Midterm exam, algebra, M1 MF (3 hours)
 D. Harari, K. Destagnol, P. Lorenzon

October 20, 2023

Every statement in the lecture notes (but not in the TD) can be used without proof. It is allowed to use the result of a question to solve a further question.

The symbol $\left({ }^{*}\right)$ stands for a (a priori) difficult question.

Exercise 1 : Exponent of a group (7 points)

Le G be a finite group (whose group law is denoted multiplicatively). The exponent of $G($ denoted $\exp G)$ is by definition the smallest integer $n>0$ such that $x^{n}=1$ for all x in G.
a) Show that for every $x \in G$, the order (denoted $\omega(x)$) of x divides $\exp G$.
b) Let p be a prime number, write $\exp G=p^{\alpha} m$ with $\alpha \in \mathbf{N}$ and m not divisible by p. Show that there exists $x \in G$ such that $\omega(x)$ is divisible by p^{α}.
c) Deduce that $\exp G$ is the smallest common multiple of the family $(\omega(x))_{x \in G}$.
d) Compute $\exp G$ when G is the group \mathcal{A}_{5}.

We assume in the remaining part of this exercise that A is an abelian group.
e) Show that if x_{1}, \ldots, x_{r} are elements of A such that the $\omega\left(x_{i}\right)$ are pairwise coprime, then the order of $\prod_{i=1}^{r} x_{i}$ is $\prod_{i=1}^{r} \omega\left(x_{i}\right)$.
f) Deduce that A contains an element of order $\exp A$. Is it still true if A is no longer assumed to be abelian?

Exercise 2: 2-Sylow of a finite group (3 points)

Let A be a finite group.
a) Show that the number of 2-Sylow of A is odd.
b) Let G be a 2-group acting on A by automorphisms (that is : for every $g \in G$, the map $x \mapsto g . x$ is an automorphism of the group A). Show that there exists a 2-Sylow S of A such that $g . S=S$ for all $g \in G$.
c) It is a fact (Feit-Thompson Theorem) that a finite group of odd order is solvable. Taking this for granted, show that the normalizer of a 2-Sylow of A is solvable.

Exercise 3 : Prime elements of a domain (11 points)

Let A be an integral domain with fraction field K. A non-zero element p of A is said to be prime if $(p):=p A$ is a prime ideal of A.
a) Show that if p is prime, it is irreducible.
b) Denote by T the set of elements of A that are either invertible or can be written

$$
x=u p_{1} p_{2} \ldots p_{r}
$$

with u invertible and all p_{i} prime. Show that A is a UFD if and only if $T=A-\{0\}$.
c) Let $a, b \in A$ and let p be a prime element of A. Show that if p^{m} divides $a b$ with $m \in \mathbf{N}^{*}$, then there exist $n, s \in \mathbf{N}$ such that : $n+s=m, p^{n}$ divides a, and p^{s} divides b.
$\left.{ }^{*}\right)$ d) Deduce that if a and b are in A with $a b \in T$, then a and b are both in T.
e) Let B be the set of elements of K of the form x / y, with $x \in A$ and $y \in T$. Show that B is a subring of K, and that if I is a prime ideal of B, then $I \cap A$ is a prime ideal \wp of A such that $\wp \cap T=\emptyset$.
${ }^{(*)}$ f) Suppose that there exists $a \neq 0$ in A such that $a \notin T$. Show that there exists a prime ideal \wp of A such that $a \in \wp$ and $\wp \cap T=\emptyset$ (hint : consider the ideal $a B$ of B, then use d) and e)).
g) Deduce the following statement (Kaplansky criterion) : the ring A is a UFD if and only if every non-zero prime ideal of A contains a prime element.

