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1. Preliminaries

1.1. Introduction: why is étale cohomology useful ?

Classical cohomology of sheaves on a topological space can be applied to a
scheme X, which is equipped with Zariski topology. The behavior of the
corresponding cohomology groups is satisfying when one restricts to quasi-
coherent OX -modules. However, Zariski topology is often too coarse to deal
with more general sheaves, including constant sheaves of finite groups. Here
are a few examples:

• Galois cohomology of a field k cannot be described in terms of coho-
mology of the topological space Spec k (which consists of one single
point).

• More generally, X-torsors under a group G (they are analogs of G-
principal bundles in differential or analytic geometry) are not necessar-
ily locally trivial for Zariski topology (unlike vector bundles). Whence
the necessity of introducing a finer topology.

• Assume that X is a smooth complex variety. Cohomology groups
like H i(X(C),Z/nZ) (taken with respect to the complex topology on
X(C)) play an important role, but they do not coincide with the Zariski
groups H i(X,Z/nZ) because again, Zariski topology is much coarser
than complex topology.
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It is therefore necessary to extend the notion of topology, so that we get
something non trivial even in the case X = Spec k. It turns out that the
good framework to do this is to consider Grothendieck topologies (see subsec-
tion 2.1.). An especially interesting case is étale topology and its associated
cohomology, which will be the main topic of this course (although we will
also briefly discuss other examples, like flat topology).

For applications in arithmetic and geometry, a very important example
of étale cohomology group is the Brauer group of X, defined as H2(X,Gm)
(where Gm is the sheaf represented by the multiplicative group on X). It
coincides with the classical Brauer group Br k when X is the spectrum of a
field k, and has good functorial properties as well as good invariance prop-
erties. This object (which is still nowadays the topic of very active research)
will be discussed in sections 6. and 7.

1.2. Flat and étale morphisms

Unless explicitely specified, all rings are assumed to be commutative. Nota-
tion like f : Y → X will always denote a morphism of schemes. The local
ring of a scheme X at x is denoted by OX,x, its maximal ideal by MX,x,
and its residue field OX,x/MX,x by k(x). By convention, a homomorphism
of local rings u : A → B satisfies u(MA) ⊂ MB, where MA and MB are
the respective maximal ideals of A and B. For every ring A and f ∈ A, the
piece of notation Af stands for the localization A[1/f ].

Recall that an algebra B over a ring A is finitely generated if B is isomor-
phic to a quotient A[X1, ..., Xr]/I where I is some ideal, finitely presented if
there is such an isomorphism with I of finite type as an ideal (if B is finitely
presented, then the kernel of any surjection A[X1, ..., Xr]→ B is a finite type
ideal, see [19], Lemma 6.3; observe also that finitely generated coincides with
finitely presented if A is noetherian). The algebra B is said to be finite over
A if it is an A-module of finite type.

Similarly, an A-module M is finitely presented if M is isomorphic to a
quotient Ar/I, where I is a finite type sub-A-module of Ar (actually in this
case every surjective morphism u : N → M with N an A-module of finite
type satisfies that ker u is of finite type as well by [19], Lemma 5.3). A finite
type A-module is automatically finitely presented if A is noetherian.

In this paragraph, we recall the main properties of flat and étale mor-
phisms. Most proofs can be found in paragraph I.2., I.3. and I.4 of [12]
(caution: in this reference, it is implicitely assumed that all schemes are lo-
cally noetherian, so it is sometimes necessary to replace "finitely generated"
or "of finite type" by "finitely presented" to deal with the general case).
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Definition 1.1 A morphism f : Y → X is said to be locally of finite type
(resp. locally of finite presentation) if for every pair of affine open subsets
V ⊂ Y and U ⊂ X such that f(V ) ⊂ U , the OX(U)-algebra OY (V ) is finitely
generated (resp. is finitely presented).

Both properties are local on the base (meaning that they hold if and only
if X can be covered by affine subschemes Xi such that all induced morphisms
f−1(Xi) → Xi have the required property; see [24], §15 and §21), and they
coincide if the scheme X is locally noetherian.

Recall also that f is quasi-compact if the inverse image of every open affine
subset of X is quasi-compact (=can be covered by finitely many affine open
subsets); again this property is local on the base, cf. [7], Prop. 2.12. The
morphism f is quasi-separated if the diagonal morphism ∆ : Y → Y ×X Y
associated to f is quasi-compact (this is automatic if Y is locally noetherian,
e.g. if f is locally of finite type and X locally noetherian), separated if ∆
is a closed immersion. An important property of separated (resp. quasi-
separated) scheme Y over an affine scheme S is that the intersection of two
affine open subset U1, U2 still is affine (resp. is quasi-compact), since it is
the inverse image of the affine subset U1 ×S U2 by the diagonal morphism
Y → Y ×S Y .

Definition 1.2 The morphism f is of finite type if it is locally of finite type
and quasi-compact, of finite presentation if it is locally of finite presentation,
quasi-compact, and quasi-separated.

Again, these two properties are local on the base, and they are the same if
we work with noetherian and separated S-schemes (where S is any scheme).
Recall also that a variety over a field k is a separated k-scheme of finite type.

Definition 1.3 Let A be a ring. An A-module M is flat if the functor
.⊗AM (which is always right-exact) is exact onA-modules. A homomorphism
A→ B between two rings is flat if it makes B a flat A-module.

A morphism of schemes f : Y → X is flat at y ∈ Y if the corresponding
homomorphism OX,x → OY,y is flat, where x := f(y). The morphism f is
flat if it is flat at every y ∈ Y , faithfully flat if it is flat and surjective.

Let us recall a few properties of flat morphisms in the following two
propositions:

Proposition 1.4 a) Open immersions are flat.
b) The composition of two flat morphisms is flat.
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c) Flatness is stable by base change.
d) Let M be a finitely presented module over A. Then M is flat iff it is

a projective A-module, iff the corresponding OX-module M̃ is a locally free
sheaf on X := SpecA.

e) A flat morphism SpecB → SpecA between non empty affine schemes
is faithfully flat if and only if a sequence

M1 →M2 →M3

of A-modules is exact whenever

M1 ⊗A B →M2 ⊗A B →M3 ⊗A B
is exact. This holds in particular if A→ B is a flat homomorphism of local
rings.

Reference : For a), b), and c), see [9], Proposition III.9.2. d) is [12],
Theorem I.2.9. when A is noetherian, or [19], Lemma 83.1 in the general
case. For e), see [12], Prop. 2.7.

Proposition 1.5 a) Every finite and surjective morphism between regular
schemes is flat.

b) Let f : Y → X be a morphism of schemes with Y reduced. Assume
that X is integral, regular and of dimension 1. Then f is flat if and only if
every irreducible component of Y dominates X.

c) A flat and locally finitely presented morphism is an open. map.
d) Let f : Y → X be a flat morphism between schemes of finite type over

a field k. Assume that X is irreducible and Y is pure. Then for every x ∈ X,
the fiber Yx = Y ×XSpec (k(x)) is empty or pure of dimension dim Y −dimX.

Reference : For a), see [11], chapter 6, Theorem 46. b) is [9], Proposi-
tion III.9.7. c) is Lemma 25.10 of [24]. d) follows from [9], Corollary III.9.6.

The following lemma is part of descent theory; it turns out to be quite
useful:

Lemma 1.6 Let f : A → B be a faithfully flat morphism of rings. Set
B⊗r = B ⊗A B ⊗ ...⊗A B. Define dr−1 : B⊗r → B⊗(r+1) by the formula:

dr−1 =

r∑

i=0

(−1)iei,
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where, for 0 ≤ i ≤ r:

ei(b0 ⊗ ...⊗ br−1) := b0 ⊗ ...⊗ bi−1 ⊗ 1⊗ bi ⊗ ...⊗ br−1.

Let M be an A-module. Then the sequence

0→ M
1⊗f→ M ⊗A B 1⊗d0→ M ⊗A B⊗2 → ...→ M ⊗A B⊗r 1⊗dr−1

→ M ⊗A B⊗r+1

(1)
is exact.

Proof (sketch of): [12], Proposition I.2.18 and Remark I.2.19. The fact
that (1) is a complex is shown by the usual straightforward computation.
Now the idea is that if A′ is a faithfully flat A-algebra, it is sufficient (by
Proposition 1.4, e)) to prove the required exactness after replacing M by
M ′ :=M⊗AA′, B by B′ := B⊗AA′ and f by f ′ = f⊗Id : A′ = A⊗AA′ → B′.
Picking A′ = B, we observe that f ′ : B → B ⊗A B now has a retraction,
namely b ⊗ b′ 7→ bb′, so we reduce to the case when f has a retraction, i.e.
there exists a homomorphism g : B → A such that g ◦ f = IdA. Now the
map kr : B⊗(r+2) → B⊗(r+1) defined (for r ≥ −1) by

kr(b0 ⊗ ...⊗ br+1) = g(b0)b1 ⊗ b2 ⊗ ...⊗ br+1

is a homotopy, namely it satisfies kr+1d
r+1+drkr = Id, which shows that the

complex (1) is exact for M = B. The general case is similar.

Faithfully flat morphisms have good "descent" properties, which we sum-
marize in the following statement:

Proposition 1.7 a) Let f : Y → X be a faithfully flat and quasi-compact
morphism. The morphism f is a strict epimorphism, that is: for every
scheme Z and every morphism h : Y → Z such that h ◦ p1 = h ◦ p2, there
exists a unique morphism g : X → Z such that g ◦ f = h, where p1, p2 are
the two projections Y ×X Y → Y . In other words the sequence of sets

0→ Hom(X,Z)→ Hom(Y, Z) ⇒ Hom(Y ×X Y, Z)

is exact.
b) Let f : Y → X be a morphism. Let X ′ → X be a faithfully flat and

quasi-compact morphism. Consider the morphism f ′ : Y ′ = Y ×X X ′ → X ′

obtained by base change. Then if f ′ is quasi-compact (resp. an isomor-
phism, separated, locally of finite type, of finite type, proper, affine, finite,
flat, smooth...), so is f .
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Reference : [12], Th. I.2.17 for a) and [5], §2.6 and 2.7. for b). See also
[25], §4.

Intuitively, a) corresponds to the fact that if h coincides on every pair of
points having the same image by f , then h can be factorized through f . b)
means that a lot of "good" properties can be checked after base change by a
faithfully flat morphism.

The simplest case of a) is whenX = SpecA, Y = SpecB, and Z = SpecC
are affine. In this case it immediately follows from the exactness of

0→ A→ B
e0−e1→ B ⊗A B,

which is a special case of Lemma 1.6. Indeed e0 : b 7→ 1⊗b and e1 : b 7→ b⊗1
respectively correspond to the second and the first projection Y ×X Y → Y .
Let us also remark that these good descent properties do not characterize
faithfully flat morphisms, see [25], §4.

Definition 1.8 Let f : Y → X be locally of finite presentation1. Let y ∈ Y
and x := f(y). The morphism f is unramified at y if MX,xOY,y = MY,y

and k(y) is a finite separable field extension of k(x). The morphism f is
unramified if it is unramified at every y ∈ Y .

Equivalently (using the fact that the local ring at y of the fiber Yx is
OY,y/MX,xOY,y, which is proved in [7], Lemma 6.30), a locally of finite pre-
sentation morphism f is unramified if and only if for every x ∈ X, the fiber
Yx is a disjoint union

∐
Spec ki, where every ki is a finite separable field

extension of k(x) (if f is of finite type, this is equivalent to saying that Yx
is the spectrum of a finite separable k(x)-algebra; in particular an étale and
finite type morphism is quasi-finite).

Definition 1.9 Let f : Y → X be locally of finite presentation. Then f is
said to be étale at y ∈ Y if it is flat and unramified at y. The morphism
f is étale if f is étale at every y ∈ Y (that is: f is a flat and unramified
morphism).

Equivalently, f is étale if and only if it is smooth of relative dimension 0.

Example 1.10 a) A field extension is unramified (hence étale) if and only
if it is finite and separable.

1In [27], it is only required that an unramified morphism is locally of finite type, and
the term G-unramified is used for what we call unramified.
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b) Let L be a finite extension of Qp. Then L/Qp is unramified (in
the sense of number theory) if and only if the corresponding morphism
SpecOL → SpecZp is unramified in the sense of Definition 1.9. Similarly
a finite extension of number fields L/K is usually said to be unramified at
a prime ℘ ∈ OK if the morphism u : SpecOL → SpecOK is unramified at
every prime of OL lying above ℘. Observe that the flatness of u is automatic
by Proposition 1.5, b).

c) A closed immersion between locally noetherian schemes is unramified
(but not flat in general). An open immersion is étale.

d) Let k be a field of characteristic 6= 2. Let Y be the affine scheme Y =
Spec (k[x, y]/(y2 − x)) and X = A1

k. The morphism f : Y → X, (x, y) 7→ x
is étale everywhere but at (0, 0). The fiber at 0 is isomorphic to Spec (k[ε]),
where k[ε] := k[T ]/(T 2). For a ∈ X(k) \ {0}, the fiber at a is isomorphic to
Spec (k(

√
a) if a is not a square of k∗, to (Spec k)

∐
(Spec k) otherwise.

Proposition 1.11 a) The composition of two étale morphisms is étale.
b) The property "étale" is local on the base, and stable by base change.
c) Let f : Z → Y and g : Y → X be morphisms. If g is unramified and

g ◦ f is étale, then f is étale. In particular, if S is a scheme, any morphism
between two étale S-schemes is automatically étale.

Reference : [12], Proposition I.3.3.

The notion of étale morphism is in some sense the analogue in algebraic
geometry of a local diffeomorphism in differential or analytic geometry. More
precisely, we have:

Proposition 1.12 Let f : Y → X be an étale morphism between locally
noetherian schemes. Let y ∈ Y, x := f(y). Then:

a) dimOX,x = dimOY,y.
b) The tangent map TY,y → TX,x ⊗k(x) k(y) is an isomorphism.

Reference : [7], Proposition 6.34.

Definition 1.13 Let R be a ring and F,G ∈ R[T ]. The homomorphism
R → R[T ]G/(F ) = (R[T ]/(F ))G is said to be standard étale if F is monic
and F ′ is invertible in R[T ]G/(F ). A morphism SpecB → SpecA between
affine schemes is standard étale if the induced homomorphism of rings A→ B
is isomorphic to a standard étale homomorphism.
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Such a morphism is indeed étale (cf. [12], Example I.3.4; flatness is
easy because we deal with finite and free A-modules, and the "unramified"
property follows from the characterization that uses the fibers).

Proposition 1.14 Let f : Y → X be a morphism. Then f is étale if and
only if for every y ∈ Y and x := f(y), it satisfies one of the following
equivalent conditions:

a) There exist affine open subsets V ⊂ Y, U ⊂ X with the conditions
y ∈ V and f(V ) ⊂ U , such that the induced morphism V → U is standard
étale.

b) There exist affine open subsets V = SpecC of y and U = SpecA of
x := f(y) such that C = A[T1, ..., Tn]/(P1, ..., Pn) and the determinant of the
Jacobian matrix (∂Pi/∂Tj) is invertible in C.

Reference : [12], Example I.3.4. and Theorem I.3.14. The latter uses
Zariski’s main Theorem (see [26], section 40): Let f : Y → X be a a separated
and quasi-finite morphism, with X quasi-compact and quasi-separated; then
f factors as the composition of an open immersion with a finite morphism. In
particular, we have that for any finite type étale morphism f : Y → X, there
is a Zariski-dense open subset U of X such that the restriction f−1(U)→ U
is finite and étale.

Observe that for a standard étale morphism R → C := R[T ]G/(F ), the
R-algebra C is also isomorphic to R[T,X ]/(F (T ), GX − 1), with the deter-
minant F ′(T )G of the corresponding Jacobian matrix invertible in C. Thus
it is always possible to take n = 2 in the previous proposition.

Proposition 1.15 Let f : Y → X be an étale morphism. If X is normal
(resp. regular), then Y is normal (resp. regular).

Reference : [12], Proposition I.3.17.

Recall that a scheme is normal if all its local rings are normal, that is:
they are integrally closed domains (unlike in [7], we do not require a normal
scheme to be connected in these notes).

Remark 1.16 If the scheme X is normal, then the standard étale morphism
V → U of Proposition 1.14 can be chosen such that U = SpecA, V =
Spec (A[T ]G/(F )), and F is irreducible over FracA ([12], Proposition I.3.19).
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Using the previous statements, one gets other characterizations of étale
morphisms between algebraic varieties:

Proposition 1.17 Let f : Y → X be a morphism of varieties over a field
k.

a) Assume that k is algebraically closed. Then f is étale at y ∈ Y if and
only if the induced map between completions ÔX,x → ÔY,y (where x := f(y))
is an isomorphism.

b) Assume that Y and X are smooth over k. Then f is étale at y if and
only if it satisfies condition b) of Proposition 1.12.

For a proof, see [13], Prop 2.9.

1.3. Henselian rings, henselization

Definition 1.18 Let A be a local ring with residue field κ. The ring A is
said to be henselian if the following condition is satisfied:

Let F ∈ A[T ] be a monic polynomial with image F̄ in κ[T ]. Then for
every decomposition F̄ = g0h0 in κ[T ] with g0, h0 monic and coprime, there
exist monic liftings g, h of g0, h0 in A[T ] such that F = gh.

Actually the condition ensures that the liftings g, h are unique if they do
exist ([12], Remark I.4.1).

Example 1.19 Let A be a noetherian local ring with maximal ideal M.
Assume that A is complete (for the topology associated to M, which is
Hausdorff because A is noetherian). Then A is henselian ([19], Lemma 153.9).

Theorem 1.20 Let A be a local ring with residue field κ. Then the following
conditions are equivalent:

i) A is henselian.
ii) Let F1, ..., Fn ∈ A[T1, ..., Tn]. Then every non singular common zero

a0 ∈ κn of the F̄i ("non singular" meaning that the matrix ( ∂Fi

∂Fj
(a0)) ∈Mn(κ)

is invertible) lifts to a common zero a ∈ An of the Fi.
iii) Same as ii) with n = 1, that is: for every F ∈ A[T ] and every a0 ∈ κ

such that F̄ (a0) = 0 and F̄ ′(a0) 6= 0 in κ, there exists an a ∈ A such that
ā = a0 and F (a) = 0.

iv) Every finite A-algebra is a product of local rings (hence it is a local
ring if its spectrum is further assumed to be connected).
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v) Let X = SpecA. Let f : Y → X be an étale morphism. If there is a
point y ∈ Y such that y and x := f(y) have same residue field, then f has a
section s : X → Y (that is: a morphism such that f ◦ s = idX).

These properties imply that for a smooth scheme X → A over a local
henselian ring A with residue field k, the reduction map X(A) → X(k) is
surjective.

Reference : [12], Theorem I.4.2 (and Proposition I.3.24 b) for the last
statement). Observe that conversely, if a morphism f : Y → X has a section,
then every point y ∈ Y with image x := f(y) satisfies k(x) = k(y), because
the inclusion of fields k(x) → k(y) induced by f has a retraction, which is
therefore a surjective morphism of fields, hence an isomorphism.

Definition 1.21 Let A be a local ring with maximal ideal M and residue
field κ. An étale neighborhood of A is a pair (B, ℘), where B is an étale
A-algebra and ℘ is a prime ideal of B lying over M such that the induced
map κ→ κB is an isomorphism, where κ℘ is the residue field of B at ℘.

Proposition 1.22 Let A be a local ring with maximal idealM. Then there
exists a (unique up to isomorphism) local ring Ah, equipped with a homomor-
phism A → Ah of local rings, such that: every homomorphism A → B of
local rings with B henselian factors uniquely into A → Ah → B. Besides,
Ah has same residue field as A and its maximal ideal is MAh.

Definition 1.23 The ring Ah is the henselization of A.

Namely Ah is defined as the direct limit of B, where the limit is over all
étale neighborhoods (B, ℘) such that SpecB is connected (see for example
[12], Lemma I.4.8). Besides, if A is noetherian, then so is Ah (see [1], III.4.2
or [19], section 155).

Example 1.24 a) If A is a noetherian local ring, it injects into its completion
Â, and by Example 1.19, the henselization Ah is a subring of Â. If we
assume further that A is a discrete valuation ring with quotient field K, then
Ah is the subring of Â consisting of algebraic separable elements over K,
and "separable" can be removed if A is excellent. This statement extends
to any excellent normal local ring by Artin-Popescu approximation theorem
(cf. [29], Theorem 2.4). Recall that any algebra finitely generated over an
excellent ring (e.g. over Z or over a field) is excellent, as is a localization of
an excellent ring (see [11], chapter 13 for more details on this notion).

b) The henselization of a quotient A/I is Ah/IAh.
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Definition 1.25 A local ring A is strictly henselian (or strictly local) if A
is henselian and its residue field is separably closed.

Proposition 1.26 Let A be a local ring with maximal ideal M and residue
field κ. Then there is a (unique up to isomorphism) strictly henselian ring
Ash, equipped with homomorphisms of local rings A→ Ah → Ash such that:

a) Ash has maximal idealMAsh and residue field κ̄ (the separable closure
of κ),

b) Ash is a direct limit of étale A-algebras (or étale Ah-algebras).
The ring Ash is called the strict henselization of A.

The ring Ash has a universal property similar to Ah’s: every homomor-
phism A → H with H strictly local extends to a homomorphism Ash → H ,
which is uniquely determined once the induced map between the residue
fields of Ash and H is given.

If we fix a separable closure κ̄ of κ, we can construct Ash as lim−→B, where
B runs over all commutative diagrams:

B // κ̄

A

OO ??⑧⑧⑧⑧⑧⑧⑧⑧

with A→ B étale. For a normal ring A with henselization Ah, the strict
henselization Ash is also the maximal unramified extension of Ah in the usual
sense (this is not ambiguous because an integral domain B which is finite
over Ah is also a local ring by Theorem 1.20, iv).

Definition 1.27 Let X be a scheme. A geometric point of X is a morphism
ux : x̄→ X, where x̄ is the spectrum of a separably closed field. We denote
by x ∈ X the point ux(x̄).

An étale neighborhood of a geometric point x̄ is a commutative diagram
x̄ //

��❄
❄❄

❄❄
❄❄

U

��
X

with U → X étale.

Thus OX,x̄ := Osh
X,x is the limit of OU(U) over all étale neighborhoods of

x̄. Changing the geometric point x̄ with image x is equivalent to changing
the separable closure of the residue field k(x) when constructing the strict
henselization of OX,x. The ring OX,x̄ will play the same role for the étale
topology as the ring OX,x for the Zariski topology.
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2. Étale topology and sheaves

In this section (and the next one), some familiarity with the language of
categories and functors is assumed. A good introduction is [30], Appendix;
a summary of the main properties can be found in [8], Appendix A.

2.1. Grothendieck topologies

Let X be a scheme. Denote by Sch/X the category of X-schemes. Consider
a full subcategory CX of Sch/X (so the morphism between two objects of
CX are the morphisms of X-schemes).

Definition 2.1 A Grothendieck topology on CX consists of the datum of a
subclass E of morphisms in CX (called the open sets) satisfying:

i) Every isomorphism is in E.
ii) A composition of morphism in E is in E.
iii) If V → U is in E and W → U is an arbitrary morphism in CX , then

the pull-back V ×U W →W is in E.
A covering (for this Grothendieck topology) of an object U ∈ CX is a

family of morphisms fi : Ui → U , where every fi is in E and
⋃
i fi(Ui) = U .

The pair consisting of CX and the family of all coverings is called a site, and
is denoted by XE .

Remark 2.2 There is a more general definition of Grothendieck topologies
and sites, associated to an arbitrary small category (cf. for instance [22]),
but the above definition will be sufficient for our purposes.

