point of an integral an noetherian scheme Y and the family
(Xi) consists of all non empty affine open subsets of Y .

Remark 4.14 The functor Hr(X,F) is contravariant on X. More precisely,
if π : X ′ → X is a morphism, then the universal property of derived func-
tors (as δ-functors) yields maps Hr(X,F) → Hr(X ′, π∗F) induced by the
obvious map H0(X,F) → H0(X ′, π∗F). There is also a canonical map
Hr(X, π∗F) → Hr(X ′,F) (induced by the corresponding map for r = 0),
which is an isomorphism if π∗ is exact. In general, there is only the Leray
spectral sequence

Ers
2 := Hr(X,Rsπ∗F)⇒ Hr+s(X ′,F),

where the Rsπ∗ are the higher direct images, i.e. the right derived functors
of the direct image functor π∗.

Assume that π : X ′ → X is a Galois covering with group G (this means
that π is finite étale, X ′ and X are connected, and the right action of the
group G := AutX(Y ) on F (Y ) := HomX(x̄, Y ) is transitive, where x̄ is some
geometric point of X). then there is the Hochschild-Serre spectral sequence

Hr(G,Hs(X ′,FX′))⇒ Hr+s(X,F),

which extends to an infinite Galois covering (=projective limit of Galois
coverings) when X is noetherian. Here FX′ is the restriction of the sheaf X
to X ′ via π.
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The sheaf Riπ∗F (for a morphism π : Y → X and a sheaf F on Y ) is
associated to the presheaf U 7→ H i(U ×X Y,F) ([6], Prop 3.7. a), but the
stalks of the higher direct images are in general quite difficult to compute.
Nevertheless, we have the following statement (see [7], Theorems III.1.15 and
Corollary VI.2.5):

Theorem 4.15 Let π : Y → X be a morphism. Let G be a locally finitely
presented commutative group scheme over Y . Let x̄ be a geometric point of
X with image x, set Ỹ = Y ×X Spec (OX,x̄).

a) If X and Y are noetherian, then (Rqπ∗G)x̄ ≃ Hq(Ỹ , GỸ ).

b) (proper base change) If π is proper and G is torsion3 (e.g. finite over
Y ), then (Rqπ∗G)x̄ ≃ Hq(Yx̄, GYx̄), where Yx̄ = Y ×X x̄.

Remark 4.16 There is also a finiteness statement for étale cohomology
(which uses the proper base change theorem as well as a purity theorem
due to Gabber): for a smooth variety X over a separably closed field k and
an étale and commutative finite type X-group scheme G whose torsion is
prime to Char k, the groups H i(X,G) are finite.

4.3. First properties of the Brauer group

Definition 4.17 Let X be a scheme. The Brauer group of X is the étale
cohomology group H2(X,Gm).

Remark 4.18 a) What we call the Brauer group is sometimes called the
cohomological Brauer group, to make the difference with a possibly smaller
subgroup BrAzX of H2(X,Gm) defined in terms of Azumaya algebras. When
X = Spec k is the spectrum of a field, both coincide because an Azumaya
algebra is the analogue over X of a central simple algebra (it is defined as a
sheaf of OX-algebras that become isomorphic to Mn(OX) over an étale cov-
ering of X). Azumaya algebras are classified (for a given n) by a cohomology
set Ȟ1(X,PGLn) (which is defined via Čech cocycles for the étale topology).
The group BrAzX is always torsion, and it is known that BrAzX = (BrX)tors
if X is quasi-projective over an affine scheme, thanks to works by Gabber
and Cesnavicius (see [1], Th. 4.2.1.). See also Theorem 4.22 below.

b) Let f : Y → X be a morphism of schemes. Using the canonical
map f ∗(Gm,X ) → Gm,Y , we get a morphism BrX → Br Y between Brauer
groups, hence Br is a contravariant functor on the category of schemes. In
particular, if A is a ring, every A-point x ∈ X(A) = Hom(SpecA,X) gives
rise to a map x∗ : BrX → BrA := Br (SpecA).

3This means that G(U) is a torsion group for all quasi-compact Y -schemes U .
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Example 4.19 a) For X = Spec k, we recover the Brauer group of the field
k.

b) Let A be a henselian local ring with residue field κ. Then the canon-
ical map BrA → Br κ (associated to Specκ → SpecA) is an isomorphism.
Indeed, the map H i(SpecA,G) → H i(κ,G0) is more generally an isomor-
phism for every i ≥ 1 and every smooth quasi-projective A-group scheme G,
where G0 is the special fiber of G (see [7], Remark III.3.11). This shows that
BrA = 0 if A is strictly local.

