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1. An introduction to rings

1.1. Definitions, first properties

Definition 1.1 A ring (A,+, .) is a set A equipped with two laws ‘+’ and
‘.’ satisfying :

1. (A,+) is an abelian group.

2. The multiplication operator ‘.’ is associative and has an identity ele-
ment (denoted 1).

3. The multiplication operator ‘.’ is distributive with respect to + : for
any x, y, z in A, we have x(y + z) = xy + xz and (y + z)x = yx+ zx.
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If the multiplication operator is commutative, we say that A is a commu-
tative ring.

Example 1.2 a) The zero ring {0}.
b) (Z,+, .), (Z/nZ,+, .) are commutative rings.

c) A field K is by definition a commutative ring, distinct from {0}, for
which any non-zero element has an inverse under multiplication (in other
words, we ask that K \ {0} be a commutative group).

d) The direct product
∏

i∈I Ai of a family of rings (Ai)i∈I is a ring (with
the obvious operations).

e) If A is a commutative 1 ring, there is also a polynomial ring in n va-
riables denoted A[X1, . . . , Xn] which is commutative. We will study this in
more detail in section 3.

f) For any field K, (Mn(K),+, .) is a ring, noncommutative if n ≥ 2.

Definition 1.3 The set of invertible elements of a ring A are the x ∈ A for
which there exists y ∈ A such that xy = yx = 1. This set is a group with
respect to multiplication, generally denoted A∗.

We should be careful not to use the same “star” notation for the set of
non-zero elements of A, and use instead A \ {0}.

Example 1.4 a) (Z/nZ)∗ is the set of classes m̄, where m is prime to n.

b) In a field K, we have by definition K∗ = K \ {0}.
c) If K is a field, then K[X1, . . . , Xn]

∗ consists of all non-zero constant
polynomials (which is isomorphic to the multiplicative group K∗).

d) If K is a field, we have Mn(K)∗ = GLn(K).

Definition 1.5 A ring homomorphism (or morphism) f : A → B is a map
from one ring to another satisfying :

1. f(x+ y) = f(x) + f(y).

2. f(xy) = f(x)f(y).

3. f(1) = 1.

Note that the zero map is not a ring homomorphism since (3) is not
satisfied.

1. It is possible to define a polynomial ring when A is noncommutative, but none of
the usual “good” properties still hold, so in this course we stick to commutative rings.
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Definition 1.6 A subset A of B is a subring if (B,+, .) is a ring with the
same identity element as A. This is equivalent to saying that 1 ∈ B and
(B,+) is a subgroup of (A,+) that is stable under internal multiplication.

Be especially careful with the condition 1 ∈ B ; for example, the set of
(x, 0) with x ∈ Z is not a subring of Z×Z, and the zero ring is not a subring
of a non-zero ring. As we will see, subrings are not always of great interest ;
rather, subsets known as ideals tend to be more useful.

1.2. Ideals, quotient rings

From this point on, we suppose that all of the rings we talk about are
commutative unless otherwise stated (the theory of noncommutative rings is
interesting but quite different, and has different applications).

Definition 1.7 A subset I of a commutative ring A is an ideal of A if it
satisfies :

1. I is a subgroup of A for +.

2. For any x in I and a in A, we have ax ∈ I.

Be careful not to mix this notion up with subrings. In particular, an ideal
of A contains 1 (resp. an invertible element of A) if and only if it is equal to
A.

Example 1.8 a) {0} and A are ideals of A. They are the only ones if A is
a field.

b) The ideals of Z are the nZ with n ∈ N.

c) If f : A → B is a homomorphism between commutative rings, the
inverse image of an ideal of B by f is an ideal of A. In particular, the kernel
ker f = f−1(0) is an ideal of A. This implies that a field homomorphism
(= homomorphism between the underlying rings) is always one-to-one. Note
that if f is not onto, the direct image of an ideal of A by f is not necessarily
an ideal of B (e.g., take for f the inclusion map from Z to Q). However, the
image Im f of f is a subring of B.

d) If E is a subset of a commutative ring A, then the set of elements of A
of the form a1x1 + . . . + anxn with xi ∈ E and ai ∈ A is an ideal, called the
ideal generated by E ; this is the smallest ideal of A containing E. We will
write (a) or aA for the ideal generated by an element a of A.
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Remark 1.9 Unlike what happens for vector spaces, an ideal J inside an
ideal I generated by n elements cannot necessarily be generated by n elements
itself. For example, the ideal A can always be generated by 1 while certain
others cannot be principal ideals (i.e., generated by a single element). In fact,
it may even be that J cannot be generated by a finite number of elements.
However, we will see that for certain specific types of rings (PID, Noetherian
rings), these problems go away, at least partially.

Proposition 1.10 Let A be a commutative ring and I an ideal of A. Then
the quotient group A/I endowed with multiplication āb̄ := ab is a ring known
as a quotient ring of A by I. The canonical projection p : A→ A/I is a ring
homomorphism, and the identity element of A/I is 1̄.

Proof: The only non-trivial thing to check is that the element ab of A/I
does not depend on the choice of a and b. To this end, ā = ā′ and b̄ = b̄′,
so there exists i and j in I such that a′ = a + i, b′ = b + j, from which
a′b′ = ab+ (aj + ib+ ij) with (aj + ib+ ij) ∈ I.

We therefore immediately obtain the usual factorization theorem :

Theorem 1.11 Let f : A → B be a ring homomorphism. Then there exists
a unique ring homomorphism f̃ : A/ ker f → B such that f = f̃ ◦ p, where
p : A → A/ ker f is the canonical projection. Furthermore, f̃ is one-to-one
with image Im f , i.e., we have a ring isomorphism A/ ker f ≃ Im f .

Example 1.12 a) Z/nZ is the quotient of Z by the ideal nZ.

b) The function P 7→ P (i) is an onto ring homomorphism from R[X ] to
C whose kernel is the ideal (X2 + 1) generated by the polynomial X2 + 1
(to see this, perform Euclidean division by X2+1). We have therefore a ring
isomorphism R[X ]/(X2+1) ≃ C and R[X ]/(X2+1) is a field (this can even
be taken as the definition of C !).

c) If K is a field, the ring K[X ]/(X2) contains a non-zero element ε (the
class of X) such that ε2 = 0.

Remark 1.13 It is easy to show, as in the study of subgroups of a quotient
group, the following : the ideals of A/I are the J/I (these are in theory
abelian groups, but we see immediately that they are ideals) where J is an
ideal of A containing I. Furthermore, the quotient ring of A/I by the ideal
J/I is isomorphic to A/J . More generally, if B is an ideal of A, then its image
by the canonical projection A→ A/I is the ideal (B+ I)/I of A/I. A simple
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example is the ideals of Z/nZ, which are the dZ/Z for which d divides n.
We also have that (B + I)/I is isomorphic to B/(B ∩ I) as A-modules (see
the lecture notes on modules), but be careful that the notion of isomorphic
ideals is not meaningful since “ideal” is a relative concept.

1.3. Integral domains, fields, field of fractions

Definition 1.14 Let A be a commutative ring and a a non-zero element of
A. We say that a is a zero divisor in A if there exists a non-zero b ∈ A for
which ab = 0.

