Cours M1 FES (2023-2024) : Groupes

David Harari

Table des matières

1.	Généralités	1
	1.1. Conventions	1
	1.2. Morphisme de groupes, sous-groupes	3
	1.3. Générateurs d'un groupe; groupes cycliques	4
	1.4. Théorème de Lagrange	5
	1.5. Sous-groupes distingués, groupes quotients	6
	1.6. Sous-groupe dérivé	10
2.	Groupes opérant sur un ensemble	12
	2.1. Généralités, premiers exemples	12
	2.2. p -groupes; théorèmes de Sylow	14
3.	Groupes simples, exemple du groupe alterné	18
4.	Compléments sur $\mathbf{Z}/n\mathbf{Z}$	21
5.	Produit semi-direct	26

1. Généralités

1.1. Conventions

Rappelons pour mémoire la définition :

Définition 1.1 Un groupe (G,.) est la donnée d'un ensemble G et d'une loi de composition interne (le plus souvent notée multiplicativement) $(x,y) \mapsto xy$ dans G, vérifiant :

- i) La loi est associative : (xy)z = x(yz) pour tous $x, y \in G$.
- ii) Elle possède un élément neutre (noté en général 1) : x.1 = 1.x = x pour tout $x \in G$.

iii) Tout élément possède un symétrique : pour tout $x \in G$, il existe $x' \in G$ (nécessairement unique) tel que xx' = x'x = 1. On notera x^{-1} le symétrique (appelé aussi *inverse*) de x.

Pour n > 0, on pose $x^n = x.x...x$ (n terms), avec les conventions $x^0 = 1$ et $x^{-n} = (x^n)^{-1}$. Noter que pour tous $x, y \in G$, on a $(xy)^{-1} = y^{-1}x^{-1}$.

Définition 1.2 Un groupe G est abélien (ou commutatif) si on a de plus xy = yx pour tous $x, y \in G$.

Si G est abélien, on notera souvent + la loi, 0 le neutre, et -x le symétrique de x qu'on appelle alors l'opposé de x. On pourra aussi alors noter x-y pour x+(-y), et nx pour x+x+...x (n termes) quand n est un entier >0, avec les conventions 0.x=0 et (-n)x=n(-x). Ainsi, tout groupe abélien est ipso facto muni d'une structure de module sur l'anneau commutatif \mathbf{Z} .

On se gardera bien d'utiliser la notation "x/y" si G n'est pas abélien car on ne saurait pas si cela signifie xy^{-1} ou $y^{-1}x$.

- **Exemple 1.3** a) Le groupe trivial, qu'on note $G = \{0\}$ ou $G = \{1\}$ suivant les cas (il est souvent vu comme sous-groupe d'un groupe additif ou multiplicatif).
- b) Si G et H sont deux groupes, l'ensemble $G \times H$ est muni ipso facto d'une structure de groupe définie par (g,h).(g',h'):=(gg',hh'). Ceci se généralise immédiatement à une famille (pas forcément finie) de groupes. On dit que le groupe ainsi obtenu est le *produit direct* des groupes considérés.
- c) $(\mathbf{R}, +)$ et (\mathbf{R}^*, \times) sont des groupes (mais pas (\mathbf{R}, \times) , car l'élément 0 n'a pas d'inverse).

Il en va de même en remplaçant ${\bf R}$ par ${\bf C},$ ou encore par n'importe quel corps. 1

- d) $G = (\mathbf{Z}/n\mathbf{Z}, +)$, où $n \in \mathbf{N}^*$. Il est d'ordre (i.e. de cardinal) n.
- e) Soient E un ensemble et S(E) l'ensemble des bijections de E dans E. Alors S(E), muni de la composition \circ des applications, est un groupe. Quand $E = \{1, ..., n\}$, on note S_n pour S(E) et on appelle ce groupe le groupe symétrique sur n lettres (ou n éléments). Son ordre est n!, et il n'est pas abélien si n > 3.
- f) Soit K un corps. Alors le groupe $GL_n(K)$ des matrices inversibles (n, n) est un groupe (non abélien si $n \geq 2$) pour la multiplication.

^{1.} Par convention dans ce cours, un *corps* ("field" en anglais) désignera un anneau **commutatif** dans lequel tout élément non nul possède un inverse, contrairement à la terminologie (qu'on rencontre parfois en français) dans laquelle on parle de corps commutatifs ou non commutatifs.

1.2. Morphisme de groupes, sous-groupes

Définition 1.4 Soient G et G' deux groupes. Une application $f: G \to G'$ est un morphisme de groupes si f(xy) = f(x)f(y) pour tous x, y de G. Si f est de plus bijective, alors f^{-1} est aussi un morphisme et on dit que f est un isomorphisme de G sur G'. Un isomorphisme de G sur lui-même s'appelle un automorphisme de G.

On dit aussi "homomorphisme" au lieu de morphisme. Noter que si $f:G\to G'$ est un morphisme, les propriétés f(1)=1 et $f(x^{-1})=f(x)^{-1}$ pour tout x de G sont automatiques. On notera parfois $G\simeq H$ pour "G est isomorphe à H."

Exemple 1.5 a) Si $a \in \mathbf{R}$, alors $x \mapsto ax$ est un morphisme de $(\mathbf{R}, +)$ dans lui-même. C'est un isomorphisme si $a \neq 0$, et on a l'analogue en remplaçant \mathbf{R} par n'importe quel corps.

- b) L'application $z \mapsto \exp z$ est un morphisme, surjectif mais non injectif, de $(\mathbf{C}, +)$ dans (\mathbf{C}^*, \times) .
- c) Si E est un ensemble fini de cardinal n, on a $\mathcal{S}(E) \simeq \mathcal{S}_n$. Pour $n \geq 2$, il existe un unique morphisme non trivial ε de \mathcal{S}_n vers $\{\pm 1\}$, la signature. En particulier la signature de toute transposition est -1, celle d'un cycle de longueur k est $(-1)^{k+1}$.
- d) Soit K un corps. Le déterminant est un morphisme de $\operatorname{GL}_n(K)$ dans K^* . Si E est un K-ev de dimension n, alors $\operatorname{GL}_n(K)$ est isomorphe au groupe $(\operatorname{GL}(E), \circ)$ des applications linéaires bijectives de E dans E.

Définition 1.6 Un sous-ensemble H d'un groupe G est un sous-groupe si il vérifie :

- $-1 \in H$.
- Pour tous x, y de H, on a $xy \in H$.
- Pour tout x de H, on a $x^{-1} \in H$.

Il revient au même de dire que . est une loi de composition interne sur ${\cal H}$ qui en fait un groupe.

Proposition 1.7 Si $f: G \to H$ est un morphisme de groupes, alors l'image directe f(G') d'un sous-groupe G' de G et l'image réciproque $f^{-1}(H')$ d'un sous-groupe H' de H sont des sous-groupes respectifs de H, G. En particulier le noyau ker $f:=f^{-1}(\{e\})$ est un sous-groupe de G et l'image $\mathrm{Im}\, f:=f(G)$ est un sous-groupe de H. Le morphisme f est injectif si et seulement si son noyau est réduit à l'élément neutre.

C'est immédiat à vérifier.

Exemple 1.8 a) Si $a \in \mathbf{R}$, alors $a\mathbf{Z}$ est un sous-groupe de $(\mathbf{R}, +)$ (tous ceux qui ne sont pas denses sont de cette forme).

- b) Les sous-groupes de **Z** sont les n**Z** avec $n \in \mathbb{N}$.
- c) Soit $n \geq 2$. Le noyau de la signature $\varepsilon : \mathcal{S}_n \to \{\pm 1\}$ est un sous-groupe de \mathcal{S}_n , le groupe alterné \mathcal{A}_n .
- d) Soit K un corps. Le noyau du déterminant $GL_n(K) \to K^*$ est un sous-groupe de $GL_n(K)$, appelé groupe spécial linéaire. On le note $SL_n(K)$.
- e) L'ensemble Aut G des automorphismes d'un groupe G, muni de la composition \circ des applications, est un sous-groupe du groupe des permutations S(G).
- f) Le groupe $O_n(\mathbf{R})$ des matrices orthogonales réelles (ce sont les matrices M qui vérifient ${}^tMM=I$) est un sous-groupe de $\mathrm{GL}_n(\mathbf{R})$; le groupe $U_n(\mathbf{C})$ des matrices unitaires complexes (constitué des matrices M qui vérifient $M^*M=I$, où $M^*={}^t\overline{M}$) est un sous-groupe de $\mathrm{GL}_n(\mathbf{C})$.

1.3. Générateurs d'un groupe; groupes cycliques

Proposition 1.9 Soient G un groupe et A une partie de G. Alors il existe un plus petit sous-groupe H de G contenant A. On l'appelle sous-groupe engendré par A et on le note $\langle A \rangle$.

Il suffit en effet de prendre pour $\langle A \rangle$ l'intersection de tous les sous-groupes de G contenant A. Le sous-groupe engendré par la partie vide est $\{1\}$, et on a $\langle A \rangle = A$ si et seulement si A est un sous-groupe de G.

Pour toute partie A de G, on peut aussi décrire $\langle A \rangle$ comme l'ensemble des produits $x_1...x_n$ (avec $n \in \mathbb{N}$ quelconque), où chaque x_i vérifie : $x_i \in A$ ou $x_i^{-1} \in A$ (on convient que si n = 0, le produit vide est égal à 1). Si $A = \{a_1, ..., a_m\}$ est un groupe abélien fini, la description de $\langle A \rangle$ est plus simple : c'est l'ensemble des $\sum_{i=1}^m n_i a_i$ avec $a_i \in \mathbb{Z}$ (attention, ceci ne s'étend pas au cas où A n'est pas abélien). Plus généralement, si $(a_i)_{i \in I}$ est une famille d'éléments d'un groupe abélien, le sous-groupe engendré par les a_i est l'ensemble des combinaisons linéaires $\sum_{i \in I} n_i a_i$, où $(n_i)_{i \in I}$ est une famille presque nulle d'éléments de \mathbb{Z} .

Définition 1.10 Soient G un groupe et $g \in G$. L'ordre de g est le plus petit entier n > 0 (s'il existe) tel que $g^n = 1$. Si $g^n \neq 1$ pour tout n > 0, on dit que g est d'ordre infini.

Proposition 1.11 Soient G un groupe et $g \in G$. Si $\langle g \rangle$ est infini, il est isomorphe à \mathbf{Z} . S'il est de cardinal n, il est isomorphe à $\mathbf{Z}/n\mathbf{Z}$. Dans les deux cas, l'ordre de g est le cardinal de $\langle g \rangle$ dans $\mathbf{N}^* \cup \{\infty\}$.

On a en effet que si g est d'ordre fini n, alors $\langle g \rangle = \{1, g, g^2, ..., g^{n-1}\}$ est isomorphe à $\mathbb{Z}/n\mathbb{Z}$ (pour le voir, effectuer la division euclidienne d'un entier quelconque m par n); si g est d'ordre infini, alors $\langle g \rangle = \{g^m, m \in \mathbb{Z}\}$ avec les g^m distincts deux à deux, ce qui permet de voir immédiatement que $\langle g \rangle$ est isomorphe à \mathbb{Z} .