Proposition 4.20 Let X be a scheme. Let n be a positive integer, assume
that n is invertible on X. Then there are exact sequences

0→ PicX/n→ H2(X, µn)→ (BrX)[n]→ 0.

0→ BrX/n→ H3(X, µn)→ H3(X,Gm)[n]→ 0.

Proof : Apply the long exact sequence in étale cohomology to Kummer
exact sequence of sheaves

0→ µn → Gm
.n→ Gm → 0.

Without assumption on n, the previous proposition still holds provided
H2(X, µn) and H3(X, µn) are replaced by their flat counterparts (as Gm is
smooth, it turns out that BrX is also H2

fppf(X,Gm)).

4.4. Brauer groups and function fields

In this paragraph, we link the Brauer group of an integral scheme to the
Brauer group of its function field. For a normal and integral scheme X, the
piece of notation X(1) denotes the set of integral divisors (or, equivalently, of
points of codimension 1) on X.

Proposition 4.21 Let X be an integral, normal and noetherian scheme with
function field F . Denote by j : η = SpecF → X its generic point. For
every integral divisor D of X, denote by k(D) its function field and by iD :
Spec (k(D))→ X the embedding of the generic point of D into X. Let Zk(D)

be the constant sheaf Z on Spec (k(D)).

a) There is an exact sequence of étale sheaves on X:

0→ Gm,X → j∗Gm,F
u→ DX :=

⊕

D∈X(1)

(iD)∗Zk(D).

b) Assume further that X is regular. Then the map u is surjective.
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Wa call DX the sheaf of divisors on X.

Proof : a) Let U → X be étale, connected and of finite type with generic
fibre Uη. It is sufficient (cf. [6], Example 3.39) to check that the corresponding
sequence of sections over such a U is exact. The scheme U is then integral,
as it is noetherian and normal; denote by R(U) its function field. Then

Γ(U, j∗Gm,F ) = Γ(Uη,Gm) = R(U)∗.

Define the morphism of sheaves u via the map

R(U)∗ →
⊕

D∈X(1)

((iD)∗Zk(D))(U) =
⊕

E∈U (1)

Z

defined by the valuations associated to the integral divisors on U . Since
Gm,X(U) = OU(U)∗ is the group of invertible functions on U and the se-
quence

0→ OU(U)∗ → R(U)∗ →
⊕

E∈U (1)

Z

is exact (the scheme U being integral and normal), we are done.
b) It is sufficient to check the surjectivity at the level of geometric stalks.

Let x ∈ X, A := Osh
X,x and K = FracA. Using Theorem 4.15, we have to

check that the map K∗ → ⊕
℘ Z, where the direct sum is over the prime

ideals of height 1 and the map is given by the valuations, is surjective, or in
other words that the ideal class group of A is trivial. Since A is local and
regular (it is a direct limit of regular rings), it is a UFD, whence the result.

Theorem 4.22 Let X be a noetherian, integral and regular scheme with
function field F . Then the canonical map BrX → BrF is injective. In
particular BrX is a torsion group.

Proof : Let j : SpecF → X be the generic point of X. Consider Leray
spectral sequence

Hr(X,Rsj∗Gm)⇒ Hr+s(F,Gm). (2)

We have that R1j∗Gm = 0 by Hilbert’s 90, as the sheaf R1j∗Gm is associated
to the presheaf U 7→ H1(U×X SpecF,Gm) and the fiber U×X SpecF is étale
over a field, hence is isomorphic to a disjoint union of spectra of fields. The
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exact sequence of the first terms of the spectral sequence now yields an in-
jection H2(X, j∗Gm) →֒ BrF . On the other hand, we can apply cohomology
to the exact sequence (cf. Proposition 4.21, b):

0→ Gm,X → j∗Gm,F →
⊕

D∈X(1)

(iD)∗Zk(D) → 0,

which in turn gives an injective map BrX → H2(X, j∗Gm,F ) because we
have H1(X,

⊕
D∈X(1)(iD)∗Zk(D)) = 0: indeed H1(X, (iD)∗Zk(D)) injects into

H1(k(D),Z) via Leray spectral sequence for iD, and H1(K,Z) = 0 for any
field K. Whence the result.