Definition 1.15 A commutative ring A is called an integral domain if it is
non-zero and if for all a, b in A, ab = 0 implies a = 0 or b = 0.

In other words, an integral domain is a non-zero commutative ring with
no zero divisors.

Example 1.16 a) For n ∈ N∗, Z/nZ is an integral domain if and only if n
is prime.

b) Any field is an integral domain.

c) Any subring of an integral domain is an integral domain.

d) If A is an integral domain, the rings A[X ] and A[X1, . . . , Xn] are in-
tegral domains. It is easy to show that for these two examples, the group of
invertible elements is simply the constants of A∗.

Let us now recall the following classical result :

Proposition 1.17 Let A be an integral domain. Then there exists a field K
and a one-to-one homomorphism i : A → K such that for any one-to-one
ring homomorphism from A to a field K ′, there exists a unique field homo-
morphism j : K → K ′ such that f = j ◦ i. K is unique up to isomorphism,
and known as the field of fractions of A. It is written FracA.

This means that K is the “smallest field” containing A. Therefore, a ring
is an integral domain if and only if it is a subring of a field. For example,
FracZ = Q, and Frac (K[X ]) = K(X) (the field of rational fractions in one
variable). Note that the zero ring does not have a field of fractions (which
justifies that by convention it is not an integral domain).
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Proof (sketch): To construct K = FracA, consider couples (a, b) where
a ∈ A and b ∈ A \ {0}, and define (as a set) K as the quotient of the set
of such couples via the equivalence relation : (a, b) ∼ (c, d) if and only if
ad = bc. We then check that K, endowed with the laws

(a, b)(c, d) := (ac, bd); (a, b) + (c, d) = (ad+ bc, bd),

is a field (in which (a, b) corresponds to a/b) which satisfies the properties
required, taking for i(a) the class of (a, 1).

Definition 1.18 An ideal I of A is said to be prime if A/I is an integral
domain. Equivalently, this means that A 6= I and ab ∈ I implies that a ∈ I
or b ∈ I.

Examples :

1. The prime ideals of Z are {0} and the nZ with n prime.

2. A ring A is an integral domain if and only if {0} is prime.

3. The inverse image of a prime ideal by a ring homomorphism is a prime
ideal.

4. The ideals (X1) and (X1, X2) are both prime in K[X1, X2].

Definition 1.19 An ideal I of A is said to be maximal if I 6= A and any
ideal J containing I is equal to A or I.

Proposition 1.20 An ideal I is maximal if and only if A/I is a field.

Proof: If I is maximal and x̄ is non-zero in A/I, then x 6∈ I so the ideal
I + xA strictly contains I ; by maximality of I, we have A = I + xA and 1 is
written 1 = i+ xa with i ∈ I and a ∈ A, which means that 1̄ = x̄ā, and thus
x̄ is invertible in A/I. Since I 6= A, the ring A/I is non-zero and its non-zero
elements are invertible, i.e., A/I is a field.

In the other direction, A/I is a field, so I 6= A, and any ideal J of A
strictly containing I has an element x 6∈ I. Thus x̄ is invertible in A/I, so
1̄ = x̄ā with a ∈ A, and thus 1 = xa + i with i ∈ I ⊂ J and x ∈ J . Hence,
1 ∈ J and J = A.
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Remark 1.21 In general, the inverse image of a maximal ideal by a ring
homomorphism is not a maximal ideal. For example, the inverse image of
{0} by the inclusion map Z → Q is {0}, which is not a maximal ideal of Z
(though it is one of Q since Q is a field). This is what leads to the need in
algebraic geometry to consider the set of prime ideals of a commutative ring
rather than the set of its maximal ideals, though the latter is in theory easier
to understand 2.

The following theorem is useful for general theoretical questions. 3

Theorem 1.22 (Krull) In a commutative ring 4 A, any ideal I 6= A is
contained in a maximal ideal.

Proof: The set of ideals of A containing I and different from A is non-
empty and it is an inductive ordered set, since if (Ii)i∈I is a totally ordered
family of proper ideals of A, its union is still an ideal (since the family is
totally ordered) different to A (since it does not contain 1). The result follows
by applying Zorn’s lemma.

1.4. Principal ideal domains

Definition 1.23 A commutative ring A is said to be a principal ideal domain
(PID) if it is an integral domain and if all of its ideals are principal, i.e., of
the form (a) = aA with a ∈ A.

In practice, we often determine whether a ring is a PID using the following
concept.

Definition 1.24 An integral domain A is said to be Euclidean if there exists
a function v : A− {0} → N (“Euclidean function”) such that if a, b are in A
with b 6= 0, then there exists q, r in A where a = bq + r, with r satisfying :
r = 0 or v(r) < v(b).

Note that we are not requiring uniqueness in this “Euclidean division”.

2. Hilbert’s Nullstellensatz (theorem of zeros) for instance shows that the maximal
ideals of C[X1, . . . , Xn] are in bijection with a ∈ C

n via the map that sends a given a to
the set of polynomials whose a is a zero–see tutorials.

3. In particular when we work with non-Noetherian rings, often the case in analysis.
4. Note that the existence of an identity element in A is crucial for this theorem. An

analogous result holds for noncommutative rings by replacing “ideal” with “left ideal”,
“right ideal”, or “two-sided ideal”.
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Example 1.25 a) The ring Z is Euclidean with v(x) = |x|.
b) If K is a field, the ring K[X ] is Euclidean with v(P ) = degP .

c) We can show that Z[i] is Euclidean with v(x) = |x|2 ; in this case there
is not uniqueness in the Euclidean division.

Theorem 1.26 If A is Euclidean, it is a PID.

Proof: Let I be a non-zero ideal of A, and choose a non-zero b in I with
v(b) minimal. Then any a from I can be written a = bq + r with r = 0 or
v(r) < v(b). The latter is however impossible since r ∈ I, so a ∈ (b). Hence,
I = (b).

The result is not true in the other direction ; there are well-known counter
examples that are not entirely obvious (Z[1+i

√
19

2
], R[X, Y ]/(X2 + Y 2 + 1) ;

see the tutorials and [1], chapter II, §5).

Example 1.27 a) The rings Z and K[X ] (where K is a field) are Euclidean
and therefore are PID.

b) The ring Z/4Z is not a PID (even though all of its ideals are) since it
is not an integral domain !

c) Be careful to remember that A being a PID does not at all imply that
A[X ] is (in fact, this is only true if A is a field). For instance, we can show
that in K[X1, X2] (where K is a field), the ideal I generated by X1 and
X2 is not principal (if it were, a generator of I should divide X1 and X2,
and therefore be a constant polynomial, so we would have I = A ; however,
1 6∈ I).

2. Divisibility in integral domains

2.1. Irreducible elements, associates

In this section, A denotes a commutative integral domain.

Definition 2.1 Suppose a and b are in A. We say that a divides b and write
a|b if there exists c ∈ A such that b = ac. In terms of ideals, this is equivalent
to (a) ⊃ (b).

In particular, 0 only divides itself, while an element of A∗ divides all of
the elements of A.
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Proposition 2.2 Suppose that a and b are in A. Then (a|b and b|a) if and
only if there exists u ∈ A∗ such that a = ub. We then say that a and b are
associates.