Définition 1.12 Un groupe est dit *monogène* s'il est engendré par un seul élément, *cyclique* s'il est de plus fini.

Ainsi un groupe monogène infini est isomorphe à \mathbf{Z} , un groupe cyclique à $\mathbf{Z}/n\mathbf{Z}$, où n est le cardinal du groupe.

Exemple 1.13 a) Le groupe $(\mathbf{Z}^n, +)$ est engendré par la famille

$$(1, 0, ...0), (0, 1, ..., 0), ..., (0, ..., 0, 1).$$

Il n'est pas monogène si $n \geq 2$ (le démontrer!). On a même un résultat plus précis : toute partie génératrice de ce groupe a au moins n éléments (c'est un cas particulier de la théorie des modules sur un anneau principal).

- b) Le groupe symétrique S_n est engendré par les transpositions.
- c) Pour $n \geq 2$, le groupe orthogonal $O_n(\mathbf{R})$ est engendré par les réflexions (i.e. les symétries orthogonales par rapport à un hyperplan), et pour $n \geq 3$ le groupe spécial orthogonal $SO_n(\mathbf{R}) := O_n(\mathbf{R}) \cap SL_n(\mathbf{R})$ est engendré par les retournements (i.e. les symétries orthogonales par rapport à un sous-espace de codimension 2).

1.4. Théorème de Lagrange

Proposition 1.14 Soit H un sous-groupe de G. Alors la relation $x \sim y$ si et seulement si $x^{-1}y \in H$ (resp. $xy^{-1} \in H$) est une relation d'équivalence sur G. L'ensemble quotient s'appelle ensemble des classes à gauche (resp. classes à droite) selon H, et est noté G/H (resp. $H \setminus G$). Ses éléments sont de la forme aH (resp. Ha) avec $a \in G$ (en particulier H est la classe de e).

Démonstration : On le fait pour les classes à gauche. $x \sim x$ est clair. Si $x^{-1}y \in H$, alors $(x^{-1}y)^{-1} = y^{-1}x \in H$ d'où la symétrie. Si $x^{-1}y \in H$ et $y^{-1}z \in H$, alors $(x^{-1}y)(y^{-1}z) = x^{-1}z \in H$, d'où la transitivité.

Soit $a \in H$. Alors si $x \in aH$, on a x = ay avec $y \in H$ d'où $a^{-1}x = y \in H$ et $x \sim a$. Réciproquement si $x \sim a$, on a $a^{-1}x \in H$ donc $x \in aH$. finalement la classe de a dans G/H est bien aH.

Theorème 1.15 (Th. de Lagrange) Si G est fini, l'ordre de tout sousgroupe de H de G divise l'ordre de G.

En effet les classes à gauche constituent une partition de G et le cardinal de aH est le même que celui de H puisque les translations à gauche (i.e. les applications $x\mapsto ax$ pour $a\in G$ fixé) sont des bijections de G sur G. Le cardinal de G/H (qui est aussi celui de $H\setminus G$, ou encore #G/#H) s'appelle l'indice de H dans G.

Corollaire 1.16 Dans un groupe fini G, l'ordre de tout élément est fini et divise l'ordre de G. En particulier si m est l'ordre de G, on a $x^m = 1$ pour tout x de G.

On applique le théorème précédent et la proposition 1.11.

Proposition 1.17 Soit $G = \mathbf{Z}/n\mathbf{Z}$. Soit d un entier > 0 divisant n. Alors G possède un et un seul sous-groupe d'ordre d. Ce sous-groupe C_d est lui-même cyclique d'ordre d (donc isomorphe à $\mathbf{Z}/d\mathbf{Z}$).

Démonstration : On observe d'abord que $C_d := \{\overline{0}, \overline{n/d}, ..., \overline{(d-1)n/d}\}$ est un sous-groupe d'ordre d de G. Si maintenant H est un sous-groupe d'ordre d de G, le théorème de Lagrange dit que tout élément x de H vérifie dx = 0, autrement dit $H \subset C_d$. Comme H et C_d sont tous deux de cardinal d, ceci implique que $H = C_d$.

1.5. Sous-groupes distingués, groupes quotients.

Proposition 1.18 Soient G un groupe et $g \in G$. Alors l'application int g: $G \to G$, $h \mapsto ghg^{-1}$ est un automorphisme de G, appelé automorphisme intérieur associé à g. L'application $g \mapsto \operatorname{int} g$ est un morphisme de groupes de G dans (Aut G, \circ).

C'est immédiat à vérifier.

Définition 1.19 Un sous-groupe H de G est dit distingué ou normal s'il est laissé stable par tout automorphisme intérieur, i.e. : pour tout g de G et tout h de H, on a $ghg^{-1} \in H$. On note alors $H \triangleleft G$.

Noter que si G est abélien, tout sous-groupe de G est distingué, et d'autre part $\{1\}$ et G sont toujours des sous-groupes distingués de G. Attention, la notion de sous-groupe distingué est relative (H est toujours distingué dans lui-même).

Proposition 1.20 Si $f: G \to G'$ est un morphisme de groupes et si $H' \lhd G'$, alors $f^{-1}(H')$ est distingué dans G. En particulier ker f est distingué dans G. Si $H \lhd G$, alors f(H) est distingué dans f(G) (mais pas dans G' en général).

Vérification facile, laissée au lecteur.

Exemple 1.21 a) Soit $n \geq 2$. Alors \mathcal{A}_n est distingué dans \mathcal{S}_n .

- b) Si K est un corps, alors $SL_n(K)$ est distingué dans $GL_n(K)$.
- c) Soient G un groupe et Z le centre de G, i.e. l'ensemble des x de G qui vérifient xy = yx pour tout y de G. Alors Z est le noyau du morphisme int : $G \to \operatorname{Aut} G$ donc $Z \lhd G$.
- d) Considérons dans le groupe $G = \mathcal{S}_n$ (avec $n \geq 3$) le sous-groupe $H = \{ \mathrm{Id}, \tau \}$ où τ est la transposition échangeant 1 et 2. On vérifie facilement que si $\sigma \in G$, alors $\sigma \tau \sigma^{-1}$ est la transposition échangeant $\sigma(1)$ et $\sigma(2)$. En choisissant par exemple pour σ une permutation qui envoie 1 sur 3, on voit que H n'est pas distingué dans G.

Remarque 1.22 Attention, \triangleleft n'est pas une relation transitive, on peut avoir $K \triangleleft H \triangleleft G$ et pas $K \triangleleft G$ (cf. exercices).

Définition 1.23 Un sous-groupe H de G est dit *caractéristique* si pour tout $\varphi \in \operatorname{Aut} G$, on a $\varphi(H) \subset H$ (dans ce cas on a en particulier $H \triangleleft G$).

Par exemple le centre Z de G est caractéristique dans G. Contrairement à être distingué, être caractéristique est une relation transitive (le vérifier...).

Theorème 1.24 Soient G un groupe et H un sous-groupe distingué de G. Alors :

- a) Pour tout a de G, on a aH = Ha d'où $G/H = H \setminus G$. Ainsi, deux éléments a et b sont dans la même classe selon H (à gauche ou à droite) si et seulement s'il existe $h \in H$ tel que a = bh, ou encore tel que a = hb.
- b) Il existe une unique structure de groupe sur G/H telle que la surjection canonique $\pi: G \to G/H$ (qui à tout a associe sa classe $\bar{a} = aH = Ha$) soit un morphisme de groupes. Le groupe G/H ainsi obtenu s'appelle le groupe quotient de G par H.

Démonstration : a) Par définition d'un sous-groupe distingué, on a les inclusions $aHa^{-1} \subset H$ et $a^{-1}Ha \subset H$ d'où on tire $aH \subset Ha$ et $Ha \subset aH$.

b) La loi sur G/H doit nécessairement être définie par $\bar{a}\bar{b} = \bar{a}\bar{b}$. Montrons d'abord que cette loi est bien définie, i.e. que $\bar{a}\bar{b}$ ne dépend pas du choix des représentants a et b. Si $\bar{a} = \bar{a}'$ et $\bar{b} = \bar{b}'$, on peut d'après a) écrire $a' = h_1 a$

et $b' = bh_2$ avec h_1, h_2 dans H, d'où $a'b' = h_1(ab)h_2$. Ainsi $a'b' \in H(abh_2) = (abh_2)H$ d'après a), mais ce dernier ensemble n'est autre que (ab)H vu que $h_2 \in H$. Finalement $a'b' \sim ab$, c'est ce qu'on voulait.

Le fait que l'on ait défini une loi de groupe résulte alors immédiatement de la surjectivité de π jointe à la formule $p(xy) = \pi(x)\pi(y)$ pour tous x, y de G.

En particulier, on voit que l'élément neutre de G/H est $\bar{e}=H$ et quand G est fini, le cardinal du groupe quotient G/H est #G/#H. Si G est abélien, on peut quotienter par n'importe quel sous-groupe, mais il est facile de voir que le théorème est toujours faux si H n'est pas distingué dans G ("G/H est juste un ensemble"), vu que la propriété voulue implique que H est le noyau du morphisme de groupes π .

Noter que le groupe ${\bf Z}/n{\bf Z}$ peut être défini comme le quotient de ${\bf Z}$ par le sous-groupe $n{\bf Z}$.

Theorème 1.25 (Th. de factorisation) Soit $f: G \to G'$ un morphisme de groupes. Alors il existe un unique morphisme de groupes $\tilde{f}: G/\ker f \to G'$ tel que $f = \tilde{f} \circ \pi$, où π est la surjection canonique $G \to G/\ker f$. De plus \tilde{f} est injectif d'image Im f.

Noter que $G/\ker f$ est bien un groupe car on a vu que $\ker f$ était distingué dans G. Quand G est fini, on retrouve la formule $\#G = \#\ker f.\#\operatorname{Im} f$.

Démonstration : Nécessairement \tilde{f} doit être définie par $\tilde{f}(\bar{a}) = f(a)$, où \bar{a} est la classe de a dans G/H. Cette définition a bien un sens car si $\bar{a} = \bar{b}$, alors a = bn avec $n \in \ker f$, d'où f(a) = f(b)f(n) = f(b). Si \bar{a} , \bar{b} sont dans G/H, on a $\tilde{f}(\bar{a}\bar{b}) = \tilde{f}(\bar{a}\bar{b}) = f(ab) = f(a)f(b) = \tilde{f}(\bar{a})\tilde{f}(\bar{b})$ donc \tilde{f} est un morphisme. Par définition $f = \tilde{f} \circ \pi$ d'où Im $f = \operatorname{Im} \tilde{f}$ par surjectivité de π . Enfin $\bar{a} \in \ker \tilde{f}$ signifie $a \in \ker f$, i.e. $\bar{a} = e_{G/H}$.