Without the regularity assumption, it is not always true that BrX is a
torsion group (unlike the Azumaya Brauer group Br AzX); see [1], §8.1.

It is possible to say a lot more than Theorem 4.22 when X is of dimension
1 and some additional assumptions are made. For every profinite group G,
denote by GD = H1(G,Q/Z) the group of continuous homomorphism from
G (or its abelianized group Gab) to the discrete group Q/Z.

Proposition 4.23 Let X be a noetherian, integral and regular scheme of
dimension 1 with function field K. Assume that all residue fields k(x) for
x ∈ X(1) are perfect and denote by Gx the absolute Galois group of k(x).
Then there is an exact sequence

0→ BrX → BrK →
⊕

x∈X(1)

GD
x → H3(X,Gm)→ H3(K,Gm).

Proof : Let j : SpecK → X be the generic point of X. Let x ∈ X(1), it is
a closed point of X because X is of dimension 1. By Theorem 4.15, the stalk
of R2j∗Gm at a geometric point x̄ with image x is H2(Ksh

x ,Gm) = BrKsh
x ,

where Ksh
x = Frac (Osh

X,x). This group is known (cf. Example 3.25, c) to be
zero because the residue field of the henselian discrete valuation ring Osh

X,x

is perfect and separably closed. For a geometric point η̄ with image the
generic point of X, we still have (R2j∗Gm)η̄ = 0 (it is the Brauer group of
a separably closed field). Finally R2j∗Gm = 0 and we already saw (proof of
Theorem 4.22) that R1j∗Gm = 0. Using Leray spectral sequence, this yields

H2(X, j∗Gm) = BrK; H3(X, j∗Gm) →֒ H3(K,Gm).

On the other hand, we also have Leray spectral sequence for the closed
immersion ix : x 7→ X with x ∈ X(1). Since (ix)∗ is then exact, we have
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Rq(ix)∗ = 0 for all q > 0, which gives Hr(X, (ix)∗Z) = Hr(k(x),Z) for all non
negative integers r. Set DX =

⊕
x∈X(1)(ix)∗Z, we thus have Hr(X,DX) =⊕

x∈X(1) Hr(k(x),Z). We observe that this group is zero for r = 1, and is⊕
x∈X(1) GD

x for r = 2 (cf. Example 2.27, which immediately extends to a
profinite group). Proposition 4.21 b) yields an exact sequence

0→ Gm,X → j∗Gm,K → DX → 0. (3)

Applying cohomology, we get an exact sequence

0→ BrX → BrK →
⊕

x∈X(1)

GD
x → H3(X,Gm)→ H3(X, j∗Gm), (4)

whence the results because H3(X, j∗Gm) →֒ H3(K,Gm).

Remark 4.24 Assume further that K is of characteristic zero4. Then the
fields Ksh

x are of cohomological dimension 1, (cf. Theorem 2.53 and Exam-
ple 3.25, c). This implies that Hq(Ksh

x ,Gm) = 0 for every q > 0. In this
case, we have Rqj∗Gm = 0 for all q > 0, hence Hq(X, j∗Gm) identifies with
Hq(K,Gm) and sequence (4) extends to a long exact sequence

...→ Hr(X,Gm)→ Hr(K,Gm)→
⊕

x∈X(1)

Hr−1(k(x),Q/Z)→ Hr+1(X,Gm)→ ...

Example 4.25 a) Assume that A is a discrete valuation ring with perfect
residue field κ and function field K. Then exact sequence (4) becomes

0→ BrA→ BrK → H1(κ,Q/Z).

The map ∂A : BrK → H1(κ,Q/Z) is called the residue map. There are
other definitions for this map (Serre residue, Witt residue), which coincide
up to a sign (see [1], §1.4).

b) If we assume further A henselian, then BrA ≃ Brκ, and the previ-
ous sequence has a section given by the composition of the inflation map
H1(κ,Q/Z) ≃ H2(κ,Z)→ H2(K,Z) with the map H2(K,Z)→ H2(K,Gm)
induced by m 7→ πm, m ∈ Z, where π is a uniformizing parameter of A. In
particular the residue map is surjective if A is henselian. Using Remark 4.24,
one actually has short split exact sequences

0→ Hr(A,Gm)→ Hr(K,Gm)→ Hr−1(κ,Q/Z)→ 0.