Example 2.3 a) The small Zariski site Xzar: CX is the category of open
subschemes of X and E is the class of open immersions.

b) The big Zariski site XZar: CX is the category of all X-schemes and E
is the class of open immersions.

c) The small étale site Xét: CX is the category of all étale X-schemes and
E is the class of étale maps (actually in this example, every morphism in CX
is in E thanks to Proposition 1.11, c).

d) The big étale site XÉt: CX is the category of all X-schemes and E is
the class of étale maps.

e) The (big) flat site Xfppf : CX is the category of all X-schemes and E is
the class of flat and locally finitely presented morphisms.
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In these lectures, "étale site" (resp. "Zariski site") will always refer to
the small étale site (resp. small Zariski site), and "flat site" to the big flat
site.

Definition 2.4 Let π : X ′ → X be a morphism of schemes. Let XE (resp.
X ′
E′) be a site with underlying scheme X (resp. X ′). The morphism π is

said to induce a continuous map of sites X ′
E′ → XE (often also denoted π)

if it satisfies the two following properties:
i) For every Y ∈ CX , the scheme Y ×X X ′ is in CX′.
ii) For every covering (Ui → Y ) in XE, the family (Ui×XX ′ → Y ×XX ′)

is also a covering in X ′
E′.

Observe that the axioms extend the classical property that a map of
topological spaces is continous if and only if the inverse image of every open
subset is an open subset.

Remark 2.5 a) Again, this definition can be extended to sites in the sense
of [22], using a functor from one category to the other one.

b) For all sites in Example 2.3, condition ii) is equivalent to saying that
for every open set V → U in XE, the pull-back V ×X X ′ → U ×X X ′ still is
an open set in X ′

E′ (indeed in these examples the image of V is a Zarisi open
subset of U by Proposition 1.5, c).

Example 2.6 a) Let X be a scheme. Then the identity map on X defines
continuous maps of sites

Xfppf → XÉt → Xét → Xzar.

From left to right, the topology gets coarser and coarser.
b) Every morphism of schemes X ′ → X induces a continuous map of

sites X ′
E → XE, where E is any one of the sites of Example 2.3, thanks to

stability by base change of flatness, étaleness etc.

2.2. Presheaves and sheaves

Definition 2.7 Let X be a scheme. Let XE be a site with underlying cate-
gory CX . A presheaf (of abelian groups) 2 on XE is a contravariant functor
P from CX to the category of abelian groups. The group of sections of P
over Y ∈ CX is Γ(Y,P) := P(Y ). To every morphism u : Y ′ → Y in CX
is associated a restriction map F(Y )→ F(Y ′), which we usually denotes by
s 7→ s|Y ′ when the morphism u is understood.

2Similar definitions can be given for sets, rings etc.
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Observe that the definition of a presheaf (unlike the definition of a sheaf
below) only depends on CX (not on E). As in the case of sheaves on a
topological space, the kernel and cokernel of a morphism F → G of presheaves
are just the presheaves

Y 7→ ker[F(Y )→ G(Y )]; Y 7→ coker [F(Y )→ G(Y )].

In particular a sequence of presheaves in exact in P (XE) if and only if the
corresponding sequences of sections over Y is exact for every Y ∈ CX . This
makes the category of presheaves on XE an abelian category, denoted by
P (XE) (or sometimes P (X) if E is understood).

Definition 2.8 Let X be a scheme. Let G be anX-scheme. A group scheme
structure on G consists of giving a group structure on G(Y ) := HomX(Y,G)
for every X-scheme Y , such that the maps G(Y )→ G(Y ′) are group homo-
morphisms for every morphism Y ′ → Y of X-schemes.

Example 2.9 a) A commutative group scheme G over X defines a presheaf
via Y 7→ G(Y ). Examples are: the additive group Ga,X = X ×Z Z[T ], the
multiplicative group Gm,X = X ×Z Z[T±1], or the group of n-roots of unity
µn,X = X×Z (Z[T ]/(T

n−1)). For an affine Y = SpecA, we have Ga(A) = A,
Gm(A) = A∗, and µn(A) is the n-torsion subgroup of A∗. Observe that
in the special case when G itself is in CX and F is a presheaf on XE, a
section s ∈ F(G) induces a presheaf morphism G → F (for U ∈ CX , send
f ∈ G(U) = HomX(U,G) to the restriction s|U induced by f), and vice-versa
(if ϕ : G → F is a presheaf morphism, take for s the image of IdG by the
map G(G)→ F(G) induced by ϕ).

b) Let F be a sheaf of OX -modules (in the usual sense). Then we can
define a presheaf W (F) on each site of Example 2.3 by the formula

W (F)(Y ) := Γ(Y, f−1F ⊗f−1OX
OY ) = H0(Y, f−1F ⊗f−1OX

OY ).

for every f : Y → X. In particular W (OX) = Ga.
c) A presheaf on the Zariski site of X is just a presheaf on the topological

space X, equipped with Zariski topology.
d) Let M be an abelian group. The constant presheaf PM on XE is

defined by PM (∅) = 0 and PM(U) = M for every non-empty X-scheme U ,
with obvious restriction maps.

Definition 2.10 A presheaf F on a site XE is a sheaf if for every scheme
Y ∈ CX and every covering (Ui → Y )i∈I , the following properties hold:
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i) Every section s ∈ F(Y ) whose restriction to each Ui is zero satisfies
s = 0.

ii) For every family (si)i∈I (where si ∈ F(Ui)) such that the restriction of
si and sj to Ui ×Y Uj coincide for all pairs i, j ∈ I, there exists an s ∈ F(Y )
whose restriction to each Ui is si.

A presheaf is said to be separated if it satisfies condition i). The two
conditions can be summarized by the exactness, for every covering (Ui → U),
of

0→ F(U)→
∏

i

F(Ui)→
∏

i,j

F(Ui ×Y Uj),

where the last map is defined by (si)i∈I 7→ ((si − sj)|Ui×Y Uj
)i,j∈I . In other

words, the sheaf condition says that the sequence

0→ F(U)→
∏

i

F(Ui) ⇒
∏

i,j

F(Ui ×Y Uj)

is exact, which means3 that the map F(U) → ∏
iF(Ui) induces a bijection

between F(U) and the subset of
∏

iF(Ui) consisting of those elements whose
images in

∏
i,j F(Ui ×Y Uj) by the two twin arrows are the same. The ad-

vantage of this last formulation is that it extends to presheaves of sets or of
non-abelian groups. Observe also that the property that the restrictions of
si and sj to Ui ×Y Uj coincide is in general non trivial even if i = j (unlike
the classical case of a sheaf on a topological space).

The category of sheaves is denoted by S(XE) (or sometimes S(X) if E is
understood). It is a full subcategory of P (XE), which will be shown later to
be an abelian category (but not an abelian subcategory of P (XE), because
the cokernels are not the same).

So far it is not obvious to check that a presheaf is a sheaf. Here is a useful
criterion:

Proposition 2.11 Let F be a presheaf for the étale or the flat site XE on
a scheme X. Then F is a sheaf if and only if it satisfies the two following
conditions:

i) For every Y ∈ CX , the restriction of F to Y is a sheaf for the usual
Zariski topology on Y .

ii) For every covering U ′ → U consisting of one single surjective map
with both U ′ and U affine, the sequence

0→ F(U)→ F(U ′) ⇒ F(U ′ ×U U ′)

is exact.
3Sometimes the same piece of notation is used without puting a left-zero in the sequence.
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Proof : Since open immersions are étale (hence flat and locally of finite
presentation), condition i) is necessary; condition ii) obviously is also nec-
essary, since it is the sheaf condition for the special case of a covering of
an affine scheme consisting of one single affine scheme. We will prove the
sufficiency in the case of the flat site (the proof for the étale site is similar).

Condition i) shows that F(V ) = ∏F(Vi) when V =
∐
Vi is the disjoint

union of the schemes Vi. It is therefore sufficient to prove that the sequence

0→ F(U)→ F(U ′) ⇒ F(U ′ ×U U ′) (2)

is exact when f : U ′ → U is such that U ′ =
∐

j∈J U
′
j and (U ′

j → U) is a
covering for the flat site. By condition ii), (2) is indeed exact when J is finite
and we assume further that U and all U ′

j are affine, because U ′ is then affine.
Write U =

⋃
i∈I Ui, where all Ui are affine open subsets of U . Each f−1(Ui)

can also be written f−1(Ui) =
⋃
k∈Ei

U ′
ik, where U ′

ik is an affine open subset
of U ′. Now f(U ′

ik) is open (by Proposition 1.5, c) in the affine (hence quasi-
compact) scheme Ui. Since Ui is covered by the f(U ′

ik), we get a covering
(U ′

ik → Ui)k∈Ki
, where each set Ki is finite. We can always assume that Ki

contains a given k ∈ Ei; therefore, up to repeating (possibly infinitely many
times) Ui in the decomposition U =

⋃
Ui, we can also asume that the family

(U ′
ik)i∈I,k∈Ki

is a covering of U ′.
Now there is a commutative diagram

0 0
y

y
0 −−−−→ F(U) −−−−→ F(U ′) −−−−→ F(U ′ ×U U ′)

y
y

y
0 −−−−→ ∏

i∈I F(Ui) −−−−→ ∏
i∈I

∏
k∈Ki

F(U ′
ik) −−−−→ ∏

i∈I

∏
k,l∈Ki

F(U ′
ik ×U U ′

il)y
y

∏
i,j∈I F(Ui ∩ Uj) −−−−→

∏
i,j∈I

∏
k∈Ki,l∈Kj

F(U ′
ik ∩ U ′

jl)

The two columns are exact thanks to assumption i). The middle row is
exact as well because it is a product (for i ∈ I) of sequences that were shown
to be exact thanks to condition ii) (recall that Ki is finite and all U ′

ik are
affine). It follows that the map F(U) → F(U ′) is injective. Applying this
result to the covering of (Ui ∩ Uj) by the U ′

ik ∩ U ′
jl for every i, j ∈ I, we get

that the bottom arrow is injective as well. Now a diagram chase shows that
the first line is exact, which proves the proposition.
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Corollary 2.12 a) Every presheaf defined by a commutative group scheme
G is a sheaf for the flat, étale, and Zariski sites on X.

b) Every presheaf W (F) associated to a quasi-coherent OX-module F is
a sheaf for the flat, étale, and Zariski sites on X.

Proof : a) Condition i) of Proposition 2.11 follows from the fact that if
(Ui) is a Zariski open covering of a scheme X, then a family of X-morphisms
Ui → G such that fi and fj have same restriction to Ui ∩ Uj (for every pair
i, j) uniquely extends to an X-morphism U → G by glueing properties of
morphisms of schemes. Condition ii) is a consequence of Proposition 1.7 a)
for Y = U ′, X = U and Z = G (the proposition follows rather easily from
Lemma 1.6 in this case because U and U ′ are affine).

b) Since F is a sheaf for Zariski topology, condition i) is immediate.
Condition ii) follows from Lemma 1.6 (actually only the exactness up to the
first three non zero terms is required) applied to the faithfully flat morphism
SpecB := U ′ → SpecA = U and M := F(U).

Example 2.13 a) Let M be an abelian group and let MX (or simply M if X
is understood) be the associated constant group scheme on X (as a scheme
MX =

∐
m∈M X; in particular MX(Y ) = M for every connected X-scheme

Y ). Then the constant presheaf PM is not a sheaf, but we can define the
constant sheaf FM on X as the sheaf associated to the group scheme MX .
It is a special case of the sheaf associated to a presheaf (see Theorem 2.29
below). For instance the constant sheaf Z has the property that

HomS(XE)(Z,F) = F(X)

for every sheaf F on X: indeed (decomposing X into the disjoint union of
its connected component) one immediately reduces to the case when X is
connected. Then a sheaf homomorphism Z → F induces a map on global
sections Z → F(X), hence an element s ∈ F(X) (the image of 1). Con-
versely, such an element induces a sheaf homomorphism Z → F : for every
map U → X in E with U connected, one defines the corresponding map
Z = Γ(U,Z)→ F(U) by sending 1 ∈ Z to the restriction s|U .

b) A product of sheaves on XE obviously is a sheaf.
c) The intersection of a family Fi of subsheaves of a sheaf F , defined by

(
⋂Fi)(U) :=

⋂Fi(U), is again a sheaf.
d) If φ : F → F ′ is a morphism of sheaves, then the inverse image of

every subsheaf of F ′ is a sheaf; in particular the kernel kerφ is a subsheaf of
F . This is in general not true for the cokernel.
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Definition 2.14 Let XE be a site. A refinement of a covering (Ui)i∈I → U
is a covering (Vj)j∈J → U equipped with a map σ : J → I such that for every
j ∈ J , the morphism Vj → U factorizes through Uσj → U .

Observe that the map σ is part of the datum of the refinement.

Remark 2.15 a) A subcovering (Ui)i∈J (where J ⊂ I) is a refinement of U
as soon as the union of the images of Ui for i ∈ J still is the whole U . Also
if each Ui is a union of open subsets (Vij), then (Vij) refines (Ui).

b) If we change the class E to a class E ′ (on the same category CX),
such that every covering for E has a refinement consisting of a covering for
E ′ and vice-versa, then the category S(XE) and S(XE′) are the same ([20],
Lemma 7.8.7). See also Example 3.39 for a statement about cohomology in
this context. This motivates the next proposition.

Proposition 2.16 Let X be a scheme. Let U = (Ui
fi→ X) be a covering of

X for the étale (resp. flat) topology.
a) Assume that X is separated (over an affine scheme). Then U has a

refinement consisting of affine étale (resp. flat) morphisms.
b) Assume that X is quasi-separated (e.g. locally noetherian). Then U

has a refinement V = (Vi → X)i∈I consisting of finitely presented étale (resp.
flat) morphisms. If X is further assumed quasi-compact, then I can be chosen
finite.

Proof : We first write X as the union of open affine subset (Xj). Set
Uij = f−1

i (Xi), and decompose again each Uij as the union of affine subset
(Vijk). We obtain a refinement V = (Vijk), where each gijk : Vijk → X
factorizes through the affine morphism Vijk → Xj. The assumption a) implies
that the open immersion Xj → X is affine, hence the morphism gijk is affine
as well. Assumption b) implies that this open immersion is quasi-compact,
making gijk quasi-compact and separated, thus finitely presented (since it is
locally finitely presented by definition of the flat and the étale site). Finally,
if X is further assumed to be quasi-compact, the image of each gijk is an open
subset of X (by Proposition 1.5, c), and it suffices to take a finite subfamily
of (gijk) such that the union of the images of the corresponding gijk is the
whole X.

The next example is very important. It describes the étale sheaves on
X = Spec k when k is a field. Fix a separable closure k̄ of k and define
Γ = Gal (k̄/k). If F is a sheaf on Xét, set F(K) := F(SpecK) when K is
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a finite and separable field extension of k. We denote by CΓ the category of
discrete Γ-modules. Recall that objects of CΓ are abelian groups equipped
with an action of Γ such that all stablizers are open (hence of finite index)
in the profinite group Γ (cf. [8], chapter 4).

Theorem 2.17 For every sheaf F on X = Spec k, define

MF := lim−→
K

F(K),

where the limit is taken over all finite (Galois) field extensions K ⊂ k̄. Equip
MF with the action of Γ induced by its action on each K. Then MF is
a discrete Γ-module and the functor F 7→ MF induces an equivalence of
categories between S(Xét) and CΓ.

Proof : The definition makes clear that MF is the union of MH
F over all

open subgroups H of Γ, hence MF is a discrete Γ-module. Now the goal is
to associate to every M ∈ CΓ a presheaf FM on Xét, which will be shown to
be a sheaf.

We first observe that (thanks to the sheaf condition) it is sufficient to
define FM(K) for a finite separable field extension K of k, because every
étale X-scheme is of the form U =

∐
SpecKi (where Ki is such an extension

of k) and we then set

FM(U) :=
∏

i

F(Ki). (3)

Then A(K) := Homk(K, k̄) has a Γ-module structure induced by the action
of Γ on k̄, and we define

FM(K) := HomΓ(A(K),M).

This makes FM a presheaf on Xét (observe that if we start with a non nec-
essarily discrete Γ-module M , we get the same result by replacing M with
the associated discrete submodule

⋃
HM

H , where H runs over all open sub-
groups of Γ). We now show:

Proposition 2.18 The presheaf FM is a sheaf.

Proof : We observe that in the case of a subextension K ⊂ k̄, we have
A(K) = Γ/H , where H := Gal (k̄/K), hence FM(K) =MH (a Γ-equivariant
function from Γ to M is given by γ 7→ γ.a, where a is a fixed element of M ;
and this function induces a function Γ/H →M if and only if a ∈MH).
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Let us show that FM is a sheaf, using Proposition 2.11. Condition i) is
relation (3) in the definition of FM . To check condition ii), we can restrict to
the case U = SpecL, U ′ = SpecL′, where k ⊂ L ⊂ L′ are finite and separable
field extensions. Fix an embedding of L′ into k̄; then FM(L) identifies to
MΓL , where ΓL := Gal (k̄/L), and similarly for L′. Therefore, if L′/L is
Galois, we have FM(L) = FM(L′)Gal (L′/L). Now Galois theory identifies
L′ ⊗L L′ with

∏
σ∈Gal (L′/L) L

′
σ, where L′

σ = L′ for every σ. Writing L′ =

L[T ]/F and L′⊗L L′ = L′[T ]/F (where F ∈ L[T ] is a separable polynomial),
we see that in this identification, the maps x 7→ x⊗ 1 and x 7→ 1⊗ x (from
L′ to L′ ⊗L L′) respectively coincide with the diagonal map and the map
x 7→ ∏

σ∈Gal (L′/L) σ.x. This implies that the sequence

0→ FM(L)→ FM(L′) ⇒ FM(L′ ⊗L L′)

is exact, because the twin maps FM(L′) ⇒ FM(L′ ⊗L L′) of this sequence
now can respectively be identified with the diagonal map and with the map
MΓL′ → ∏

σ∈Gal (L′/L)M
ΓL′ given by a 7→ ∏

σ∈Gal (L′/L) σ.a. In the general
case where L′/L is not assumed to be Galois, we embed L′ into a finite
separable extension L1 which is Galois over L. Consider the commutative
diagram (where the right horizontal maps are defined as the difference of the
twin maps)

0 −−−→ FM(L) −−−→ FM(L′) −−−→ FM(L′ ⊗L L′)

=

y
y

y
0 −−−→ FM(L) −−−→ FM(L1) −−−→ FM(L1 ⊗L L1)

As seen before, the bottom row is exact. Since we have injections

FM(L) ≃MΓL →֒ FM(L′) →֒ FM(L1),

a diagram chase shows that the top row is exact is well. This shows that FM
is a sheaf.

To conclude the proof of Theorem 2.17, we note that a Γ-homomorphism
M → M ′ clearly induces a morphism FM → FM ′. Conversely, every sheaf
morphism φ : F → F ′ induces a Γ-equivariant morphism F(K) → F ′(K)
for every finite extension K ⊂ k̄ of k. Taking direct limits, we thus get a
G-homomorphism MF → MF ′. It is now easy to check that the correspond-
ing map HomΓ(M,M ′) → Hom(FM ,F ′

M) is an isomorphism and that the
canonical map F → FMF

is an isomorphism, making the categories S(Xét)
and CΓ equivalent.
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Unfortunately, property d) of Example 2.13 does not hold for cokernels
instead of kernels (already for Zariski topology). It is therefore important to
have a good notion of sheaf associated to a presheaf, which will be explained
in the next paragraph.

2.3. Sheaf associated to a presheaf

We start by definitions of direct image and inverse image of a presheaf.

Definition 2.19 Let π : X ′
E′ → XE be a continuous map of sites. For every

presheaf P ′ on X ′
E′, the direct image presheaf πp(P ′) is defined by

(πp(P ′))(U) = P ′(U ×X X ′).

Definition 2.20 The inverse image presheaf πp is defined as the left adjoint
functor of πp, that is:

HomP (X′)(π
pP,P ′) = HomP (X)(P, πpP ′)

for every presheaves P on XE, P ′ on XE′.

The existence of πp is ensured by a general result in category theory (cf.
[12], Prop. II.2.2). More explicitely, it can be constructed as follows for sites
of Example 2.3, as the flat or the étale site:

Proposition 2.21 For a fixed morphism U ′ → X ′ in C ′
X′, consider commu-

tative squares (where U → X is a morphism in CX)

U ′ g−−−→ Uy
y

X ′ π−−−→ X

and define
(πpP)(U ′) := lim−→P(U),

where the limit runs over all these diagrams. Then πp is the left adjoint
functor of πp.

It is of course understood that a morphism between two such diagrams
(U1, g1) and (U, g) is a commutative diagram
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U1

��
U ′ g //

��

g1
>>⑤⑤⑤⑤⑤⑤⑤
U

��
X ′ //X

Proof : To give a morphism P → πpP ′ is equivalent as giving compatible
maps fU : P(U) → P ′(U ×X X ′) for every U ∈ CX ; on the other hand, to
give a morphism πpP → P ′ is the same as defining maps P(U) → P ′(U ′)
for each diagram as above, which are compatible with the restriction maps.
Such a diagram induces (by the universal property of the fibred product) a
unique morphism U ′ → U ×X X ′ that factorizes U ′ → U , hence a morphism
P → πpP ′ induces a morphism πpP → P ′, and conversely.

Remark 2.22 To be on the safe side, let us observe that the colimit in
Proposition 2.21 is taken over a filtered category in all the relevant examples
(Zariski, étale, or flat site), hence it is a direct limit in the usual sense (over
an arbitrary site one has to use the colimit of abelian groups as defined in
[19], Lemma 8.2). Indeed in these examples finite inverse limits exist in
CX : This a consequence of the existence of finite products and of difference
kernels (=equalizer of two morphisms) in CX , which follows easily from the
first three statements of Proposition 1.4 in the case of the flat site, and from
Proposition 1.11 in the case of the étale site; cf. [12], Remark II.1.13 and
Appendix A.

Remark 2.23 Using the previous remark, it is possible (in the case of the
Zariski, étale, or flat site) to represent an element of (π∗P)(U ′) as a pair (s, g)
where U → X is a morphism in CX , g : U ′ → U is a morphism compatible
with π, and s ∈ P(U), with the rule that we identify two such pairs (s1, g1)
and (s2, g2) if there is a third pair (s, g) and a commutative diagram

U ′

g

��
g1

��✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍

g2

��✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵

U

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

  ❆
❆❆

❆❆
❆❆

❆

U1 U2

such that the restrictions of s1 and s2 to U coincide. If a morphism
h : V ′ → U ′ is given in CX′, then the restriction of (s, g) ∈ (πpP)(U ′) to
(πpP)(V ′) is just (s, g ◦ h).
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Example 2.24 a) The inverse image of the constant presheaf PM on XE is
the constant presheaf associated to the same group M on X ′

E′.
b) Let π : X ′ → X be in CX , take for C ′

X′ the X ′-schemes that are in CX
via π. Then πp(P) is just the restriction of P to the category C ′

X′ ; in this
case we can write PX′ for πpP.

Proposition 2.25 The functor πp is exact, and πp is exact if XE is one of
the sites of Example 2.3, or in the case b) of Example 2.24.

Proof : The exactness of πp follows from the definition and the fact that
a sequence of presheaves is exact if and only if the associated sequence of
sections over U is exact for every U ∈ CX . The exactness of πp is obvious
in the case b) of Example 2.24. In all sites of Example 2.3, if follows from
the description of πp using filtered direct limits, and the exactness of filtered
direct limits in the category of abelian groups.

Proposition 2.26 If F is a sheaf, its direct image πpF is a sheaf.

Proof : For every U ∈ CX , set U ′ := U×XX ′. Take a covering (Ui → U),
then (U ′

i → U ′) is also a covering. Since F is a sheaf, the sequence

0→ F(U ′)→
∏

i

F(U ′
i) ⇒

∏

i,j

F(U ′
i ×U ′ U ′

j)

is exact. Since U ′
i ×U ′ U ′

j = (Ui ×U Uj)′, we get that the sequence

0→ πpF(U)→
∏

i

(πpF)(Ui) ⇒
∏

i,j

(πpF)(Ui ×U Uj)

is exact, which shows that πpF is a sheaf.