Remarque 1.26 Plus généralement, si N est un sous-groupe distingué de G inclus dans $\ker f$, on peut factoriser f par un morphisme $\tilde{f}: G/N \to G'$, mais le morphisme \tilde{f} n'est plus injectif en général (son noyau est $\ker f/N$).

Corollaire 1.27 ("Théorème d'isomorphisme I") Avec les notations du théorème 1.25, on a $G/\ker f \simeq \operatorname{Im} f$.

^{2.} Définition meilleure que celles qu'on rencontre parfois en classes préparatoires!

Cela résulte de ce que \tilde{f} est un morphisme injectif d'ensemble de départ $G/\ker f$ et d'image Im f.

Proposition 1.28 Soit G un groupe. Soit H un sous-groupe distingué de G, on note $\pi: G \to G/H$ la surjection canonique. Alors :

- a) Les sous-groupes de G/H sont exactement les N/H, où N est un sous-groupe de G contenant H. De plus $N/H \triangleleft G/H$ si et seulement si $N \triangleleft G$.
- b) Soit K un sous-groupe de G. Posons $KH = \{kh, k \in K, h \in H\}$ (avec une notation similaire pour HK). Alors on a KH = HK, et cet ensemble est un sous-groupe de G qui contient H et K.

Démonstration : a) On vérifie immédiatement que si N est un sous-groupe de G contenant H, alors H (qui est distingué dans G) est a fortiori distingué dans N, et qu'alors $N/H = \pi(N)$ est un sous-groupe de G/H. Réciproquement si A est un sous-groupe de G/H, alors $N := \pi^{-1}(A)$ est un sous-groupe de G contenant H (car A contient le neutre de G/H), et on a bien $A = \pi(N) = N/H$ car π est surjective. Si $A \triangleleft G/H$, son image réciproque N est un sous-groupe distingué de G, et si $N \triangleleft G$, alors $A = \pi(N)$ est bien distingué dans $\pi(G) = G/H$.

b) L'égalité KH = HK résulte des identités (valables pour $k \in K, h \in H$): $kh = (khk^{-1})k$ et $hk = k(k^{-1}hk)$ avec $khk^{-1} \in H$, $k^{-1}hk \in H$ vu que $H \triangleleft G$. On a alors $1 = 1.1 \in HK$; si $u_1, u_2 \in KH$, on peut écrire $u_1 = k_1h_1$ et $u_2 = h_2k_2$ avec $h_1, h_2 \in H$ et $k_1, k_2 \in K$. Alors $u_1u_2 = k_1h_3k_2$ avec $h_3 = h_1h_2 \in H$; comme $h_3k_2 \in HK = KH$, on peut écrire $h_3k_2 = k_3h_4$ avec $k_3 \in K$ et $h_4 \in H$, ce qui donne que $u_1u_2 = (k_1k_3)h_4 \in KH$. Finalement si $u = kh \in KH$, alors $u^{-1} = h^{-1}k^{-1} \in HK = KH$. Ainsi KH est bien un sous-groupe de G.

Theorème 1.29 ("Théorèmes d'isomorphisme") Soit G un groupe. Soit H un sous-groupe distingué de G et $\pi: G \to G/H$ la surjection canonique.

- a) Pour tout sous-groupe K de G, le le sous-groupe $\pi(K)$ de G/H est aussi le sous-groupe KH/H. Ce dernier est isomorphe à $K/(K \cap H)$ ("deuxième théorème d'isomorphisme").
- b) Soit N un sous-groupe distingué de G contenant H. Alors le groupe (G/H)/(N/H) est isomorphe au groupe quotient G/N ("troisième théorème d'isomorphisme").

Ainsi, dans G/H "on obtient un sous-groupe si on diminue G et un quotient si on augmente H."

Démonstration : a) On note déjà que d'après la proposition 1.28, l'ensemble KH = HK est bien un sous-groupe de G contenant H. Soit $u = kh \in KH$. Alors on a $\pi(u) = \pi(k) \in \pi(K)$ car $\pi(h)$ est le neutre de G/H, d'où $KH/H \subset \pi(K)$. Réciproquement, tout élément de $\pi(K)$ est de la forme \bar{k} avec $k \in K \subset KH$, il est donc a fortiori dans KH/H. Soit alors $\varphi : K \to KH/H$ le morphisme de groupes défini par $\varphi(k) = \bar{k} = \pi(k)$. Son noyau est clairement $K \cap H$ car ker $\pi = H$. Comme $\pi(K) = KH/H$, on voit que φ est surjectif, et le théorème de factorisation donne alors $K/K \cap H \simeq KH/H$.

b) Soit $\psi: G/H \to G/N$ le morphisme de groupes défini par $\psi(\bar{g}) = \tilde{g}$, où \tilde{g} désigne l'image de g dans G/N. Cette définition a un sens car si g, g' sont des éléments de G avec $\bar{g} = \bar{g}'$, alors $g^{-1}g' \in H \subset N$ donc $\tilde{g} = \tilde{g}'$. On voit immédiatement que ψ est surjectif de noyau N/H, d'où le résultat avec le théorème de factorisation.

Dans le cas abélien, le deuxième théorème d'isomorphisme s'écrit :

Corollaire 1.30 Soit (A, +) un groupe abélien. Soient B un sous-groupe de A et $\pi: A \to A/B$ la surjection canonique. Alors, pour tout sous-groupe C de A, on a $\pi(C) = (B+C)/B$, et ce dernier groupe est isomorphe à $B/(B \cap C)$.

1.6. Sous-groupe dérivé

Définition 1.31 Soit G un groupe, et x, y deux éléments de G. On appelle commutateur de x et y l'élément $[x, y] := xyx^{-1}y^{-1}$. Le sous-groupe dérivé de G est par définition le sous-groupe **engendré** par les commutateurs. 3 On le note D(G).

L'intérêt de D(G) résulte dans la proposition suivante :

Proposition 1.32 Le sous-groupe D(G) est caractéristique (en particulier distingué) dans G. Le quotient G/D(G) est abélien, et D(G) est le plus petit sous-groupe distingué de G qui a cette propriété. On note $G^{ab} := G/D(G)$ ("abélianisé" de G).

L'abélianisé de G est donc le plus "grand quotient abélien" de G, au sens suivant : si G/H est un autre quotient abélien de G, alors G/H est un quotient de G^{ab} (cela résulte immédiatement de $D(G) \subset H$ et du troisième théorème d'isomorphisme), ou encore G^{ab} se surjecte sur G/H.

^{3.} Attention l'ensemble des commutateurs ne forme en général pas un sous-groupe, bien qu'il soit assez difficile de construire un contre-exemple.

Démonstration : Commençons par un lemme utile en soi : si A est une partie d'un groupe G et si $\varphi: G \to G'$ est un morphisme de groupes, alors $\varphi(\langle A \rangle) = \langle \varphi(A) \rangle$. En effet, tout élément de $\langle A \rangle$ peut s'écrire $x = a_1...a_r$ avec $a_i \in A$ ou $a_i^{-1} \in A$ pour tout i; du coup on a $\varphi(x) = \varphi(a_1)...\varphi(a_r)$, avec $\varphi(a_i) \in \varphi(A)$ ou $\varphi(a_i)^{-1} \in \varphi(A)$ pour chaque i, ce qui montre que $\varphi(x) \in \langle \varphi(A) \rangle$. Ainsi $\varphi(\langle A \rangle) \subset \langle \varphi(A) \rangle$ et l'inclusion dans l'autre sens se montre de façon tout à fait analogue.

Si maintenant φ est un automorphisme de G, alors on a $\varphi([x,y]) = [\varphi(x), \varphi(y)]$ d'où $\varphi(D(G)) \subset D(G)$ avec le lemme, ce qui montre que D(G) est caractéristique. Le groupe G/D(G) est abélien car par définition, on a $xyx^{-1}y^{-1} \in D(G)$ pour tous $x,y \in G$, ce qui montre que dans G/D(G) on a $\overline{xy} = \overline{yx}$. Si H est un sous-groupe tel que G/H soit abélien, alors on a $\overline{xyx^{-1}y^{-1}} = \overline{1}$ dans G/H pour tous x,y de G, donc $[x,y] \in H$; ainsi H contient D(G) puisqu'il contient tous les commutateurs.

Remarque 1.33 On vérifie facilement que tout sous-groupe N contenant D(G) est automatiquement distingué (et on peut donc parler du groupe quotient G/N, qui est abélien).

Par exemple $D(G) = \{e\}$ si et seulement si G est abélien. Pour $n \geq 2$, on a $D(S_n) = A_n$ et $D(A_n) = A_n$ pour $n \geq 5$ (voir un peu plus loin). Si K est un corps et $n \geq 2$, on a $D(GL_n(K)) = SL_n(K)$ sauf si on a simultanément n = 2 et #K = 2; on a aussi $D(SL_n(K)) = SL_n(K)$ sauf si on a à la fois n = 2 et $\#K \leq 3$ (voir par exemple le cours d'algèbre de D. Perrin [2], chapitre 4).

Définition 1.34 Un groupe G est dit simple si ses seuls sous-groupes distingués sont G et $\{e\}$, parfait si D(G) = G.

Exemple 1.35 a) un groupe abélien est simple si et seulement s'il est isomorphe à $\mathbb{Z}/p\mathbb{Z}$ avec p premier, et un groupe simple non abélien est parfait.

- b) Le groupe A_n est simple si $n \geq 5$ (voir plus loin).
- c) En général $SL_n(K)$ n'est pas simple car son centre (constitué des homothéties λI avec $\lambda^n = 1$) est non trivial si K contient des racines n-ièmes de l'unité autre que 1, par exemple si $K = \mathbb{C}$. Par contre $SL_n(K)$ est parfait si l'on n'est pas dans l'un des deux cas exceptionnels (n = 2 et K fini de cardinal 2 ou 3).

2. Groupes opérant sur un ensemble

2.1. Généralités, premiers exemples

Définition 2.1 Soit G un groupe et X un ensemble. On dit que G opère (ou agit) sur X si on s'est donné une application $G \times X \to X$, $(g, x) \mapsto g.x$, vérifiant

- Pour tous g, g' de G et tout x de X, on a g.(g'.x) = (gg').x
- Pour tout x de X, on a 1.x = x

Remarque 2.2 a) On a en particulier pour tout g que $x \mapsto g.x$ est une bijection de X sur X, de réciproque $x \mapsto g^{-1}.x$. Une définition équivalente consiste à se donner un morphisme $\Phi : G \to (\mathcal{S}(X), \circ)$, en posant $g.x = (\Phi(g))(x)$.

b) La définition ci-dessus correspond à celle d'action à gauche. On peut également parler d'action à droite : $(g,x) \mapsto x.g$, satisfaisant x.(gg') = (x.g).g'. Cela correspond à se donner un "anti-morphisme" (i.e. une application Φ qui vérifie $\Phi(gg') = \Phi(g')\Phi(g)$ pour tous g,g') de G vers $\mathcal{S}(X)$ au lieu d'un morphisme.

