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Every statement in the lecture notes (but not in the TD) can be used
without proof. It is allowed to use the result of a question to solve a further
question.

The symbol (*) stands for an a priori difficult question.

Exercise 1 : Index of a subgroup (6 points)

Let G be a group. Recall that the index [G : H ] of a subgroup H of G is
the cardinality of the set G/H (we set [G : H ] = +∞ if this set is infinite).

a) Let N be a subgroup of G. Show that [N : (N ∩H)] ≤ [G : H ].

b) Assume further [G : H ] finite. Show that we have equality in question
a) if and only if G = NH , where NH is the set of all elements of G that can
be written nh with n ∈ N and h ∈ H .

c) Let f : G → G′ be a morphism of groups. Let H ′ be a subgroup of G′,
set H = f−1(H ′). Show that if f is onto, then [G : H ] = [G′ : H ′].

(*) d) Let p be a prime number. Let G be a p-group with G 6= {1}.
Assume that G is not abelian. Show that G has a subgroup of index p (hint :
proceed by induction on the cardinality of G).

e) Does the result of d) still stand if G is an abelian p-group ?

Exercise 2 : Dimension of a ring (5 points)

Let A be a non-zero commutative ring. Define the dimension of A as the
upper bound (in N ∪ {+∞}) of the integers n ∈ N such that there exists a
strictly increasing sequence of prime ideals of A :

℘0 ⊂ ℘1 ⊂ ... ⊂ ℘
n
.

a) Show that A is of dimension zero if and only if every prime ideal of A
is maximal.
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b) Let k be a field and n ∈ N∗. Find all prime ideals of k[X ]/(Xn), and
deduce that k[X ]/(Xn) is of dimension zero.

c) Show that a principal ideal domain that is not a field is of dimension
1.

d) Show that if K is a field, then K[X1, ..., Xn
] is of dimension at least n.

Exercise 3 : Modules of finite type (6 points)

Recall that if M is a module over a commutative ring A and I is an ideal
of A, the piece of notation IM stands for the submodule of M generated by
the elements of the form ax with a ∈ I and x ∈ M . Let M be an A-module
with IM = M . Let w ∈ M . Set M ′ = M/(A.w) and assume that there exists
x ∈ I such that (1 + x)M ′ = 0.

a) Show that (1+x)M ⊂ I.w, where I.w is the submodule of M consisting
of the elements of the form a.w with a ∈ I.

b) Choose y ∈ I with (1+x)w = yw (which is possible by a)). Show that
(1 + x− y)(1 + x)M = 0.

c) Deduce that theres exists z ∈ I such that (1 + z)M = 0.

(*) d) Let P be an A-module of finite type such that IP = P . Show that
there exists a ∈ A such that aP = 0 and (a− 1) ∈ I.

e) Assume further that for every maximal ideal J of A, we have I ⊂ J .
Show that P = 0.

Exercice 4 : Galois theory (4 points)

An extension L/K of fields is said to be abelian (resp. cyclic) if it is finite,
Galois, and has an abelian (resp. cyclic) Galois group.

a) Give an example of a finite Galois extension of Q which is not abelian.

b) Let L/K be a finite Galois extension. Let K ⊂ F ⊂ L be an inter-
mediate extension. Suppose L/K abelian ; are the extensions L/F and F/K
always abelian ? Same question with cyclic instead of abelian.

(*) c) Let p be a prime number and m ∈ N∗. Show that there exists a
finite Galois extension L of Q with Galois group Z/pmZ (hint : consider a
cyclotomic extension Q(ζ), where ζ is a root of unity whose order in the
multiplicative group C∗ is a power of p).
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