Proof: If a = ub with u ∈ A∗, then b|a and b = u−1a, so a|b. In the other
direction, if a = bc and b = ad with c, d in A, then a = adc, so dc = 1 since
A is an integral domain, and thus c ∈ A∗.

Being associates in A is equivalent to being associates in A \ {0}.

Definition 2.3 We say that an element p in A is irreducible if it satisfies :

1. p is not invertible in A,

2. If p = ab with a and b in A, then a or b is invertible.

The second condition means that the only divisors of p are its associates
and the invertible elements of A. Make sure to remember that by convention,
the elements of A∗ are not irreducible.

Example 2.4 a) The irreducible elements in Z are the ±p where p is prime.

b) If K is a field, the polynomials of degree 1 as well as those of degree 2
or 3 that have no roots, are irreducible in K[X ] (though the reverse is false
in Q[X ] for example).

c) The irreducible elements of C[X ] are the polynomials of degree 1,
those of R[X ] are the polynomials of degree 1 and the polynomials of degree
2 without real-valued roots. We will see in the course on fields that in Q[X ]
or F [X ] with F a finite field, there are irreducible polynomials of any degree.

Definition 2.5 We say that two elements a and b in A are coprime if their
only common divisors are the elements of A∗.

There is an analogue to Bézout’s theorem when A is a PID :

Proposition 2.6 Let A be a PID. Then, a and b in A are coprime if and
only if there exist elements u and v in A such that ua + vb = 1 (i.e., if
A = (a, b), the ideal generated by a and b).
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Proof: If 1 = ua+ bv, then any common divisor of a and b divides 1 and
is thus invertible (this implication is true in any commutative ring). In the
other direction, if a and b are coprime, then the ideal (a, b) is written (d)
with d ∈ A since A is a PID. In particular, d divides a and b and is thus
invertible, so (d) = A.

Note that in the ring A = K[X, Y ], the polynomials X and Y are coprime
but do not satisfy A = (X, Y ) (e.g., since any polynomial in (X, Y ) equals
zero at (0, 0)). Thus, K[X, Y ] is not a PID.

2.2. Unique factorization domains

It would be nice to have a reasonable divisibility theorem for more general
rings than PID. This desire motivates the introduction of the notion of unit
factorization domain.

Definition 2.7 A commutative ring A is said to be a unique factorization
domain (UFD) if it satisfies :

1. A is an integral domain.

2. Any non-zero a in A can be written as a product

a = up1...pr

with u ∈ A∗ and irreducible pi.
5

3. The decomposition is unique in the following sense : if a = vq1...qs is
another decomposition, then r = s and there exists a permutation σ
of {1, . . . , r} such that for any i in {1, . . . , r}, the elements pi and qσ(i)
are associates.

Remarks: a) Like for PID, do not forget that A must be an integral
domain.

b) Another, often more convenient formulation of the uniqueness condi-
tion is the following : fix an irreducible representation P of A, i.e., a set of
irreducible elements for which each irreducible element of A is associate with
one and only one element of P. Then any non-zero a in A can be written
uniquely as a = u

∏
p∈P p

np with u ∈ A∗, and (np)p∈P is almost-zero set of
natural numbers. We then write np = vp(a).

5. If a is not invertible, the product of the pi’s that appears is not an empty one ; we can
then replace up1 by p1 and thus do without the invertible element u in the decomposition.

10



c) Most integral domains (notably Noetherian ones, see below) that we
come into contact with in algebra have an irreducible decomposition 6. The
strong property is that of uniqueness.

Example 2.8 a) Z is a UFD (take for P the set of prime numbers).

b) K[X ] is a UFD (we can take for P the set of monic irreducible poly-
nomials).

c) We will see that more generally, any PID is a UFD, but the converse
is false, e.g., take K[X1, . . . , Xn].

d) The ring A = Z[i
√
5] ≃ Z[T ]/(T 2+5), which is the subring of C made

up of the a + bi
√
5 with a, b ∈ Z, is an integral domain but not a UFD. To

see this, for any z = a + ib in, set :

N(z) = zz̄ = a2 + 5b2,

which we call the norm of z. Then, we have N(z) ∈ N, which implies that all
z ∈ A∗ satisfy N(z) = 1 and thus z ∈ {±1} (in the other direction, 1 and −1
are indeed in A∗). Then, the elements 3, 2− i

√
5, and 2+ i

√
5 are irreducible

since their norms are equal to 9, and A does not contain an element of norm
3, which means that if an element z of norm 9 is written z = z1z2, then
9 = N(z1)N(z2) and thus N(z1) = 1 or N(z2) = 1, which implies that z1 or
z2 is invertible.

Nevertheless, 9 = 3 × 3 = (2 − i
√
5)(2 + i

√
5) in A, which indeed gives

two different decompositions since 3 is not an associate of either 2− i
√
5 or

2 + i
√
5.

We see in passing that a quotient of a UFD by a prime ideal does not
always remain a UFD (we will see in the next chapter that Z[X ] is a UFD) ;
this also does not work for subrings, since every integral domain is a subring
of a field, which is obviously a UFD.

The following proposition gives conditions equivalent with being a UFD
when we know that an irreducible decomposition exists.

Proposition 2.9 Let A be an integral domain in which any non-zero ele-
ment has an irreducible decomposition. Then the following conditions are
equivalent :

1. A is a UFD.

2. If p ∈ A is irreducible, then the ideal (p) is prime.

3. Let a, b, c be in A\{0}. If a divides bc and is prime to b, then a divides
c (“Gauss’s lemma”).

6. It is common to use the expression “irreducible decomposition” to mean “decompo-
sition as a product of an invertible element with irreducible ones”.
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Proof: (3) implies (2) : First, (p) 6= A because p is not invertible as it
is not irreducible. If now p divides ab and not a, then p is prime to a since
p is irreducible (thus a non-invertible common divisor of a and p would be
associate with p, and p would divide a), so p divides b according to (3). Thus
(p) is a prime ideal.

(2) implies (1) : Let P be an irreducible representation. If u
∏

p∈P p
mp =

v
∏

p∈P p
np are two decompositions, then the condition mq > nq for a certain

q in P would imply that q divides
∏

p∈P,p 6=q p
np and thus one of its factors,

according to (2). However, q cannot divide p if p ∈ P and distinct from q
since P is an irreducible representation. Thus, mp = np for all p ∈ P, so
u = v since A is integral.

(1) implies (3) : we decompose a uniquely as

a = u
∏

p∈P
pvp(a), u ∈ A∗,

and do the same for b and c. Then for any p in P, vp(a) ≤ vp(b)+vp(c) (since
a divides bc) and vp(b) > 0 implies that vp(a) = 0 (since a is prime to b), so
vp(a) ≤ vp(c) always. Thus, a divides c.

Proposition 2.10 If A is a UFD, then non-zero elements a and b in A
have a greatest common divisor that is well defined up to multiplication by
an element of a∗.

Remember that a greatest common divisor of a and b is a common divisor
d of a and b for which any other common divisor divides d ; here, “greatest”
refers to the partial order “divides” on the quotient set of A \ {0} by the
equivalence relation "being associated".