Exemple 2.3 a) G opère sur lui-même par translations à gauche via g.x := gx. De même tout sous-groupe H de G opère sur G par translations à gauche.

- b) G opère sur lui-même par conjugaison : $g.x := gxg^{-1}$. Ici l'image de G dans $\mathcal{S}(G)$ est de plus contenue dans $\operatorname{Aut} G$ (ce qui n'était pas le cas dans l'exemple précédent). On parle dans ce cas d'action par automorphismes.
 - c) S_n opère sur $\{1,...,n\}$ par $\sigma.x = \sigma(x)$.
- d) Si H est un sous-groupe de G, G opère sur l'ensemble des classes à gauche G/H par g.(aH) := (ga)H. Noter qu'il opère aussi à droite sur l'ensemble des classes à droite par (Ha).g := H(ag).

Définition 2.4 Étant donnée une opération d'un groupe G sur un ensemble X, on appelle *orbite* d'un élément x de X l'ensemble des g.x, $g \in G$. Les orbites sont les classes d'équivalence sur X pour la relation : $x \sim y$ si et seulement s'il existe $g \in G$ tel que y = g.x. S'il n'y a qu'une orbite, on dit que G opère transitivement sur X.

Exemple 2.5 a) Si H est un sous-groupe de G, les orbites de l'action de H sur G par translation à gauche ne sont autre que les classes à **droite** suivant H.

- b) L'action de S_n sur $\{1, ..., n\}$ est transitive.
- c) L'action de G sur G/H vue plus haut est transitive, ainsi que celle de G sur lui-même par translations.

d) Les orbites pour l'action de G sur lui-même par conjugaison s'appellent les classes de conjugaison de G. Noter que si G n'est pas le groupe trivial, l'action n'est jamais transitive vu que 1 est seul dans son orbite.

Définition 2.6 Soit G un groupe opérant sur un ensemble X. On appelle stabilisateur d'un élément x de X le sous-groupe Stab_x des g de G qui vérifient g.x = x. Il n'est pas distingué dans G en général.

On dit que l'opération est *libre* si tous les stabilisateurs Stab_x (pour $x \in X$) sont réduits à $\{1\}$. On dit que l'action est *fidèle* (ce qui est nettement moins fort) si le morphisme $G \to \mathcal{S}(X)$ associée à l'opération est injectif, autrement dit si $\bigcap_{x \in X} \operatorname{Stab}_x = \{1\}$.

- **Exemple 2.7** a) L'opération d'un groupe G sur lui-même par translation à gauche est libre (donc a fortiori fidèle). Si G est fini d'ordre n, on obtient en particulier qu'il existe un morphisme injectif (donné par cette opération) de G dans $S(G) \simeq S_n$ (théorème de Cayley).
- b) Dans l'opération de S_n sur $\{1, ..., n\}$, tous les stabilisateurs sont isomorphes à S_{n-1} . Ils sont du reste tous conjugués, ce qui est un fait général pour une action transitive : en effet, quand un groupe G opère sur un ensemble X et x, y sont dans la même orbites, alors Stab_x et $\operatorname{Stab}y$ sont conjugués vu que si y = g.x, alors $\operatorname{Stab}_y = g\operatorname{Stab}_x g^{-1}$.

La proposition ci-dessous va montrer que l'exemple 2.5 c) ci-dessus est en quelque sorte le cas "générique" d'une action transitive.

Proposition 2.8 Étant donnée une opération d'un groupe G sur un ensemble X et $x \in X$, on définit une bijection de l'ensemble des classes à gauche G/Stab_x sur l'orbite $\omega(x)$ de x via : $\bar{g} \mapsto g.x$. En particulier si G est fini on a $\#\omega(x) = \#G/\#\operatorname{Stab}_x$ (donc le cardinal de $\omega(x)$ divise celui de G). Ainsi si l'action est transitive, l'action de G s'identifie à l'action de G sur G/Stab_x par translation à gauche.

Noter que sans supposer G fini, on obtient que le cardinal de l'orbite $\omega(x)$ est celui de l'indice $[G:\operatorname{Stab}_x]$, lequel est donc fini si et seulement si $\omega(x)$ est finie.

Démonstration : Déjà l'application $\varphi: \bar{g} \mapsto g.x$ de G/Stab_x vers X est bien définie car si $\bar{g} = \bar{g}'$, alors g' = g.h avec $h \in \operatorname{Stab}_x$, donc g'.x = g.(h.x) = g.x. Elle est surjective par définition de l'orbite. Enfin si g.x = g'.x, alors $(g'^{-1}g).x = x$, i.e. $g'^{-1}g \in \operatorname{Stab}_x$, ou encore $\bar{g}' = \bar{g}$ dans G/Stab_x , ce qui prouve l'injectivité de φ .

Corollaire 2.9 (Équation aux classes) Soit G un groupe fini opérant sur un ensemble fini X. Soit Ω l'ensemble des orbites, notons $\#Stab_{\omega}$ le cardinal du stabilisateur de x, pour x dans l'orbite ω (indépendant du choix de x dans ω d'après la proposition précédente). Alors

$$\#X = \sum_{\omega \in \Omega} \frac{\#G}{\#\operatorname{Stab}_{\omega}}.$$

Démonstration : Comme les orbites forment une partition de X, c'est immédiat d'après la proposition précédente.

Remarque 2.10 Malgré la simplicité de la démonstration, l'équation aux classes a des conséquences tout à fait non triviales, comme on va le voir au paragraphe suivant. Noter que cette équation aux classes est valable dès que l'ensemble X est fini (sans supposer forcément G fini), à condition de remplacer $\frac{\#G}{\#\operatorname{Stab}_{\omega}}$ par l'indice $[G:\operatorname{Stab}_{\omega}]$ du stabilisateur $\operatorname{Stab}_{\omega}$ dans G, lequel est bien fini puisque c'est aussi le cardinal de l'orbite ω .

2.2. p-groupes; théorèmes de Sylow

Définition 2.11 Soit p un nombre premier. On appelle p-groupe un groupe de cardinal p^n , où $n \in \mathbb{N}$.

Notons que nous adoptons ici la convention selon laquelle le groupe trivial est bien un p-groupe.

Proposition 2.12 Soit G un p-groupe non trivial. Alors:

- a) Si G est de cardinal p, alors G est cyclique.
- b) Le centre Z de G n'est pas trivial.
- c)Si G est de cardinal p ou p^2 , alors p est abélien.

Démonstration : a) Soit $x \in G$ un élément autre que le neutre. Alors son ordre divise p d'après le théorème de Lagrange, donc c'est p puisque ce n'est pas 1. Cela signifie que le groupe engendré par x est de cardinal p, donc c'est G tout entier et G est cyclique.

b) On fait opérer G sur lui-même par conjugaison. Il y a #Z points fixes (:=orbites réduites à un élément), et le cardinal des autres orbites est un diviseur de $p^n := \#G$ (par le théorème de Lagrange) autre que 1, donc est divisible par p. Ainsi, on obtient (via l'équation aux classes) que le nombre

 $\#G = p^n$ (avec n > 0) est la somme du cardinal de Z et d'un multiple de p, donc p divise #Z.

c) Si G est de cardinal p, le résultat est immédiat avec a) puisqu'alors G est isomorphe à $\mathbb{Z}/p\mathbb{Z}$. Supposons que G soit de cardinal p^2 . Si G n'était pas abélien, le cardinal de Z serait p d'après b), donc G/Z serait cyclique (car de cardinal p). Mais on obtient alors une contradiction via le lemme suivant :

Lemme 2.13 Soit G un groupe de centre Z avec G/Z monogène. Alors G est abélien.

Le lemme se démontre en prenant un générateur \bar{a} de G/Z. Alors tout élément g de G s'écrit $g=a^mz$ avec $z\in Z$, et il est alors immédiat que deux éléments de G commutent.

Théorèmes de Sylow.

On se pose la question suivante : étant donnés un groupe fini G et un entier n divisant son cardinal, peut-on trouver un sous-groupe d'ordre n? En général la réponse est non (\mathcal{A}_4 est de cardinal 12, mais n'a pas de sous-groupe d'ordre 6, voir exercices) mais dans le cas particulier des p-sous-groupes, on va voir qu'on a une réponse positive.

Définition 2.14 Soit p un nombre premier. Soit G un groupe fini de cardinal p. On appelle p-sous-groupe de Sylow (ou plus simplement p-Sylow de G) un sous-groupe H de cardinal p^{α} , où $n = p^{\alpha}m$ avec p ne divisant pas m (i.e. p ne divise p pas l'indice [G:H] de H dans G).

Si p ne divise pas #G, un p-Sylow de G est simplement le sous-groupe trivial (dans ce cas, la notion n'est pas intéressante). On observera que H est un p-Sylow de G si et seulement s'il vérifie les deux conditions : H est un p-groupe et p ne divise pas l'indice [G:H].

Theorème 2.15 (Premier théorème de Sylow) Soit G un groupe fini et p un diviseur premier de #G. Alors G contient au moins un p-sous-groupe de Sylow.

La preuve repose sur deux lemmes, qui ont un intérêt propre.

Lemme 2.16 Soit H un sous-groupe de G. Si G contient un p-Sylow S, alors il existe $a \in G$ tel que $aSa^{-1} \cap H$ soit un p-Sylow de H.

(Ce lemme permet de se ramener à un "sur-groupe" pour prouver le théorème).

Démonstration : On a vu que le sous-groupe H de G opérait sur l'ensemble G/S des classes à gauche via $(h, aS) \mapsto (ha)S$. On voit tout de suite que le stabilisateur $\operatorname{Stab}_H(aS)$ de aS pour l'action de H est $aSa^{-1} \cap H$. Chacun de ces $\operatorname{Stab}_H(aS)$ est un p-groupe comme sous-groupe de aSa^{-1} , donc il suffit de montrer que l'un d'entre eux a un indice dans H non divisible par p. Or, cet indice $\frac{\#H}{\#\operatorname{Stab}_H(aS)}$ est aussi le cardinal de l'orbite $\omega_H(aS)$. Comme p ne divise pas le cardinal de l'ensemble G/S (puisque S est un p-Sylow de G), le résultat vient de ce que les orbites forment une partition de G/S.

Lemme 2.17 Soit $\mathbf{F}_p = \mathbf{Z}/p\mathbf{Z}$ (corps à p éléments) et $G_p := \mathrm{GL}_n(\mathbf{F}_p)$ avec $n \in \mathbf{N}^*$. Alors G_p possède un p-Sylow.

Démonstration : On calcule d'abord le cardinal de G_p . C'est celui du nombre de bases du \mathbf{F}_p -espace vectoriel \mathbf{F}_p^n : en effet si on fixe une base \mathcal{B}_0 de \mathbf{F}_p^n (par exemple la base canonique), il existe pour toute base \mathcal{B} de \mathbf{F}_p^n un et un seul élément de G_p qui envoie \mathcal{B}_0 sur \mathcal{B} . De ce fait, le cardinal de G_p est

$$(p^{n}-1)(p^{n}-p)...(p^{n}-p^{n-1}),$$

car pour le premier vecteur e_1 de \mathcal{B} on a p^n-1 choix (tout vecteur non nul), pour le deuxième e_2 on a p^n-p choix (tout vecteur non multiple de e_1) etc. Il en ressort qu'un p-Sylow de G_p est de cardinal $p^{1+2+\dots+n-1}=p^{n(n-1)/2}$. Or l'ensemble des matrices triangulaires supérieures dont la diagonale n'a que des 1 est un sous-groupe de G_p qui possède ce cardinal.