Before constructing the sheaf associated to a presheaf on the étale site, we
need the notion of stalk4 of a presheaf. Since coverings for the étale topology
are more general than Zariski open subsets, it will be associated not to a
point of a scheme, but to a geometric point.

4In these notes, we will not consider the extension of the notion of stalk to more general
sites. We refer to [16] for related results.
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Definition 2.27 Let P be a presheaf on Xét. Let ux : x̄→ X be a geometric
point of X. The stalk of P at x̄ is

Px̄ := (upxP)(x̄).
In other words Px̄ = lim−→P(U), where the limit runs over all étale neighbor-
hoods U (or all étale connected neighborhoods) of x̄ in X.

Lemma 2.28 Let F be a sheaf on Xét. Let s ∈ F(U) be a section of F over
U ∈ CX . If s 6= 0, then there exists x ∈ X and a geometric point x̄ ∈ U lying
over x such that the restriction sx̄ ∈ Fx̄ is not zero.

Proof : Assume that sx̄ = 0 for all maps F(U) → Fx̄ as in the lemma.
For every u ∈ U , choose a geometric point x̄ with image u. By definition
of the stalk, there is an étale U -scheme Vu, whose image in U contains u,
and such that the restriction of s to Vu is zero. Since U is covered by all
Vu → U, u ∈ U , the sheaf condition yields that s = 0.

Theorem 2.29 Let XE be a site with underlying scheme X. Let P be a
presheaf on XE. Then there is a sheaf aP on XE and a morphism of
presheaves φ : P → aP, such that any morphism φ′ from P to a sheaf F
factors uniquely through φ.

Proof : We give the proof in the case of the étale site (the general case is
more complicated, see [1], II.1.4 and also Example 3.12). Start with the case
X = SpecK, where K is a separably closed field. Then every étale X-scheme
U is a disjoint union U =

∐
Xi with Xi = X, and we define aP as

(aP)(
∐

Xi) =
∏
P(Xi),

and φ(U) as the map P(U)→∏P(Xi) induced by the restriction maps.
We now deal with a general X. For each x ∈ X, choose a geometric point

ux : x̄→ X with image x. Then upxP is a presheaf on x̄, and we just defined
the associated sheaf Px̄ = a(upxP). According to Proposition 2.26, the direct
image (ux)p(Px̄) is a sheaf on X, as well as

P∗ :=
∏

x∈X

(ux)p(Px̄)

thanks to Example 2.13, b). For each x ∈ X, we have an adjunction mor-
phism of presheaves P → (ux)p(u

p
xP) and a sheafification map upxP → Px̄,

which induces a map (ux)p(u
p
xP)→ (ux)p(Px̄), hence (by composition) maps

P → (ux)p(Px̄),
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which induce a map φ : P → P∗. We define aP as the intersection of all
subsheaves of P∗ containing the image φ(P ) (this is a sheaf by Example 2.13,
c).

Let φ′ : P → F be a morphism from P to some sheaf F . There is a
commutative diagram

P

φ′ !!❇
❇❇

❇❇
❇❇

❇
φ // aP // P∗

ψ
��

F i // F∗

Here ψ is the map given by the maps φ′
x̄ : P∗

x̄ → F∗
x̄ induced by φ′. The

map i is injective by Lemma 2.28. We observe that by Example 2.13 d),
ψ−1(F) is a subsheaf of P∗ and it contains φ(P), hence also aP. Therefore
ψ induces a morphism ψ0 : aP → F , such that φ′ = ψ0 ◦ φ as required.
Now if another ψ1 : aP → F also satisfies φ′ = ψ1 ◦ φ, then ker(ψ0 − ψ1) is
a subsheaf of P∗ containing φ(P), hence it contains aP, which shows that
ψ0 = ψ1. This concludes the proof.

Remark 2.30 Let ux : x̄→ X be a geometric point of X. A presheaf on x̄
(which is the spectrum of a separably closed field) is a sheaf if and only if
it takes disjoint union of schemes to products of abelian groups; this easily
implies that upx takes sheaves to sheaves, which shows that upx ◦ a ≃ a ◦ upx.
In particular, for a presheaf P on X, since

Px̄ = (upxP)(x̄) = (aupxP)(x̄),

we have
Px̄ ≃ (upxaP)(x̄) = (aP)x̄.

In other words, P and aP have the same stalks.

2.4. The category of sheaves

Theorem 2.29 (which constructs the sheafification of a presheaf) can be re-
formulated as follows: the inclusion functor i : S(XE) → P (XE) has the
functor a : P (XE) → S(XE) as a left-adjoint. For a morphism of sheaves
u : F1 → F2, the cokernel (resp. image) of u in S(XE) is defined as
a(coker pu) (res. a(Imp u)), where coker pu (resp. Imp u) is the cokernel (resp.
image) of u in P (XE).

Theorem 2.31 a) The inclusion functor i is left exact and the sheafification
functor a is exact. In particular the image of a morphism u : F ′ → F in
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S(XE) identifies to a subsheaf of F , the quotient F/Imu in S(XE) is the
sheaf cokernel coker u, and a sequence of sheaves

0→ F ′ → F → F” (4)

is exact in S(XE) if and only if it is exact in P (XE). .
b) For XE = Xét, the sequence (4) is exact is exact if and only if for

every geometric point x̄ of X, the sequence

0→ F ′
x̄ → Fx̄ → F ′′

x̄ (5)

is exact.
c) A map of sheaves φ : F → F ′ is surjective on Xét if and only if the

map φx̄ : Fx̄ → F ′
x̄ is surjective for every geometric point x̄ of X.

d) The category S(XE) is abelian.

Proof : a) The fact that i is left exact is obvious, because the kernel
of a morphism of sheaves is the same in the categories S(XE) and P (XE).
The functor a is right exact as adjoint of i; it remains to show that a is
left exact, which we will show only in the case of the étale site (see [12],
Theorem II.2.15 a) for the general case). Let P1 → P2 be an injective
morphism of presheaves. Using the notation of the proof of Theorem 2.29, the
corresponding map P∗

1 → P∗
2 is injective because the functors upx and (ux)p

are exact (Proposition 2.25), which implies (as aP1 and aP2 are respectively
subpresheaves of P∗

1 and P∗
2 ) that the morphism aP1 → aP2 is injective in

P (XE), hence also in S(XE).
b) Obviously, if (4) is exact, then (5) is also exact. Assume that (5) is

exact for all geometric points x̄ of X. Let U ∈ CX and s′ ∈ F ′(U) such that
the image s of s′ in F(U) is zero. Since the map F ′

x̄ → Fx̄ is assumed to be
injective, this implies that s′x̄ = 0 for all x̄, hence s′ = 0 by Lemma 2.28. To
show the exactness "in the middle", take s ∈ F(U) such that the image of s
in F ′′(U) is zero. This implies that sx̄ ∈ F ′

x̄ ⊂ Fx̄ for all x̄. Therefore, for
every u ∈ U , there is an étale map Vu → U whose image contains u and such
that the restriction s|Vu ∈ F ′(Vu) ⊂ F(Vu). Since (Vu → U) is a covering of
U and F ′ is a sheaf, this means that s ∈ F ′(U) as required.

c) Let u : F → F ′ be a morphism of sheaves, denote by P its cokernel in
P (Xét), then its cokernel in S(Xét) is aP. Since

F → F ′ → P → 0

is exact in P (Xét), the corresponding sequence of stalks

Fx̄ → F ′
x̄ → Px → 0
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obviously remains exact, which implies that the map Fx̄ → F ′
x̄ is surjective if

and only if (aP)x̄ = 0 thanks to Remark 2.30. Since u is surjective in S(Xét)
if and only if aP = 0, which (by Lemma 2.28) is equivalent to saying that
(aP)x̄ = 0 for all geometric points x̄ of X, we are done.

d) It only remains to prove that every morphism φ : F → F ′ in S(XE)
induces an isomorphism between its coimage F/ kerφ and its image Imφ.
The image and coimage of φ in S(XE) are obtained by applying the functor
a to the image and coimage in P (XE), which is an abelian category. Since
a takes isomorphisms to isomorphisms, the map Coimφ → Im φ is an iso-
morphism in S(XE), since in the abelian category P (XE) the canonical map
between the coimage and the image of φ is known to be an isomorphism.

Remark 2.32 On an arbitrary site, surjectivity of F → F ′ is equivalent to
saying that for every U ∈ CX and every s ∈ F ′(U), there exists a covering
(Ui → U) and elements si ∈ F(Ui) such that φ(si) = s|Ui

for all i ("local
surjectivity"). See [12], Theorem II.2.15 and proof of Theorem 2.11 (the
latter defines the sheafification in the general case).

Example 2.33 a) The group schemes Gm and µn induce sheaves on the
étale site or the flat site of a scheme X. The sequence

0→ µn → Gm
.n→ Gm

is clearly exact in P (XE), hence also in S(XE). For every strictly local ring A
with n ∈ A∗, the map x 7→ xn is surjective from A∗ to A∗ by Hensel’s lemma
(that is: property iii) of Theorem 1.20), which proves (by Theorem 2.31, c)
that the Kummer sequence

0→ µn → Gm
.n→ Gm → 0

is then exact on Xét as soon as the integer n is invertible on X.
b) The Kummer sequence is exact onXfppf without any assumption on the

residue characteristics of X. Indeed let U be an X-scheme and u ∈ OU(U)∗.
Cover U by open affine subsets Ui = SpecAi and let ui be the restriction of
u to Ui. Set A′

i = Ai[T ]/(T
n−ui) and U ′

i = SpecA′
i. Then (U ′

i → U) is a flat
covering of U (indeed A′

i is free of rank n over Ai) such that the restriction
of u to U ′

i is an n-th power in Gm(U
′
i) for every i. Remark 2.32 now yields

the required exactness.
c) Let X be a scheme of characteristic p > 0 (that is an Fp-scheme). Let

F be the map a 7→ ap. Then there is an exact sequence (the Artin-Schreier
sequence) of étale sheaves on X:

0→ Z/pZ→ Ga
F−1→ Ga → 0.
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The last map is surjective because if A is a strictly local ring, then the map
A→ A, x 7→ xp − x is onto (again by Hensel’s lemma). The sequence of the
first four terms is easily seen to be exact (even for the Zariski topology), the
Fp-group scheme (Z/pZ) being isomorphic to (Spec (Fp[T ]/(T

p−T )) (hence
the same holds for their pullback to X).

d) Again, let X be a scheme of characteristic p. Let αp be the subsheaf of
Ga given by the kernel of a 7→ ap, that is the sheaf corresponding to the group
scheme Spec (Fp[T ]/T

p)×Fp
X. Then there is an exact sequence of sheaves

for the flat topology (but in general not for the étale topology, because over
an imperfect separably closed field, the map x 7→ xp is not surjective)

0→ αp → Ga
.p→ Ga → 0.

2.5. Direct and inverse images of sheaves

Definition 2.34 Let π : X ′
E′ → XE be a continuous map of sites. The direct

image π∗F ′ of a sheaf F ′ on X ′
E′ is just πpF ′. The inverse image of a sheaf

F on XE is π∗F := a(πpF).

By definition, the functors π∗ and π∗ are adjoint in S(X ′
E′), S(XE). If

π : X ′ → X is in CX , then π∗ is just the restriction functor F 7→ F|X′.

Remark 2.35 For every presheaf P on XE and every sheaf F on X ′
E , we

have

HomSE′
(π∗(aP),F) = HomSE

(aP, πpF) = HomPE
(P, πpF) =

HomPE′
(πpP,F) = HomS(E′)(a(π

pP),F),
which shows that π∗(aP) = a(πpP).

Proposition 2.36 The functor π∗ is left exact. The functor π∗ is exact if
XE is one of the sites of Example 2.3, or if π : X ′ → X is in CX .

Proof : The first assertion follows from the exactness of πp (Proposi-
tion 2.25), left-exactness of i, and last statement of Theorem 2.31, a). For
the second assertion, let

0→ F ′ → F → G → 0

be an exact sequence in S(XE). Then the sequence

0→ F ′ → F → G
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is exact in P (XE), hence

0→ π∗F ′ → π∗F → π∗G

is exact in S(XE) because πp (Proposition 2.25) and a (Theorem 2.31, a) are
exact. It remains to prove the surjectivity of π∗F → π∗G in S(XE). Let G ′
be the cokernel of F → G in P (XE), we have aG ′ = 0 because F → G has
trivial cokernel in S(XE) and a is exact. Using again exactness of πp and a,
we see that

π∗F → π∗G → a(πpG ′)
is exact in S(XE). By Remark 2.35, we have a(πpG ′) = π∗(aG ′) = 0, whence
the result.

Note that although πp is exact, the functor π∗ is not right exact in gen-
eral, because the cokernels in S(XE) and P (XE) are not the same (thus an
exact sequence of sheaves does not necessarily remain exact as a sequence of
presheaves).

Example 2.37 a) Let GX be a commutative group scheme over X, it repre-
sents a sheaf (on one of the sites of Example 2.3). Let GX′ be the X ′-group
scheme G×X X ′.

There is a presheaf map πpGX → GX′, obtained by sending a pair (s, g)
(where g : U ′ → U and s ∈ G(U) are as in the explicit description after
definition 2.20) to sg ∈ GX(U

′) = GX′(U ′). This induces a canonical map of
sheaves φG : π∗GX → GX′ (which can also be defined using the adjunction
property of π∗). This map is an isomorphism if π : X ′ → X is in CX , or if
G itself is in CX . The first case is easy (the inverse image π∗GX being just
the restriction of GX to X ′). For the second one, we use Example 2.9, which
yields for every sheaf F on X ′

E′:

HomS(X′)(GX′,F) = F(GX′) = (π∗F)(G) = HomS(X)(GX , π∗F).

Therefore GX′ ≃ π∗GX by uniqueness of adjoints.
b) In general φG is not an isomorphism: for instance letX be the spectrum

of a field k of characteristic p > 0, let A be a k-algebra and X ′ = SpecA.
Take G = αp and work on the small étale sites. Then GX = 0 because every
étale X-scheme U is reduced, hence αp(U) = 0. This implies that π∗GX = 0
but GX′ does not represent the zero sheaf as soon as A has a non-zero element
a with ap = 0. Thus φG is not surjective in this case.

c) It is also possible that φG is not injective. Set Fp = Z/pZ, X ′ = SpecFp
and X = Spec (Z/p2Z) = Spec (Fp[ε]), where ε2 = 0. Consider the closed
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immersion π : X ′ → X and GX = Gm,X . For every finite field extension K
of Fp, there is an exact sequence

0→ K → K[ε]∗ → K∗ → 0

(the first map being a 7→ 1+aε), which yields an exact sequence of presheaves

0→ Ga → πpGm → Gm,X′ → 0.

Applying the exact functor a, we get an exact sequence of sheaves

0→ Ga → π∗Gm
ΦG→ Gm,X′ → 0.

In particular the kernel of ΦG is not 0.
c) Let k ⊂ K be an inclusion of field, which induces a morphism π :

SpecK → Spec k. We choose compatible separable closures k̄ and K of k
and K. This induces a map of absolute Galois group ψ : ΓK → Γk (which
is injective if K is an algebraic separable extension of k). Consider the étale
sites associated to Spec k and SpecK. By Theorem 2.17, we can identify
S(Spec k) with the category CΓk

of discrete Γk-modules, and similarly for K.
Then taking the inverse image of a sheaf on Spec k corresponds to view a
Γk-module M as a ΓK-module via ψ. Since π∗ and π∗ are adjoint functors,
we deduce that the direct image of a ΓK-module N consists of the induced
module (cf. [8], Remark I.1.14) Iψ(ΓK )

Γk
(Nkerψ), which is just IΓK

Γk
(N) if K/k

is algebraic separable.

We now study the stalks of the inverse and the direct image of a sheaf
for the étale topology.

Proposition 2.38 Let π : X ′ → X be a morphism. Let F be a sheaf on
Xét. Let x′ ∈ X ′, set x = π(x′) and choose compatible geometric points x̄′,
x̄ respectively associated to x, x′. Then (π∗F)x̄′ ≃ Fx̄. In particular, if we
take for π the canonical morphism Spec (OX,x̄) = Spec (Osh

X,x) → X, then
Fx̄ = (π∗F)x̄ = (π∗F)(Spec (OX,x̄)).

Proof : First observe that for a geometric point ux : x̄ → X, the stalk
Fx̄ is isomorphic to (u∗xF)(x̄) (and similarly for the geometric point x̄′ → X ′

and the sheaf π∗F ) because u∗xF = (aupx)(F) and upxF have same group of
sections over x̄ by definition of sheafification over the spectrum of a separably
closed field.

Now we may take x̄ = x̄′, whence a commutative diagram

31



X ′

π
��

x̄′
ux′oo

ux~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

X
Then

(π∗F)x̄′ = (u∗x′π
∗F)(x̄′) = (u∗xF)(x̄) = Fx̄.

The situation with direct image is more complicated. We need the fol-
lowing lemma, which will be extended later (Theorem 3.26, b) to étale coho-
mology:

Lemma 2.39 Let I be a filtered category (e.g. a filtered ordered set) and
i → Xi a contravariant functor from I to X-schemes. Asssume that all
morphisms Xj → Xi are affine and that all schemes Xi (as well as X) are
quasi-compact and quasi-separated. Set X∞ := lim←−Xi. Let F be a sheaf on
Xét, with respective inverse image Fi and F∞ on Xi, X∞. Then

lim−→
i

Γ(Xi,Fi) ≃→ Γ(X∞,F∞).

Recall that the scheme lim←−Xi is well defined because all transition mor-
phisms Xj → Xi are assumed to be affine.

Proof (sketch of): Here are the main steps of the proof:

i) The first important observation is that if f : U → X∞ is an étale, quasi-
compact, and quasi-separated map, then it is obtained by base change from an
étale map fi : Ui → Xi for some i ∈ I. This follows from [19], Lemma 143.3, (9)
(which is the case where all schemes considered are affine).

ii) We can work over the site (X∞)ét,qcqs (whose definition is the same as the
small étale site, except that étale morphisms are replaced by quasi-compact and
quasi-separated étale morphisms; cf. Proposition 2.16). Although fi (defined as
above) is not unique, two such maps give rise to the same map Uj → Xj for some
j ≥ i, which makes the definition

G(U) = lim−→
i

Fi(Ui)

unambiguous. This defines a presheaf on the site (X∞)ét,qcqs, which is a sheaf
thanks to the sheaf condition on each Fi and the (left) exactness of the direct limit
functor.

iii) One show (using the adjunction property of the inverse limit of a sheaf)
that the obvious map G → F∞ on S(X∞)ét,qcqs) is an isomorphism whence the
result by taking global sections over X∞.
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Theorem 2.40 Let π : X ′ → X be a quasi-compact and quasi-separated
morphism. Let x ∈ X, x̄ := Spec (k(x)). Set X̃ := Spec (Osh

X,x) and X̃ ′ :=

X ′ ×X X̃. Let F be a sheaf on X ′ with inverse image F̃ on X̃ ′. Then

(π∗F)x̄ = F̃(X̃ ′).

Proof : By definition we have

(π∗F)x̄ = lim−→F(U ×X X
′),

where the limit is over all étale neighborhoods U of x̄ in X. We can restrict
to affine U such that X̃ = lim←−U , whence X̃ ′ = lim←−(U ×X X ′) (products
commute with inverse limits). The transition morphisms in the last equality
are affine morphisms between quasi-compact and quasi-separated schemes;
it remains to apply Lemma 2.39.

The situation is better with finite morphisms:

Theorem 2.41 Let π : X ′ → X be a finite morphism. Let F be a sheaf on
X ′

ét. Let x̄ be a geometric point of X associated to x ∈ X. Then (π∗F)x̄ =∏Fd(x′)x̄′ , where the product is over all x′ ∈ π−1(x) and d(x′) is the separable
degree of k(x′) over k(x) (which is a constant d if π is étale of constant degree
d). In particular, for a closed immersion i : Z → X and a sheaf F on Zét,
we have (i∗F)x̄ = 0 if x̄ 6∈ Z and (i∗F)x̄ = Fx̄ if x̄ ∈ Z.

Proof : With the notation of Theorem 2.40, we know that X̃ ′ is finite
over X̃, which is the spectrum of the stricly local ring OX,x̄. Therefore

X̃ ′ =
∐

x′∈π−1(x)

SpecOd(x′)X′,x̄′

by Theorem 1.20, which implies the result via Theorem 2.40.

Corollary 2.42 If π : X ′ → X is a finite morphism (e.g. a closed immer-
sion), then the functor π∗ is exact.

Proof : This follows from Theorem 2.41 and Theorem 2.31, c).
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2.6. Extension by zero of a sheaf; functor i!

Let j : U → X be an object of CX for some site XE. Then the functor
jp : P (X) → P (U) consists of restricting a presheaf on X to the open
set (for the E-topology) U . We will now describe its left-adjoint, denoted
j! : P (U)→ P (X). Its existence is ensured by the same general result ([12],
Prop. II.2.2.) as the existence of the inverse image presheaf. Actually, one
easily checks directly that that for P ∈ P (U) and V ∈ CX , we have

(j!P)(V ) = lim−→P(V
′),

where the limit is over all commutative diagrams

V ′ ←−−− Vy
y

U −−−→ X

in CX . Sorting these diagrams with respect to the corresponding homomor-
phism φ : V → U , we get

(j!P)(V ) =
⊕

φ∈HomX(V,U)

lim−→
S(φ)

P(V ′),

where S(φ) is the set of diagrams as above such that the composite map
V → V ′ → U is φ. But S(φ) has a final object (the diagram with V ′ = V ),
so we obtain:

(j!P)(V ) =
⊕

φ∈HomX(V,U)

P(Vφ),

where Vφ ∈ CU is the object V
φ→ U . For instance, if j : U → X is an open

immersion, then (j!P)(V ) = P(V ) if V → X factorizes through U , and it is
zero otherwise.

Definition 2.43 The extension by zero functor j! associated to j : U → X
is the composition of the functors

S(U)
i→ P (U)

j!→ P (X)
a→ S(X).

It is left-adjoint to j∗.

Observe that j! is exact (it is right exact as left adjoint of j∗, and left
exact as composite of left exact functors). In the case of an open immersion
j : U → X, the stalk (j!F)x̄ is Fx̄ if x̄ ∈ U , and it is zero otherwise.
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Let us now specialize to the case of a closed subscheme Z of X and set
U = X − Z. Denote by j : U → X the corresponding open immersion and
i : Z → X the corresponding closed immersion. Equip all schemes with the
étale topology. For every sheaf F on Xét, set

i!F := ker[i∗F → i∗j∗j
∗F ].

The idea is that i∗i!F will appear as the largest subsheaf of F that is zero
outside Z.

Lemma 2.44 Let F be a sheaf on the étale site of a scheme X. There is an
exact sequence of sheaves on Xét:

0→ j!j
∗F → F → i∗i

∗F → 0.

Proof : This can be checked on the geometric stalks. Let x̄ be a geometric
point of X. By Theorem 2.41, we have (i∗i

∗F)x̄ = (i∗F)x̄ = Fx̄ if x̄ ∈ Z, and
(i∗i

∗F)x̄ = 0 if x̄ ∈ U = X − Z. Similarly (j!j
∗F)x̄ = (j∗F)x̄ = Fx̄ if x̄ ∈ U ,

and (j!j
∗F)x̄ = 0 if x̄ ∈ Z = X −U (cf. Definition 2.43). Whence the result.

Proposition 2.45 a) The functor i∗ : S(Z) → S(X) is fully faithful (i.e.
it induces a bijection between homomorhism sets) and it is a left-adjoint of
i! : S(X)→ S(Z).

b) For every sheaf F on X, we have

(i!F)(Z) = ker[F(X)→ F(U)].