The proof of the proposition is immediate : decompose a and b using a sys-
tem P of irreducible elements. A greatest common divisor is

∏
p∈P p

min(vp(a),vp(b))

(proceed similarly for any family of elements of A \ {0}). This can then be
extended to a family of elements of A, for which the greatest common divisor
is the same as that of the previous family, possibly with 0 removed (the grea-
test common divisor of the empty family or the family that is nothing but 0,
is 0). Note that two elements of A are coprime if and only if their greatest
common divisor is 1. On the other hand, if A is a PID, we can take as greatest
common divisor of a and b any generator of the ideal (a, b) = aA + bA (this
can be immediately extended to any family of elements of A).

We also have a smallest common multiple of a and b by taking
∏

p∈P
pmax(vp(a),vp(b)),
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a notion that can be extended to a finite 7 family of elements of A \ {0}. If A
is a PID, the smallest common multiple of (a, b) can be obtained by taking
a generator of the ideal aA∩ bA (and similarly for a finite family of elements
of A).

For the existence of the decomposition, we need a finiteness property
which is at the origin of the notion of Noetherian rings. Historically, this
notion was introduced to generalize a property of polynomial rings, which
we are now going to study in detail.

3. Polynomial rings

Let A continue to denote a commutative ring. Recall that a family of
elements of A is said to be almost-zero if all of its elements are zero except
for a finite number. If I is a set, we denote by A(I) the set of almost-zero
families of elements of A indexed by I.

3.1. Reminders on polynomials in several variables

For any integer n ≥ 2, we define the ring A[X1, . . . , Xn] by induction
using the formula

A[X1, . . . , Xn] := (A[X1, . . . , Xn−1])[Xn].

In other words, A[X1, . . . , Xn] is the polynomial ring in one variable (denoted
Xn) over the commutative ring A[X1, . . . , Xn−1]. The elements ofA[X1, . . . , Xn]
are called polynomials in n variables (with coefficients in A).

It can easily shown using induction on n that an element P in the commu-
tative ring A[X1, . . . , Xn] can be written uniquely as :

P =
∑

(i1,...,in)∈Nn

ai1,...,inX
i1
1 ...X

in
n , (1)

where (ai1,...,in)(i1,...,in)∈Nn is an almost-zero family of elements of A indexed by
Nn (with the convention X0

i = 1). This means that for each r ∈ {1, . . . , n} we

can also see the elements ofA[X1, . . . , Xn] as elements of (A[X1, . . . , X̂r, . . . , Xn])[Xr]

(the notation A[X1, . . . , X̂r, . . . , Xn] signifies that we omit the term Xr).

7. Or to any family if we accept that 0 is the smallest common multiple of a family
that has no non-zero common multiple.
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Definition 3.1 We call the elements of Nn exponents. An exponent (i1, . . . , in)
is said to appear in P if, written in the form (1), the coefficient ai1,...,in is non-
zero. If α = (α1, . . . , αn) is an exponent, set |α| =

∑n

i=1 αi. We say that P
is homogeneous of degree d if all of the exponents α that appear in P satisfy
|α| = d.

In particular, any polynomial F in n variables can be written uniquely as
P =

∑
d≥0 Fd, with Fd homogeneous of degree d and the family of Fd being

non-zero.

The following proposition is easily proved starting from the n = 1 case :

Proposition 3.2 a) Let P ∈ A[X1, . . . , Xn] be non-zero. Suppose that there
exists i ∈ {1, . . . , n} such that the term with the largest degree in P seen as

a polynomial in (A[X1, . . . , X̂i, . . . , Xn])[Xi] is of the form aX i1
1 ...X

ir
r , where

a does not divide zero in A. Then P does not divide zero in A[X1, . . . , Xn].

b) The ring A[X1, . . . , Xn] is an integral domain if and only if A is an
integral domain.

c) If A is an integral domain, the group of invertible elements of A[X1, . . . , Xn]
is the group A∗ of invertible constant polynomials in A.

3.2. A-algebras

Definition 3.3 An A-algebra is a commutative ring 8 B that comes equipped
with a (not necessarily one-to-one) ring homomorphism ϕ : A→ B.

Note that B is therefore endowed with an external law (which makes it
an A-module) defined by a.b = ϕ(a)b for all a ∈ A, b ∈ B. This leads to
another definition :

Definition 3.4 A homomorphism of A-algebras f : B → C is a ring ho-
momorphism that also satisfies f(a.b) = a.f(b) for any a ∈ A, b ∈ B. A
sub-A-algebra of B is a subring C of B that also satisfies a.c ∈ C for any
a ∈ A, c ∈ C.

Note that the image of a homomorphism f : B → C of A-algebras is a sub-
A-algebra of B, and the kernel ker f is an ideal of the ring B. Factorization
theorem 1.11 can be immediately extended to homomorphisms of A-algebras.

8. The same notion can be defined without supposing that B is commutative, but in
this course we only deal with commutative A-algebras.
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Example 3.5 a) Any commutative ring B is automatically a Z-algebra via
the homomorphism n 7→ n.1 from Z to B.

b) The ring A[X1, . . . , Xn] is an A-algebra via the inclusion map A →
A[X1, . . . , Xn].

c) If r ∈ N∗, the product ring Ar is an A-algebra via the homomorphism
a 7→ (a, a, . . . , a) from A to Ar.

Proposition 3.6 (The universal property of polynomial algebras) Let
B be a commutative ring and ϕ : A→ B a ring homomorphism. Suppose that
b1, . . . , bn are elements of B. Then there exists a unique ring homomorphism
f : A[X1, . . . , Xn] → B satisfying :

1. For any constant polynomial a of A[X1, . . . , Xn], we have f(a) = ϕ(a).

2. We have f(Xi) = bi for all i ∈ {1, . . . , n}.

If we consider B as an A-algebra via ϕ, an equivalent formulation consists
of saying that there exists a unique homomorphism ofA-algebras f : A[X1, . . . , Xn] →
B that maps Xi onto bi. Once the homomorphism ϕ has been fixed, we can
denote (for any polynomial P of A[X1, . . . , Xn]) P (b1, . . . , bn) the element of
B obtained by taking the image of P by the homomorphism f in the theo-
rem. We get this by “substituting in” b1, . . . , bn for the variables X1, . . . , Xn,
then using the A-algebra structure of B.

Proof: We prove the result by induction on n ≥ 1. Suppose that n = 1.
Then, the homomorphism f : A[X1] → B mus necessarily be defined by the
formula

f(
∑

n∈N
αnX

n
1 ) =

∑

n∈N
ϕ(αn)b

n
1 .