Preuve du premier théorème de Sylow: Il ne reste plus qu'à prouver que G est isomorphe à un sous-groupe de G_p . Or G est isomorphe à un sous-groupe de S_n (théorème de Cayley), et S_n se plonge dans G_p en envoyant la permutation σ sur la matrice M_{σ} qui envoie le vecteur e_i sur $e_{\sigma(i)}$, où $(e_1, ..., e_n)$ est la base canonique.

Avant d'énoncer et démontrer un théorème sur la conjugaison des p-Sylow, voici une notion souvent utile en théorie des groupes :

Définition 2.18 Soit G un groupe. Soit H un sous-groupe de G. Le normalisateur de H dans G est le sous-groupe $N_G(H)$ de G constitué des $g \in G$ vérifiant $gHg^{-1} = H$.

^{4.} Attention si on permutait les coordonnées au lieu des vecteurs de base, on obtiendrait un anti-morphisme et pas un morphisme.

Il est facile de vérifier que $N_G(H)$ est bien un sous-groupe de G et qu'il contient H. Par définition on a $N_G(H) = G$ si et seulement si H est distingué dans G. Si H est fini, tout élément de g vérifiant $gHg^{-1} \subset H$ est dans $N_G(H)$ (en effet gHg^{-1} et H ont même cardinal), mais ce n'est plus vrai en général.

Theorème 2.19 (Deuxième théorème de Sylow) Soit G un groupe fini de cardinal $n = p^{\alpha}m$ avec p ne divisant pas m. Alors:

- a) Si $H \subset G$ est un p-groupe, il existe un p-Sylow de G qui le contient.
- b) Les p-Sylow de G sont tous conjugués, et leur nombre k divise n. En particulier, si un p-Sylow est distingué, c'est le seul p-Sylow de G.
 - c) On a k congru à 1 modulo p (et donc k divise m).

On peut montrer qu'un groupe G comme ci-dessus possède des sous-groupes d'ordre p^{β} pour tout $\beta \leq \alpha$ et pas seulement pour $\beta = \alpha$ (voir exercices), le premier théorème de Sylow permettant de se ramener au cas où G est lui-même un p-groupe.

Démonstration : a) D'après le premier théorème de Sylow, il existe au moins un p-Sylow S de G. Le lemme 2.16 dit alors qu'il existe $a \in G$ tel que $aSa^{-1} \cap H$ soit un p-Sylow de H, i.e. $aSa^{-1} \cap H = H$ puisque H est un p-groupe. Ainsi H est inclus dans aSa^{-1} qui est un p-Sylow de G.

- b) Si H est un p-Sylow de G, on a de plus $H = aSa^{-1}$ par cardinalité, donc tout p-Sylow de G est conjugué de S. Faisons alors opérer G par conjugaison sur l'ensemble X des p-Sylow. Comme il n'y a qu'une seule orbite, le cardinal k de cette orbite (qui divise celui de G) est celui de X, i.e. le nombre de p-Sylow.
- c) Soit S un p-Sylow de G, on fait opérer S sur X par conjugaison. Soient X^S l'ensemble des points fixes pour cette action (i.e. les orbites réduites à un élément) et Ω' l'ensemble des autres orbites. L'équation aux classes s'écrit

$$k=\#X^S+\sum_{\omega\in\Omega'}\#\omega$$

Le cardinal des orbites qui sont dans Ω' divise celui de S et n'est pas 1, donc est divisible par p. Pour conclure il suffit donc de montrer qu'il n'y a qu'une seule orbite réduite à un point (celle de S). i.e. : si T est un p-Sylow de G tel que $sTs^{-1} = T$ pour tout s de S, alors S = T.

Pour cela, on introduit le sous-groupe N de G engendré par S et T. A fortiori S et T sont des p-Sylow de N, donc sont conjugués par un élément de N. Mais T est distingué dans N via le fait que $sTs^{-1} = T$ pour tout s de S,

car le normalisateur $N_G(T)$ contient S et T, donc aussi le sous-groupe qi'ils engendrent, ce qui implique $N \subset N_G(T)$. Finalement on a bien T = S.⁵

Un cas particulier important de c) est celui où m n'a aucun diviseur $\neq 1$ qui est congru à 1 modulo p. Alors G possède un p-Sylow unique, qui est donc distingué. Par exemple un groupe d'ordre 63 (prendre p=7) n'est pas simple. Le même type de raisonnement marche pour un groupe d'ordre 255.

Exemple 2.20 Le groupe \mathcal{A}_4 est de cardinal 12. Il possède un 2-Sylow distingué d'ordre 4, constitué de l'identité et des doubles transpositions, qui est donc son seul 2-Sylow. Le 3-cycle (1,2,3) est un 3-Sylow de G; les autres s'obtiennent par conjugaison, ce qui fait que les 3-Sylow sont exactement les 3-cycles de G.

3. Groupes simples, exemple du groupe alterné

Un groupe non trivial est simple si ses seuls sous-groupes distingués non triviaux sont lui-même et $\{1\}$. Par exemple, les groupes simples abéliens sont les $\mathbb{Z}/p\mathbb{Z}$ avec p premier. Il n'est pas a priori facile de trouver d'autres exemples de groupes simples (voir [2], IV.4 pour l'exemple du groupe $\mathrm{PSL}_n(K)$ quand $n \geq 3$ ou le corps K possède au moins quatre éléments). Le but de ce paragraphe est de démontrer :

Theorème 3.1 Pour $n \geq 5$, le groupe alterné A_n est simple.

Notons que le résultat est encore vrai (trivialement) pour n=2 et n=3, mais pas pour n=4, le groupe consitué des doubles transpositions dans \mathcal{A}_4 étant un sous-groupe distingué non trivial.

Avant de passer à la démonstration du théorème, donnons tout de suite quelques corollaires.

Corollaire 3.2 Pour
$$n \geq 5$$
, on a $D(A_n) = A_n$ et $D(S_n) = A_n$.

On notera que la deuxième assertion est vraie pour tout $n \geq 2$ (seul le cas n = 4 est à vérifier séparément; voir TD).

^{5.} Ce raisonnement s'appelle "l'argument de Frattini".

Démonstration : On a $D(S_n) \subset A_n$ vu que tout commutateur est de signature 1, et $D(S_n)$ est distingué dans A_n (il est déjà distingué dans S_n), d'où $D(S_n) = A_n$ avec le théorème, vu que $D(S_n)$ n'est pas réduit au neutre (en effet S_n n'est pas abélien). On a de même $D(A_n)$ distingué dans A_n et non trivial (deux 3-cycles dont les supports ont un ou deux éléments en commun ne commutent pas), d'où $D(A_n) = A_n$.

Corollaire 3.3 Si $n \geq 5$, S_n a trois sous-groupes distingués : {Id}, A_n et S_n .

Démonstration : Soit H un sous-groupe distingué de S_n . Alors $H \cap A_n$ est distingué dans A_n , donc par le théorème $H \cap A_n$ est égal à A_n ou bien réduit à {Id}. Dans le premier cas, $H \supset A_n$, donc $H = A_n$ ou $H = S_n$ car A_n est d'indice 2 dans S_n . Supposons donc $H \cap A_n = \{\text{Id}\}$ et montrons que H est le groupe trivial. Si τ et σ sont deux éléments non triviaux de H, alors $\tau \sigma$ est de signature (-1)(-1) = 1, donc $\tau = \sigma^{-1}$. De ce fait $H = \{\text{Id}, \sigma, \sigma^{-1}\}$, mais alors H se surjecte sur $\{\pm 1\}$ par la signature, ce qui n'est pas possible si $\sigma \neq \sigma^{-1}$ parce qu'alors H est de cardinal 3, et 2 ne divise pas 3. Finalement H est de cardinal 1 ou 2; mais un sous-groupe de cardinal 2 de S_n est de la forme $\{\text{Id}, \tau\}$ où τ est un produit de transpositions dont les supports sont disjoints, donc un tel sous-groupe ne peut pas être distingué si $n \geq 3$ par un calcul facile.

Preuve de la simplicité de A_n pour $n \ge 5$. Toutes les méthodes passent par deux lemmes assez simples :

Lemme 3.4 Pour $n \geq 3$, les 3-cycles engendrent A_n .

Démonstration : Comme S_n est engendré par les transpositions, A_n est engendré par les produits de deux transpositions. Or, si a, b, c, d sont des éléments deux à deux distincts de [1, n], on a (a, b)(b, c) = (a, b, c), et (a, b)(c, d) = (a, b)(a, c)(a, c)(c, d) = (a, c, b)(a, c, d), donc un produit de deux transpositions est un 3-cycle ou un produit de deux 3-cycle.

Lemme 3.5 Pour $n \geq 5$, les 3-cycles sont conjugués dans A_n .

Démonstration : Soient $\tau = (a_1, a_2, a_3)$ et $\tau' = (b_1, b_2, b_3)$ deux 3-cycles. Alors il existe $\sigma \in \mathcal{S}_n$ telle que $\sigma(a_i) = b_i$ pour i = 1, 2, 3, d'où $\sigma \tau \sigma^{-1} = \tau'$. Si $\varepsilon(\sigma) = 1$, c'est fini. Sinon on remplace σ par $\sigma' = \sigma(c, d)$, où c et d sont deux éléments de [1, n], distincts, et distincts de a_1, a_2, a_3 (c'est ici que l'hypothèse $n \geq 5$ est utilisée).

Il résulte des deux lemmes que tout sous-groupe distingué de A_n contenant un 3-cycle est égal à A_n si $n \geq 5$.

On montre maintenant le résultat pour n = 5:

Proposition 3.6 Le groupe A_5 est simple.

Démonstration : Le cardinal de A_5 est 60. On commence par trier ses éléments par leur ordre, en utilisant leur décomposition en cycles.

Les éléments d'ordre 2 sont les produits de deux transpositions à supports disjoints, il y en a $5 \times 3 = 15$ (5 choix pour le point fixe, et 3 doubles transpositions dans \mathcal{S}_4).

Les éléments d'ordre 3 sont les 3-cycles, il y en a $C_5^3 \times 2 = 20$ (C_5^3 choix pour les éléments permutés, et deux 3-cycles dans S_3).

Il n'y a pas d'élément d'ordre 4 (les 4-cycles sont de signature -1).

Les éléments d'ordre 5 sont les 5-cycles, il y en a 4! = 24, car se donner un 5-cycle c revient à se donner c(1) (4 choix), puis $c^2(1)$ (3 choix) etc.