Proof : a) Let F be an étale sheaf on Z. The adjunction map i∗i∗F → F
is an isomorphism because by Theorem 2.41, it induces an isomorphism on
every geometric fiber. Therefore

HomS(X)(i∗F , i∗G) = HomS(Z)(i
∗i∗F ,G) ≃ HomS(Z)(F ,G)

for every F ,G ∈ S(X), which means that i∗ is fully faithful.
Now the square

G −−−→ j∗j
∗Gy
y

i∗i
∗G −−−→ i∗i

∗j∗j
∗G
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is cartesian (this is easily checked on the geometric stalks, dealing separately
with the cases x̄ ∈ U and x̄ ∈ Z). As HomS(X)(i∗F , j∗j∗G) = 0 (this is
checked again on the stalks), this implies:

HomS(X)(i∗F ,G) = HomS(X)(i∗F , ker[i∗i∗G → i∗i
∗j∗j

∗G]).

The latter is also
HomS(X)(i∗F , i∗i!G)

by definition of i! and left-exactness of i∗, and this last group identifies to
HomS(Z)(F , i!G) because i∗ is fully faithful. Finally

HomS(X)(i∗F ,G) = HomS(Z)(F , i!G),

showing that i∗ is the left-adjoint of i!.
b) For any scheme S, denote by ZS the constant sheaf Z on S. By a) and

Example 2.13 a) , we have

(i!F)(Z) = HomS(Z)(ZZ , i
!F) = HomS(X)(i∗ZZ ,F).

We observe that j∗ZX = ZU and i∗ZX = ZZ by Example 2.37 a) (the group
scheme Z being étale over X). Lemma 2.44 gives an exact sequence

0→ j!ZU → ZX → i∗ZZ → 0,

and applying the left-exact contravariant functor HomS(X)(.,F), yields an
exact sequence

0→ HomS(X)(i∗ZZ ,F)→ HomS(X)(ZX ,F)→ HomS(X)(j∗ZU ,F).

To conclude, we observe that HomS(X)(ZX ,F) = F(X) and

HomS(X)(j!ZU ,F) = HomS(U)(ZU ,F|U) = F(U).

3. Cohomology : first properties

If not specified, the notation S(X) denotes the category S(Xét) of sheaves on
the (small) étale site of X. We always implicitely assume that XE is one of
the sites of Example 2.3, and in particular that the inverse image functor π∗ is
exact. For a summary of properties of derived functors on abelian categories,
see Appendix A of [8] or [30], chapters 2 and 5.
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3.1. Some derived functors

Let XE be a site. We want to define cohomology groups as (right) derived
functors. Recall that an object A in an abelian category is injective if the
contravariant functor Hom(., A) is exact (it is always left exact). An abelian
category has enough injectives if every object can be embedded into an in-
jective object.

Proposition 3.1 The category S(XE) has enough injectives.

Proof : We give the proof in the case of the étale site.5 Let ux : x̄ 7→ X be
a geometric point of X. Then the category S(x̄) is equivalent (Theorem 2.17)
to the category Ab of abelian groups, hence it has enough injectives by [30],
Exercise 2.3.2. Let F ∈ S(X). For each x ∈ X, we choose an embedding
u∗xF →֒ F ′

x into an injective sheaf. Set F0 =
∏

x∈X(ux)∗F ′
x, it is injective in

S(X) (a product of injectives is injective; besides, direct image functors (ux)∗
preserve injectives because its left adjoint (ux)

∗ is exact). Now F embeds
into F0 via the embeddings F →֒ ∏

x∈X(ux)∗u
∗
xF and (ux)∗(u

∗
xF) →֒ (ux)∗F ′

x.
The injectivity of the first map can be checked on the stalks: indeed for a
geometric point x̄ with image x ∈ X, the canonical map Fx̄ → ((ux)∗u

∗
xF)x̄

is an isomorphism by Theorem 2.40 and equality Fx̄ = (u∗xF)(x̄). The second
map is injective because (ux)∗ is left exact.

By definition, right derived functors Rif(F) of a left-exact functor f on
S(XE) are computed via an injective resolution

0→ F → I0 → I1 → ...

of F , then by taking the cohomology of the complex

f(I0)→ f(I1)→ ...

Now the functor S(XE) → Ab defined by F 7→ Γ(X,F) is left exact,
whence:

Definition 3.2 We denote by Hr(XE, .) (r ∈ N) or Hr(X, .) (if E is under-
stood) the right derived functors of the functor Γ(X, .) = H0(X, .). For a
sheaf F on XE , the group Hr(XE ,F) is called the r-th cohomology group of
XE with values in F .

5Let C be an abelian category with products and coproducts, such that filtered colimts
of exact sequences are exact, and with a family of generators. Then C has enough injectives.
This yields the general case, using the sheaves ZU := j!Z for various j : U → X in E as
generators, cf. [12], Lemma III.1.3. and below.
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In the case of the étale site, we shall denote Hr(XE,F) by Hr
ét(X,F)

or simply by Hr(X,F). Notation Hr
fppf(X,F) stands for cohomology on the

flat site. As derived functors are δ-functors (see [30], Theorem 2.4.6. and
§ 2.5.1.), we have the following very important property:

Theorem 3.3 For every short exact sequence of sheaves (on a site XE)

0→ F ′ → F → F ′′ → 0,

there is a long exact sequence of the related cohomology groups

0→ H0(X,F ′)→ H0(X,F)→ H0(X,F ′′)→ H1(X,F ′)→ ...

...→ Hr−1(X,F ′′)→ Hr(X,F ′)→ Hr(X,F)→ Hr(X,F ′′)→ ...

Example 3.4 Other derived functors are interesting on sites like Xét:
a) Let F0 be a sheaf on XE. The covariant functor F 7→ HomS(XE)(F0,F)

is left exact. Its right derived functors are denoted by F 7→ Extr(F0,F). As
in any abelian category, the groups Extr(F0,F) can also be interpreted in
terms of Yoneda extensions ([30], §3.4).

b) Let F0 and F1 be sheaves onXE . Then we define a sheaf (the sheaf con-
dition is easy to check) Hom(F0,F1) onXE by U 7→ HomS(U)((F0)|U , (F1)|U).
The right derived functors of Hom(F0, .) (from S(XE) to S(XE)) are denoted
Extr(F0, .).

c) Let π : X ′
E′ → XE be a continuous map of sites. Then the functor

π∗ : S(X ′
E′) → S(XE) is left exact. Its derived functors are denoted Riπ∗.

The sheaves Riπ∗F are the higher direct images of the sheaf F .
d) Let X = Spec k, where k is a field with absolute Galois group Γ =

Gal (k̄/k). Then the category of étale sheaves S(X) is equivalent to the cat-
egory of discrete Γ-modules CΓ. Étale cohomology groups on X correspond
to Galois cohomology groups Hr(Γ,M) of a discrete Γ-module M , which
are torsion groups if r > 0 ([8], Corollary 4.23). The derived functors Extr

correspond to the Extr in the category of Γ-modules. Finally, Hom(F0,F1)
translates into

⋃
H HomCH

(M0,M1), where H runs over all open subgroups
of Γ. If M0 is not assumed to be finitely generated, this is in general not the
same as HomAb(M0,M1), which might be non discrete when equipped with
the Γ-action:

(γ.f)(x) = γ.f(γ−1.x) , γ ∈ Γ, x ∈M0

(observe that HomCH
(M0,M1) = HomAb(M0,M1)

H) The associated derived
functors are denoted ExtrΓ(M0,M1). See [8], §16.2.
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e) Galois cohomology groups H i(k,M) can be described using cocycles
([8], Definition 4.17), which is a special case of Čech cohomology for the étale
topology (see paragraph 3.2. below). For a constant sheaf (corresponding to
a trivial action of Γ on the discrete G-module M), the first cohomology group
H1(k,M) is just the group Homc(Γ,M) of continuous homomorphisms from
the profinite group Γ to M . For instance H1(k,Z) = 0 (indeed Z has no
non-trivial finite subgroup) and H2(k,Z) ≃ H1(k,Q/Z) is isomorphic to
Homc(Γ,Q/Z) ([8], Example 1.52, which extends immediately to the coho-
mology of a profinite group; this comes from the fact that H i(k,Q) = 0 for
all i > 0 because Q is uniquely divisible and Galois cohomology groups are
torsion).

f) The inclusion functor i : S(XE) → P (XE) is left-exact. Its right
derived functors are denoted Hr(XE, .) (or simply Hr(.) if XE is understood).
Taking an injective resolution of a sheaf F in S(XE), one sees thatHr(XE,F)
is the presheaf U 7→ Hr(U,F) on XE.

Remark 3.5 a) In some sense the functor Hr(XE ,F) is contravariant on
XE . More precisely, if π : X ′

E′ → XE is a continuous map, then the univer-
sal property of derived functors (as δ-functors) yields maps Hr(XE,F) →
Hr(X ′

E′, π∗F) induced by the obvious map H0(XE ,F) → H0(X ′
E′, π∗F).

There is also a canonical map Hr(XE, π∗F) → Hr(X ′
E′,F) (induced by the

corresponding map for r = 0), which is an isomorphism if π∗ is exact.
b) We can always identify (cf. Example 2.13, a) the functors Γ(X, .) and

HomS(XE)(Z, .), where Z is the constant sheaf on XE ; hence Hr(XE , .) and
ExtrS(XE)(Z, .) also coincide.

c) Let U ∈ CX . The functor F 7→ F|U is exact from S(XE) to S(UE);
besides, this functor takes injectives to injectives, because it actually has an
exact left adjoint ("extension by zero") j! associated to the map j : U → X
(see Definition 2.43). This implies that the notation Hr(U,F) is not ambigu-
ous: these groups can be obtained via derived functors of F 7→ Γ(U,F) on
S(XE), as well as the ones of FU 7→ Γ(U,FU) on S(UE).

It is a general fact ([30], Exercise 2.4.3) that to compute derived functors,
the injective resolution can be replaced by any f -acyclic resolution, that is a
resolution by objects J satisfying Rif(J) = 0 for every i > 0. It is therefore
important to determine a class of acyclic sheaves for the various functors we
are interested in.

Definition 3.6 A sheaf F on XE is sait to be flabby 6 if Hr(U,F) = 0 for
all U ∈ CX and all r > 0.

6Unfortunately, there is no uniform definition in the litterature for flabby or flasque.
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In other words, a sheaf F is flabby if and only if Hr(F) = 0 for all r > 0.
It immediately follows from Remark 3.5, c) that the restriction of a flabby
sheaf F ∈ S(XE) to any U → X in CX still is a flabby sheaf.

Proposition 3.7 a) Let π : X ′
E′ → XE be a continuous map of sites. Let

F ∈ S(X ′
E′). Then Riπ∗F is the sheaf associated to the presheaf U 7→

H i(U ′,FU ′), where U ′ := U ×X X ′.
b) With the notation as in a), a flabby sheaf on X ′

E′ is acyclic for the
functor π∗.

c) Assume that XE is one of the sites of Example 2.3. Let F be an
injective object of S(X ′

E′). Then π∗F is injective in S(XE).

Proof : a) Let i be the inclusion S(X ′) → P (X ′). By definition π∗ =
aπpi. Take an injective resolution F → I• in S(X ′). Now Riπ∗F is the
i-th cohomology group of the complex aπp(iI

•). Since a and πp are exact
(Proposition 2.25 and Theorem 2.31, a), they commute with cohomology
and we get

Riπ∗F = aπp(H
i(F)),

The conclusion follows because H i(F)(U ′) = H i(U ′,F) (Example 3.4, f).
b) This is an immediate consequence of a).
c) In these cases, the left adjoint π∗ of π∗ is exact (Proposition 2.25),

whence the result.

3.2. Čech cohomology

For certain explicit computations (and also to give good criterions for a sheaf
to be flabby), it is useful to define Čech cohomology on an arbitrary site XE,
which is modeled on the classical construction for topological spaces. We are
now going to describe it in details.

Let P be a presheaf on XE. Consider a covering U = (Ui → X)i∈I of X
for the E-topology and set

Ui0...ir := Ui0 ×X ...×X Uir
The definition that we give here is the same as the one of flasque in Artin [1] (p. 39), but
it does agree neither with the classical definition of a flasque sheaf on a topological space,
nor with the definition of flasque in [15] (the latter coincides with the notion of totally

acyclic in [22])
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for every (r + 1)-uple (i0, ..., ir), where each ij ∈ I (observe that unlike the
classical case of a topological space, the ij are not assumed to be pairwise
distinct). There is an obvious restriction map

resj : P(Ui0...îj...ir)→ P(Ui0......ir),
which is induced by the projection.

Definition 3.8 The Čech complex C•(U ,P) = (Cr(U ,P))r∈N (associated to
U and P) is defined by

Cr(U ,P) :=
∏

(i0,...,ir)∈Ir+1

P(Ui0...ir)

with the differential maps

dr : Cr(U ,P)→ Cr+1(U ,P)
defined by

(drs)i0...ir+1 =

r+1∑

j=0

(−1)jresj(si0...îj...ir+1
).

The verification that dr+1dr = 0 is straightforward (as in the classical
case of a topological space).

Definition 3.9 The cohomology groups of the complex (Cr(U ,P)) are de-
noted by Ȟr(U ,P) and called the Čech cohomology groups of P with respect
to U .

For instance

Ȟ0(U ,P) = ker[
∏

i∈I

P(Ui)→
∏

(i,j)∈I×I

P(Uij)],

whence a canonical map P(X) → Ȟ0(U ,P), which is injective is P is sepa-
rated and an isomorphism if P is a sheaf.

Consider now a refinement V = ((Vj)j∈J , τ) of U (see Definition 2.14).
Denote by φi : Ui → X and ψj : Vj → X the corresponding maps. We can
write ψj = φτjηj for some ηj : Vj → Uτj . This induces maps

τ r : Cr(U ,P)→ Cr(V,P)
defined by

(τ rs)j0...jr = resηj0×...×ηjr (sτj0...τjr),

which commute with the differentials. Whence a map

ρ : Ȟr(U ,P)→ Ȟr(V,P).
Lemma 3.10 The map ρ depends only on P, U , and V (not on τ or the ηj).
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Proof : Let τ ′, (η′j) be another choice for τ, (ηj). Define a map hr :
Cr(U ,P)→ Cr−1(V,P) by the formula

(hrs)j0...jr−1 =
r−1∑

k=0

(−1)kresηj0×...×...×(ηjk ,η
′

jk
)×...×η′jr−1

(sτj0...τjkτ ′jk...τ ′jr−1).

All hr are homomorphisms and

dr−1hr + hr+1dr = (τ ′)r − τ r,

which proves that (τ ′)r and τ r induce the same map on Ȟr(U ,P), which is
what we wanted to prove.

Lemma 3.10 imply that the groups Ȟr(U ,P) equipped with the maps
ρ : Ȟr(U ,P) → Ȟr(V,P) form an inductive system7. Whence the following
definition:

Definition 3.11 Set

Ȟr(XE ,P) := lim−→
U

Ȟr(U ,P).

The groups Ȟr(XE ,P) (or Ȟr(X,P) if E is understood) are the Čech coho-
mology groups of P over X. We denote by Ȟ

r
(XE ,P) (or simply Ȟ

r
(P) if

the site XE is understood) the presheaf U 7→ Ȟr(U,P) on XE (this is the
Čech cohomology analog of the presheaf Hr(P) introduced in Example 3.4,
f) in the context of derived functor cohomology.

Example 3.12 a) By definition, there is a canonical map of presheaves
P → Ȟ

0
(P), which is injective if and only if P is separated. In this case

it turns out that Ȟ
0
(P) = aP is the sheaf associated to P (see [12], proof

of Theorem II.2.11 and [1], II.1.4. The difficulty is to check that Ȟ
0
(P) is

indeed a sheaf). In general the canonical map Ȟ
0
(P)→ aP is only injective.

b) Assume thatX = SpecA and U consists of one faithfully flat morphism
SpecB → SpecA. Take P = Gm and equip X with the flat topology. Then

7Strictly speaking, it is better to consider the coverings of X modulo the equivalence
relation U ≃ V if each is a refinement of the other. Then we get a filtered partially ordered
set JX because two coverings (Ui) and (Vj) have a common refinement (Ui ×X Vj). Then
Lemma 3.10 shows that the functor U 7→ ȞrU ,P) factors through JX and we get an
inductive system indexed by the filtered set JX .
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the groups Ȟr(U ,Gm) are the cohomology groups of the complex (where the
differentials are defined as in the complex (1) of Lemma 1.6 for M = A)

0→ B∗ → (B ⊗A B)∗ → (B ⊗A B ⊗A B)∗ → ...

These groups were first considered by Amitsur.

Proposition 3.13 Let

0→ P ′ → P → P ′′ → 0

be an exact sequence of presheaves. Then there is a long exact sequence

0→ Ȟ0(X,P)→ ...→ Ȟr(X,P)→ Ȟr(X,P ′′)→ Ȟr+1(X,P ′)→ ...

and similarly with X replaced by any covering U of X.

Proof : Let U be a covering of X for the E-topology. Then the sequence

0→ Cr(U ,P ′)→ Cr(U ,P)→ Cr(U ,P ′′)→ 0

is exact for all r as a product of exact sequences of abelian groups. Whence
an exact sequence of complexes

0→ C•(U ,P ′)→ C•(U ,P)→ C•(U ,P ′′)→ 0,

which (by [30], Th. 1.3.1) yields a long exact sequence

0→ Ȟ0(U ,P)→ ...→ Hr(U ,P)→ Ȟr(U ,P ′′)→ Ȟr+1(U ,P ′)→ ...

Taking direct limit preserves exactness of a sequence of abelian groups,
whence the required long exact sequence.

Remark 3.14 In general, an exact sequence of sheaves does not provide
such an exact sequence because the corresponding sequence of presheaves
does not always remain exact (but see the spectral sequences in Theorem 3.18
below that relate Čech cohomology to cohomology defined via derived func-
tors). The point is that (as the next statement will show), Čech cohomology
groups can be seen as derived functors from the category of presheaves (not
of sheaves).

Proposition 3.15 Let U ∈ CX . Let U be a covering of U for the E-topology.
Then the Ȟr(U , .) (resp. the Ȟr(U, .)) are the right derived functors of the
functors Ȟ0(U , .) (resp. Ȟ0(U, .)) from P (XE) to Ab.
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Proof : The category P (XE) has enough injectives (this is a general
fact, whose proof is similar to the same statement for abelian groups; see
[21], Prop 6.1). Since we already know (Proposition 3.13 and its proof) that
Ȟ∗(U , .) and Ȟ∗(U, .) take short exact sequences to long exact sequences,
it is sufficient to prove the following lemma (which immediately implies the
similar statement for Ȟr(U,P) by taking the inductive limit):

Lemma 3.16 Let P be an injective object of P (XE). Then Ȟr(U ,P) = 0
for all r > 0.

Assume indeed that the lemma is proven. Then embed any presheaf P0

into an injective one P, such that there is an exact sequence

0→ P0 → P → P ′ → 0,

then Ȟ1(U ,P0) = coker [Ȟ0(U ,P) → Ȟ0(U ,P ′)], Ȟ i(U ,P ′) ≃ Ȟ i+1(U ,P0)
for i ≥ 1 (and similarly with Ȟ i replaced by the derived functors of Ȟ0),
whence the result by degree shifting.

Proof of the lemma: Set U = (Ui → U). With the notation as above,
the goal is to show that the complex

∏
P(Ui)→

∏
P(Ui0i1)→

∏
P(Ui0i1i2)→ ...

is exact. For every j : W → X in CX , denote by ZW the presheaf j!Z on
X associated to the constant presheaf Z on W as in paragraph 2.6. Then we
have

ZW (V ) =
⊕

HomX(V,W )

Z; Hom(ZW ,P) = Hom(Z, j∗P) = P(W )

for every V → X in CX . Therefore the above complex is also

Hom(
⊕

ZUi
,P)→ Hom(

⊕
ZUi0i1

,P)→ Hom(
⊕

ZUi0i1i2
,P)→ ...

and since P is injective, one reduces to show that the complex
⊕

ZUi
←

⊕
ZUi0i1

←
⊕

ZUi0i1i2
← ... (6)

is exact in P (X).
Let V ∈ CX . For every U -scheme W and φ ∈ HomX(V, U), denote by

Homφ(V,W ) the set of morphisms V → W that are made U -morphisms by
φ. Then HomX(V, Ui0i1...) is the disjoint union

HomX(V, Ui0i1...) =
⋃

φ∈HomX(V,U)

Homφ(V, Ui0i1...) =
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⋃

φ∈HomX(V,U)

(Homφ(V, Ui0)× (Homφ(V, Ui1)× ...)

Now denote by T (φ) the disjoint union of the Homφ(V, Ui) for i ∈ I. We get
⋃

i0,...,ir

HomX(V, Ui0i1...ir) =
⋃

φ∈HomX(V,U)

T (φ)r,

where T (φ)r is the cartesian product of r copies of the set T (φ). This
implies that

⊕
ZUi0i1...ir

(V ) is actually the free abelian group on the set⋃
φ∈HomX(V,U) T (φ)

r. Therefore the complex (6) evaluated at V can be rewrit-
ten ⊕

φ∈HomX(V,U)

[
⊕

T (φ)

Z←
⊕

T (φ)2

Z←
⊕

T (φ)3

Z← ...].

Fix φ ∈ HomX(V, U) and define S := T (φ), we can assume S 6= ∅. Choose a
distinguished element a ∈ S. Then the complex inside the brackets

Z[S]← Z[S2]← Z[S3]← ...,

where the differentials ∂r : Z[Sr+1]→ Z[Sr] are defined via

(s0, ..., sr) 7→
r∑

j=0

(−1)j(s0, ..., ŝj, ..., sr), (s0, ..., sr) ∈ Sr+1

is known to be exact (see for instance [8], Lemma 1.26): indeed we have maps
ur : Z[S

r+1] → Z[Sr+2] defined by ur(s0, ..., sr) = (a, s0, ..., sr), which satisfy
ur−1 ◦ dr + dr+1ur = Id for all r ∈ N∗.

The lemma follows.

3.3. Čech cohomology compared to derived functor co-
homology

We start with a general statement:

Proposition 3.17 Čech cohomology of sheaves agrees with derived functor
cohomology on XE if and only if every short exact sequences of sheaves in-
duces (functorially) a long exact sequence of Čech cohomology.
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Proof : The "only if" part is clear from the general properties of derived
functors. For the "if" part, we first observe that H0(X,F) = Ȟ0(X,F) for
every sheaf F onXE . We now embed F into an injective sheaf I, which yields
an exact sequence of sheaves 0→ F → I → Q→ 0. Since I remains injective
in P (XE) (because the left adjoint a of the inclusion functor i : S(XE) →
P (XE) is exact), we have Ȟr(X, I) = 0 for all r > 0 by Lemma 3.16. The
isomorphism Ȟr(X,F) ≃ Hr(X,F) follows by induction on r (dimension
shifting).

We now relate Čech cohomology to derived functor cohomology via spec-
tral sequences. Recall that when there is a spectral sequence Ers

2 converging
to Er+s (which is written Ers

2 ⇒ Er+s), this implies that every term En has
a filtration whose all successive quotients are isomorphic to a subquotient of
Ers

2 for r+ s = n. In particular if all of those Ers
2 are zero (resp. finite), then

En is zero (resp. finite). Also, there is an exact sequence of low degree terms
(cf. [12], Appendix B):

0→ E1,0
2 → E1 → E01

2 → E20
2 → [kerE2 → E02

2 ]→ E11
2 → [kerE30

2 → E3].

Theorem 3.18 Let F be a sheaf on XE. Let U be a covering of X. There
are spectral sequences

Ers
2 = Ȟr(U , Hs(F))⇒ Hr+s(X,F).

Ȟr(X,Hs(F))⇒ Hr+s(X,F).
Ȟ
r
(X,Hs(F))⇒ Hr+s(X,F).

Proof : The first two results are special cases of Grothendieck’s spectral
sequence of composed functors (cf. [30], §5.8), the first functor being F 7→
H0(F) from S(XE) to P (XE), and the second one P 7→ Ȟ0(U ,P) (resp.
P 7→ Ȟ0(X ,P)) from P (XE) to Ab.

Indeed, since (as obviously H0(F) = F , and Ȟ0(U ,F) = F because F is
a sheaf)

Ȟ0(U , H0(F)) = Ȟ0(X,H0(F)) = H0(X,F),
the composition of the two functors is F 7→ H0(X,F), whose derived functors
are the Hn.