4This assumption is actually superfluous, see [1], Prop 1.4.5.
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for all r ≥ 2. We recover in particular that the Brauer group of a p-adic field
or a finite extension of Fq((t)) is isomorphic to Q/Z.

c) If X is a smooth curve over an algebraically closed field k, then its
function field K is C1 by Tsen’s Theorem, so Hr(K,Gm) = 0 for r > 0, and
we also have Hr(k(x),Q/Z) = 0 for all closed points x of X, the field k(x)
being algebraically closed. Thus Hq(X,Gm) = 0 for all q ≥ 2.

4.5. Purity and residues

The next theorem identifies more precisely the Brauer group of a regular
integral scheme (of arbitrary dimension) inside the Brauer group of its field of
functions. It is much more difficult than Proposition 4.23, and uses Gabber’s
purity Theorem; see [6], Theorem 6.9. and 6.10.

Theorem 4.26 Let X be an integral, regular, noetherian, excellent scheme
(e.g. a scheme of finite type over a field or over Z). Let U be a non empty
open subset of X, set Z = X − U (with its reduced structure) and denote by
c the codimension of Z. Let ℓ be a prime invertible on X.

a) If c ≥ 2, then the restriction map (BrX){ℓ} → (BrU){ℓ} is an iso-
morphism.

b) Assume c = 1; denote by D1, ..., Dm the irreducible components of Z of
codimension 1 in X and by K1, ..., Km their respective function fields. Then
there is an exact sequence

0→ (BrX){ℓ} → (BrU){ℓ} →
m⊕

i=1

H1(Ki,Qℓ/Zℓ).

If Z is further assumed to be regular, then the groups H1(Ki,Qℓ/Zℓ) can
be replaced by their subgroups5 H1(Di,Qℓ/Zℓ).

Corollary 4.27 Let X be an integral, regular, noetherian, excellent scheme
with function field K. Let ℓ be a prime invertible on X. Then there is an
exact sequence

0→ (BrX){ℓ} → (BrK){ℓ} →
⊕

D∈X(1)

H1(KD,Qℓ/Zℓ),

where X(1) is the set of integral divisors (or points of codimension 1) of X
and KD is the function field (=residue field of the corresponding point of
codimension 1) of D.

5See [6], Remark 4.23, for the fact that the restriction map H1(Di,Qℓ/Zℓ) →
H1(Ki,Qℓ/Zℓ) is indeed injective.
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Proof : Take the direct limit over all non empty affine open subsets U of
X in Theorem 4.26 and apply Example 4.13, d).

If all residual characteristics of X are zero, we can of course remove {ℓ}
everywhere and replace Qℓ/Zℓ by Q/Z =

⊕
ℓQℓ/Zℓ.

Remark 4.28 Let x be a point of codimension 1 of X with residue field k(x)
(thus k(x) is the function field KD of the divisor D defined as the Zariski
closure of {x}). The residue map (BrK){ℓ} → H1(k(x),Qℓ/Zℓ) appearing
in the previous theorem coincides (up to a sign) with the map defined 6 in
Example 4.25, a) with A = OX,x (which can also be defined by going to the
henselization Ah of A). See [1], Theorem 3.7.3.

Corollary 4.29 Let X be a regular, noetherian, integral, excellent scheme
with function field K. Let ℓ be a prime number invertible on X. Then:

a) The subgroup (BrX){ℓ} of BrK is given by

(BrX){ℓ} =
⋂

x∈X(1)

Br (OX,x){ℓ}.

b) Let (Ai)i∈I be the family of discrete valuation rings with quotient field
K which lie over X (that is: such that the map SpecK → X factors through
SpecAi). Then

(BrX){ℓ} =
⋂

i∈I

(BrAi){ℓ} ⊂ (BrK){ℓ}.

c) Assume further that X is proper over a scheme S. Let (Bi)i∈I be the
family of discrete valuation rings with quotient field K which lie over S. Then

(BrX){ℓ} =
⋂

i∈I

(BrBi){ℓ} ⊂ (BrK){ℓ}.

The main example of application of c) is a proper and regular variety X
over a field k; then (Bi) is the family of d.v.r. containing k and with function
field K.

6It is not necessary to assume k(x) perfect here, because ℓ is invertible on X .
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Proof : a) follows from Corollary 4.27 and Remark 4.28. b) is an imme-
diate consequence of a). c) is deduced from b) using the valuative criterion
of properness.