Inversely, we see immediately that f satisfies f(1) = 1 and f(P+Q) = f(P )+
f(Q) for any polynomials P,Q in A[X1]. If P =

∑
n αnX

n
1 and Q =

∑
n βnX

n
1

are polynomials, then PQ =
∑

n γnX
n
1 with γn =

∑
p+q=n αpβq, from which

f(PQ) =
∑

n

ϕ(γn)b
n
1 =

∑

n

∑

p+q=n

ϕ(αp)ϕ(βq)b
p
1b

q
1 =

∑

n

∑

p+q=n

(ϕ(αp)b
p
1)(ϕ(βq)b

q
1) =

∑

p,q

(ϕ(αp)b
p
1)(ϕ(βq)b

q
1) =

(
∑

n

ϕ(αn)b
n
1 ))(

∑

n

ϕ(βn)b
n
1 )) = f(P )f(Q),

which shows that f is indeed a ring homomorphism.This completes the proof
for n = 1.
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We now suppose that the result is true for n− 1 and show that it is also
true for n. By the induction hypothesis, we have a unique ring homomorphism
ψ : A[X1, . . . , Xn−1] → B such that ψ(Xi) = bi for 1 ≤ i ≤ n − 1 and ψ
coincides with ϕ on the constant polynomials. From the n = 1 case (applied
to polynomials in one variable with coefficients in the ring A[X1, . . . , Xn−1]),
we have therefore a unique ring homomorphism f : A[X1, . . . , Xn] → B
which coincides with ψ on the polynomials of A[X1, . . . , Xn−1] and satisfies
f(Xn) = bn. It is thus clear that f works and is the unique solution to the
problem.

Example 3.7 Let P,Q1, . . . , Qn ∈ A[X1, . . . , Xn]. We have the polynomial
R = P (Q1, . . . , Qn) obtained by substituting the Qi into the Xi. More
precisely, the polynomial R is the image of P by the unique homomor-
phism of A-algebras which maps Xi onto Qi. In particular, we have P =
P (X1, . . . , Xn) by definition (which justifies the use of the two different no-
tations !). When n = 1, we often write P ◦ Q for the polynomial of A[X ]
defined by (P ◦Q)(X) = P (Q(X)).

Definition 3.8 Let B be an A-algebra and suppose S is a subset of B. The
sub-A-algebra of B generated by S is the set C of P (x1, . . . , xn) with n ∈ N∗,
x1, . . . , xn ∈ S and P ∈ A[X1, . . . , Xn].

It is easy to see immediately that C is the smallest sub-A-algebra of B
containing S.

Proposition 3.9 Suppose B is an A-algebra. Then there exists a finite sub-
set S = {b1, . . . , bn} of B that generates B if and only if B is isomorphic
to the quotient of A[X1, . . . , Xn] by an ideal I. In this case we say that the
A-algebra B is generated by a finite subset. 9

Proof: It is easy to see that the A-algebra A[X1, . . . , Xn]/I is generated by
the images of X1, . . . , Xn via the canonical projection, which therefore make
up a finite generating subset. Conversely, if B is an A-algebra generated by
S = {b1, . . . , bn}, then according to proposition 3.6, there exists a (unique)
homomorphism of A-algebras f : A[X1, . . . , Xn] → B that maps Xi onto bi.
The image of f contains the bi and is thus equal to B (which is generated by
the bi). The result is proved by invoking the factorization theorem.

9. We can also say that it is “of finite type” but this brings in ambiguity between being
of finite type as an A-algebra or an A-module (a notion we will see in the chapter on
modules). Typically, if for example K is a field, K[X ] is of finite type as a K-algebra but
not as a K-vector space.
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Remark 3.10 If I is some (not necessarily finite) subset, we can still define
the ring A[(Xi)i∈I ] by considering the polynomials P given in the form (1)
for some multi-indices (i1, . . . , in) in In, but where n is any positive integer
(which depends on the polynomial P ), with addition and multiplication of
polynomials being defined using the fact that there exists a finite subset
J of I for which the two polynomials in question are in A[(Xj)j∈J ]. The
ring A[(Xi)i∈I ] is in some sense the union 10 of the A[(Xj)j∈J ] where J is
finite. We can also define A[(Xi)i∈I ] as the set of almost-zero families of
elements of A(I) with the usual addition and multiplication induced by those
of the polynomials of A[(Xj)j∈J ] for J a finite subset of I, the latter being
seen as almost-zero families of elements of AJ . The universal property of
proposition 3.6 remains true for A[(Xi)i∈I ] when I is infinite by defining f
on each A[(Xj)j∈J ] with finite J .

3.3. Noetherian rings

Proposition 3.11 Let A be a commutative ring. Then the following proper-
ties are equivalent :

1. Every ideal of A is generated by a finite number of elements.

2. Any increasing sequence (for the inclusion relation) (In)n∈N∗ of ideals
is stationary.

3. Any non-empty family of ideals of A has a maximal element for the
inclusion relation.

We say that A is Noetherian if these properties hold.

Proof: (1) implies (2) : let (In) be such a sequence ; then the union I of
the In is still an ideal since the familly (In) is totally ordered for the inclusion
relation. Let x1, . . . , xr be elements of I that generate it ; then each xi is in
one of the In, so there exists an n0 (the largest of the corresponding indices)
such that In0

contains all of them. Thus, I = In0
and the sequence (In) is

stationary at In0
.

(2) implies (3) : if a non-empty family of ideals of A does not have a
maximal element, we can construct by induction a strictly increasing infinite
sequence of ideals of A, which contradicts (2).

(3) implies (1) : let I be an ideal of A ; then the family E of ideals J ⊂ I
that are generated by a finite number of elements is non-empty (it contains
{0}). Let J0 be a maximal element of E. Then for any x in I, the ideal J0+xA

10. More precisely, it is the inductive limit or colimit.
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is also in E, so J0 + xA = J0 due to maximality. This signifies that x ∈ J0.
Thus, I = J0 and I is generated by a finite number of elements.

Example 3.12 a) All PID are Noetherian via (1).

b) If A is Noetherian, any quotient of A is too due to (1) seeing as the
ideals of A/I are the J/I, where J is an ideal of A containing I (if J is an ideal
generated by a1, . . . , ar, then J/I is generated by the images of a1, . . . , ar via
the canonical projection).

c) The ring K[(Xn)n∈N∗ ] is not Noetherian since (X1) ⊂ (X1, X2) ⊂
. . . (X1, . . . , Xn) ⊂ . . . forms a strictly increasing infinite sequence of ideals. 11

d) A subring of a Noetherian ring is not necessarily Noetherian (take a
non-Noetherian integral domain such as K[(Xn)n∈N∗ ], which is a subring of
its field of fractions ; and a field is obviously a Noetherian ring).

Most of the rings we work with in algebra are Noetherian given the following
theorem :

Theorem 3.13 (Hilbert) Let A be a Noetherian ring. Then A[X ] is a Noe-
therian ring.

Proof: Let I be an ideal of A[X ] and n ∈ N ; we note dn(I) the subset of
A made up of 0 and the main coefficient of the elements of degree n in I. It
is clear that I is an ideal of A, and that I ⊂ J implies dn(I) ⊂ dn(J). We
also have the two following properties :

i) If n ∈ N, then dn(I) ⊂ dn+1(I) : in effect, it suffices to see that if P ∈ I,
then XP ∈ I.

ii) If I ⊂ J , then the fact that dn(I) = dn(J) for all n ∈ N implies that
I = J : in effect, if J strictly contains I, we select a polynomial P in J \ I
which has minimal degree r ; since dr(I) = dr(J), I contains a polynomial Q
of degree r which has the same main coefficient as P , but then P − Q is in
J \ I and of degree < r, which is a contradiction.