It is therefore sufficient to check that for an injective object I of S(XE),
its image by the first functor is acyclic for the second one, that is:

Ȟr(U , H0(I)) = Ȟr(X,H0(I)) = 0
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for all r > 0. But this follows from Lemma 3.16 because H0 is just the
inclusion functor i : S(XE)→ P (XE), which (as already seen in the proof of
Proposition 3.17) preserves injectives.

Replacing X by an arbitrary open set U → X in the E-topology in the
second spectral sequence provides the third one.

Corollary 3.19 Let F be a sheaf on XE. Then there are functorial isomor-
phisms

Ȟ0(X,F) ≃ H0(X,F); Ȟ1(X,F) ≃ H1(X,F)
and an exact sequence

0→ Ȟ2(X,F)→ H2(X,F)→ Ȟ1(X,H1(F))→ Ȟ3(X,F)→ H3(X,F).

Proof : Using the exact sequence of low degrees in the second spectral
sequence of Theorem 3.18, it is sufficient to check that Ȟ0(X,Hs(F)) = 0
for every s > 0. Take an injective resolution I• of F in S(XE). Then
a(Hs(F)) = 0 because since a (which is exact) commutes with cohomology,
the sheaf a(Hs(F)) is obtained by taking cohomology of the complex ai(I•) =
I•. Now, as already observed (cf. Example 3.12, a), the presheaf Ȟ

0
(Hs(F))

injects into a(Hs(F)), hence it is zero as well. In particular (taking global
sections), we get Ȟ0(X,Hs(F)) = 0.

Remark 3.20 The vanishing of Ȟ
0
(X,Hs(F)) can be reformulated as: for

every integer s > 0, every U ∈ CX and every c ∈ Hs(U,F), there exists a
covering (Ui → U) such that the restriction of c to Hs(Ui,F) is zero for all i.

We now use Čech cohomology to give a useful characterization of flabby
sheaves:

Proposition 3.21 Let F be a sheaf on XE. Then the following are equiva-
lent:

a) The sheaf F is flabby.
b) For every open set U → X (in the E-topology) and every covering U

of U , we have Ȟr(U ,F) = 0 for all r > 0.
c) For every open set U → X (in the E-topology), we have Ȟr(U,F) = 0

for all r > 0.
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Proof : a) ⇒ b): By definition of a flabby sheaf, we have Hs(F) = 0 for
all s > 0. Hence the first spectral sequence of Theorem 3.18 yields

Ȟr(U ,F) = Hr(U,F) = 0

for all r > 0.
b) ⇒ c) is obtained by taking the inductive limit.
c) ⇒ a): The assumption is Ȟ

s
(F) = 0 for all s > 0. Let us show by in-

duction on s > 0 that Hs(F) = 0. The case s = 1 comes from Corollary 3.19.
Assume that the required result holds for all positive integers q < s and con-
sider Ȟ

p
(X,Hq(F)) for p+ q = s. By the induction hypothesis, it is zero for

0 < q < s. Furthermore

Ȟ
s
(X,H0(F)) = Ȟ

s
(F) = 0

by assumption, and Ȟ
0
(X,Hs(F)) = 0 as seen in the proof of Corollary 3.19.

Since the third spectral sequence of Theorem 3.18 shows that Hs(F) has a
filtration whose each quotient is a subquotient of some Ȟ

p
(X,Hq(F)) for

p+ q = s, we are done.

Corollary 3.22 If π : X ′
E′ → XE is a continuous map of sites, the direct

image π∗F ′ of every flabby sheaf F ′ on X ′
E′ is flabby.

Proof : Let U ∈ CX . Let U = (Ui → U) be a covering of U . Set
U ′
i = Ui ×X X ′ and U ′ = U ×X X ′, then U ′ := (U ′

i → U ′) is a covering of
U ′ and by definition of π∗ the Čech complexes C•(U ′,F ′) and C•(U ,F) are
isomorphic. Now apply Proposition 3.21, b).

It is sometimes possible to extend corollary 3.19 to higher degrees:

Theorem 3.23 Let F be a quasi-coherent sheaf of OX-modules on a sepa-
rated and noetherian scheme X. Then

Ȟr(XZar,F) ≃ Hr(XZar,F)

for every r ∈ N.
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Proof : This is classical; see [9], Th. III.4.5. or [7], Th. 9.6. The main
step consists of proving that Hr(UZar,F) = 0 for all r > 0 if U is an affine
Zariski open subset of X. Then use Theorem 3.18.

The situation with étale topology is more complicated. We state the
following theorem (due to Artin).

Theorem 3.24 Let X be a quasi-projective scheme over a ring A. Let F be
an étale sheaf on X. Then

Ȟr(Xét,F) ≃ Hr(Xét,F)

for every r ∈ N.

Proof : By proposition 3.17, it is sufficient to show that an exact sequence
of sheaves induces an exact sequence of the corresponding Čech complexes.
Since the inclusion functor i : S(X) → P (X) is left-exact, we just have to
show that a surjective map F → F ′ of sheaves induces a surjective map

lim−→
U

(
∏
F(Ui0...ir))→ lim−→

U

(
∏
F ′(Ui0...ir)),

where U runs over the set of all étale coverings (up to equivalence) of X and
notation is as in paragraph 3.2.. Using Proposition 2.16 b), we can restrict to
coverings (Ui → X)i∈I with I finite and each Ui étale and of finite type over
X. Replacing (Ui) by

∐
i Ui, we can restrict to coverings consisting of one

single morphism f : U → X with f étale and of finite type. Let n ∈ N∗ and
s′ ∈ F ′(Un). As F → F ′ is surjective, there is an étale covering W → Un

such that s′|W lifs to some s ∈ F(W ). Now by [12], Lemma 2.19, there is
an étale covering V → U such that V n → Un factorizes through W , which
implies that s′|V n is the image of s|V n . Whence the result.

Remark 3.25 Not much is known about such a comparison result for flat
cohomology, except in the case when X = Spec k is a field. Let kalg be the
algebraic closure of k. Then one can work with the Čech complex related to
the sole covering Spec (kalg)→ Spec k, whose cohomology gives flat cohomol-
ogy for sheaves represented by k-group schemes G of finite type ([18], Th. 42
p. 208). Hence flat cohomology groups of G over Spec k coincide with étale
(=Galois) cohomology groups if k is assumed to be perfect.
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3.4. Cohomology and limits; stalks of the higher direct
images

Recall that if (Fi) is an inductive system of sheaf, its direct limit is the sheaf
associated to the presheaf U 7→ lim−→i

(Fi(U)) (it is indeed the direct limit in
the category of sheaves). The next statement (whose detailed proof is rather
complicated) is very useful to compute étale cohomology.

Theorem 3.26 a) Assume that X is quasi-compact and quasi-separated.
Then étale cohomology on X commutes with direct limit of sheaves.

b) Let the notation and assumptions be as in Lemma 2.39. Then

lim−→Hr(Xi,Fi) ≃→ Hr(X∞,F∞).

Proof (sketch of): a) This uses the fact (cf. Proposition 2.16, b) that
any étale covering of X has a refinement (Vj → X)j∈J with J finite and all Vj
(as well as the products Vj1 ×X ...×X Vjp for {j1, ..., jp} ⊂ J) quasi-compact
and quasi-separated. This easily implies the case r = 0. The general case
is by induction on r, using the first spectral sequence of Theorem 3.18 and
Remark 3.20. See [27], Lemma 51.4.

b) See [1], III.3. or [27], Theorem 51.3. The proof uses a) and the fact that
the category of étale schemes of finite type over X∞ is the direct limit of the
categories of étale schemes of finite type over Xi. It is easier (via Lemma 2.39,
which is the case r = 0) if one works with quasi-projective schemes over a
ring, so that Čech cohomology can be used (thanks to Theorem 3.24).

Remark 3.27 The previous theorem actually also holds for the flat site. If
F is represented by a group scheme G, the statement also holds if one takes
for Fi, F∞ respectively the sheaves represented by G×XXi, G×XX∞ (([15],
VII.5).

Theorem 3.28 Let π : Y → X be a quasi-compact and quasi-separated
morphism. Let F be an étale sheaf on Y . Let x ∈ X and x̄ a geometric
point with image x. Set X̃ = Spec (OX,x̄), Ỹ = Y ×X X̃ and define F̃ as the
inverse image of F on Ỹ . Then

(Riπ∗(F))x̄ ≃ H i(Ỹ , F̃).

In particular, if F is defined by a group scheme G locally finitely presented
over Y and we set GỸ = G ×Y Ỹ , we have an isomorphism (Riπ∗G)x̄ ≃
H i(Ỹ , GỸ ).
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Proof : By Proposition 3.7 a), we have Riπ∗F = aπp(H
i(F)). Since a

presheaf has the same stalks as its associated sheaf (Remark 2.30), we get

(Riπ∗F)x̄ = lim−→H i(U ×X Y,F|U×XY ),

where the limit is over all étale neighborhoods U of x̄ in X. Now the required
isomorphism follows from Theorem 3.26 exactly as Theorem 2.40 follows from
Lemma 2.39.

The case of a sheaf F represented by a group scheme G follows from the
equality F̃ = G×Y Ỹ , which comes from Example 2.37, a) (first case).

Remark 3.29 We will see later (proper base change theorem 5.7) that for
a proper morphism π, the previous theorem can be considerably refined for
a torsion sheaf F (that is: a sheaf such that F(U) is a torsion group for
every U ∈ CX with U quasi-compact, see paragraph 5.1.). Indeed the stalk
(Riπ∗F)x̄ is then isomorphic to H i(Yx̄,F|Yx̄), where Yx̄ = Y ×X Spec (k(x̄))
is the geometric fiber of π at x̄.

3.5. Some spectral sequences

Recall that we always assume that the sites are one of the sites of Example 2.3
(so that the inverse image functor is exact).

Theorem 3.30 a) (Leray spectral sequence) Let π : X ′
E′ → XE be continu-

ous morphisms of sites. Let F be a sheaf on X ′
E. Then there is a spectral

sequence
Ers

2 := Hr(XE, R
sπ∗F)⇒ Hr+s(X ′

E′,F).

b) Let X ′′
E′′

π′

→ X ′
E”

π→ XE be a continuous morphism of sites. Then for
every sheaf F on X ′′

E, there is a spectral sequence

(Rrπ∗)(R
sπ′

∗)F ⇒ Rr+s(ππ′)∗F .

Proof : By Proposition 3.7 c), the direct image functors π, π′ preserve
injectives. Both results are therefore special cases of Grothendieck’s spectral
sequence of composed functors (cf. [30]).

Remark 3.31 There is also a spectral sequence associated to two sheaves
F1, F2 on XE , namely:

Hr(XE,Ext
s(F1,F2))⇒ Extr+s(F1,F2).
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It is obtained the same way as the previous spectral sequences, once one
knows that if F2 is injective, then Hom(F1,F2) is flabby, which is proven
in [12], Cor III.2.13 (using Proposition 3.21). An example of this situation
occurs in [8], Theorem 16.14.

Example 3.32 Let X be a quasi-compact scheme over a field k, set Γ =
Gal (k̄/k). We apply Theorem 3.30 to π : X → Spec k on the étale sites. Let
F be a sheaf onXét with inverse image F onX := X×kk̄. By Proposition 3.7,
Theorem 2.17, and Theorem 3.26, we have that the sheaf Rsπ∗F corresponds
to the Γ-module

lim−→
K

Hs(XK ,FXK
) ≃ Hs(X,F),

where K runs over all finite extensions K ⊂ k̄ of k and FXK
is the inverse

image of F on XK := X ×k K. We get the spectral sequence in étale coho-
mology

Hr(k,Hs(X,F))⇒ Hr+s(X,F).
If F is represented by a commutative group scheme G over X, we can re-
place F , F respectively by G := G ×k k̄ and G (cf. Remark 3.27). A
consequence of the spectral sequence is that every Hn(X,F) is filtered by
groups such that each successive quotient of the filtration is a subquotient of
some Hr(k,Hs(X,F)) with r + s = n. This is quite useful to get finiteness
or vanishing results. Another interesting consequence is the exact sequence
of the first terms associated to the spectral sequence (cf. [12], Appendix B)

0→ H1(k,H0(X,F))→ H1(X,F)→ H0(k,H1(X,F))→ H2(k,H0(X,F))→

ker[H2(X,F)→ H0(k,H2(X,F))]→ H1(k,H1(X,F))→ H3(k,H0(X,F)).

Definition 3.33 Let X be a connected scheme, fix a geometric point x̄ of
X. A finite and étale morphism π : Y → X is a finite Galois covering if
Y is connected and the right action of Aut X(Y ) on F (Y ) := HomX(x̄, Y )
(which is free because Y is connected) is transitive (this does not depend on
the choice of x̄). The Galois group of such a covering is AutX(Y ).

It is not difficult (but a bit tedious, see [12], Example III.2.6) to check
that for a sheaf F on Xét and a finite Galois covering Y of X, the Čech
complex associated to the single covering Y → X is isomorphic to the stan-
dard complex of inhomogeneous cochains (cf. [8], Th. 1.27) of G with values
in F(Y ). This implies the following generalization of Example 3.32, called
Hochschild-Serre spectral sequence:

52



Theorem 3.34 Let π : X ′ → X be a finite Galois covering with group G.
Let F a sheaf for the étale topology on X with restriction FX′ to X ′. Then
there is a spectral sequence in étale cohomology

Hr(G,Hs(X ′,FX′))⇒ Hr+s(X,F).

Proof (sketch of): The left action of G on F(X ′) makes it a G-module.
The section functor Γ(X, .) is the composition of the functor F 7→ F(X ′)
from S(X) to CG and the functor M 7→ MG from CG to Ab (the argument
is roughly the same as in the proof of Theorem 2.17, cf. [12], Prop II.1.4). To
apply Grothendieck’s spectral sequence of composed functors, it remains to
check that for an injective sheaf I on X, we have Hr(G, I(X ′)) = 0 for r > 0.
Observing that I is a fortiori injective in the category of presheaves, this is
a special case of Lemma 3.16 because Hr(G, .) identifies with Ȟr(X ′/X, .).

Remark 3.35 Hochschild-Serre spectral sequence extends (whenX is quasi-
compact and quasi-separated) to an infinite Galois covering X ′ → X with
group G (that is: X ′ is the projective limit of finite Galois covering Xi → X
with group Gi and G := lim←−Gi). Indeed we can use Theorem 3.26 plus the
fact that the cohomology of the group G is obtained as a direct limit of the
cohomology of the Gi ([8], Proposition 4.18) coupled with the exactness of
the direct limit functor.

3.6. Comparison of topologies

The first statement of this paragraph shows that in some sense, changing
the category CX does not change the cohomology if the class E of coverings
remains the same.

Proposition 3.36 Let CX be a subcategory of a category of X-schemes C ′
X ,

such that (CX)E and (C ′
X)E are sites associated to the same class of coverings

E. Consider the continuous map of site π : (C ′
X)E → (CX)E induced by the

identity map on X.
a) The functor π∗ is exact, and for every sheaf F on CX there is an

isomorphism F → π∗π
∗F .

b) The functor π∗ : S((CX)E)→ S((C ′
X)E) is fully faithful.

c) The canonical maps

H i(X, π∗F ′)→ H i(X,F ′)
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and
H i(X,F)→ H i(X, π∗F)

are isomorphisms for every sheaves F ′ on (C ′
X)E and F on (CX)E.

Proof : a) The exactness of π∗ is clear. Let U ∈ CX , then Γ(U, πpF) =
Γ(U,F) because the limit that defines Γ(U, πpF) can be taken over the single
initial object (Id, U). Since F is a sheaf, this equality shows that πpF and
its associated sheaf π∗F have the same sections over U ∈ CX ⊂ C ′

X , hence:

Γ(U, π∗π
∗F) = Γ(U, π∗F) = Γ(U, πpF) = Γ(U,F).

b) comes from the second part of a), using the formula

Hom(π∗F , π∗G) = Hom(F , π∗π∗G) = Hom(F ,G)
for every sheaves F , G on XE .

c) Since π∗ is exact, the first map is an isomorphism. The composition
of the second map with the isomorphisms H i(X, π∗F) ≃ H i(X, π∗π

∗F) ≃
H i(X,F) is the identity, whence the result.

Example 3.37 a) For a sheaf F on the big étale site, corresponding to a
sheaf π∗F on the small étale site, the cohomology groups H i

Ét
(X,F) and

H i
ét(X, π∗F) are the same. It does not always imply that the canonical map

π∗π∗F → F is an isomorphism: take the sheaf represented by αp on the big
étale site of a regular scheme X; then π∗F = 0 on the small étale site, but
F 6= 0 because on arbitrary (non reduced) X-scheme U , we don’t necessarily
have αp(U) = 0.

b) The statement does not imply that for a morphism f : Y → X
of schemes and a group scheme G over X, the groups H i(Yét, GY ) and
H i(Yét, f

∗G) coincide if we don’t assume that f (or G) is étale, even though
we know that GY = f ∗G on YÉt by Example 2.37, a). Take for instance
G = αp on X = Spec k (where k is the spectrum of a field) and Y =
Spec (k[T ]/T p). Then G = 0 on Xét, hence we have H0(Yét, f

∗G) = 0; but
H0(Yét, GY ) = αp(Y ) 6= 0. Another example consists of taking k algebraically
close, G = Ga and Y = A1

k. Then G is the constant sheaf k on Xét, so f ∗G
is also the constant sheaf k, which implies H0(Y, f ∗G) = k. However

H0(Y,GY ) = H0(Y,Ga) = k[T ].

There is also a statement when the class E of coverings is replaced by a
smaller class, if one assumes that this smaller class contains a refinement of
every covering in E.
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Proposition 3.38 Let π : ((C1)X)E1 → ((C2)X)E2 be a continuous mor-
phism of sites induced by the identity on X, where (C2)X is a subcategory of
(C1)X and E1 ⊃ E2. Assume that for every U ∈ (C2)X and every covering of
U for the E1-topology, there is a covering of U for the E2-topology that refines
it. Then π∗ : S(XE1) → S(XE2) is exact and H i(XE2, π∗F) ≃ H i(XE1,F)
for every sheaf F on XE1.

Proof : The condition that π∗ takes injectives to injectives is automatic
(Proposition 3.7, c)). Since we obviously have H0(XE2 , π∗F) = H0(XE1,F),
it is sufficient to show that π∗ is exact. We observe that π∗ is simply the
restriction of an E1-sheaf to an E2-sheaf, the E2-topology being coarser. We
already know that π∗ is left exact. Let F → F ′ be a surjective map of
sheaves on XE1 , take U ∈ (C2)X and s ∈ F ′(U). By Remark 2.32, there
exists a covering (Ui) of U for the E1-topology such that every s|Ui

is in
the image of F(Ui). Let (Vj) be a covering of U for the E2-topology, such
that (Vj) is a refinement of (Ui). Then every Vj → U factors through some
Ui → U , which implies that s|Vj is in the image of F(Vj) for all j, hence
F → F ′ remains surjective in S(XE2).

Example 3.39 Assume that X is locally noetherian. Thanks to Proposi-
tion 2.16 (which apply to every U ∈ CX in the cases below), we have the
following examples of refinements as in Proposition 3.38:

a) Replace the class of all étale morphisms (in the definition of Xét) by
the class of étale morphisms of finite type, or even affine and of finite type
étale morphisms morphisms if X is separated.

b) Similarly, we can take for CX the class of finite type X-schemes and
for E the class of flat and of finite type morphisms in the definition of the
(big) flat site. If X is separated, it is also possible to compute cohomology
on a "small"8 flat site, taking for E the affine and flat morphisms of finite
type and for CX the affine flat X-schemes of finite type.

Theorem 3.40 Let F be a quasi-coherent OX-module and let W (F) be the
corresponding sheaf on Xfppf . Then H i(Xzar,F) ≃ H i(Xfppf ,W (F)). A sim-
ilar result holds if the flat site is replaced by the étale site.

8Observe, however, that on this small flat site direct products do not exist in general:
indeed if W is a flat X-scheme and U, V are W -schemes that are flat over X , then U×W V
might not be flat over X because it is not guaranteed that U or V is flat over W .
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Proof : We give the proof for the flat site (it is similar for the étale site).
Using Leray spectral sequence, one reduces to showing that Riπ∗W (F) = 0
for all i > 0, where π : Xfppf → Xzar is the natural continuous map, or
equivalently that H i(Ufppf ,W (F)) = 0 for every open affine subset U ⊂ X.
Using Example 3.39 b), one can use the small E-site on U , where E is the
class of all affine flat morphisms of finite type. By Proposition 3.21 and the
last statement of Proposition 2.16, it suffices to show that on this site, we
have Ȟ i(U ,W (F)) = 0 for every covering U = (Ui → U)i∈I of U with I finite.
Replacing the family of Ui by

∐
i Ui, we reduce to the case where U consists

of one single morphism SpecB → SpecA with B flat and finitely generated
over A. Since W (F) = M̃ for some A-module M , the Čech complex is now
the complex of Lemma 1.6, which we know is exact.

The following result is more difficult, see [12], Theorem III.3.9. Using
again Leray spectral sequence, the method consists of proving that we have
H i(Xfppf , G) = 0 for i > 0 when X = SpecA with A strictly local, which
relies on computations in Čech cohomology.

Theorem 3.41 Let G be a smooth, quasi-projective, and commutative group
scheme over a scheme X. Then H i(Xét, G) ≃ H i(Xfppf , G). Besides, if
X = SpecA with A henselian, then H i(X,G) ≃ H i(X0, G0) (for the flat or
the étale topology), where X0 is the closed point of X and G0 := G×X X0 is
the closed fiber of G over X.

Remark 3.42 A similar statement holds for étale cohomology compared to
complex cohomology on a smooth C-scheme X, provided one restricts to
torsion coefficients ([12], Th. III.3.12). Theorem 3.41 is false without the
smoothness assumption: take an imperfect field k of characteristic p and
set X = Spec k, G = µp. Then by Kummer exact sequence and Hilbert’s
Theorem 90, we have H1

fppf(k, µp) = k∗/k∗
p

, but H1
ét(k, µp) = 0 because the

sheaf µp is zero on the étale site of X.

3.7. Cohomology with support

We consider the following situation: X is a scheme, U an open subscheme of
X, and Z = X − U is a closed subscheme of X. Denote by i : Z → X the
corresponding closed immersion and j : U → X the open immersion.

Definition 3.43 The right derived functors of the left exact functor

F 7→ ker[F(X)→ F(U)]
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from S(Xét) to Ab are denoted H i
Z(X,F) and are called the cohomology

groups with support on Z.

Theorem 3.44 Let F be a sheaf on Xét. There is a long exact sequence

0→ H0
Z(X,F)→ F(X)→ F(U)→ H1

Z(X,F)...

...→ H i
Z(X,F)→ H i(X,F)→ H i(U,F)→ H i+1

Z (X,F) → ...

Proof : Apply Lemma 2.44 to the constant sheaf Z on Xét, and define
ZU = j!j

∗Z, ZZ = i∗i
∗Z. Since Z is an étale group scheme over X, we have

(by Example 2.37) that i∗Z is just the constant sheaf Z on Z. Let F be
a sheaf on Xét. We use the long exact cohomology associated to the func-
tor Hom(.,F) (which is contravariant and left-exact, with derived functors
Exti(.,F)). We get, for every sheaf F on Xét, an exact sequence

...→ Extr(Z,F)→ Extr(ZU ,F)→ Extr+1(ZZ ,F)→ ...

As already explained (Remark 3.5, b), we have Extr(Z,F) = Hr(X,F).
Since

HomS(X)(ZU ,F) = HomS(U)(Z, j
∗F) = F(U),

the group Extr(ZU ,F) is obtained as a derived functor of U 7→ Γ(U,F),
hence it is Hr(U,F) (see Remark 3.5 c). Similarly, the groups Extr(ZZ ,F)
are obtained as derived functors of

HomS(X)(ZZ ,F) = HomS(Z)(Z, i
!F) = H0

Z(X,F)

(cf. Proposition 2.45), so they coincide with Hr
Z(X,F).