Remark 4.30 K. Cesnavicius has proved recently that for every regular,
noetherian and integral scheme X and every open subset U of X such that
codim(X − U,X) ≥ 2, the restriction map BrX → BrU is an isomorphism
(without restriction to (BrX){ℓ} with ℓ invertible on X). A consequence is
that it is possible to remove the {ℓ} everywhere in Corollary 4.29, see [1],
Theorem 3.7.8. and Proposition 3.7.10.

4.6. Birational invariance of the Brauer group

We start with a definition due to D. Saltman.

Definition 4.31 Let k ⊂ K be an extension of fields. The unramified
Brauer group of K over k is the subgroup Brnr (K/k) of BrK consisting
of those elements α such that for every discrete valuation ring A with quo-
tient field K and such that k ⊂ A, the element α is in the image of the map
BrA →֒ BrK

Observe that if we assume further that k is of characteristic zero, then the
condition α ∈ Brnr (K/k) can be rephrased as: for every discrete valuation
ring A with quotient field K and such that k ⊂ A, the residue ∂A(α) is zero
(since the residue field of A is then automatically perfect).

Remark 4.32 Let k ⊂ K ⊂ L be field extensions. Then it isnot difficult to
see from the definition that the image of Brnr (K/k) by the restriction map
BrK → BrL is a subgroup of Brnr (L/k).

Theorem 4.33 Let X be a proper, integral, regular variety over a field k
with function field K = k(X). Then Brnr (K/k) is the subgroup BrX of
BrK.

Proof : If k is of characteristic zero, this follows immediately of Corol-
lary 4.29, c). In the general case, one has to use Cesnavicius’s purity Theorem
(see Remark 4.30).

Corollary 4.34 (Birational invariance) Let X and Y be two k-birational
proper, integral, regular varieties over a field k. Then BrX ≃ Br Y .
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Proof : The condition that X and Y are k-birational means that there are
Zariski-dense open subsets U ⊂ X and V ⊂ Y such that U is k-isomorphic
to V , which in turn is equivalent to saying that the function fields k(X) and
k(Y ) are k-isomorphic. Now apply Theorem 4.33.

Theorem 4.33 is especially useful to compute explicitely BrX (in par-
ticular when X is given as a smooth and projective model of a possibly
singular variety, it is not necessary to explicitely write down equations for X
to compute the unramified Brauer group of its function fields).

5. Applications of the Brauer group

5.1. Birationality and stable birationality of varieties

In this paragraph, we denote by k a field with separable closure k̄ and ab-
solute Galois group Γ = Gal (k̄/k). For a k-variety X, we set X := X ×k k̄
and k̄[X ]∗ = H0(X,Gm). We let Br1X := ker[BrX → BrX ] be the alge-
braic Brauer group of X (elements of BrX that are not in Br 1X are called
transcendental).

Theorem 5.1 Assume that k̄[X ]∗ = k̄∗ (e.g. X is proper and geometrically
integral, or X = An

k). Then there is an exact sequence

0→ PicX → (PicX)Γ → Br k → Br1 X → H1(k,PicX)→ N → 0,

where N := ker[H3(k,Gm) → H3(X,Gm)]. If X(k) 6= ∅, then the map Br k →
Br1 X is injective and Br1 X/Br k ≃ H1(k,PicX).

Proof : By Hilbert’s Theorem 90, we have H1(k, k̄[X ]∗) = H1(k, k̄∗) = 0.
Now the sequence just consists of the exact sequence of the first terms in
Hochschild-Serre spectral sequence, given that H0(X,Gm) = k̄∗ by assump-
tion. If we assume further that X(k) 6= ∅, then the structural morphism
X → Spec k has a section, hence the morphism Br k → BrX (as well as
the morphism H3(k,Gm)→ H3(X,Gm)) has a retraction, hence is injective,
which gives the second statement.

Theorem 5.2 Let S be an integral, regular, noetherian scheme with function
field K (assumed of characteristic zero). Then the canonical map BrS →
Br (An

S) is an isomorphism.
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Proof : By induction on n, it is sufficient to deal with the case n = 1.
The map BrK → Br1A

1
K is an isomorphism thanks to Theorem 5.1, because

the Picard group of the affine space is zero. Besides, we have BrA1
K
= 0 by

Tsen’s Theorem (the separable closure K of K being algebraically closed),
whence the result for S = SpecK.