Given these, let (In)n∈N∗ be an increasing sequence of ideals of A[X ].
Since A is Noetherian, the family of dk(In) for k ∈ N and n ∈ N∗ has a
maximal element, which we denote dl(Im). Also, for each k ≤ l, the sequence
of ideals (dk(In))n∈N∗ is increasing, and thus stationary, i.e., there exists an
nk such that for n ≥ nk, we have dk(In) = dk(Ink

). Now define N as the
largest of the integers m,n0, n1, . . . , nl, and we show that for any n ≥ N , we

11. This ring is a UFD ; this can be easily deduced from the fact, proven later, that
K[X1, . . . , Xn] is a UFD, since a fixed element of K[(Xn)n∈N∗ ] is in K[X1, . . . , Xn] for a
certain n.
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have dk(In) = dk(IN ), which will complete the proof with the help of (i) and
(ii) above. We deal with two cases separately :

a) If k ≤ l, then dk(IN) = dk(Ink
) = dk(In) by the definition of nk since

n and N are both ≥ nk.
b) If k ≥ l, then dk(IN) and dk(In) both contain dl(Im) according to (i)

above, so by the maximality of dl(Im) they are equal to it, and in particular,
dk(IN) = dk(In).

Corollary 3.14 1. If A is a Noetherian ring, then the ring A[X1, . . . , Xn]
is also Noetherian.

2. If A is a Noetherian ring, any ring B that is an A-algebra generated
by a finite subset is Noetherian.

Proof: (1) is a consequence of the previous theorem ; use induction on n.

(2) follows from (1) and proposition 3.9, using the fact that the quotient
of a Noetherian ring is a Noetherian ring.

We now look at the existence of decompositions into products of irredu-
cible elements in Noetherian integral domains.

Proposition 3.15 Let A be a Noetherian integral domain. Then any non-
zero element x of A can be written : x = up1...pr with u ∈ A∗ and irreducible
pi’s.

Proof: Let F be the set of ideals of A of the form xA with x non-invertible
and not able to be written as a product of irreducible elements. If F were
non-empty, it would have a maximal element (a) = aA. In particular a would
then not be irreducible, and since it is not invertible, it is of the form a = bc
with b and c in A not associates with a. However, the ideals (b) and (c) strictly
contain (a), so by maximality, b and c can be broken down into products of
irreducible elements, which contradicts the fact that a cannot be written as
a product of irreducible elements.

Remark: Being either a Noetherian ring or a UFD does not imply that
the other is true. For instance, if K is a field, K[Xn]n∈N∗ is a UFD but not a
Noetherian one. Also, Z[X ]/(X2 + 5) is a Noetherian ring via theorem 3.13,
and we have already seen that this is not a UFD.

Corollary 3.16 If A is a PID, it is also a UFD.
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Proof: We have just seen the existence of the decomposition into irredu-
cible elements. Also, if p ∈ A is irreducible, then the ideal (p) is maximal
because if I = (a) contains (p), then a divides p, which implies that a is
invertible or associate with p, i.e., (a) = (p) or (a) = A. In particular (p) is
a prime ideal and the result follows from proposition 2.9. 12

3.4. Polynomial rings are UFD

We have seen that A being a PID does not in any way imply that A[X ] is
a PID (this is only true if A is a field). We will see however that the analogous
relation does hold for UFD. We begin with a definition :

Definition 3.17 Let A be a UFD. The content (denoted c(P )) of a poly-
nomial P is the greatest common divisor of its coefficients. P is said to be
primitive if c(P ) = 1.

Note that the content is well-defined for multiplication up to an invertible
element of A ; however, the ideal it generates is well-defined.

Lemma 3.18 (Gauss) For all P,Q in A[X ], we have c(PQ) = c(P )c(Q)
(still modulo A∗).

Proof: First, suppose that P and Q are primitive and let us show that
PQ is primitive. If it were not, there would exist some irreducible element p
of A that divides all of the coefficients of PQ. Since P and Q are primitive,
each has at least one coefficient not divisible by p. Let ai0 (resp. bj0) be the
coefficient of P (resp. Q) non-divisible by p with the smallest index. Then
the coefficient with index i0 + j0 of PQ is a sum of terms divisible by p and
ai0bj0 , so it is not divisible by p since (p) is prime given that A is a UFD.
This contradicts the fact that all of the coefficients of PQ are divisible by p.

We can then get back to primitive P and Q by applying the previous
result to P/c(P ) and Q/c(Q).

An important result follows from this lemma :

12. We say that an integral ring is of dimension 1 if any non-zero prime ideal is maximal.
We have just seen that a PID is of dimension 1. However, Z[i

√
5] is of dimension 1 without

being a PIS (or even a UFD), and K[X1, X2] is a UFD without being of dimension 1.
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Theorem 3.19 Let A be a UFD with field of fractions K. Then the irredu-
cible elements of A[X ] fall into two categories :

i) Constant polynomials P = p with p irreducible in A.
ii) Primitive polynomials of degree ≥ 1 that are irreducible in K[X ].

In particular, for a primitive polynomial of A[X ], it turns out to be the
same thing to be irreducible in A[X ] and in the PID K[X ] (which is not at
all obvious seeing as there would initially appear to be more possible decom-
positions in K[X ]). Be careful when it comes to non-primitive polynomials :
2 is irreducible in Z[X ] but not in Q[X ] (though it is invertible) while 2X is
irreducible in Q[X ] but not in Z[X ].

Proof: Since A[X ]∗ = A∗, it is clear that a constant polynomial P = p
is irreducible if and only if p is irreducible in A. If then P is a primitive
polynomial of degree ≥ 1 of A[X ] that is irreducible in K[X ], then writing
P = QR with Q,R in A[X ] implies using the previous lemma that c(Q) and
c(R) are invertible. Furthermore, since one of the polynomials Q and R must
be constant (since P is irreducible in K[X ]), it is an invertible constant in A.
Hence P is indeed irreducible in A[X ] (but not invertible since it is of degree
at least 1).

It remains to show that a polynomial P of degree ≥ 1 that is irreducible
in A[X ] is primitive, and irreducible in K[X ]. P is primitive because c(P )
divides P in A[X ] and they are not associates due to differences in degree.
It remains to show that P (which is not invertible in K[X ]) is irreducible
in K[X ]. Suppose that P = QR in K[X ] ; we can then write Q = Q1/q
and R = R1/r with q, r in A and Q1, R1 in A[X ]. Then, setting a = qr, we
get that aP = Q1R1, and moving to contents : a = c(Q1)c(R1) (modulo A∗).
Thus, P = u P1

C(P1)
Q1

C(Q1)
with u ∈ A∗. Since P is irreducible in A[X ], one of the

polynomials P1

C(P1)
, Q1

C(Q1)
in A[X ] must be invertible and thus constant, and

one of the polynomials Q,R must be constant, which concludes the proof.

We can now state the theorem.

Theorem 3.20 If A is a UFD, then A[X ] is a UFD.

