Étale cohomology and the Brauer group: exercises (I)

Unless explicitly specified, all schemes are equipped with their étale topology. Recall that if Γ is a profinite group, M is a discrete Γ -module, U is an open subgroup of Γ , and i is a strictly positive integer, then the kernel of the restriction map $H^i(\Gamma, M) \to H^i(U, M)$ is an *n*-torsion group, where $n := [\Gamma : U]$.

1. a) Let $\pi : X_{E''}'' \to X_{E'}'$ and $\pi' : X_{E'}' \to X_E$ be continuous morphism of sites. Show that $(\pi'\pi)_* = \pi'_*\pi_*$ and $(\pi'\pi)^* = \pi^*\pi'^*$.

b) Let $X' = \operatorname{Spec}(\mathbf{Z}/p)$ and $X = \operatorname{Spec}(\mathbf{Z}/p^2)$, equipped with their étale sites. Let $\pi : X' \to X$ be the corresponding closed immersion. Show that the canonical map of sheaves $\pi^*((\mathbf{G}_m)_X) \to (\mathbf{G}_m)_{X'}$ is not injective. Is it surjective ?

2. Let X be an affine \mathbf{F}_p -scheme of finite type.

a) Show that $H^i(X, \mathbf{Z}/p) = 0$ for every integer $i \ge 2$.

b) Assume that X is the affine space over \mathbf{F}_p . Show that $H^1(X, \mathbf{Z}/p) \neq 0$.

c) Let Y be a normal, connected and noetherian scheme. Let \mathcal{F} be a constant sheaf on Y. Show that for any r > 0, the group $H^r(Y, \mathcal{F})$ is torsion, and that is zero if \mathcal{F} is uniquely divisible.

d) Deduce that $H^2(Y, \mathbb{Z})$ is isomorphic to $H^1(Y, \mathbb{Q}/\mathbb{Z})$, and that for every n > 0, there is an isomorphism $H^1(Y, \mathbb{Z}/n) \simeq_n H^1(Y, \mathbb{Q}/\mathbb{Z})$.

e) Give an example of a projective and smooth variety Y over an algebraically closed field of characteristic p > 0 such that $H^2(Y, \mathbf{Z}/p) \neq 0$.

3. Let X be a smooth and integral variety over a field of characteristic zero k. Let A be an abelian variety (that is: a projective, smooth and connected algebraic group over k). Recall (Chevalley) that any k-rational map from X to A extends to a k-morphism $X \to A$. Let $j : \eta \to X$ be the inclusion of the generic point of X, set $A_{\eta} = A \times_k \eta$ and $A_X = A \times_k X$.

a) Show that $j_*A_\eta = A_X$ as étale sheaves on X.

b) Show that for all integers q > 0, the sheaves $R^q j_* A_\eta$ are torsion.

c) Deduce that the groups $H^i(X, A) := H^i(X, A_X)$ are torsion for all i > 0.

d) Let i > 0. Let $\alpha \in H^i(X, A)$. Show that there exists n > 0 such that α is in the image of the natural map $H^i(X, A[n]) \to H^i(X, A)$, where A[n] is the *n*-torsion subgroup of A.

4. Let X be a noetherian scheme. Let $x \in X$ be a point of X; denote by $i : \operatorname{Spec}(k(x)) \to X$ the corresponding morphism. Let \mathcal{F} be a sheaf of abelian groups on $\operatorname{Spec}(k(x))$.

a) Show that for every $q \ge 1$, the sheaves $(R^q i_*)(\mathcal{F})$ are torsion on $X_{\text{\acute{e}t}}$.

b) Deduce that for all p > 0, the groups $H^p(X, i_*\mathcal{F})$ are torsion.

c) Assume further that X is integral and regular. Show that the groups $H^q(X, \mathbf{G}_m)$ are torsion for $q \geq 2$ (hint: use the sheaf of divisors D_X on X).

5. A sheaf of abelian group \mathcal{F} on $X_{\text{\acute{e}t}}$ is *locally constant* if there is a covering $(U_i \to X)_{i \in I}$ of X for the étale topology such that the restriction $\mathcal{F}_{|U_i|}$ is constant for all $i \in I$.

a) Let $f: Y \to X$ be a morphism of schemes. Show that if \mathcal{F} is locally constant on X, then $f^*\mathcal{F}$ is locally constant on Y.

b) Show that the direct image $f_*\mathcal{F}$ of a locally constant sheaf \mathcal{F} on Y is not necessarily locally constant.

c) Describe the locally constant sheaves on X when $X = \operatorname{Spec} k$ is the spectrum of a field.