In the general case, we observe that there is a commutative diagram

Br (A1
S) −−−→ Br (A1

K)x
x

BrS −−−→ BrK

The horizontal maps are injective by Theorem 4.22 (both groups on the
first line are subgroups of Br (K(T ))). Choose a section (which clearly exists,
for example via the choice of a Z-point of A1

Z
) of the structural morphism

A1
S → S, it induces a retraction s of the left vertical map and a retraction

sK of the right vertical map. By the case S = SpecK, we already know that
sK is an isomorphism, hence so is s by diagram chasing.

Corollary 5.3 Let k be a field of characteristic zero. Then the canonical
map Br k → BrPn

k is an isomorphism for n ≥ 1. More generally BrS ≃
BrPn

S for every S as in Theorem 5.2.

Proof : Let K ≃ k(T1, ..., Tn) be the function field of Pn
k and An

k . By
Theorem 4.22, we have injective maps

Br k → BrPn
k → BrAn

k → BrK,

and the corresponding map Br k → BrAn
k is surjective, whence the result.

The argument for an arbitrary noetherian, integral, regular S (with function
field of characteristic zero) is similar.

Remark 5.4 Theorem 5.2 still holds in characteristic p provided one re-
stricts to the ℓ-primary torsion of the Brauer group with ℓ 6= p. Over an arbi-
trary perfect field k of characteristic p, we still have (Br k){p} ≃ Br (A1

k){p},
the separable closure of k being algebraically closed. This is no longer true
over a non perfect field or for Br (An

k) (n ≥ 2) over an algebraically closed field
of characteristic p, see [1], Remark 6.1.2. Corollary 5.3 still holds in positive
characteristic, but the proof is more complicated, see [1], Theorem 6.1.3.

We now go back to the unramified Brauer group.
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Definition 5.5 Two k-varieties X and Y are stably k-birationally equivalent
if there exists non negative integersm and n such thatX×kPk

m is k-birational
to Y ×k Pk

n. A k-variety X is stably k-rational if X × Pk
n is k-rational for

some n.

Theorem 5.6 Let k be a field of characteristic zero. Let X and Y be integral
k-varieties with respective function fields k(X) and k(Y ). Then, if X and Y
are stably k-birationally equivalent, we have Brnr (k(X)/k) ≃ Brnr (k(Y )/k).
In particular, if X is stably k-rational, then Brnr (k(X)/k), is trivial, that is
isomorphic to Br k.

Proof : Let X ′ (resp. Y ′) be a smooth and proper k-variety which is
k-birational to X (resp. to Y ). The existence of X ′ is ensured by Hironaka’s
Theorem on resolution of singularities. The assumption that X and Y are
stably k-birational yields integers m,n such that the proper and smooth
varieties X ′ ×k Pk

m and Y ′ ×k Pk
n are k-birational. By corollary 4.34:

Br (X ′ ×k Pk
m) ≃ Br (Y ′ ×k Pk

n).

By Corollary 5.3, we now have BrX ′ ≃ Br Y ′, hence Brnr (k(X)/k) ≃
Brnr (k(Y )/k) by Theorem 4.33.7

This theorem is very important, because it can be used to prove that two
varieties are not stably k-birationally equivalent, e.g. that a k-unirational
variety is not stably k-rational.

5.2. An example of computation of the Brauer group

Let k be a field with separable closure k̄ and absolute Galois group Γ =
Gal (k̄/k). Let A, B be Γ-modules. Then there are bilinear maps, called
cup-product

Hr(k, A)×Hs(k, B)→ Hr+s(k, A⊗Z B).

See for instance [5], §2.5., for the main properties of the cup-product.

Example 5.7 a) An interesting case is the following: let n be a positive
integer which is not divisible by Char k. Consider the cup-product pairing

H1(k,Z/n)×H1(k, µn)→ H2(k, µn) = (Br k)[n], (χ, b) 7→ χ ∪ b.
7It is also possible to avoid the use of Hironaka’s Theorem by proving directly (via the

definition with residues) that Brnr (K/k) ≃ Brnr (K(T )/k) for every field extension K/k,
see [6], Prop 7.7.
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The image of a pair (χ, b) (consisting of an n-torsion character χ of the
Galois group Γ and the class b modulo k∗n of an element of k∗) is the class
in the Brauer group of what is called the cyclic algebra associated to (χ, b),
which is an example of central simple k-algebra (cf. [2], Prop 2.5.2).

b) The special case n = 2 corresponds to the quaternion algebra (a, b)
associated to a, b ∈ H1(k,Z/2) = k∗/k∗

2
. Recall that (a, b) is zero in Br k if

and only if the equation x2 − ay2 − bz2 = 0 has a non trivial solution in k.
The map from k∗ × k∗ to (Br k)[2] that sends a pair a, b to (a, b) is therefore
bilinear.