Proof: We must first show existence of the decomposition (if A is also a
Noetherian ring, we have this already via theorem 3.13 and proposition 3.15).
Writing P = c(P )P1 and breaking down c(P ) into a product of irreducible
elements in A, we can get P primitive. We thus decompose P (which we
can suppose non-constant) in the PID K[X ] as P = P1...Pr, or rather aP =
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Q1...Qr with Qi ∈ A[X ], a ∈ A, and Qi irreducible in K[X ]. Moving to
contents, we obtain a = c(Q1)...c(Qr) (modulo A∗) and from the previous
theorem, P =

∏r

i=1
Pi

c(Pi)
is a decomposition of P into a product of irreducible

elements of A[X ], since each Pi

c(Pi)
is a primitive polynomial of A[X ] that is

irreducible in K[X ] (equal to the product of Qi with a constant from K∗).

Given the result in proposition 2.9, it therefore suffices to show that if
P ∈ A[X ] is irreducible, then (P ) is a prime ideal. If P = p is an irredu-
cible constant in A[X ], this is immediate (by direct proof, or by noting that
A[X ]/(p) is isomorphic to (A/(p))[X ], which is an integral domain since (p)
is a prime ideal in A). Hence, suppose that P is primitive and of degree at
least 1, and thus irreducible in K[X ] due to the previous theorem. Then, if
P divides the product QR of two polynomials in A[X ], it divides either Q or
R in K[X ] since K[X ] is a PID. Suppose it divides Q. There therefore exists
a in A such that aQ = SP with S ∈ A[X ]. Thus, ac(Q) = c(S) since P is
primitive, and a divides c(S). In particular, Q = (S/a)P with S/a in A[X ],
i.e., P divides Q in A[X ]. The result is thus proven.

Corollary 3.21 If A is a UFD, A[X1, . . . , Xn] is a UFD. 13

It is convenient to have a practical criterion for irreducibility in UFD.
The following result is often helpful in this regard.

Theorem 3.22 (Eisenstein’s criterion) Let A be a UFD, P a non-constant
polynomial in A[X ], and p irreducible in A. Set P =

∑n

k=0 akX
k and suppose

that :

1. p does not divide an.

2. p divides ak for 0 ≤ k ≤ n− 1.

3. p2 does not divide a0.

Then P is irreducible in K[X ] (and thus also in A[X ] if it is primitive).

Proof: Note that P/c(P ) satisfies the same hypotheses as P since c(P )
is not divisible by p via (1). We can therefore suppose that P is primitive
and deg P ≥ 2. If P were not irreducible, it could be written (according
to theorem 3.19) P = QR with Q and R non-constant in A[X ]. Set Q =
brX

r + . . . + b0, R = csX
s + . . . + c0. The ring B = A/(p) is integral, and

A[X ]/pA[X ] is isomorphic to B[X ]. In A[X ]/pA[X ], we have P = QR, that
is ānX

n = Q.R in B[X ]. We have ān 6= 0 in B, so b̄r and c̄s are also non-zero.

13. A similar result holds for the infinite case, and follows directly from the finite one.
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Thus, Q and R are not constants and the fact that ānX
n = Q.R in the PID

(and thus UFD) ring (FracB)[X ] implies (since X is irreducible in this ring)
that Q and R are divisible by X in (FracB)[X ]. This means that p divides
b0 and c0, which contradicts the fact that a0 is not divisible by p2.

For example, X18−4X7−2 is irreducible in Q[X ], and X5−XY 3−Y is
irreducible in C[X, Y ] (take A = C[Y ] and p = Y ). If p is a prime number,
then R := 1+X+. . .+Xp−1 = Xp−1

X−1
is irreducible in Q[X ] (apply Eisenstein’s

criterion to the polynomial R(X + 1)).
We will see further on (in the chapter on field extensions) other examples

of irreducible polynomials including notably the cyclotomic polynomials over
Q, and we will also show that if F is a finite field, there are irreducible
polynomials of any degree > 0 over F .

3.5. Symmetric polynomials

Let A be a commutative ring and let σ ∈ Sn. According to proposition 3.6,
there exists a unique homomorphism of A-algebras ϕσ : A[X1, . . . , Xn] →
A[X1, . . . , Xn] that maps each Xi onto Xσ(i). It can immediately be seen
that for σ, τ in Sn, we have ϕστ = ϕσ ◦ ϕτ . In other words :

Proposition 3.23 The formula σ.P := ϕσ(P ) defines the action of the sym-
metric group Sn on A[X1, . . . , Xn].

This corresponds to an action by automorphisms of A-algebras, where
the inverse of ϕσ is ϕσ−1 .

Definition 3.24 We say that a polynomial P ∈ A[X1, . . . , Xn] is symmetric
if σ.P = P for all σ ∈ Sn. We denote by A[X1, . . . , Xn]

Sn the sub-A-algebra
of A[X1, . . . , Xn] made up of symmetric polynomials.

There is an analogue for rational fractions, with the following connection
when A is a field :

Proposition 3.25 Le K be a field. Denote K(X1, . . . , Xn)
Sn the subfield of

K(X1, . . . , Xn) = Frac (K[X1, . . . , Xn]) made up of the symmetric rational
fractions (i.e the fixed points for the action of Sn on K(X1, . . . , Xn)). Then

K(X1, . . . , Xn)
Sn = Frac (K(X1, . . . , Xn)

Sn).
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Proof: It is clear that the quotient of symmetric polynomials is a symme-
tric rational fraction. In the other direction, let R = P/Q be a symmetric
rational fraction where P and Q are in K[X1, . . . , Xn] and Q is non-zero. We
then note that R can be written

R =

∏
σ∈Sn

σ.P

(
∏

σ∈(Sn\Id) P )Q

as a quotient of two symmetric polynomials. This is easy to see for the nu-
merator, and for the denominator this results from the fact that if τ ∈ Sn,
then τ.R = R gives τ.Q = (τ.P )Q/P , while the action of τ on

∏

σ∈(Sn\Id)
P

corresponds to multiplying by P/τ.P .

Example 3.26 a) Suppose k ∈ {1, . . . , n}. We define the k-th elementary
symmetric polynomial in n variables by

σk :=
∑

I⊂{1,...,n},#I=k

∏

i∈I
Xi.

In particular, we have σ1 = X1 + . . .+Xn and σn = X1...Xn. Notice that
in the ring A[X1, . . . , Xn][X ], we have also :

n∏

i=1

(X −Xi) =

n∑

k=0

(−1)kσkX
n−k,

with the convention σ0 = 1. The polynomial σk is homogeneous of degree k.

b) For any integer k ≥ 1, the Newton sums (in n variables) :

sk =
n∑

i=1

Xk
i

are homogeneous symmetric polynomials of degree k.

Before getting to the main theorem, we first require a few words on com-
binatorics :
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Definition 3.27 Let us define a relation < on Nn by α = (α1, . . . , αn) <
β = (β1, . . . , βn) if and only if |α| < |β|, or instead |α| = |β| and there exists
some r ∈ {1, . . . , n} such that αr < βr and αi = βi for 1 ≤ i < r. It can then
be immediately seen that the relation α ≤ β if and only if α = β or α < β
is a total order on Nn, and that any finite non-empty family of elements of
Nn has a largest element.