Theorem 3.45 (Excision) Let Z ⊂ X and Z ′ ⊂ X ′ be closed subschemes.
Let π : X ′ → X be an étale morphism such that π(X ′ − Z ′) ⊂ X − Z and
π induces an isomorphism Z ′ ≃ Z. Then for every sheaf F on Xét, the
canonical map

Hr
Z(X,F)→ Hr

Z′(X ′, π∗F)
is an isomorphism for all p ≥ 0.
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Proof : Since π∗ is exact and preserves injectives (its left adjoint π! being
exact), it is sufficient to deal with the case r = 0. Set U = X − Z and
U ′ = X ′ − Z ′, there is a commutative diagram with exact lines

0 −−−→ H0
Z(X,F) −−−→ H0(X,F) −−−→ H0(U,F)
u

y
y

y
0 −−−→ H0

Z′(X ′,F|X′) −−−→ H0(X ′,F) −−−→ H0(U ′,F)

Let α ∈ H0
Z(X,F) such that u(α) = 0. Then the restriction of α ∈ H0(X,F)

to U and to X ′ are zero, which implies that α = 0 because (U → X,X ′ → X)
is a covering of X. Now let β ∈ H0

Z′(X ′,F|X′) ⊂ H0(X ′,F). The restriction
of β and 0 to X ′ ×X U = π−1(U) ⊂ U ′ agree, hence they glue to a section
α ∈ H0(X,F), which by construction is inH0

Z(X,F); thus u(α) = β. Finally,
u is bijective as required.

Corollary 3.46 Let z be a closed point of X. Then for every sheaf F on
Xét, there is an isomorphism Hr

z (X,F)→ Hr
z (Spec (OhX,z),F).

Proof : By theorem 3.45, we have Hr
z (X,F) ≃ Hr

y(Y,F) for every étale
neighborhood (Y, y) of z that induces an isomorphism between the closed
subschemes {y} and {z} (in particular y and z have same residue field).
Taking the direct limit over such (Y, y) (cf. Theorem 3.26), we get the result.

4. Étale cohomology: more examples

Unless explicitely specified, all schemes are equipped with the étale topology.
For every Z-group scheme G and every scheme X (ex. G = Z, G = Gm), the
piece of notation GX (or simply G if X is understood) denotes the X-group
scheme G×SpecZ X. When X = SpecA is affine, GA stands for GSpecA.

4.1. Cohomology of Z

Lemma 4.1 Let X be a scheme. Let K be a field equipped with a morphism
f : SpecK → X (i.e. a K-point of X is given). Then

a) H1(X, f∗ZK) = 0.
b) H1(X, f∗Gm,K) = 0.
c) R1f∗ZK = 0.
d) R1f∗Gm,K = 0.
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Proof : Leray spectral sequence (Theorem 3.30, a) yields for every étale
sheaf F on SpecK (corresponding to a Galois module by Theorem 2.17)
an injection H1(X, f∗F) → H1(K,F). But H1(K,F) = 0 in both cases
F = Z (Example 3.4, e) and F = Gm (this is Hilbert’s Theorem 90 in Galois
cohomology, cf. [8], Theorem 6.5).

By Proposition 3.7 a), the sheaf R1f∗ZK is associated to the presheaf
U 7→ H1(U ×X SpecK,ZK). Since for every étale map U → X, we know
that the fiber U ×X SpecK is empty or is the disjoint union of spectra of
fields (see comment after Definition 1.8), the same argument as above shows
that both H1(U ×X SpecK,ZK) and H1(U ×X SpecK,Gm,K) are zero.

Proposition 4.2 Let X be an integral, noetherian and normal scheme.
Then H1(X,ZX) = 0.

Proof : Using Proposition 3.38 and Example 3.39, we can make the
calculation on the site XE such that objects of CX are étale X-schemes of
finite type and morphisms in E are étale morphisms of finite type. Let
i : η → X be the inclusion of the generic point of X. By Lemma 4.1, it
is sufficient to show that the canonical map ZX → i∗Zη is an isomorphism.
We can check this on sections over U , where U is a connected, étale and
finite type X-scheme. Then U is normal by Proposition 1.15 and noetherian
(it is of finite type over a noetherian scheme), hence it is integral by [23],
Lemma 7.7. The generic fibre Uη of U → X is then integral, hence

ZX(U) = Z = Zη(Uη) = (i∗Zη)(U).

Remark 4.3 The same argument shows that for an integral, noetherian and
normal scheme and an arbitrary constant commutative group scheme M on
X, we have Hr(X,M) ≃ Hr(X, i∗Mη) for all r ≥ 0. Using Leray spectral
sequence, this provides an injective map H1(X,M) → H1(K,M), where K
is the function field of X. Using the interpretation of H1(X,M) with torsors
(see next paragraph), one sees that H1(X,M) corresponds to the group of
continuous morphisms from the étale fundamental group (cf. [12], §I.5) of X
(or its abelianized group) to M .

4.2. Torsors, descent, and twisted forms

In this paragraph only, we will most of the time work on the flat site, so
we will use notation like Hr(X, ...) for Hr(Xfppf , ...). We denote by G be a
locally finitely presented and flat group scheme over a scheme X.
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We start with a classical statement in faithfully flat descent theory (see
[2], §6.1 and 6.2):

Theorem 4.4 Let f : Y → X be a faithfully flat and quasi-compact mor-
phism. Denote by p1, p2 the projections Y ×X Y → Y and by pij the projec-
tions Y ×X Y ×X Y → Y ×X Y for i > j (defined by pji(y1, y2, y3) = (yj, yi)).

Then, to give a quasi-coherent sheaf F over X is equivalent (via F 7→
f ∗F) as giving a quasi-coherent sheaf F ′ on Y equipped with a descent datum,
that is: an isomorphism φ : p∗1F ′ → p∗2F ′ such that

p∗31(φ) = p∗32(φ)p
∗
21(φ). (7)

A similar statement holds with schemes Z affine over X (where Z ′ =
Z ×X Y ) instead of quasi-coherent sheaves.

Observe that if F ′ (resp. Z ′) comes from a quasi-coherent OX -module
(resp. an affine X-scheme), we obviously can take for φ the identity map to
obtain condition (7).

Definition 4.5 A (right)G-torsor (or principal homogenous space ofG) over
X is a faithfully flat, locally finitely presented scheme Y → X, equipped with
a (right) action of G such that the corresponding map

Y ×X G→ Y ×X Y, (y, g) 7→ (y, y.g)

is an isomorphism. A torsor is trivial if it is isomorphic to G (acting on
itself), which is the case as soon as Y → X has a section.

Example 4.6 A finite Galois covering of X with Galois group G (where G
is an abstract finite group) is nothing but a (connected) X-torsor under the
constant group scheme G.

Proposition 4.7 Let f : Y → X be an X-scheme equipped with an action
of the group scheme G. The following are equivalent:

i) Y is a G-torsor over X.
ii) There a covering (Ui → X) for the flat topology such that every YUi

:=
Y ×X Ui is isomorphic as a GUi

-scheme to GUi
(equipped with the action by

right-translation).
If G is smooth over X, flat topology can be replaced by étale topology in

condition ii).

Condition ii) can be rephrased as : the torsor Y is trivialized by the
covering (Ui → X).
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Proof : i) ⇒ ii): It suffices to take the covering given by the single
morphism Y → X and the isomorphism given by the definition of a torsor.

ii) ⇒ i): Set U :=
∐
Ui. Then U is faithfully flat and locally of finite

presentation over X and YU ≃ GU . In particular YU is faithfully flat and
locally of finite presentation over U , which implies (Proposition 1.7) the same
for Y over X. By assumption (Y ×X G)U → (Y ×X Y )U is an isomorphism,
hence so is (Y ×X G)→ (Y ×X Y ) by loc. cit.

Assume further that G is smooth over X. Then so is a G-torsor Y by
loc. cit. Cover X by affine open subset Xi and set Yi = f−1(Xi); then
fi : Yi → Xi is a G-torsor. Since Xi is quasi-compact, the morphism fi
admits a quasi-section, that is: there is (by [12], Prop. I.3.26) an étale and
surjective morphism Y ′

i → Xi equipped with an Xi-morphism Y ′
i → Yi. This

implies that (Y ′
i → X) is an étale covering of X, which satisfy condition ii)

because each torsor fi is trivialized by Yi, hence by Y ′
i .

It is actually useful to extend the definition of a torsor to (non necessarily
representable) sheaves.

Definition 4.8 Let F be a sheaf of sets on Xfppf equipped with an action
of G. It is said to be a sheaf torsor for G over X if it satisfies condition ii)
of Proposition 4.7, where YUi

is replaced by the restriction of F to Ui, which
must be isomorphic as a GUi

-sheaf to the sheaf GUi
.

Remark 4.9 In this definition, the group scheme G can be replaced by a
sheaf of groups (not necessarily representable by a group scheme) on X, with
the obvious modifications. Also, a sheaf torsor is trivial (isomorphic to G) if
and only if it has a global section over X.

Lemma 4.10 Let F be a sheaf torsor on a quasi-compact, quasi-separated
scheme X. Then there exists a finitely presented and faithfully flat morphism
f : Y → X such that the sheaves GY and F|Y are isomorphic.

Proof : This is a consequence of Proposition 2.16: indeed if (fi : Ui → X)
is a covering as in Definition 4.8, we can assume that I is finite and all fi are
flat and finitely presented. Then take Y =

∐
i∈I Ui.

By Proposition 4.7, a scheme that is a G-torsor is a sheaf torsor, and two
such schemes are isomorphic as G-torsors if and only if they are isomorphic
as sheaf torsors (by Yoneda lemma). In general, a sheaf torsor is not always
representable. However, we have:
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Proposition 4.11 Assume that the group scheme G is affine. Then a sheaf
torsor F for G over X is representable by a G-torsor.

Proof : Start with the case when X itself is affine. Let Y be as in
Lemma 4.10 and denote by p1, p2 the two projections Y ×X Y → Y . We
have p∗1(F|Y ) = p∗2(F|Y ) because both p1 and p2 are X-morphisms and F|Y is
the restriction of a sheaf defined over X. Since GY and F|Y are isomorphic,
this induces an isomorphism p∗1(GY )→ p∗2(GY ) which satisfies the conditions
of Theorem 4.4, hence this defines an affine scheme T such that TY = GY .
Consider the sheaf Hom(T ,F). By construction we have a section ϕY of
this sheaf over Y , which satisfies the glueing condition with respect to the
covering Y → X, hence comes from a unique morphism ϕ : T → F (and
similarly for the converse isomorphism ϕ−1

Y , hence ϕ is an isomorphism).
Thus F is represented by T .

In the general case, cover X by affine open subsets (Xi). For each i, let
πi : Ti → Xi be an Xi-scheme that represents F|Xi

. We can now glue the
Ti along the Uij := π−1

i (Xi ∩ Xj) (the glueing conditions being ensured by
the fact that F|(Xi∩Xj) is represented by both Tij = Ti ×Xi

(Xi ∩ Xj) and
Tji = Tj ×Xj

(Xi ∩Xj)) to get an X-scheme that represents F .

Our next goal is to relate (isomorphism classes) of sheaf torsors to étale
cohomology. To include the case of a non commutative group scheme G,
it is necessary to slightly extend the definition of the Čech H1 as follows.
Let U = (Ui → X)i∈I be a covering on a site XE and let G be an X-group
scheme, or more generally a sheaf of groups on X (with the composition law
written multiplicatively). Set Uij := Ui ×X Uj for i, j ∈ I and similarly for
Uijk.

Definition 4.12 A 1-cocycle for U (with values inG) is a family g = (gij)i,j∈I
with gij ∈ G(Uij), such that the restriction of gik and gijgjk to Uijk coincide.
Two cocycles g, g′ are said to be cohomologous if there exists a family (hi)i∈I
with hi ∈ G(Ui) such that

g′ij = ((hi)|Uij
)gij((hj)|Uij

)−1, ∀i, j ∈ I. (8)

The quotient of the set of cocycles by the equivalence relation "being co-
homologous" is denoted Ȟ1(U , G) (recall that unless otherwise specified, the
site E is the flat site in this paragraph). It coincides with the corresponding
Čech cohomology group is G is commutative; in general it is only a pointed
set, the distinguished element (denoted 0 or 1) being the class of the cocycle
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defined by gij = 1 for all i, j. Observe that thanks to the cocycle condition,
a cocycle automatically restricts over each Ui to a trivial (:=cohomologous
to 1) cocycle for the covering (Ui ×X Uj)j∈I .

Taking direct limit over all (classes of) coverings, we define

Ȟ1(X,G) = lim−→
U

H1(U , G).

There is still a (small) piece of long exact sequence for these non abelian
cohomology sets:

Proposition 4.13 Let

1→ G1 → G2 → G3 → 0

be an exact sequence of sheaves of groups. Then there is an exact sequence
of pointed sets

1→ G1(X)→ G2(X)→ G3(X)
∂→ Ȟ1(X,G1)→ Ȟ1(X,G2)→ Ȟ1(X,G3).

Here, exact sequence of sheaves of groups means that 1→ G1 → G2 → G3

is exact as a sequence of presheaves, and G2 → G3 is "locally surjective" in
the sense of Remark 2.32.

Proof (sketch of): The only non obvious map is ∂, which we define as
follows. Let g ∈ G3(X), take a covering (Ui → X) such that the restriction
g|Ui

lifts to some gi ∈ G2(Ui). Then set

∂(g)ij = ((gi)|Uij
)−1(gj)|Uij

.

It is then straightforward to check that ∂(g) is well-defined and the required
exactness.

Theorem 4.14 There is a bijection between the set ST (X,G) of isomor-
phism classes of sheaf torsors for G and Ȟ1(X,G). The image of the trivial
torsor is 0.

Proof : Start from a sheaf torsor F and take a covering U = (fi : Ui → X)
that trivializes F . In particular F(Ui) 6= ∅; choose si ∈ F(Ui), there is
a unique gij ∈ G(Uij) such that ((si)|Ui

).gij = (sj)|Uj
. One immediately

checks that the restriction to Uijk of sigijgjk and sigik coincide with (sk)|Uijk
,

hence g = (gij) satisfies the cocycle condition. Replacing si by s′i gives a
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cohomologous cocycle (write s′i = si.hi with hi ∈ G(Ui), then the new cocycle
g′ij = h−1

i gijhj), and taking an isomorphic torsor clearly does not change the
cohomology class of (gij) either. Whence a map c : ST (U , G) → Ȟ1(U , G)
defined on the isomorphism classes of sheaf torsors trivialized by U .

We now construct an inverse map. Consider the sheaves

C0(U , G) =
∏

i

(fi)∗(GUi
); C1(U , G) =

∏

i,j

(fij)∗(GUij
).

There is a morphism of sheaves d : C0(U , G)→ C1(U , G), defined (for an arbitrary
V → X) by

(hi) 7→ (h−1
i )|Uij

(hj)|Uij
;
∏

i

G(V ×X Ui)→
∏

i,j

G(V ×X Uij).

Let g be a cocycle for G and U , we associate a sheaf torsor F ⊂ C0(U , G) to
g as follows. For every V → X, we take for F(V ) the inverse image of g|V by
d. The sheaf F is equipped wih the right action ((si, h)) 7→ h−1si of G. In the
particular case of a trivial cocycle that can be written gij = (g−1

i )|Uij
(gj)|Uij

for
some gi ∈

∏
G(Ui), we observe that G is isomorphic to F via

s 7→ s−1
|V×Ui

.(gi)|V×Ui
; G(V )→

∏

i

G(V ×X Ui).

. Indeed (gi)|V×Ui
is in F(V ) by definition and the kernel of the map d(V ) :

C0(U , G)(V ) → C1(U , G)(V ) identifies to G(V ) because G is a sheaf, hence the
inverse image of g|V by d is G(V ).(gi)|V×Ui

. Since the cocycle g becomes trivial
over each Ui and the definiion of F is compatible with the restriction maps, this
proves that F|Ui

is isomorphic to GUi
(compatibly with the action of G). Therefore

F is a sheaf torsor for G.

It is now straightforward to check that the 1-cocycle associated to F by the
map c is g, and conversely that if start from a sheaf torsor F1 and an associated
cocycle g1 (whose class is c(F1)), then the sheaf associated to the cocycle g1 is F1.
So c is a bijection. It remains to take the limit over all (classes of) coverings U .

Remark 4.15 a) The bijection c is functorial in both X and G in the
following sense. If u : X ′ → X is a morphism, then it induces a map
u∗ : Ȟ1(X,G) → Ȟ1(X ′, GX′) (defined by pulling-back coverings of X ′ and
corresponding cocycles to X) such that u∗(c(F)) = c(F|X′) for every sheaf
torsor F . If f : G → G′ is a morphism of X-group schemes, it induces
an obvious map f∗ : Ȟ1(X,G) → Ȟ1(X,G′) by pushout of cocycles. The
link to the bijection c is more complicated: starting from a sheaf torsor F
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for G, the sheaf torsor F ′ associated to f∗(c(F)) is obtained by taking the
contracted product F ×GG′; by definition this is the sheaf quotient of F ×G′

by the action of G defined by (s, g′).g = (sg−1, g′g), where G acts on G′ via
f . When G is commutative, the contracted product of two sheaf torsors also
corresponds to the group law on the abelian group Ȟ1(X,G).

b) If the group scheme G is smooth overX, we can replace flat cohomology
by étale cohomology in Theorem 4.14 thanks to Proposition 4.7. In particular
Theorem 3.41 extends to the non-abelian H1.

c) For an affine group scheme G, there is no need to distinguish between
sheaf torsors and torsors (Proposition 4.11), hence we have a bijection be-
tween the set T (X,G) of isomorphism classes of torsors and Ȟ1(X,G).

Torsors and Čech cohomology sets are closely linked to the following
notion:

Definition 4.16 Let Z be an "object" over X (example : a scheme, a sheaf
of OX -modules or of OX -algebras...). A twisted form of Z for the flat (resp.
étale, resp. Zariski) topology is an objet of the same type Z ′ with the property
that there exists a covering U = (Ui → X) for the flat (resp. étale, resp.
Zariski) topology such that Z ×X Ui ≃ Z ′ ×X Ui for all i.

Example 4.17 a) Let G be an X-group scheme. A G-torsor is a twisted
form of G (as a right principal homogeneous space of G).

b) A locally free sheaf of rang n on X is a twisted form of OnX for Zariski
topology; actually it is sufficient to demand that it is a twisted form of OnX
for the étale or flat topology, by descent theory (see proof of lemma 4.19
below).

Keep the notation as above. Consider the presheaf Aut (Z) defined by
U 7→ Aut U(Z ×X U), it is easily seen to be a sheaf when Z is a scheme
as well as Z is a sheaf of OX -modules. Let Z ′ be a twisted form of Z
trivialized by a covering U = (Ui → X). We define an associated class
c(Z) ∈ Ȟ1(U , Aut (Z)) as follows. Let ϕi : ZUi

→ Z ′
Ui

be an isomorphism,
then αij = ϕ−1

i ϕj is a cocycle, and we take for c(Z) its class. It is easy to
check that it is well-defined and that two twisted forms are X-isomorphic if
and only if they have the same cohomology class.

Conversely, set Y =
∐

i Ui and as usual denote by p1, p2 the two pro-
jections Y ×X Y → Y . Start from a cocycle g with cohomology class
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c ∈ Ȟ1(Y/X, Aut (Z)), it can be viewed9 as an isomorphism p∗1Z → p∗2Z
that satisfies condition (7), that is as a descent datum on ZY . Summing up:

Proposition 4.18 The map Z 7→ c(Z) induces an injection c from the set
of isomorphism classes of twisted forms Z ′ of Z such that Z ′

Y ≃ ZY to the
set Ȟ1(Y/X, Aut (Z)). The map c is surjective iff every descent datum on
ZY arises from a twisted form Z ′ defined over X.

For example, surjectivity of c holds if the (flat, étale, or Zariski) covering
Y → X is quasi-compact and Z is a quasi-coherent OX -module (resp. an
affine X-scheme) thanks to Theorem 4.4.

4.3. Cohomology of Gm, Hilbert’s Theorem 90

The following lemma extends the classical Hilbert’s Theorem 90 (cf. [8],
Theorem 6.5) in Galois cohomology, which is the case n = 1 and A is a field.
The group scheme GLn is defined over Z by : for every Z-algebra B, GLn(B)
is the group of invertible matrices Mn(B)∗; we also write GLn for GLn×ZX
if X is understood.

Lemma 4.19 Let A be a local ring and X = SpecA. Then Ȟ1(X,GLn) = 0
(for the flat, étale, or Zariski topology).

Proof : We give the proof for the flat site (the other cases are simi-
lar). Since X is affine, it is sufficient (using Proposition 2.16 and replacing
a covering (Ui) by

∐
Ui) to prove that for every affine and faithfully flat

morphism Y = SpecB → X, the set Ȟ1(Y/X,GLn) is trivial. We observe
that GLn = Aut (OnX). Consider a descent datum on OnY . By Theorem 4.4, it
comes from a quasi-coherent OX -module F = M̃ , where M is an A-module.
As FY is isomorphic to OnY , the sheaf F is locally free of rank n, hence M
is a flat and finitely presented A-module by [19] Lemma 10.83.2. Therefore
M is a projective A-module by Proposition 1.4, d). This implies M ≃ An by
[19], Lemma 10.78.5, because A is local. Hence the class of F in Ȟ1(X,GLn)
is trivial. We conclude with Proposition 4.18.

Definition 4.20 Let X be a scheme. The Picard group PicX of X is the
group H1

zar(X,O∗
X) = H1

zar(X,Gm).

9To give an example of this correspondance, take X = SpecA, Y = SpecB. Let Z be
the sheaf On

X and N be the A-module Bn. Then a cocycle can be viewed either as an
automorphism of (B ⊗A B)n or as an isomorphism N ⊗A B → B ⊗A N .
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More concretely, recall that it is also the group of isomorphism classes of
invertible sheaves of OX -modules (cf. [9], exercise III.4.5).

Theorem 4.21 Let π : Xfppf → Xzar be the continuous map induced by the
identity on X. Then R1π∗Gm = 0. The same holds if Xfppf is replaced by
Xét.

Proof : We treat the case of the fppf site (the proof is similar for the étale
site). By Proposition 3.7 a), we reduce to showing that for a Zariski open
subset U of X, every class α ∈ H1

fppf(U,Gm) is trivialized by restriction to
all H1

fppf(Ui,Gm) for some Zariski covering (Ui → U). Using Theorem 3.26
and Remark 3.27, this is equivalent to requiring H1

fppf(U,Gm) = 0 when
U = SpecA with A local, which (thanks to Corollary 3.19, which says that
the H1 is the same for derived functor cohomology and Čech cohomology) is
Lemma 4.19 for n = 1.

Remark 4.22 The proof of Lemma 4.19 shows in particular the exactness
of

0→ B∗ → (B ⊗A B)∗ → (B ⊗A B ⊗A B)∗

when B is faithfully flat and finitely presented over A.

Corollary 4.23 For every scheme X, there are isomorphisms

PicX ≃ H1
zar(X,Gm) ≃ H1

ét(X,Gm).

Proof : This follows from Leray spectral sequence (Theorem 3.30, a) and
Theorem 4.21.

5. Some advanced theorems

In this section, we discuss a few fundamental results in étale cohomology.
Unfortunately, detailed proofs are quite long (and would take a whole seminar
by themselves), so we will only give an overview.
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5.1. Torsion sheaves

Definition 5.1 Let XE be a site. A sheaf of abelian groups F on XE is a
torsion sheaf if F is associated to a presheaf of abelian torsion groups.

Proposition 5.2 a) A sheaf F is a torsion sheaf if and only if the canonical
morphism lim−→n∈N∗ nF → F is an isomorphism, where nF is the n-torsion
subsheaf of F .

b) If F is a torsion sheaf on one of the sites XE of Example 2.3 and
U ∈ CX is quasi-compact, then F(U) is torsion.