Let K be the fraction field of a discrete valuation ring A with residue
field κ whose characteristic does not divide n. There is a residue map ∂A :
(BrK)[n] → H1(κ,Z/n). The following result relates the cup-product with
this residue map:

Proposition 5.8 Let α ∈ H1(A,Z/n) with image α0 ∈ H1(κ,Z/n). Let
b ∈ K∗, denote by vA(b) ∈ Z its valuation and by β its image in H1(K,µn) =
K∗/K∗n. Then

∂A(α ∪ β) = vA(b)α0 ∈ H1(κ,Z/n).

Proof : See [1], §1.4.1., Formula (1.18).

Corollary 5.9 Assume that the characteristic of κ is not 2. Let a ∈ A∗ and
b ∈ K∗. Then the residue ∂A((a, b)) of the symbol (a, b) ∈ (BrK)[2] is zero
as soon as vA(b) is even or the image of a in κ∗ is a square.

Theorem 5.10 (D.H., 1994) Let a ∈ C∗. Let V be the C-variety defined
in the affine space A4 by the equation

y2 − tz2 = (x2 + a)(1 + t2 − t(x2 + a+ 2)).

Then (t, x2 + a) is a non-zero element of Brnr (C(V )).

This yields an example of a C-variety which is not stably rational. Nev-
ertheless V is unirational. Indeed it is dominated by the rational variety V ′

obtained via the change of variables t = u2, which is rational: by the change
of variables y′ = y − uz, z′ = y + uz, V ′ is birational to a variety given by
the equation y′z′ = Q(x, u), where Q is a polynomial.
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Proof : (See also [4]). Set

f(x) := (x2 + a); g(x, t) := (1 + t2 − t(x2 + a + 2)).

To show that (t, f(x)) 6= 0, observe that V is fibered over the affine plane
(via t, x), the generic fibre being a conic X over F := C(x, t) with function
field F (X) = C(V ). The equation of X is

y2 − tz2 = f(x)g(x, t),

A general property of conics (see the exercises) is that the kernel of BrF →
Br (F (X)) is of order at most 2, generated by (t, f(x)g(x, t)). Therefore, to
show that (t, f(x)) is not in this kernel, it is sufficient to show that (t, f(x))
and (t, g(x, t)) are both non zero in BrF , that is that f(x) and g(x, t) are
not norms of the extension F (

√
t)/F , which is not difficult to check.

We now have (t, f(x)) = (t, g(x, t)) in Br (C(V )). To show that (t, f(x)) is
in Brnr (C(V )), the method consists of proving that all its residues (associated
to discrete valuation rings A containing C and with fraction field C(V )) are
zero. We use Corollary 5.9. Let M be the maximal ideal of A and κ its
residue field. If the valuation v(x) of x is > 0, then v(x2 + a) = 0 and x2 + a
coincide with a modulo M, hence is a square in κ and the residue is zero.
The case v(x) < 0 is similar, as (t, x2 + a) = (t, 1 + a/x2), so we can assume
v(x) = 0. Now it v(t) > 0, then v(g(x, t)) = 0 and g(x, t) coincides with 1
modulo M, hence the residue is again zero; the case v(t) < 0 is similar as
the coefficient of t2 is a square. Finally, the only possibility to obtain a non
trivial residue is when v(t) = v(x) = 0, with v(f(x)) and v(g(x, t)) both odd,
hence strictly positive. But this implies that (t− 1)2 = 0 modulo M, hence
t becomes a square in κ and the residue is again trivial.

5.3. The Brauer-Manin obstruction

Let k be a number field. Denote by Ω the set of all places of k and by
kv the completion of k at v. Local class field theory gives a one-to-one
homomorphism invv : Br kv → Q/Z, which is an isomorphism if v is not
archimedean. Global class field theory yields an exact sequence

0→ Br k →
⊕

v∈Ω

Br kv

∑
invv→

⊕

v∈Ω

Q/Z→ 0. (5)

Observe that the injectivity of the first map implies that a projective
conic has a point over k as soon as it has a point over every completion of
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k: this is the Hasse principle for conics (the result holds more generally for
quadrics, but is more difficult in dimension 2).

