Exam, M2

D. Harari

May 15, 2023; 3h; written notes allowed

Every statement contained in the lecture notes can be used without proof. In each exercise, it is allowed to assume the result of a question to solve a further question.

Unless explicitely specified, all cohomology groups are étale cohomology groups.

Exercise 1 (6 points)

In the following statements, prove the right ones and give a counterexample for the wrong ones (first say whether the statement is right or wrong).

a) Let k be a perfect field of characteristic p > 0. Then the sheaf μ_p is trivial on Spec k for the flat topology.

b) Let X be a smooth variety over the field **R** of real numbers. Let n be a positive integer. Then the cohomology groups $H^i(X, \mu_n)$ are finite for all $i \geq 0$.

c) Let X be the projective C-variety defined by the equation X = 0

$$a_0 x_0^2 + \dots + a_n x_n^2 = 0$$

in the projective space $\mathbf{P}_{\mathbf{C}}^n$, where $a_0, ..., a_n$ are non-zero complex numbers and $n \geq 3$. Then Br X = 0.

d) Let X be an integral, noetherian and regular scheme with function field K. Let G be a commutative group scheme over X and $G_K := G \times_X \operatorname{Spec} K$. Then the canonical map $H^1(X, G) \to H^1(K, G_K)$ is injective.

Exercise 2 (5 points)

Let X be a scheme. Let Z be a closed subscheme of X, set U = X - Z. Denote by $i: Z \to X$ the corresponding closed immersion and by $j: U \to X$ the open immersion.

1. a) Let \mathcal{F} be a sheaf on $U_{\text{\acute{e}t}}$. Show that there is an isomorphism $j^*j_*\mathcal{F}\simeq \mathcal{F}$.

b) Deduce that there is an exact sequence of sheaves on $X_{\text{\acute{e}t}}$:

$$0 \to j_! \mathcal{F} \to j_* \mathcal{F} \stackrel{u}{\to} i_* i^* j_* \mathcal{F} \to 0.$$
⁽¹⁾

2. Assume further that $i^*j_*: S(U) \to S(Z)$ has an exact left-adjoint and that the map $H^0(X, j_*\mathcal{F}) \to H^0(X, i_*i^*j_*\mathcal{F})$ induced by u is an isomorphism.

a) Show that $H^0(X, j_!\mathcal{F}) = 0$.

b) Suppose that \mathcal{F} is injective in the category of sheaves on $U_{\text{\acute{e}t}}$. Show that $H^r(X, j_!\mathcal{F}) = 0$ for all $r \ge 0$.

Exercise 3 (6 points)

Let k be a field with separable closure \bar{k} . Let X be a geometrically integral variety over k. Set $\overline{X} = X \times_k \bar{k}$ and $\bar{k}[X]^* = H^0(\overline{X}, \mathbf{G}_m)$. Define $\operatorname{Br}_1 X := \ker[\operatorname{Br} X \to \operatorname{Br} \overline{X}]$ and $U(X) = \bar{k}[X]^*/\bar{k}^*$.

1. Show that there is an exact sequence

$$0 \to H^1(k, \bar{k}[X]^*) \to \operatorname{Pic} X \to H^0(k, \operatorname{Pic} \overline{X}) \to H^2(k, \bar{k}[X]^*) \to \operatorname{Br}_1 X \to H^1(k, \operatorname{Pic} \overline{X}).$$

From now on, we assume that the set X(k) of k-points of X is not empty.

2. a) Show that the inclusion $\bar{k}^* \hookrightarrow \bar{k}[X]^*$ induces an injective map $\operatorname{Br} k \to H^2(k, \bar{k}[X]^*)$.

b) Deduce that there is an isomorphism $H^1(k, \bar{k}[X]^*) \simeq H^1(k, U(X))$.

3. Assume further that $\operatorname{Pic} \overline{X} = 0$. Show that $\operatorname{Br}_1 X/\operatorname{Br} k$ is isomorphic to $H^2(k, U(X))$.

Exercise 4 (4 points)

Let $Y = \operatorname{Spec} A$, where A is a discrete valuation ring with fraction field K. Let $j : \eta = \operatorname{Spec} K \to Y$ be the inclusion of the generic point. Let G be a proper and commutative group scheme over Y, set $G_K = G \times_A K = G \times_Y \operatorname{Spec} K$.

a) Show that there is an isomorphism $G \simeq j_* G_K$ of étale sheaves on Y.

b) Deduce that the canonical map $i: H^1(Y, G) \to H^1(K, G_K)$ is injective.

c) Let B be a smooth and proper (not necessarily commutative) group scheme over Y. Show that the map $H^1(Y, B) \to H^1(K, B_K)$ still has trivial kernel.