Proof : a) Assume that lim−→n nF = F . Then F is associated to the
presheaf U 7→ lim−→(nF(U)), where lim−→(nF(U)) is torsion (as a direct limit of
abelian torsion groups). Hence F is a torsion sheaf.

Conversely assume that F = aP, where P is a presheaf of torsion abelian
groups. The sequence

0→n P → P .n→ P
is exact in P (XE). Since the sheafification functor a is exact, this shows that
nF = a(nP). As a commutes with direct limits (as a left-adjoint functor),
we obtain

F = aP = a(lim−→ nP) = lim−→ nF .

b) Let P be the presheaf U ′ 7→ lim−→ nF(U ′) over U . It is separated as a
subpresheaf of F . Since U is quasi-compact and morphisms in E are open
maps for all sites of Example 2.3, every covering (Ui → U) has a subcovering
(Ui → U)i∈I with I finite. As F = aP = Ȟ

0
(P) (Example 3.12 a), we get

F(U) = Ȟ0(U,P) = lim−→
U

Ȟ0(U ,P),

where the limit can be taken over all coverings U = (Ui → U)i∈I with I finite.
Since

Ȟ0(U ,P) = ker[
∏

i∈I

P(Ui) ⇒
∏

i,j∈I

P(Ui ×U Uj)],

the groups Ȟ0(U ,P) are torsion (because each P(Ui) if torsion and I is finite).
Hence, so is the direct limit F(U).

Proposition 5.3 Let X be a scheme. A sheaf F on Xét is torsion if and
only if all its stalks Fx̄ are torsion groups.
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Proof : Let x̄ be a geometric point of X. By Theorem 2.31, we have
(nF)x̄ = n(Fx̄). The stalk functors clearly commute with direct limits of
presheaves, hence also of sheaves (thanks to Remark 2.30). By loc. cit., the
canonical map lim−→ (nF)→ F is an isomorphism if and only if lim−→ (nF)x̄ → Fx̄
is an isomorphism for all geometric points x̄, which yields the result.

Example 5.4 a) The constant sheaf represented by a torsion group A is
a torsion sheaf. Observe that A(X) need not be torsion if X is not quasi-
compact, e.g. A = Q/Z and X is the disjoint union of infinitely many copies
of SpecK, where K is a field.

b) µn is a torsion sheaf.
c) Every torsion sheaf F can be written F =

⊕
ℓF{ℓ}, where the sum is

over all prime numbers ℓ and F{ℓ} := lim−→n
(ℓnF) is the ℓ-primary torsion of

F . One says that F is of torsion prime to p (where p is a prime number) if
F{p} = 0.

Proposition 5.5 Let X be a quasi-compact and quasi-separated scheme. Let
F be a torsion sheaf on Xét. Then the cohomology groups Hr(X,F) are
torsion for all r ∈ N.

Proof : Since X is quasi compact and quasi separated, we have (by
Theorem 3.26, a) :

Hr(X,F) = Hr(X, lim−→
n

(nF)) = lim−→
n

Hr(X,nF),

hence it is sufficient to prove that each Hr(X,nF) is torsion. Since multipli-
cation by n is zero on nF , it is zero as well on Hr(X,nF), which shows that
Hr(X,nF) is an n-torsion group.

Proposition 5.6 a) Let f : Y → X be a morphism of schemes. If F is a
torsion sheaf on Xét, then the same holds for f ∗F .

b) Assume further that f is quasi-compact and quasi-separated. Then
Rqf∗F is a torsion sheaf for all q ∈ N.

c) If j : U → X is an open immersion, then j!F is a torsion sheaf for
every torsion sheaf F on U .

d) If i : Z → X is a closed immersion, then i!F is a torsion sheaf for
every torsion sheaf F on X.
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Proof : a) follows from Propositions 2.38 and 5.3. For b), we observe that
by Theorem 2.40, the stalk of Rqf∗F at a geometric point x̄ is Hq(Ỹ , F̃),
where Ỹ is quasi-compact and quasi separated (being quasi-compact and
quasi separated over an affine scheme) and F̃ is a torsion sheaf by a). There-
fore Hq(Ỹ , F̃) is torsion by Proposition 5.5, and we conclude with Proposi-
tion 5.3. c) and d) immediately follow from loc. cit. (recall that i!F is a
subsheaf of i∗F).

5.2. Proper base change and smooth base change

In this paragraph, all schemes are equipped with the étale topology. For
proofs of the main theorems of this paragraph, see [12], §VI.2 and V.4.

Theorem 5.7 (Proper base change) Let π : Y → X be a proper mor-
phism. Let F be a torsion sheaf on Yét.

a) Let f : X ′ → X be a morphism, set Y ′ := Y ×X X ′. Let f ′ : Y ′ → Y
and π′ : Y ′ → X ′ be the corresponding projections.

Y ′ π′

−−−→ X ′

f ′

y
yf

Y
π−−−→ X

Then
f ∗(Riπ∗F) ≃ Riπ′

∗(f
′∗F).

b) Let x̄→ X be a geometric point, denote by Yx̄ the geometric fiber of Y
over x̄.

Yx̄
π′

−−−→ x̄y
y

Y
π−−−→ X

Then there is an isomorphism

(Riπ∗F)x̄ ≃ H i(Yx̄,F|Yx̄).

c) Let k ⊂ K be separably closed fields. Assume that Y is a proper
scheme over k and set YK = Y ×kK. Then H i(Y,F) ≃ H i(YK ,F|YK), where
we denote by F|YK the pull-back of F to YK.
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Observe that b) is a special case of a), taking for f the morphism x̄→ X
and using Example 3.32. c) is obtained by showing that if π : Y → Spec k
is the structural morphism, then Riπ∗F is a so-called locally constructible
sheaf, which implies that its sections over the two separably closed fields k
and K are the same (compare with Theorem 3.41: the assumptions are of
slightly different nature).

Corollary 5.8 Let A be a henselian local ring. Let S = SpecA, consider
a proper morphism π : X → S. Denote by s0 the closed point of S and by
X0 → s0 the closed fiber of π. Let F be a torsion sheaf on Xét and F0 := F|X0

.
Then H i(X,F) ≃ H i(X0,F0).

Proof : Let Ash be the strict henselization of A, set S = SpecAsh; denote
by s̄0 the closed point of S and X = X ×S S. By Theorem 5.7 b) and
Theorem 3.28, we have isomorphisms

H i(X,F|X) ≃ H i(X0, (F0)|X0
).

Now define G = Gal (k(s̄0)/k(s0)) = Gal (Ash/A). We have Hochschild-Serre
spectral sequences (Remark 3.35)

H i(G,Hj(X,F|X))⇒ H i+j(X,F); H i(G,Hj(X0, (F0)|X)⇒ H i+j(X,F0),

whence the result because the two left-hand terms are isomorphic.

There are also finiteness statements if F is further assumed to be con-
structible in the sense of [12], §V.1. We will restrict in these notes to the
simpler case when F is represented by an étale group scheme.

Theorem 5.9 (Finiteness Theorem) Let X be a proper scheme over a
separably closed field k. Let G be an étale, finite type, commutative X-group
scheme. Then the groups H i(X,G) are finite. In particular, with the notation
and assumptions of Theorem 5.7, all H i(Yx̄,F|Yx̄) are finite if we assume
further that F is represented by an étale and finite type Y -group scheme.

Again, the key is to show that the sheaf Riπ∗F is constructible, where
π : X → Spec k is the structural morphism.

Remark 5.10 Using Hochschild-Serre spectral sequence, we also see that
the groups H i(X,G) are still finite if k is any field such that the Galois
cohomology groups H i(k,M) are finite for every finite Galois module M , for
instance if k = R or k is a p-adic field ([8], Corollary 8.15).
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The conclusion of Theorem 5.7 a) still holds with the properness assump-
tion on π strongly relaxed, provided a smoothness assumption is made on the
base change f and a slight restriction is made on the torsion on the sheaf:

Theorem 5.11 (Smooth base change Theorem) Let π : Y → X be a
quasi-compact and quasi-separated morphism. Let F be a torsion sheaf on
Yét whose torsion is prime to all residue characteristics of X.

a) Let f : X ′ → X be a smooth morphism, set Y ′ := Y ×X X ′. Let
f ′ : Y ′ → Y and π′ : Y ′ → X ′ be the corresponding projections. Then

f ∗(Riπ∗F) ≃ Riπ′
∗(f

′∗F).

b) Assume that π : Y → X is a proper and smooth morphism, and that
F is represented10 by an étale and finite type group scheme over Y . If X is
connected, then the groups (Riπ∗F)x̄ ≃ H i(Yx̄,F|Yx̄) are isomorphic for all
geometric points x̄ ∈ X.

Corollary 5.12 Let k ⊂ K be algebraically closed fields. Let X be a quasi-
compact and quasi-separated k-scheme. Let F be a torsion sheaf on X whose
torsion is prime to Char k. Then H i(X,F) ≃ H i(XK ,F|XK

) for all i ≥ 0.

Proof : We have K = lim−→Aj, the limit being over all smooth k-algebras
Aj ⊂ K: indeed every element aj of K − k is transcendental over k, hence
Spec (k[aj ]) ≃ A1

k, which is smooth over k. Now apply Theorem 5.11 a)
to the morphisms SpecAj → Spec k. Taking the stalks at the geometric
point x̄ of SpecAj corresponding to SpecK → SpecAj, we get isomorphisms
H i(X,F) ≃ (Riπj∗)(F|XAj

)x̄, where πj is the projection XAj
→ SpecAj :

XAj

πj

−−−→ Spec (Aj)

fj

y
yf

X
π−−−→ Spec k

Taking the limit (thanks to Theorem 3.26), we obtain an isomorphism

H i(X,F) ≃ (Riπ′
∗F|XK

)x̄′ ≃ H i(XK ,F|XK
),

where π′ is the projectionXK → SpecK and x̄′ is the geometric point SpecK.

Note that provided the slight additional assumption on the torsion on F is
made, no properness assumption is necessary here. The statement still holds

10Again, it would be sufficient to assume F constructible and locally constant on Yét.
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if k and K are only supposed to be separably closed, because for a universal
homeomorphism X0 → X (e.g. a closed immersion defined by a nilpotent
sheaf of ideals, or a morphism XL → X where the field extension L/k is
radicial), the natural map H i(X,F)→ H i(X0,F|X0) is an isomorphism. See
[27], Proposition 45.4.

5.3. Purity and Gysin sequence

Let X be a scheme. We consider a closed subscheme i : Z →֒ X and the
open subscheme U = X − Z. Recall the functor i! : Xét → Zét, which is
left exact with left adjoint i∗. The latter is exact by Corollary 2.42, hence i!

preserves injectives.

Proposition 5.13 Denote by H i
Z(X, .) the derived functors of i!. Let F be

a sheaf on Xét. There is a spectral sequence

Hr(Z,Hs
Z(X,F))⇒ Hr+s

Z (X,F).

Proof : This is a special case of Grothendieck spectral sequence, since i!

preserves injectives and H0
Z(X,F) = H0(Z, i!F).

Definition 5.14 Let n ∈ N∗ be invertible on X. Let c ∈ Z. Define the
following sheaves on X:

(Z/n)(0) = (Z/n)X ; (Z/n)(c) = (µ⊗c
n )X , c > 0;

(Z/n)(c) = Hom((Z/n)(−c),Z/n), c < 0.

For a sheaf F of Z/n-modules, set F(c) := F ⊗Z/n (Z/n)(c).

The following recent theorem (called absolute purity) is due to Gabber
(cf. [14]). The case of schemes of finite type over a perfect field was known
before, see for example [12], Th. VI.5.1.

Theorem 5.15 (Gabber) Assume that X and Z are regular and Z is of
codimension c everywhere. Let F be a sheaf of n-torsion on Xét, with n
invertible on X. Let m ∈ N∗. Then

Hm
Z (X,F)) = 0, m 6= 2c; H2c

Z (X,F) ≃ (F)(−c)Z .

Corollary 5.16 (Gysin sequence) With the notation and assumptions as
above, there is an exact sequence

...→ Hm−2c(Z,F(−c)) → Hm(X,F) → Hm(U,F)→ Hm−2c+1(Z,F(−c)) → ...
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Proof : Apply exact sequence of Theorem 3.44; then identify Hm
Z (X,F)

with Hm−2c(Z,F(−c)), using spectral sequence of Proposition 5.13 and The-
orem 5.15.

An important consequence is the following extension of Theorem 5.9 (see
[12], Corollary III.5.5 for a proof).

Theorem 5.17 Let X be a smooth variety over a separably closed field k.
Let G be an étale and commutative finite type X-group scheme whose torsion
is prime to Char k. Then the groups H i(X,G) are finite.

Again, this holds more generally for a finite and locally constant sheaf
whose torsion is prime to Char k. Also, Theorem 5.17 is still valid for a
singular variety if resolution of singularities is assumed.

6. The Brauer group

Unless explicitely specified, all schemes are equipped with the étale topology.
A standout comprehensive reference for this topic is the book [4].

6.1. Definition and first examples

Definition 6.1 Let X be a scheme. The Brauer group of X is the étale
cohomology group H2(X,Gm).

Remark 6.2 a) What we call the Brauer group is sometimes called the coho-
mological Brauer group, to make the difference with a subgroup ofH2(X,Gm)
defined in terms of Azumaya algebras. We denote the latter by Br AzX. An
Azumaya algebra is a twisted form of the sheaf Mn(OX) for some n (for the
étale topology), hence Azumaya algebras are classified (for a given n) by the
cohomology set Ȟ1(X,PGLn). It is known in many cases (but not always
true) that Br AzX = BrX, thanks to works by Gabber and Cesnavicius.

b) Since Gm is a smooth group scheme, the Brauer group BrX is also
H2

fppf(X,Gm) by Theorem 3.40, b). It can also be computed as H2
Ét
(X,Gm)

on the big étale site thanks to Proposition 3.36.
c) Let f : Y → X be a morphism of schemes. Using the canonical

map π∗(Gm,X ) → Gm,Y (cf. Example 2.37 a), we get (via Remark 3.5, a)
a morphism BrX → BrY between Brauer groups. We can also use b) to
define this map. In particular, if A is a ring, every A-point x ∈ X(A) =
Hom(SpecA,X) gives rise to a map x∗ : BrX → BrA := Br (SpecA).
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Example 6.3 a) Let X = Spec k, where k is a field with absolute Galois
group Γk = Gal (k̄/k). Then BrX is the classical Brauer group Br k =
H2(Γk, k̄

∗) of the field k, thanks to Theorem 2.17 (cf. Example 3.4, d).
As a Galois cohomology group of positive degree, it is a torsion group ([8],
Corollary 4.23).

b) In particular, Br k is zero if k is separably closed, and more generally if
k is a C1 field like a finite field (see [8], Theorem 6.22). Other examples of C1

fields include the function field of a curve over an algebraically closed field k0
(Tsen’s Theorem) and fraction fields k of excellent henselian discrete valua-
tion rings with algebraically closed residue field (Lang’s theorem). Without
the "excellent" assumption, we still have Br k = 0 (cf. [17], §X.7. : the proof
easily extends from the complete case to the henselian case; it is also possible
to use the approach of loc. cit., §XII.2). A refinement of Tsen’s Theorem
asserts that if k is the function field of a curve over a separably closed field
whose characteristic is not ℓ, then the {ℓ}-primary torsion of Br k is also zero.

c) Let A be a henselian local ring with residue field κ. Then the canonical
map BrA → Br κ (associated to Spec κ → SpecA) is an isomorphism by
Theorem 3.40, b). This shows that BrA = 0 if A is strictly local.

For any abelian groupA and any positive integer n, we denote respectively
by A[n] and A/n the kernel and cokernel of multiplication by n on A. For a
prime number ℓ, the piece of notation A{ℓ} stands for the ℓ-primary torsion
subgroup of A.

Proposition 6.4 Let X be a scheme. Let n be a positive integer, assume
that n is invertible on X. Then there are exact sequences

0→ PicX/n→ H2(X, µn)→ (BrX)[n]→ 0.

0→ BrX/n→ H3(X, µn)→ H3(X,Gm)[n]→ 0.

Proof : Apply the long exact sequence in étale cohomology to Kummer
exact sequence of sheaves (Example 2.33, a)

0→ µn → Gm
.n→ Gm → 0.

Observe that without assumption on n, the previous proposition still
holds provided H2(X, µn) and H3(X, µn) are replaced by their fppf counter-
parts, thanks to Example 2.33 b) and Theorem 3.40 b).
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6.2. Brauer groups and function fields

In this paragraph, we link the Brauer group of an integral scheme to the
Brauer group of its function field. For a normal and integral scheme X, the
piece of notation X(1) denotes the set of integral divisors (or, equivalently, of
points of codimension 1) on X.

Proposition 6.5 Let X be an integral, normal and noetherian scheme with
function field F . Denote by j : η = SpecF → X its generic point. For
every integral divisor D of X, denote by k(D) its function field and by iD :
Spec (k(D))→ X the embedding of the generic point of D into X.

a) There is an exact sequence of étale sheaves on X:

0→ Gm,X → j∗Gm,F
u→ DX :=

⊕

D∈X(1)

(iD)∗Zk(D).

b) Assume further that X is regular. Then the map u is surjective.

Proof : a) Let U → X be étale, connected and of finite type with generic
fibre Uη. Using Example 3.39, it is sufficient to check that the corresponding
sequence of sections over such a U is exact. The scheme U is integral by [23],
Lemma 7.7., since it is noetherian and normal by Proposition 1.15; denote
by R(U) its function field. Then

Γ(U, j∗Gm,F ) = Γ(Uη,Gm) = R(U)∗.

Define the morphism of sheaves u via the map

R(U)∗ →
⊕

D∈X(1)

((iD)∗Zk(D))(U) =
⊕

E∈U (1)

Z

defined by the valuations associated to the integral divisors on U . Since
Gm,X(U) = OU(U)∗ is the group of invertible functions on U and the se-
quence

0→ OU(U)∗ → R(U)∗ →
⊕

E∈U (1)

Z

is exact by [10], Lemma 1.13 (the scheme U being integral and normal), we
are done.

b) It is sufficient to check the surjectivity at the level of geometric stalks.
Let x ∈ X, A := Osh

X,x and K = FracA. We have to check that the map
K∗ →⊕

℘Z, where the direct sum is over the prime ideals of height 1 and
the map is given by the valuations, is surjective, or in other words that the
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ideal class group of A is trivial. Since A is local and regular (it is a direct
limit of regular rings by Proposition 1.15), it is a UFD (cf. [11], pp. 139 and
142), whence the result.

Theorem 6.6 Let X be a noetherian, integral and regular scheme with func-
tion field F . Then the canonical map BrX → BrF is injective. In particular
BrX is a torsion group.

Proof : Let j : SpecF → X be the generic point of X. We have Leray
spectral sequence

Hr(X,Rsj∗Gm)⇒ Hr+s(F,Gm). (9)

We know that R1j∗Gm = 0 by Lemma 4.1. The exact sequence of the first
terms of the spectral sequence now yields an injection H2(X, j∗Gm) →֒ BrF .
On the other hand, we can apply cohomology to the exact sequence (cf.
Proposition 6.5, b):

0→ Gm,X → j∗Gm,F →
⊕

D∈X(1)

(iD)∗Zk(D) → 0,

which in turn gives an injective map BrX → H2(X, j∗Gm,F ) because we have
H1(X,

⊕
D∈X(1)(iD)∗Zk(D)) = 0 by Lemma 4.1 and Theorem 3.26. Whence

the result.

Without assumption, it is not always true that BrX is a torsion group
(unlike the Azumaya Brauer group Br AzX); see [4], §8.1.

6.3. Schemes of dimension 1

It is possible to say a lot more than Theorem 6.6 when X is of dimension
1 and some additional assumptions are made. For every profinite group G,
denote by GD the group of continuous homomorphism of G (or its abelianized
group Gab) to the discrete group Q/Z.

Proposition 6.7 Let X be a noetherian, integral and regular scheme of di-
mension 1 with function field K. Assume that all residue fields k(x) for
x ∈ X(1) are perfect and denote by Gx the absolute Galois group of k(x).
Then there is an exact sequence

0→ BrX → BrK →
⊕

x∈X(1)

GD
x → H3(X,Gm)→ H3(K,Gm).
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This statement will be partially extended to higher dimensional schemes
in the next paragraph.

Proof : Let j : SpecK → X be the generic point of X. Let x ∈ X(1), it is
a closed point of X because X is of dimension 1. By Theorem 3.28, the stalk
of R2j∗Gm at a geometric point x̄ with image x is H2(Ksh

x ,Gm) = BrKsh
x ,

where Ksh
x = Frac (Osh

X,x). This group is known to be zero (Example 6.3,
b) because the residue field of the henselian discrete valuation ring Osh

X,x is
separably closed, hence algebraically closed (the residue field k(x) of OhX,x
being perfect). For a geometric point η̄ with image the generic point of X,
we still have (R2j∗Gm)η̄ = 0 (it is the Brauer group of a separably closed
field). Finally R2j∗Gm = 0. Using Leray spectral sequence (9), this yields

H2(X, j∗Gm) = BrK; H3(X, j∗Gm) →֒ H3(K,Gm).

On the other hand, we also have Leray spectral sequence for the closed
immersion ix : x 7→ X with x ∈ X(1). Since (ix)∗ is then exact, we have
Rq(ix)∗ = 0 for all q > 0, which gives Hr(X, (ix)∗Z) = Hr(k(x),Z) for
all non negative integers r. Set DX =

⊕
x∈X(1)(ix)∗Z, we thus have (using

Theorem 3.26) Hr(X,DX) =
⊕

x∈X(1) Hr(k(x),Z). We observe that this
group is zero for r = 1, and is

⊕
x∈X(1) GD

x for r = 2 (cf. Example 3.4, e).
Proposition 6.5 b) yields an exact sequence

0→ Gm,X → j∗Gm,K → DX → 0. (10)

Applying cohomology, we get an exact sequence

0→ BrX → BrK →
⊕

x∈X(1)

GD
x → H3(X,Gm)→ H3(X, j∗Gm), (11)

whence the results because H3(X, j∗Gm) →֒ H3(K,Gm).

Example 6.8 a) Assume that A is a discrete valuation ring with perfect
residue field κ and function field K. Then exact sequence (11) becomes

0→ BrA→ BrK → H1(κ,Q/Z).

The map ∂A : BrK → H1(κ,Q/Z) is called the residue map. There are
other definitions for this map (Serre residue, Witt residue; see also c) below),
which coincide up to a sign (see [4], §1.4). If we assume further A henselian,
then BrA ≃ Br κ, and this exact sequence has a section given by the com-
position of the inflation map H1(κ,Q/Z) ≃ H2(κ,Z) → H2(K,Z) with the
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map H2(K,Z) → H2(K,Gm) induced by m 7→ πm, m ∈ Z, where π is a
uniformizing parameter of A. In particular the residue map is surjective if A
is henselian.

b) Assume further that K is of characteristic zero or X is an algebraic
curve over a field (this works more generally if X is excellent, which is the
case of any scheme of finite type over a field or over Z). Then the fields
Ksh
x are of cohomological dimension 1, because they are C1 (cf. Example 6.3

b). This implies that Hr(Ksh
x ,Gm) = 0 for every r > 0. In this case, we

have Rqj∗Gm = 0 for all r > 0, hence sequence (11) extends to a long exact
sequence

...→ Hr(X,Gm)→ Hr(K,Gm)→
⊕

x∈X(1)

Hr−1(k(x),Q/Z)→ Hr+1(X,Gm)→ ...