The main result for symmetric polynomials is the following theorem.

Theorem 3.28 Let Φ : A[X1, . . . , Xn] → A[X1, . . . , Xn] be the homomor-
phism of A-algebras that maps each Xk to the elementary symmetric polyno-
mial σk. Then Φ induces an isomorphism from A[X1, . . . , Xn] onto A[X1, . . . , Xn]

Sn.

In other words : for any symmetric polynomial R in n variables, there
exists a unique polynomial P in n variables such that R = P (σ1, . . . , σn),
where the σi are the elementary symmetric polynomials. Note that there-
fore the A-algebras A[X1, . . . , Xn] and A[X1, . . . , Xn]

Sn are isomorphic, even
though the latter is strictly contained in the former !

Proof: a) The map Φ is onto : Let F ∈ A[X1, . . . , Xn] be symmetric, and
we want to show that it is in the image of Φ. We can suppose that F is non-
zero, and therefore write F =

∑r

d=0 Fd with r ∈ N and each Fd homogeneous
of degree d. For any τ ∈ Sn, we have thus :

τ.F =
r∑

d=0

τ.Fd = F =
r∑

d=0

Fd,

with τ.Fd and Fd homogeneous of degree d, which implies that τ.Fd = Fd

for all d ; in other words, each Fd is symmetric. We have therefore arrived
at a setting in which the symmetric polynomial F is homogeneous of degree
d ≥ 0. We now proceed by induction on n+ d.

If n = 1, there is nothing to prove, and if d = 1, the polynomial F is
a multiple of σ1. Suppose therefore that d and n are equal to at least 2.
Set F1(X1, . . . , Xn−1) = F (X1, . . . , Xn−1, 0) ; this is a symmetric polynomial
in n − 1 variables (the permutations of {1, . . . , n − 1} matched to those of
{1, . . . , n} leaving n unchanged). First, suppose that F1 = 0, which means
that F can be written F = XnG with G ∈ A[X1, . . . , Xn] (use the formula-
tion 14 (1)). Since F is symmetric, it also satisfies

F (X1, . . . , Xi−1, 0, Xi+1, . . . , Xn) = 0

14. Warning : we do not suppose A is an integral domain, so reasoning using divisibility
is not really meaningful.
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for all i, and in particular, G(X1, . . . , 0, Xn) = 0 since Xn is not a divisor of
zero in A[X1, . . . , Xn] via proposition 3.2 (a). We therefore write G = Xn−1H ,
etc., from which comes F = σnF2, with F2 homogeneous of degree d − n.
Furthermore, F2 is symmetric since for any permutation τ ∈ Sn, we have
τ.F = F = σnF2 = σn(τ.F2), from which τ.F2 = F2 given that σn is not a
divisor of 0 in A[X1, . . . , Xn] by proposition 3.2 (a). We can therefore apply
the induction hypothesis to F2, and the result follows.

Suppose now that F1 6= 0 and apply the induction hypothesis, which
means we can write

F1 = Q(σ′
1, . . . , σ

′
n−1),

where Q ∈ A[X1, . . . , Xn−1] and σ′
k = σk(X1, . . . , Xn−1, 0) is the k-th elemen-

tary symmetric polynomial in n− 1 variables. Therefore set :

G = F (X1, . . . , Xn)−Q(σ1, . . . , σn−1).

Hence, G is symmetric in n variables and satisfies G(X1, . . . , Xn−1, 0) = 0, so
after what we have already seen, G is in the image of Φ. Since Q(σ1, . . . , σn−1)
is obviously also in this image, it follows that F ∈ ImΦ.

b) Φ one-to-one : For a monomial P = aX i1
1 ...X

in
n with a 6= 0, we see that

the largest exponent (in terms of definition 3.27) appearing in P (σ1, . . . , σn)
(homogeneous of degree i1 + 2i2 + . . .+ nin) is

(i1 + . . .+ in, i2 + . . .+ in, in).

Set ϕ(i1, . . . , in) = (i1 + . . . + in, i2 + . . . + in, . . . , in) ; then ϕ is a bijection
from Nn onto the set of decreasing elements (α1, . . . , αn) (i.e., those for which
α1 ≥ α2 . . . ≥ αn) of Nn. It results that ifQ ∈ A[X1, . . . , Xn] is non-zero, then
when given in the form (1) it has one and only one monomial aX i1

1 ...X
in
n with

a 6= 0 and ϕ(i1, . . . , in) maximal. Thus, Q(σ1, . . . , σn) is written with one and
only one monomial aσi1

1 ...σ
in
n with a maximal exponent equal to ϕ(i1, . . . , in),

since all of the others are strictly smaller. In particular, Q(σ1, . . . , σn) is non-
zero.

We now round up this chapter with a theorem that connects elementary
symmetric polynomials and Newton sums in the ring A[X1, . . . , Xn].

Theorem 3.29 (Newton’s identities) a) Let k ≥ n. Then

sk − σ1sk−1 + . . .+ (−1)nσnsk−n = 0.

b) Let 1 ≤ k ≤ n. Then

sk − σ1sk−1 + . . .+ (−1)k−1σk−1s1 + (−1)kkσk = 0.
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Proof: a) Let :

Q =
n∏

i=1

(X −Xi) = Xn − σ1X
n−1 + . . .+ (−1)nσn.

Evaluating this at X = Xi, we obtain :

Xn
i − σ1X

n−1
i + . . .+ (−1)nσn = 0.

For k ≥ n, if we multiply by Xk−n
i , we get that :

Xk
i − σ1X

k−1
i + . . .+ (−1)nσnX

k−n
i ,

and the required formula is obtained by summing from i = 1 to i = n.

b) For k = n, the formula is proven in (a) (note that in this case, s0 = k),
so suppose that k > n. Set :

S = sk − σ1sk−1 + . . .+ (−1)kkσk.

The polynomial S is homogeneous of degree k. We see that

S(X1, . . . , Xk, 0, . . . , 0) = 0,

since this equality exactly corresponds to the k = n case in the formula ; in
effect, for r = 1, . . . , k, the polynomial σr(X1, . . . , Xk, 0, . . . , 0) is the r-th
symmetric polynomial in k variables and sr(X1, . . . , Xk, 0, . . . , 0) is the r-th
Newton sum in k variables. Let us now write S in the form (1) :

S =
∑

(α1,...,αn)∈Nn

aα1,...,αn
Xα1

1 ...Xαn

n .

The equality S(X1, . . . , Xk, 0, . . . , 0) = 0 therefore means that all coefficients
of the type aα1,...,αk,0,...,0 are equal to zero. Also, all of the exponents α =
(α1, . . . , αn) which appear in S satisfy |α| = k, and in particular have at
most k non-zero (integer) values in the αi. Since S is also symmetric, we
thus obtain that all of the aα1,...,αn

are zero, and therefore S = 0.

Remark 3.30 When A is a field of characteristic zero (or more generally
a ring containing a field of characteristic zero as a subring), Newton’s iden-
tities allow us to calculate the σk as a function of the sk by solving an
upper-triangular system of linear equations. In this case, it turns out that
any symmetric polynomial in A[X1, . . . , Xn] can be written as a unique po-
lynomial in the sk.
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