Soit maintenant H un sous-groupe distingué de A_5 . Montrons que si H contient un élément d'ordre ω , avec $\omega \in \{2,3,5\}$, alors il contient tous les éléments d'ordre ω . Si $\omega = 3$, cela résulte du lemme 1. Si $\omega = 2$, il suffit de voir que les éléments d'ordre 2 sont conjugués dans A_5 ; or si $\tau = (a_1, a_2)(a_3, a_4)(a_5)$ et $\tau' = (b_1, b_2)(b_3, b_4)(b_5)$ sont deux tels éléments, il existe un élément σ de S_5 tel que $\sigma(a_i) = b_i$ pour i = 1, ..., 5, d'où $\sigma\tau\sigma^{-1} = \tau'$. Si σ est de signature -1, on la remplace par $\sigma(a_2, a_1)$. Enfin, bien que les 5-cycles ne soient pas tous conjugués dans A_5 , les sous-groupes d'ordre 5 le sont car ce sont les 5-Sylow de A_5 ; alors si H contient un élément d'ordre 5, il contient le sous-groupe qu'il engendre, donc tous les sous-groupes d'ordre 5, donc tous les éléments d'ordre 5.

Supposons maintenant $H \neq \{\text{Id}\}$. Alors il ne peut exister $\omega \in \{2, 3, 5\}$ tel que tout élément non trivial de H soit d'ordre ω , sinon d'après ce qui précède H serait de cardinal 15 + 1, 20 + 1, ou 24 + 1, et aucun de ces nombres ne divise 60. Il existe donc au moins deux nombres ω , ω' parmi 2, 3, 5 tels que

^{6.} En fait si c et c' sont deux 5-cycles, c est conjugué de c' ou c'^2 , ce qui suffit à faire l'argument.

H contienne tous les éléments d'ordre ω et ω' , mais alors le cardinal de H dépasse strictement 60/2, et $H = A_5$ vu que son cardinal doit diviser 60.

En fait A_5 est le le plus petit groupe simple autre que les $\mathbf{Z}/p\mathbf{Z}$ pour p premier (voir TD).

Preuve du théorème dans le cas général. Soit E = [1, n], H un sous-groupe de \mathcal{A}_n non réduit à l'identité. On choisit σ non trivial dans H. On va se ramener au cas n = 5 en fabriquant un élément de H qui agit sur un sous-ensemble de cardinal au plus 5 de E. Pour cela, on va considérer non pas un conjugué de σ (qui aurait le même nombre de points fixes que σ), mais un commutateur $\rho = \tau \sigma \tau^{-1} \sigma^{-1}$ (qui a une chance d'en avoir davantage). On choisit τ de la manière suivante : soit a dans E tel que $b := \sigma(a)$ soit distinct de a, puis c dans E distinct de a, b, et $\sigma(b)$. On pose alors $\tau = (a, c, b)$, ce qui fait que $\rho = (\tau \sigma \tau^{-1})\sigma^{-1}$ est bien dans H. Alors $\tau^{-1} = (a, b, c)$ d'où $\rho = (a, c, b)(\sigma \tau^{-1}\sigma^{-1}) = (a, c, b)(\sigma a, \sigma b, \sigma c)$. Comme $\sigma a = b$, on voit qu'il existe un sous-ensemble F de E qui a au plus 5 éléments (et on peut le prendre de cardinal exactement 5) tel que ρ opère trivialement en dehors de F, et F contienne $\{a, b, c, \sigma(b), \sigma(c)\}$. On note aussi que ρ opère non trivialement sur F car $\rho(b) = \tau \sigma(b) \neq b$ (vu que $\sigma(b) \neq c = \tau^{-1}(b)$).

On obtient un morphisme injectif i de $\mathcal{A}(F)$ dans \mathcal{A}_n en prolongeant une permutation de F par l'identité en dehors de F. Posons $H_0 = i^{-1}(H)$, c'est un sous-groupe distingué de $\mathcal{A}(F) \simeq \mathcal{A}_5$. Mais H_0 n'est pas trivial car il contient la restriction de ρ à F. Ainsi $H_0 = \mathcal{A}(F)$ d'après le cas n = 5. En particulier H_0 contient un 3-cycle, donc H aussi, donc $H = \mathcal{A}_n$ avec les deux lemmes.

4. Compléments sur $\mathbf{Z}/n\mathbf{Z}$

On commence par la proposition élémentaire suivante, que nous rappelons sans démonstration :

Proposition 4.1 Soit $n \in \mathbb{N}^*$, $s \in \mathbb{Z}$. Alors les propriétés suivantes sont équivalentes :

- i) (s, n) = 1.
- ii) \bar{s} engendre le groupe additif $\mathbf{Z}/n\mathbf{Z}$.
- iii) \bar{s} appartient au groupe des inversibles $(\mathbf{Z}/n\mathbf{Z})^*$ de l'anneau $\mathbf{Z}/n\mathbf{Z}$.

On prendra garde de ne pas confondre les structures additives et multiplicatives (par exemple ne pas remplacer iii) par " \bar{s} engendre $(\mathbf{Z}/n\mathbf{Z})^*$ ", ce qui est trivialement faux par exemple pour s=1; on verra que le groupe multiplicatif $(\mathbf{Z}/n\mathbf{Z})^*$ n'est pas cyclique en général, ex. n=8). Attention aussi à ne pas écrire "x est premier avec n" pour un élément x de $\mathbf{Z}/n\mathbf{Z}$ (au lieu d'un représentant entier de x), la notion d'éléments premiers entre eux n'ayant pas de sens dans un anneau non intègre.

On va préciser maintenant un peu la structure de $(\mathbf{Z}/n\mathbf{Z})^*$ et son lien avec $\operatorname{Aut}((\mathbf{Z}/n\mathbf{Z},+))$; pour tout $n \in \mathbf{N}^*$, on note $\varphi(n)$ l'indicatrice d'Euler de n, i.e. le nombre d'entiers x de [1,n] qui sont premiers avec n.

Proposition 4.2 Soit $n \in \mathbb{N}^*$, on écrit $n = \prod_{i=1}^r p_i^{\alpha_i}$ avec les p_i premiers deux à deux distincts. Alors :

- a) Le cardinal de $(\mathbf{Z}/n\mathbf{Z})^*$ est $\varphi(n)$. Pour p premier, on a $\varphi(p) = p 1$, et plus généralement $\varphi(p^{\alpha}) = p^{\alpha-1}(p-1)$ si $\alpha \geq 1$.
- b) Le groupe $\operatorname{Aut}(\mathbf{Z}/n\mathbf{Z})$ des automorphismes du groupe additif⁷ $\mathbf{Z}/n\mathbf{Z}$ est isomorphe au groupe multiplicatif $(\mathbf{Z}/n\mathbf{Z})^*$.
 - c) On a un isomorphisme d'anneaux

$$\mathbf{Z}/n\mathbf{Z} \simeq \prod_{i=1}^r \mathbf{Z}/p_i^{\alpha_i}\mathbf{Z}$$

et un isomorphisme de groupes

$$(\mathbf{Z}/n\mathbf{Z})^* \simeq \prod_{i=1}^r (\mathbf{Z}/p_i^{\alpha_i}\mathbf{Z})^*$$

d) On
$$a \varphi(n) = \prod_{i=1}^r p_i^{\alpha_i - 1}(p_i - 1) = n \prod_{i=1}^r (1 - \frac{1}{p_i}).$$

Démonstration : a) résulte de la proposition précédente, et de ce que les entiers de $[1, p^{\alpha}]$ non premiers avec p sont les multiples de p.

b) Il est immédiat que l'application Φ du groupe $((\mathbf{Z}/n\mathbf{Z})^*, \times)$ dans le groupe $(\operatorname{Aut}(\mathbf{Z}/n\mathbf{Z}), \circ)$ qui envoie a sur $x \mapsto ax$ est un morphisme de groupes. Ce morphisme est injectif car si $\Phi(a)$ est l'identité, alors ax = x pour tout x soit a = 1 en prenant $x = \overline{1}$. Il est surjectif car si $\varphi \in \operatorname{Aut}(\mathbf{Z}/n\mathbf{Z})$, alors en posant $a = \varphi(\overline{1})$,

on obtient que pour tout x de \mathbf{N} , on a $\varphi(\bar{x}) = \varphi(1 + ... + 1)$ (x termes) soit $\varphi(\bar{x}) = a\bar{x}$; d'autre part $a \in (\mathbf{Z}/n\mathbf{Z})^*$ car $\bar{1}$ doit avoir un antécédent par φ .

^{7.} et non pas de l'anneau ; le seul automorphisme de l'anneau $({\bf Z}/n{\bf Z})$ est l'identité, vu que $\bar{1}$ doit être envoyé sur $\bar{1}$.

- c) L'application de $\mathbf{Z}/n\mathbf{Z}$ dans $\prod_{i=1}^r \mathbf{Z}/p_i^{\alpha_i}\mathbf{Z}$ qui envoie \bar{x} sur $(x_i)_{1 \leq i \leq r}$, où x_i est la classe de x mod. $p_i^{\alpha_i}$ est clairement un morphisme d'anneaux. Il est injectif car si x est divisible par tous les $p_i^{\alpha_i}$, il est divisible par leur produit n vu qu'ils sont deux à deux premiers entre eux. Comme $\mathbf{Z}/n\mathbf{Z}$ et $\prod_{i=1}^r \mathbf{Z}/p_i^{\alpha_i}\mathbf{Z}$ ont même cardinal, il est aussi surjectif⁸. La deuxième assertion est immédiate en écrivant que deux anneaux isomorphes ont des groupes d'inversibles isomorphes.
 - d) résulte de a) et c).

Pour aller plus loin, on voudrait maintenant déterminer la structure de $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^*$ pour p premier et $\alpha \in \mathbf{N}^*$. On commence par le cas $\alpha = 1$.

Theorème 4.3 Soient K un corps 9 et G un sous-groupe fini du groupe multiplicatif K^* . Alors G est cyclique.

Démonstration : On utilise le lemme suivant :

Lemme 4.4 Soit $n \in \mathbb{N}^*$, alors

$$n = \sum_{d|n} \varphi(d).$$

Le lemme est une conséquence immédiate du fait que les éléments d'ordre d dans $\mathbf{Z}/n\mathbf{Z}$ sont forcément dans l'unique sous-groupe C_d de $\mathbf{Z}/n\mathbf{Z}$ qui est de cardinal d; or, comme C_d est isomorphe à $\mathbf{Z}/d\mathbf{Z}$, il contient $\varphi(d)$ éléments d'ordre d, donc finalement $\mathbf{Z}/n\mathbf{Z}$ contient $\varphi(d)$ éléments d'ordre d; d'où le lemme en triant les éléments de $\mathbf{Z}/n\mathbf{Z}$ suivant leur ordre.