Again, the special case of an excellent henselian discrete valuation ring
as in a) yields short split exact sequences

0→ Hr(A,Gm)→ Hr(K,Gm)→ Hr−1(κ,Q/Z)→ 0.

for all r ≥ 2.
c) Let A and B be discrete valuation rings with respective residue fields

κA, κB (assumed to be perfect) and fraction fields K, L. Assume that B is
an extension of A with A = K ∩ B and denote by e its ramification index.
Then there is a commutative diagram (where Res denote restriction maps in
Galois cohomology)

BrL
∂B−−−→ H1(κB,Q/Z)

Res

x
xe.Res

BrK
∂A−−−→ H1(κA,Q/Z)

To prove this, one can assume that A and B are henselian by going over
to the henselizations. Let Knr be the maximal unramified extension of K.
Then BrK can be identified withH2(Gal (Knr/K), Knr∗) because BrKnr = 0
(Example 6.3 b). Hence the valuation map Knr∗ → Z induces a map

BrK → H2(κA,Z) = H1(κA,Q/Z)

(observe that Gal (Knr/K) is the absolute Galois group of κA), which is
one possible definition of ∂A (and similarly for B). This easily provides the
formula.

d) If X is a smooth curve over an algebraically closed field k, then its
function field K is C1 by Tsen’s Theorem, so Hr(K,Gm) = 0 for r > 0, and
we also have Hr(k(x),Q/Z) = 0 for all closed points x of X, the field k(x)
being algebraically closed. Thus Hq(X,Gm) = 0 for all q ≥ 2.
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6.4. Purity and residues

The next theorems identify more precisely the Brauer group of a regular
integral scheme inside the Brauer group of its field of functions.

Theorem 6.9 Let X be an integral, regular and notherian scheme. Let Z
be a regular closed subscheme of X of pure codimension c, set U = X − Z.
Let ℓ be a prime invertible on X.

a) If c ≥ 2, then the restriction map (BrX){ℓ} → (BrU){ℓ} is an iso-
morphism.

b) Assume c = 1; denote by D1, ..., Dm the connected components of Z
and by K1, ..., Km their respective function fields. There is an exact sequence

0→ (BrX){ℓ} → (BrU){ℓ} →
m⊕

i=1

H1(Di,Qℓ/Zℓ)

and likewise with H1(Ki,Qℓ/Zℓ) instead of H1(Di,Qℓ/Zℓ).

If all residual characteristics of X are zero, we can of course remove {ℓ}
everywhere and replace Qℓ/Zℓ by Q/Z =

⊕
ℓQℓ/Zℓ.

Proof : a) By Proposition 6.4, there is a commutative diagram with exact
rows

0 −−−→ PicX/ℓn −−−→ H2(X, µℓn) −−−→ (BrX)[ℓn] −−−→ 0y
y

y
0 −−−→ PicU/ℓn −−−→ H2(U, µℓn) −−−→ (BrU)[ℓn] −−−→ 0

Since X is regular, we can identify the Picard groups with the groups of
Weil divisors, making the left hand vertical map surjective. The right hand
vertical map is injective by Theorem 6.6. The snake lemma combined with
Gysin exact sequence (Corollary 5.16, which comes from Gabber’s purity
theorem) now yields an exact sequence

0→ (BrX)[ℓn]→ (BrU)[ℓn]→ H3−2c(Z, µℓn(−c))→ H3(X,µℓn)→ H3(U, µℓn)

for c < 2 and an isomorphism (BrX)[ℓn] ≃ (BrU)[ℓn] for c ≥ 2. For c = 1,
the closed subscheme Z is the disjoint union of the Di (which are its con-
nected and irreducible components) and H3−2c(Di, µℓn(−c)) = H1(Di,Z/ℓ

n),
whence the exact sequence

0→ (BrX)[ℓn]→ (BrU)[ℓn]→
m⊕

i=1

H1(Di,Z/ℓ
n)→ H3(X,µℓn)→ H3(U, µℓn).
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Taking direct limit over n now yields the required result. We also observe
that the restriction map H1(Di,Qℓ/Zℓ) → H1(Ki,Qℓ/Zℓ) is injective (Re-
mark 4.3) because Di is regular (hence normal), so it is possible to replace
Di by Ki in the exact sequence.

We now give a version of Theorem 6.9 where the assumptions on Z are
relaxed:

Theorem 6.10 Let X be an integral, regular, noetherian, excellent scheme.
Let U be a non empty open subset of X, set Z = X − U (with its reduced
structure) and denote by c the codimension of Z. Let ℓ be a prime invertible
on X.

a) If c ≥ 2, then the restriction map (BrX){ℓ} → (BrU){ℓ} is an iso-
morphism.

b) Assume c = 1; denote by D1, ..., Dm the irreducible components of Z of
codimension 1 in X and by K1, ..., Km their respective function fields. Then
there is an exact sequence

0→ (BrX){ℓ} → (BrU){ℓ} →
m⊕

i=1

H1(Ki,Qℓ/Zℓ).

Proof : As X is excellent, the singular locus of every closed subscheme Z
of X is closed (and different from Z if Z is non empty and reduced, since it
does not contain the generic point of an irreducible component of Z). Define
a sequence of closed subsets (with their reduced structure)

Z = Z0 ⊃ Z1 ⊃ ... ⊃ ... ⊃ Zm ⊃ Zm+1 = ∅

where Zn is the union of the singular locus of Zn−1 and of its irreducible com-
ponents of codimension ≥ n+1 (the sequence stops because X is noetherian).
Then Z is the disjoint union of the Wn := Zn−1 − Zn, 1 ≤ n ≤ m + 1; each
Wn is empty or is a regular closed subset of pure codimension n in X − Zn,
and the last one is Wm+1 = Zm.

The case where Z is regular of pure codimension 1 in X is settled by
Theorem 6.9. Otherwise, repeated applications of Theorem 6.9 give isomor-
phisms

BrX{ℓ} ≃ Br (X − Zm){ℓ} ≃ Br (X − Zm−1){ℓ} ≃ ... ≃ Br (X − Z1){ℓ}.

If Z = Z1, the proof is over. If Z 6= Z1, it remains to apply Theorem 6.9 to
the codimension 1 regular closed subscheme W1 = Z − Z1 of X − Z1.
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Observe that without regularity assumption on Z, it is no longer possible
to replace H1(Ki,Qℓ/Zℓ) by H1(Di,Qℓ/Zℓ) in Theorem 6.10.

Corollary 6.11 Let X be an integral, regular, noetherian, excellent scheme
with function field K. Let ℓ be a prime invertible on X. Then there is an
exact sequence

0→ (BrX){ℓ} → (BrK){ℓ} →
⊕

D∈X(1)

H1(KD,Qℓ/Zℓ),

where X(1) is the set of integral divisors (or points of codimension 1) of X
and KD is the function field (=residue field of the corresponding point of
codimension 1) of D.

Proof : Take the direct limit over all non empty open subsets U of X in
Theorem 6.10.

Remark 6.12 Let x be a point of codimension 1 ofX with residue field k(x).
The residue map (BrK){ℓ} → H1(k(x),Qℓ/Zℓ) appearing in the previous
theorem coincides (up to a sign) with the map defined 11 in Example 6.8, a)
with A = OX,x (which can also be defined by going to the henselization Ah

of A, cf Example 6.8 c). See [4], Theorem 3.7.3.

Corollary 6.13 Let X be a regular, noetherian, integral, excellent scheme
with function field K. Let ℓ be a prime number invertible on X. Then:

a) The subgroup (BrX){ℓ} of BrK is given by

(BrX){ℓ} =
⋂

x∈X(1)

Br (OX,x){ℓ}.

b) Let Ai ⊂ K for i ∈ I be the discrete valuation rings with quotient field
K which lie over X (that is: such that the map SpecK → X factors through
SpecA). Then

(BrX){ℓ} =
⋂

i∈I

(BrAi){ℓ} ⊂ (BrK){ℓ}.

c) Assume further that X is proper over a scheme S. Let Bi be the the
discrete valuation rings with quotient field K which lie over S. Then

(BrX){ℓ} =
⋂

i∈I

(BrBi){ℓ} ⊂ (BrK){ℓ}.

11It is not necessary to assume k(x) perfect here, because ℓ is invertible on X .
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Proof : a) follows from Corollary 6.11 and Remark 6.12. b) is an imme-
diate consequence of a). c) is deduced from b) using the valuative criterion
of properness.

Remark 6.14 K. Cesnavicius has proved recently that for every regular,
noetherian and integral scheme X and every open subset U of X such that
codim(X − U,X) ≥ 2, the restriction map BrX → BrU is an isomorphism
(without restriction to (BrX){ℓ} with ℓ invertible on X). A consequence is
that Corollary 6.13 actually still holds with the assumption on ℓ removed,
see [4], Theorem 3.7.8. and Proposition 3.7.10.

6.5. Birational invariance of the Brauer group

We start with a definition due to D. Saltman.

Definition 6.15 Let k ⊂ K be an extension of fields. The unramified
Brauer group of K over k is the subgroup Brnr (K/k) of BrK consisting
of those elements α such that for every discrete valuation ring A with quo-
tient field K and such that k ⊂ A, the element α is in the image of the map
BrA →֒ BrK

Observe that if we assume further that k is of characteristic zero, then the
condition α ∈ Brnr (K/k) can be rephrased as: for every discrete valuation
ring A with quotient field K and such that k ⊂ A, the residue ∂A(α) is zero
(since the residue field of A is then automatically perfect).

Proposition 6.16 Let k ⊂ K ⊂ L be field extensions. Then the image of
Brnr (K/k) by the restriction map BrK → BrL is a subgroup of Brnr (L/k).

Proof : Let B a discrete valuation ring containing k and with fraction
field L. If its valuation v is trivial on K, then K ⊂ B and the image of
BrK in BrL is a subgroup of BrB (whose elements have trivial residue at
B). Otherwise, A := B∩K is a discrete valuation ring with field of fractions
K, and the restriction to BrL of an element of Brnr (K/k) ⊂ BrA is in
BrB ⊂ BrL.

Theorem 6.17 Let X be a proper, integral, regular variety over a field k
with function field K = k(X). Then Brnr (K/k) is the subgroup BrX of
BrK.
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Proof : If k is of characteristic zero, this follows immediately of Corol-
lary 6.13, c). In the general case, one has to use Cesnavicius’s purity Theorem
(see Remark 6.14).

Corollary 6.18 (Birational invariance) Let X and Y be two k-birational
proper, integral, regular varieties over a field k. Then BrX ≃ Br Y .

Proof : The condition that X and Y are k-birational means that there are
Zariski-dense open subsets U ⊂ X and V ⊂ Y such that U is k-isomorphic
to V , which in turn is equivalent to saying that the function fields k(X) and
k(Y ) are k-isomorphic. Now apply Theorem 6.17.

Theorem 6.17 is especially useful to compute explicitely BrX (in partic-
ular when X is given as a smooth and projective model of a possibly singular
variety, it is not necessary to explicitely write down equations for X to com-
pute the unramified Brauer group of its function fields). See section 7. for
examples.

7. Applications of the Brauer group

7.1. Birationality and stable birationality of varieties

In this paragraph, we denote by k a field with separable closure k̄ and absolute
Galois group Γ = Gal (k̄/k). For a k-variety X, we set X := X ×k k̄ and
k̄[X ]∗ = H0(X,Gm). We let Br1X := ker[BrX → BrX ] be the algebraic
Brauer group of X.

Theorem 7.1 Assume that k̄[X ]∗ = k̄∗ (e.g. X is proper and geometrically
integral, or X = An

k). Then there is an exact sequence

0→ PicX → (PicX)Γ → Br k → Br1 X → H1(k,PicX)→ N → 0,

where N := ker[H3(k,Gm) → H3(X,Gm)]. If X(k) 6= ∅, then the map Br k →
Br1 X is injective and Br1 X/Br k ≃ H1(k,PicX).

Proof : By Hilbert’s Theorem 90, we have H1(k, k̄[X ]∗) = H1(k, k̄∗) = 0.
Now the sequence just consists of the exact sequence of the first terms in
Hochschild-Serre spectral sequence (Remark 3.35), given that H0(X,Gm) =
k̄∗ by assumption. If we assume further that X(k) 6= ∅, then the structural
morphism X → Spec k has a section, hence the morphism Br k → BrX (as
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well as the morphism H3(k,Gm) → H3(X,Gm)) has a retraction, hence is
injective, which gives the second statement.

Proposition 7.2 Let k be an algebraically closed field. Let C be a regular
and integral curve over k (ex. C = A1

k). Then BrC = 0. The same statement
holds for (BrC){ℓ} if k is separably closed and ℓ is a prime distinct from
char k.

Proof : Actually the Brauer group of the function field k(C) is already
trivial by Tsen’s theorem (cf. Example 6.3) if k is algebraically closed, whence
the result by Theorem 6.6. The version of Tsen’s theorem for a separably
closed ground field of characteristic 6= ℓ yields the second statement.

Theorem 7.3 Let S be an integral, regular, noetherian scheme with function
field K. Let ℓ be a prime distinct from charK. Then the canonical map
(BrS){ℓ} → Br (An

S){ℓ} is an isomorphism.

Proof : By induction on n, it is sufficient to deal with the case n = 1.
Over a field K of characteristic 6= ℓ, the map (BrK){ℓ} → (Br1A

1
K){ℓ}

is an isomorphism thanks to Theorem 7.1, because the Picard group of the
affine space is zero. Besides, we have (Br1A

1
K){ℓ} = (BrA1

K){ℓ} by Propo-
sition 7.2, whence the theorem when S = SpecK.

In the general case, we observe that there is a commutative diagram

Br (A1
S) −−−→ Br (A1

K)x
x

BrS −−−→ BrK

The horizontal maps are injective by Theorem 6.6 (both groups on the
first line are subgroups of Br (K(T ))). Choose a section (which clearly exists,
for example via the choice of a Z-point of A1

Z
) of the structural morphism

A1
S → S, it induces a retraction s of the left vertical map and a retraction

sK of the right vertical map. By the case S = SpecK, we already know that
sK is an isomorphism on the ℓ-primary torsion subgroups, hence so is s by
diagram chasing.

Corollary 7.4 Let k be a field of characteristic zero. Then the canonical
map Br k → BrPn

k is an isomorphism for n ≥ 1.
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Proof : Let K ≃ k(T1, ..., Tn) be the function field of Pn
k and An

k . By
Theorem 6.6, we have injective maps

Br k → BrPn
k → BrAn

k → BrK,

and the corresponding map Br k → BrAn
k is surjective, whence the result.

Remark 7.5 Over an arbitrary perfect field k of characteristic p, we still
have (Br k){p} ≃ Br (A1

k){p} by Theorem 7.1 and Proposition 7.2, the sep-
arable closure of k being algebraically closed. This is no longer true over a
non perfect field or for Br (An

k) (n ≥ 2) over an algebraically closed field of
characteristic p, see [4], Remark 6.1.2. Corollary 7.4 still holds in positive
characteristic, but the proof is more complicated, see [4], Theorem 6.1.3.

Corollary 7.6 Let X be a projective conic over a field k with Char k 6= 2,
given by the equation in P2

k :

x2 − ay2 − bz2 = 0,

where a, b, c ∈ k∗ are constants. Then there is an exact sequence

0→ Z/d→ Br k
u→ BrX → 0,

where the index d of X is 1 if X(k) 6= ∅, and d = 2 if X(k) = ∅.

Recall that in general, the index of a k-variety X is the g.c.d. of the
degrees of finite extension k′ of k such that X(k′) 6= ∅.

Proof : The degree map PicX → Z is a Galois-equivariant isomorphism
and PicX is generated by the class of a closed point of degree d. We have
BrX = 0 thanks to the k̄-isomorphism X ≃ P1. Then apply Theorem 7.1.

We now go back to the unramified Brauer group. To make the statements
simpler, we assume from now on that all fields are of characteristic zero.

Proposition 7.7 Let k ⊂ K ⊂ L be field extensions. Assume that L =
K(T1, ..., Tn) is purely transcendental over K. Then the map BrK → BrL
induces an isomorphism Brnr (K/k)→ Brnr (L/k).
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Proof : Proposition 6.16 yields that the image of Brnr (K/k) in BrL is a
subgroup of Brnr (L/k). Using induction on n, we can assume that L = K(T ).
Let β ∈ Brnr (L/k), then by definition β ∈ Brnr (L/K), which is isomorphic
to BrP1

K = BrK by Theorem 6.17 and Corollary 7.4. Therefore β comes
from a unique α ∈ BrK, and it remains to show that α ∈ Brnr (K/k).

Let A be a discrete valuation ring containing k with FracA = K, with
uniformizing parameter π. Let B be the localization of A[T ] at the prime
ideal spanned by π, it is a discrete valuation ring with uniformizing param-
eter π and fraction field L. The induced map κA → κB on residue fields
corresponds to the canonical injection κA → κA(T ), hence the corresponding
restriction map H1(κA,Q/Z) → H1(κB,Q/Z) is injective because κA is al-
gebraically closed in κB. By Example 6.8, c), the equality ∂B(β) = 0 implies
∂A(α) = 0 (indeed the ramification index is 1). Since this is true for all A as
above, this exactly means that α ∈ Brnr (K/k).

Definition 7.8 Two k-varieties X and Y are stably k-birationally equivalent
if there exists non negative integersm and n such thatX×kPk

m is k-birational
to Y ×k Pk

n. A k-variety X is stably k-rational if X × Pk
n is k-rational for

some n.

Corollary 7.9 Let k be a field. Let X and Y be integral k-varieties with
respective function fields k(X) and k(Y ). Then, if X and Y are stably k-
birationally equivalent, we have Brnr (k(X)/k) ≃ Brnr (k(Y )/k). In particu-
lar, if X is stably k-rational, then Brnr (k(X)/k), is trivial, that is isomorphic
to Br k.

This corollary is very important, because it can be used to proved that
two varieties are not stably k-birationally equivalent, e.g. that a k-unirational
variety is not stably k-rational. We will see an explicit example in the next
paragraph.

7.2. Some explicit computations of residues

Let K be a field. Let n be a positive integer which is not divisble by CharK.
There is a cup-product pairing in Galois cohomology

H1(K,Z/n)×H1(K,µn)→ H2(K,µn) = (BrK)[n], (α, β) 7→ α ∪ β.
Assume further that K is the fraction field of a discrete valuation ring A with
residue field κ whose characteristic does not divide n. There is a residue map
∂A : (BrK)[n] → H1(κ,Z/n). The following result relates the cup-product
with this residue map:
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Proposition 7.10 Let α ∈ H1(A,Z/n) with image α0 ∈ H1(κ,Z/n). Let
b ∈ K∗, denote by vA(b) ∈ Z its valuation and by β its image in H1(K,µn) =
K∗/K∗n. Then

∂A(α ∪ β) = vA(b)α0 ∈ H1(κ,Z/n).

Proof : See [4], §1.4.1., Formula (1.18).

Remark 7.11 The case n = 2 is especially interesting: in this case we can
identify the K-group schemes Z/2 and µ2. For (a, b) ∈ K∗, the cup-product
(a, b) ∈ (BrK)[2] of their classes in H1(K,µ2) = K∗/K∗2 is the classical
Hilbert symbol, which is zero if and only if the projective conic

X : x2 − ay2 − bz2 = 0

has a K-point (or, equivalently, b is a norm of the extension K(
√
a)/K).

Let K(X) be the function field of X. The kernel of the map u : BrK →
BrX ⊂ Br (K(X)) is generated by (a, b) thanks to Corollary 7.6: indeed
(a, b) obviously belongs to ker u because X has a K(X)-point, and we know
that ker u is non-trivial (isomorphic to Z/2) if and only if (a, b) 6= 0.

Proposition 7.12 Let k be a field of characteristic zero and a ∈ k∗−k∗2. Let
f1(x) and f2(x) be irreducible coprime polynomials of degree two. Consider
the affine surface V defined in the affine space A3

k by the equation

y2 − az2 = f1(x)f2(x).

Let K be the function field of V . Then:
a) The element α := (a, f1(x)) of BrK belongs to Brnr (K/k).
b) Assume further that a is a square neither in the field k[x]/(f1(x)) nor

in the field k[x]/(f2(x)). Then α is not in the image of the canonical map
Br k → BrK.

Proof (sketch of): a) follows from a computation of residues relying
on Proposition 7.10; b) uses Remark 7.11 and the fact that K is also the
function field of the conic

y2az
2 = f1(x)f2(x)

over the field k(x).
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Remark 7.13 A smooth projective model X of V (which exists by Hi-
ronoka’s resolution of singularities Theorem) is an example of Châtelet sur-
face. Thanks to Theorem 6.17, Proposition 7.12 exhibits a non-trivial element
of BrX, without having to compute explicitely equations for X.

Proposition 7.14 (D.H., 1994) Let a, b be two distinct elements of C∗.
Let V be the C-variety defined in the affine space A4 by the equation

y2 − tz2 = (x2 + a)(1 + t2 − t(x2 + b)).

Then (t, x2 + a) is a non-zero element of Brnr (C(V )).

This yields an example of a C-variety which is unirational (it is dominated
by the rational variety obtained via the change of variables t = u2) but not
stably rational.

Proof (sketch of): (See [6]). To show (t, x2 + a) 6= 0, observe that V is
fibered over the affine plane (via t, x), the generic fibre being a conic X over
F := C(x, t) with function field F (X) = C(V ). Then apply Remark 7.11 to
obtain that (t, x2 + a) is not in the kernel of BrF → Br (F (X)) because it is
not zero and distinct from (t, (x2+a)(1+ t2− t(x2+b)) in BrF (equivalently,
(t, x2 + a) and (t, (1 + t2− t(x2 + b)) are both non zero in BrF , which is not
difficult to check).

To show that (t, x2+a) is in Brnr (C(V )), the method is similar to Propo-
sition 7.12: it consists of proving that all residues are zero thanks to Propo-
sition 7.10.

7.3. The Brauer-Manin obstruction

Let k be a number field. Denote by Ω the set of all places of k and by
kv the completion of k at v. Local class field theory gives a one-to-one
homomorphism invv : Br kv → Q/Z, which is an isomorphism if v is not
archimedean. Global class field theory yields an exact sequence

0→ Br k →
⊕

v∈Ω

Br kv

∑
invv→

⊕

v∈Ω

Q/Z→ 0.

Now let X be a k-variety. The above exact sequence implies that for every
rational point M ∈ X(k) with image Mv ∈ X(kv), we have for any α ∈ BrX:

∑

v∈Ω

invv(α(Mv)) = 0.

89



Therefore, if for all families of local points (Pv) ∈
∏

v∈ΩX(kv), there exists
α ∈ BrX such that

∑
v∈Ω invv(α(Pv)) 6= 0, we have X(k) = ∅: this is the so-

called Brauer-Manin obstruction to the Hasse principle, introduced by Manin
in 1970. Here is an example of this obstruction:

Theorem 7.15 (Iskovskih, 1970) Let V be the smooth Q-variety defined
in the affine space by the equation

y2 + z2 = (x2 − 2)(3− x2) 6= 0.

Then V has points in every completion of Q but V (Q) = ∅. The same holds
for every smooth and projective model X of V .

Proof (sketch of): The property that V has points everywhere locally
is easy to check via Hensel’s lemma. Then the element α := (−1, x2 − 2) ∈
Br (Q(V )) actually belongs to Brnr (Q(V )) ≃ BrX by Proposition 7.12 and
Theorem 6.17. Local computations then show that for every local point Pv ∈
V (Qv), we have α(Pv) = 0, except if v is the finite place 2 where α(Pv) 6= 0.
Hence V (Q) = ∅ thanks to the Brauer-Manin obstruction associated to α.
The same argument works for X because V (which is smooth) is isomorphic
to a Zariski open subset of X, so V (Qv) is dense in X(Qv) by the implicit
function Theorem.

Remark 7.16 For a smooth and proper variety X, there is also a Brauer-
Manin obstruction to weak approximation, namely: a family of local points
(Pv) ∈

∏
v∈ΩX(kv) such that

∑

v∈Ω

invv(α(Pv)) 6= 0

cannot be in the closure of X(k) (for the product of v-adic topologies). [6]
gives examples (similar to the one of Theorem 7.14) of Brauer-Manin ob-
struction (to the Hasse principle as well as to weak approximation) given by
a transcendental element of BrX and not detected by algebraic elements (i.e.
elements of Br 1X).
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