Now let X be a (smooth) k-variety. Set X(kΩ) =
∏

v∈OmegaX(kv). Define
the Brauer-Manin pairing (introduced by Manin in 1970):

X(kΩ)× BrnrX → Q/Z, ((xv), α) 7→
∑

v∈Ω

invv(α(xv)).

The sum is well-defined, because the property α ∈ BrnrX implies8 that
α(xv) ∈ Br (Ov) = 0 for almost all v: indeed take a smooth compactification
Z of X, and spread out X,Z, and α ∈ BrZ over the ring of S-integers Ok,S
for some finite S ⊂ Ω; then α(xv) ∈ Br (Ov) for v 6∈ S thanks to the valuative
criterion of properness applied to a proper and smooth model of Z over Ok,S.

Let X(kΩ)
Br be the left kernel of the Brauer-Manin pairing. Denote by

X(k) the set of k-points of X, embedded diagonally into X(kΩ). Exact
sequence (5) yields

X(k) ⊂ X(kΩ)
Br ⊂ X(kΩ).

Continuity of Brauer-Manin pairing even shows that the closure X(k) of
X(k) in X(kΩ) for the weak topology (=direct product topology) satisfies
X(k) ⊂ X(kΩ)

Br . In particular:
-If X(kΩ)

Br = ∅, then X(k) = ∅: this is the Brauer-Manin obstruction to
the existence of a rational point ("failure of the Hasse-principle").

-If X(kΩ)
Br 6= X(kΩ), then X(k) is not dense in X(kΩ): this is the

Brauer-Manin obstruction to weak approximation.

Theorem 5.11 (Iskovskih, 1970) Let V be the smooth Q-variety defined
in the affine space by the equation

y2 + z2 = (x2 − 2)(3− x2) 6= 0.

Then V has points in every completion of Q but V (Q) = ∅. The same holds
for every smooth and projective model X of V .

Proof (sketch of): The property that V has points everywhere locally
is easy to check via Hensel’s lemma. Then the element α := (−1, x2 − 2) ∈
Br (Q(V )) actually belongs to Brnr (Q(V )) ≃ BrX (one show that all its
residues are trivial).

Local computations (quite similar to the proof of Theorem 5.10) then
show that for every local point Pv ∈ V (Qv), we have α(Pv) = 0, except if

8The converse is true, but much more difficult: see [3], Th. 2.1.1.
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v is the finite place 2 where α(Pv) 6= 0. Hence V (Q) = ∅ thanks to the
Brauer-Manin obstruction associated to α. The same argument works for X
because V (which is smooth) is isomorphic to a Zariski open subset of X, so
V (Qv) is dense in X(Qv) by the implicit function Theorem.

Remark 5.12 [4] gives examples (similar to the one of Theorem 5.10) of
Brauer-Manin obstruction (to the Hasse principle as well as to weak ap-
proximation) given by a transcendental element of BrX and not detected by
algebraic elements (i.e. elements of Br 1X).

It is not true in general that for a (proper, smooth, geometrically integral)
variety X, we have X(kΩ)

Br = X(k). The first example with X(kΩ)
Br 6= ∅

and X(k) = ∅ was given by Skorobogatov in 1997 (see [11], chapter 8).
Nevertheless, the following conjecture has been made by Colliot-Thélène:

Conjecture 5.13 Let X be a proper, smooth, and geometrically integral va-
riety over a number field k. Assume that X := X×k k̄ is rationally connected
(e.g. unirational). Then X(kΩ)

Br = X(k).

Here are a few known cases of this conjecture:
-Châtelet surfaces, that is: smooth proper models of affine surfaces with

equation y2− az2 = P (x), where a ∈ k∗ is a constant and P is a polynomial
of degree 4 (Colliot-Thélène, Sansuc, Swinnerton-Dyer, 1987).

-(smooth proper models of) Quotients G/H of a connected linear alge-
braic group by a connected subgroup (Borovoi, 1996).

-(smooth proper models of) Quotients SLn/H , where H is constant and
supersolvable (Harpaz-Wittenberg, 2020).

Julian Demeio recently announced a generalization of this last result to
the case when H is any finite group scheme with H(k̄) solvable. It is also
known (Demarche-Lucchini Arteche) that the general case of a homogeneous
space X = G/H (where G is any linear algebraic group) reduces to dealing
with SLn/H for H a finite group scheme. The latter seems beyond of reach
(even if H is assumed to be constant), as (by an argument due to Ekedahl
and Colliot-Thélène) it implies the inverse Galois problem for H .
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