Revenons à la preuve du théorème 4.3. Soit n le cardinal de G et supposons que G contienne un élément x d'ordre d. Alors le sous-groupe G_d engendré par x est de cardinal d, et tous ses éléments g vérifient $g^d = 1$. Mais dans le corps K l'équation polynomiale $X^d - 1 = 0$ a au plus d solutions, donc nécessairement G_d est l'ensemble de ces solutions. Comme il est cyclique d'ordre d, il contient $\varphi(d)$ éléments d'ordre d qui sont exactement les éléments d'ordre d de G (un élément d'ordre d de G vérifie l'équation $X^d - 1 = 0$, i.e. appartient à G_d). On a ainsi montré que pour tout d divisant n, G possède 0 ou $\varphi(d)$ éléments d'ordre d, c'est-à-dire en tout cas au plus $\varphi(d)$ éléments

^{8.} C'est une des formulations du "lemme chinois".

^{9.} Rappelons qu'on impose que la multiplication de K soit commutative; sinon la proposition est fausse, l'algèbre \mathbf{H} des quaternions sur \mathbf{C} contenant par exemple un sous-groupe non-abélien de \mathbf{H}^* d'ordre 8.

d'ordre d. D'après le lemme, on a $n > \sum_{d|n,d\neq n} \varphi(d)$, donc on obtiendrait une contradiction si G n'avait pas d'éléments d'ordre n. Ceci montre que G est cyclique.

Corollaire 4.5 Pour p premier, le groupe $(\mathbf{Z}/p\mathbf{Z})^*$ est cyclique (donc isomorphe à $\mathbf{Z}/(p-1)\mathbf{Z}$).

En effet dans ce cas $\mathbf{Z}/p\mathbf{Z}$ est un corps (cas particulier de la proposition 4.1). Notons que déterminer explicitement un générateur de $(\mathbf{Z}/p\mathbf{Z})^*$ est un problème algorithmique en général difficile.

On passe maintenant au cas général.

Theorème 4.6 Soient p un nombre premier différent de 2 et $\alpha \in \mathbb{N}^*$. Alors le groupe $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^*$ est cyclique (donc isomorphe au groupe additif $\mathbb{Z}/p^{\alpha-1}(p-1)\mathbb{Z}$).

Comme on le verra plus loin, ce résultat est faux si p=2 et $\alpha \geq 3$. Pour montrer le théorème, on commence par exhiber un élément d'ordre $p^{\alpha-1}$ dans $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^*$ à l'aide du lemme suivant :

Lemme 4.7 Soient p premier $\neq 2$ et $k \in \mathbb{N}^*$, alors

$$(1+p)^{p^k} = 1 + \lambda p^{k+1}$$

avec λ entier non divisible par p.

Démonstration : On procède par récurrence sur k. Pour k = 1, on écrit

$$(1+p)^p = 1 + pC_p^1 + p^2C_p^2 + \dots + p^p = 1 + p^2(1 + C_p^2 + \dots + p^{p-2})$$

et on utilise le fait que p divise C_p^k pour $1 \le k \le p-1$ (noter que pour p=2 cette étape ne marche pas car p ne divise pas p^{p-2}), ce qui implique que

$$1 + C_p^2 + \dots + p^{p-2}$$

n'est pas divisible par p.

Supposons le résultat vrai pour k, alors

$$(1+p)^{p^{k+1}} = (1+\lambda p^{k+1})^p = 1+\lambda p^{k+2} + p^{k+2} \sum_{i=2}^p C_p^i \lambda^i p^{i(k+1)-(k+2)}$$

et comme p divise $\sum_{i=2}^p C_p^i \lambda^i p^{i(k+1)-(k+2)}$ (il divise C_p^i pour $2 \le i \le p-1$, et $p^{p(k+1)-(k+2)}$), on obtient que

$$\lambda' := \lambda + \sum_{i=2}^{p} C_p^i \lambda^i p^{i(k+1)-(k+2)}$$

n'est pas divisible par p par hypothèse de récurrence, ce qui montre le lemme.

On aura besoin aussi d'un lemme classique sur les groupes abéliens :

Lemme 4.8 Soit G un groupe abélien, noté multiplicativement. Soit $x \in G$ un élément d'ordre a et $y \in G$ un élément d'ordre b. Si a et b sont premiers entre eux, alors l'ordre de xy est ab.

Noter que le résultat est faux si on ne suppose pas a et b premiers entre eux (prendre $y = x^{-1}$) et il est également faux dans un groupe non abélien si x et y ne commutent pas (prendre une transposition et un 3-cycle dans S_3).

Preuve du lemme 4.8 : Soit $n \in \mathbb{N}^*$ tel que $(xy)^n = 1$, alors $x^n = y^{-n}$, d'où $y^{-na} = 1$ et b divise na. Comme b est premier avec a, on obtient que b divise n et de même a divise n, d'où ab divise n (toujours parce que (a, b) = 1). Comme par ailleurs $(xy)^{ab} = 1$, on voit que l'ordre de xy est bien ab.

Preuve du théorème 4.6 : D'après le lemme 4.7, l'élément $s = \overline{1+p}$ est d'ordre $p^{\alpha-1}$ dans $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^*$. Cherchons maintenant un élément d'ordre p-1. On a un morphisme surjectif $\pi: (\mathbf{Z}/p^{\alpha}\mathbf{Z})^* \to (\mathbf{Z}/p\mathbf{Z})^*$ obtenu en envoyant \bar{x} sur la classe de x modulo p (en effet x est inversible modulo p^{α} si et seulement s'il est inversible modulo p). Soient u un générateur de $(\mathbf{Z}/p\mathbf{Z})^*$ (qui est cyclique d'après le corollaire 4.5) et $v \in (\mathbf{Z}/p^{\alpha}\mathbf{Z})^*$ tel que $\pi(v) = u$. Soit m l'ordre de v, alors $v^m = \bar{1}$ donc $u^m = \pi(v^m) = \bar{1}$ et p-1 (qui est l'ordre de u) divise m. Posons $r = v^{m/(p-1)}$, alors r est d'ordre p-1 dans $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^*$. Maintenant rs est d'ordre $(p-1)p^{\alpha-1}$ dans $(\mathbf{Z}/p^{\alpha}\mathbf{Z})^*$ par le lemme 4.8.

Le cas p=2 est exceptionnel et fait l'objet du théorème suivant :

Theorème 4.9 Pour tout entier $\alpha \geq 3$, le groupe multiplicatif $(\mathbf{Z}/2^{\alpha}\mathbf{Z})^*$ est isomorphe au groupe additif $\mathbf{Z}/2\mathbf{Z} \times (\mathbf{Z}/2^{\alpha-2}\mathbf{Z})$.

Ainsi pour $\alpha \geq 3$ le groupe $(\mathbf{Z}/2^{\alpha}\mathbf{Z})^*$ n'est pas cyclique (l'ordre de tout élément divise $2^{\alpha-2}$). Les cas $\alpha = 1$ et $\alpha = 2$ sont triviaux, $(\mathbf{Z}/2^{\alpha}\mathbf{Z})^*$ étant alors respectivement isomorphe à $\{0\}$ et à $\mathbf{Z}/2\mathbf{Z}$.

Démonstration : On montre aisément par récurrence sur $k \geq 1$ qu'on a : $5^{2^k} = 1 + \lambda 2^{k+2}$ avec λ entier impair. Il en résulte que l'ordre de $\bar{5}$ dans $(\mathbf{Z}/2^{\alpha}\mathbf{Z})^*$ est exactement $2^{\alpha-2}$, autrement dit le sous-groupe N engendré par $\bar{5}$ est de cardinal $2^{\alpha-2}$. Son intersection avec le sous-groupe $C = \{\pm \bar{1}\}$ est $\bar{1}$, car toute puissance de 5 (contrairement à -1) est congrue à 1 modulo 4. Il en résulte que $(n,c) \mapsto nc$ est un morphisme injectif de $N \times C$ dans $(\mathbf{Z}/2^{\alpha}\mathbf{Z})^*$, et c'est donc un isomorphisme par cardinalité. On conclut en observant que N est isomorphe au groupe additif $\mathbf{Z}/2^{\alpha-2}\mathbf{Z}$ et C au groupe additif $\mathbf{Z}/2\mathbf{Z}$.

5. Produit semi-direct

Soit N un groupe. L'ensemble $\operatorname{Aut} N$ des automorphismes de groupe de N est lui-même un groupe pour la loi \circ . Par exemple si n est un entier ≥ 2 , le groupe des automorphismes du groupe additif $\mathbf{Z}/n\mathbf{Z}$ est isomorphe au groupe multiplicatif $(\mathbf{Z}/n\mathbf{Z})^*$ des éléments inversibles de l'anneau $\mathbf{Z}/n\mathbf{Z}$. Si p est un nombre premier, le groupe des automorphismes du groupe abélien $(\mathbf{Z}/p\mathbf{Z})^r$ est le groupe multiplicatif $\operatorname{GL}_r(\mathbf{Z}/p\mathbf{Z})$.

Soient N et H deux groupes. Le produit semi-direct est une généralisation de la notion de produit direct $N \times H$. Soit $\varphi : H \to \operatorname{Aut} N$ un morphisme de groupes, qui définit en particulier une action $h.n := \varphi(h)(n)$ de N sur G (mais on demande en plus ici que l'image de φ soit incluse dans $\operatorname{Aut} N$, et pas seulement dans $\mathcal{S}(N)$).

Proposition 5.1 On définit une loi de groupes sur l'ensemble produit $N \times H$ en posant

$$(n,h).(n',h') := (n(h.n'),hh')$$

Ce groupe s'appelle le produit semi-direct de N par H relativement à l'action φ ; on le note $N \rtimes_{\varphi} H$ (ou simplement $N \rtimes H$ si l'action φ est sous-entendue).

Démonstration : Clairement (1,1) est élément neutre pour la loi définie (on utilise déjà ici que h.1 = 1, qui vient du fait que l'action est à valeurs dans Aut N). D'autre part (n,h) a pour inverse $(h^{-1}.n^{-1},h^{-1})$ (pour voir que c'est un inverse aussi à gauche, on utilise $(h^{-1}.n^{-1})(h^{-1}.n) = h^{-1}.(n^{-1}n) = h^{-1}.1 = 1$).

Il reste à vérifier l'associativité. Or on a

$$[(n_1, h_1)(n_2, h_2)](n_3, h_3) = (n_1(h_1.n_2), h_1h_2)(n_3, h_3) = (n_1(h_1.n_2)[(h_1h_2).n_3], h_1h_2h_3)$$

et

$$(n_1, h_1)[(n_2, h_2)(n_3, h_3)] = (n_1, h_1)(n_2(h_2.n_3), h_2h_3) = (n_1[h_1.(n_2(h_2.n_3))], h_1h_2h_3).$$

Or $(h_1.n_2)[(h_1h_2).n_3] = [h_1.(n_2(h_2.n_3))]$ d'après les axiomes des actions de groupe et le fait que $n \mapsto h_1.n$ soit un automorphisme de N. D'où le résultat.

