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Every statement in the lecture notes (but not in the TD) can be used
without proof. It is allowed to use the result of a question to solve a further
question.

The symbol (*) stands for a (a priori) difficult question.

Exercise 1 : Exponent of a group (7 points)

Le G be a finite group (whose group law is denoted multiplicatively). The
exponent of G (denoted expG) is by definition the smallest integer n > 0 such
that xn = 1 for all x in G.

a) Show that for every x ∈ G, the order (denoted ω(x)) of x divides expG.

b) Let p be a prime number, write expG = pαm with α ∈ N and m not
divisible by p. Show that there exists x ∈ G such that ω(x) is divisible by pα.

c) Deduce that expG is the smallest common multiple of the family
(ω(x))x∈G.

d) Compute expG when G is the group A5.

We assume in the remaining part of this exercise that A is an abelian
group.

e) Show that if x1, ..., xr are elements of A such that the ω(xi) are pairwise
coprime, then the order of

∏
r

i=1
xi is

∏
r

i=1
ω(xi).

f) Deduce that A contains an element of order expA. Is it still true if A
is no longer assumed to be abelian ?

Exercise 2 : 2-Sylow of a finite group (3 points)

Let A be a finite group.

a) Show that the number of 2-Sylow of A is odd.

b) Let G be a 2-group acting on A by automorphisms (that is : for every
g ∈ G, the map x 7→ g.x is an automorphism of the group A). Show that
there exists a 2-Sylow S of A such that g.S = S for all g ∈ G.
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c) It is a fact (Feit-Thompson Theorem) that a finite group of odd order
is solvable. Taking this for granted, show that the normalizer of a 2-Sylow of
A is solvable.

Exercise 3 : Prime elements of a domain (11 points)

Let A be an integral domain with fraction field K. A non-zero element p
of A is said to be prime if (p) := pA is a prime ideal of A.

a) Show that if p is prime, it is irreducible.

b) Denote by T the set of elements of A that are either invertible or can
be written

x = up1p2...pr

with u invertible and all pi prime. Show that A is a UFD if and only if
T = A− {0}.

c) Let a, b ∈ A and let p be a prime element of A. Show that if pm divides
ab with m ∈ N

∗, then there exist n, s ∈ N such that : n+ s = m, pn divides
a, and ps divides b.

(*) d) Deduce that if a and b are in A with ab ∈ T , then a and b are both
in T .

e) Let B be the set of elements of K of the form x/y, with x ∈ A and
y ∈ T . Show that B is a subring of K, and that if I is a prime ideal of B,
then I ∩A is a prime ideal ℘ of A such that ℘ ∩ T = ∅.

(*) f) Suppose that there exists a 6= 0 in A such that a 6∈ T . Show that
there exists a prime ideal ℘ of A such that a ∈ ℘ and ℘ ∩ T = ∅ (hint :
consider the ideal aB of B, then use d) and e) ).

g) Deduce the following statement (Kaplansky criterion) : the ring A is a
UFD if and only if every non-zero prime ideal of A contains a prime element.
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