Remarque 5.2 a) Parler "du" produit semi-direct de N par H n'a de sens que si on précise l'action, il peut exister plusieurs actions de H sur N, donc plusieurs produits semi-directs. On fera aussi attention au fait que H et N ne jouent pas des rôles symétriques.

b) L'action triviale correspond au produit direct.

Définition 5.3 Si H et N sont deux groupes, on dit qu'un groupe G est une extension de 10 H par N s'il existe une suite exacte courte

$$1 \to N \xrightarrow{i} G \xrightarrow{p} H \to 1,$$

ce qui signifie qu'on a un morphisme surjectif de G dans H dont le noyau est i(N) (lequel est isomorphe à N).

Proposition 5.4 Avec les notations ci-dessus, soit $G = N \times H$. Alors :

1. On a une suite exacte

$$1 \to N \xrightarrow{i} G \xrightarrow{p} H \to 1$$

avec i(n) = (n, 1) et p(n, h) = h. En particulier N s'identifie à un sous-groupe distingué (noté encore N)¹¹ dans G. Ainsi un produit semi-direct de N par H est une extension de H par N.

- 2. La suite exacte est scindée, i.e. il existe un morphisme $s: H \to G$ ("section") vérifiant $p \circ s = \mathrm{Id}_H$. Ainsi H s'identifie à un sous-groupe (encore noté H) de G.
- 3. Dans G, on a $N \cap H = \{1\}$ et NH = G, où NH est par définition l'ensemble des nh avec $n \in N$ et $h \in H$. De plus l'opération de H sur N est décrite par $h.n = hnh^{-1}$, le produit de droite étant effectué dans G.

^{10.} Certains auteurs, par exemple D. Perrin, disent plutôt extension de N par H.

^{11.} N comme "normal"; le symbole \rtimes ressemble à \lhd et permet de se rappeler le "sens" dans lequel on effectue le produit semi-direct.

Démonstration : 1. Les applications i et p sont des morphismes via (n,1)(n',1)=(n(1.n'),1)=(nn',1) et (n,h)(n',h')=(n(h.n'),hh'). Le fait que la suite soit exacte est immédiat.

- 2. Il suffit de poser s(h) = (1, h).
- 3. D'après 1., $N \cap H$ est l'ensemble des (n,h) avec n=h=1, donc il est réduit au neutre de G. Si g=(n,h) est un élément de G, on a g=(n,1).(1,h), donc G=NH. Enfin on a dans G:

$$hnh^{-1} = (1, h)(n, 1)(1, h^{-1}) = (h.n, h)(1, h^{-1}) = (h.n, 1) = h.n.$$

Remarque 5.5 Via la proposition précédente, on peut désormais écrire les éléments de $N \rtimes H$ de manière unique sous la forme nh $(n \in N, h \in H)$ avec la règle de commutation hn = (h.n)h. Notons aussi que $N \rtimes H$ est abélien si et seulement si l'opération est triviale, avec N et H tous deux abéliens.

On a une sorte de réciproque de la proposition précédente pour savoir quand un groupe se décompose en produit semi-direct.

Proposition 5.6 1. (Caractérisation "interne").

Soit G un groupe contenant deux sous-groupes N et H avec

- $i) N \triangleleft G.$
- $ii) N \cap H = \{1\}.$
- iii) G = NH.

Alors $G \simeq N \rtimes H$ pour l'opération $h.n = hnh^{-1}$.

2. (Caractérisation "externe") Soit

$$1 \to N \to G \to H \to 1$$

une suite exacte admettant une section $s: H \to G$. Alors $G \simeq N \rtimes H$ pour l'opération $h.n = s(h)ns(h)^{-1}$.

Démonstration : 1. Soit φ l'opération de H sur N définie par $\varphi(h)(n) = hnh^{-1}$. Alors l'application $\Phi : N \rtimes_{\varphi} H \to G$ qui associe à (n,h) le produit nh (dans G) est un morphisme car $\Phi((n,h)(n',h')) = \Phi(n(hn'h^{-1}),hh') = (nh)(n'h')$. L'injectivité de Φ résulte de ii) et sa surjectivité de iii).

2. Posons $H_1 = s(H)$. Comme s est injective vu que $p \circ s = \mathrm{id}_H$, H_1 est un sous-groupe de G isomorphe à H et via 1., il suffit de montrer : $N \cap H_1 = \{1\}$ et $NH_1 = G$ (on a identifié N à son image dans G). Si $h_1 \in N \cap H_1$, alors

 $p(h_1) = 1$ mais $h_1 = s(h)$ avec $h \in H$, d'où 1 = p(s(h)) = h et $h_1 = 1$. Si maintenant $g \in G$, alors g et s(p(g)) ont même image par p, donc ils diffèrent d'un élément du noyau N, i.e. $g = nh_1$ avec $h_1 := s(p(g))$, et $g \in NH_1$.

C'est en général le deuxième critère qui est le plus utile pour obtenir des décompositions en produit semi-direct, mais on gardera bien à l'esprit la façon de déterminer l'opération de H sur N associée en fonction de la suite exacte et de la section.

Exemple 5.7 1. Pour $n \geq 2$, la suite exacte

$$1 \to \mathcal{A}_n \to \mathcal{S}_n \xrightarrow{\varepsilon} \mathbf{Z}/2\mathbf{Z} \to 1$$

est scindée via la section s qui envoie $\bar{0}$ sur Id et $\bar{1}$ sur une transposition (arbitraire) τ . On en déduit une décomposition $S_n \simeq \mathcal{A}_n \rtimes \mathbf{Z}/2\mathbf{Z}$. Noter que S_n n'est pas isomorphe au produit direct $\mathcal{A}_n \times \mathbf{Z}/2\mathbf{Z}$, car S_n ne possède pas de sous-groupe distingué d'ordre 2.

2. Soient K un corps et $n \in \mathbb{N}^*$. La suite exacte

$$1 \to \operatorname{SL}_n(K) \to \operatorname{GL}_n(K) \stackrel{\text{det}}{\to} K^* \to 1$$

est scindée (envoyer $\lambda \in K^*$ sur la matrice $\operatorname{Diag}(\lambda, 1, ..., 1)$). Ainsi $\operatorname{GL}_n(K) \simeq \operatorname{SL}_n(K) \rtimes K^*$. Ici, encore, ce n'est pas isomorphe au produit direct en général (exercice, pas évident...).

3. Le groupe $\mathbf{Z}/4\mathbf{Z}$ n'est pas produit semi-direct de $\mathbf{Z}/2\mathbf{Z}$ par $\mathbf{Z}/2\mathbf{Z}$. En effet le seul automorphisme de $\mathbf{Z}/2\mathbf{Z}$ est l'identité, donc l'action serait triviale; or $\mathbf{Z}/4\mathbf{Z}$ n'est pas isomorphe au produit direct $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$ (le premier groupe a des éléments d'ordre 4 et pas le deuxième). En particulier la suite exacte

$$0 \to \mathbf{Z}/2\mathbf{Z} \to \mathbf{Z}/4\mathbf{Z} \to \mathbf{Z}/2\mathbf{Z} \to 0$$

(obtenue en envoyant $x \pmod{4}$ sur $x \pmod{2}$, le noyau est $\{\bar{0}, \bar{2}\}$ qui est isomorphe à $\mathbb{Z}/2\mathbb{Z}$) n'est pas scindée. 12

4. Soit $n \geq 3$, on note D_n le groupe diédral des isométries du plan conservant un polygone régulier convexe à n côtés. Il est de cardinal 2n; plus

^{12.} On voit donc que même dans des cas très élémentaires, on ne peut pas toujours "reconstituer" un groupe à partir de ses sous-groupes. En particulier, la connaissance des groupes finis simples ne suffit absolument pas à connaître tous les groupes finis, contrairement à une croyance populaire assez répandue (notamment chez les agrégatifs!).

précisément D_n contient les n rotations de centre O (le centre du polygone) et d'angle $2k\pi/n$ ($0 \le k \le n-1$) et n réflexions par rapport aux droites passant : par O et chaque sommet (si n est impair), par O et chaque sommet ou milieu d'un côté (si n est pair). On a une suite exacte

$$1 \to \mathbf{Z}/n\mathbf{Z} \to D_n \to \mathbf{Z}/2\mathbf{Z} \to 1$$

obtenue en prenant le déterminant d'une isométrie, qui est à valeurs dans $\{\pm 1\}$. Elle est scindée (on envoie l'élément non trivial ε de $\mathbf{Z}/2\mathbf{Z}$ sur une réflexion), d'où une décomposition $D_n \simeq \mathbf{Z}/n\mathbf{Z} \rtimes \mathbf{Z}/2\mathbf{Z}$ (non isomorphe au produit direct car D_n n'est pas abélien). Notons que l'action correspondante de $\mathbf{Z}/2\mathbf{Z}$ sur $\mathbf{Z}/n\mathbf{Z}$ consiste à poser $\varepsilon.x = -x$ pour $x \in \mathbf{Z}/n\mathbf{Z}$.

- 5. Si p et q sont des nombres premiers avec p < q, les groupes d'ordre pq sont tous cycliques si p ne divise pas q-1 (c'est une application classique des théorèmes de Sylow, cf. [2], Th. I.7.13, 1)). Si par contre p divise q-1, on a de plus un produit semi-direct non commutatif $\mathbf{Z}/q\mathbf{Z} \rtimes \mathbf{Z}/p\mathbf{Z}$, via le fait qu'il y a des morphismes non triviaux $\mathbf{Z}/p\mathbf{Z} \to \operatorname{Aut}(\mathbf{Z}/q\mathbf{Z}) \simeq \mathbf{Z}/(q-1)\mathbf{Z}$ (il faut un peu plus d'efforts pour montrer qu'il n'y a qu'un tel produit semi-direct non commutatif à isomorphisme près, voir [2], Lemme 8.12 et Th. I.7.13, 2)).
- 6. Si p est un nombre premier impair, il y a deux groupes non commutatifs d'ordre p^3 , qui sont des produits semi-directs de groupes plus petits ([2], exercice IE8). Le cas p=2 est exceptionnel : le groupe diédral est le seul produit semi-direct non trivial d'ordre 8, et on a de plus le groupe des quaternions H_8 , qui ne se décompose pas en produit semi-direct de groupes plus petits ([2], exercice IE1). En effet, si on avait H_8 isomorphe à $N \rtimes H$ avec N et H de cardinal < 8, alors N et H seraient abéliens (car de cardinal \le 4); mais alors, pour ne pas avoir le produit direct (qui donnerait un groupe abélien), il faudrait N de cardinal 4 (pour que Aut N soit non trivial), soit en l'occurrence isomorphe à $\mathbb{Z}/4\mathbb{Z}$, mais le seul produit semi-direct non trivial avec $H \simeq \mathbb{Z}/2\mathbb{Z}$ donne alors le groupe diédral et non H_8 .

Références

- [1] M. Hall Jr: *The theory of groups*, The Macmillan Co., New York, N.Y. 1959.
- [2] D. Perrin: Cours d'algèbre, Ellipses 1996.

[3] J-P. Serre : Représentations linéaires des groupes finis, Hermann, Paris, 1967.