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1. Introduction to modules

Modules are the natural generalization of vector spaces. They are of ab-
solutely fundamental importance in, for example, algebraic geometry and
number theory. In all of the following, A corresponds to a commutative ring,
which will occasionally be required to be non-zero.
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1.1. First notions

Definition 1.1 An A-module (M,+, .) is a set endowed with an internal
composition law + and an external one : A×M →M , (α,m) 7→ α.m (often
abbreviated as αm) satistifying :

— (M,+) is an abelian group.
— The following properties :

1. α(m+m′) = αm+ αm′

2. (α + β)m = αm+ βm

3. (αβ)m = α(βm)

4. 1.m = m

hold for all α, β ∈ A and all m,m′ ∈M .

Remark 1.2 As A is supposed commutative, there is no need to distinguish
between left and right modules (for noncommutative A the third property is
different for right modules).

Definition 1.3 Let M be an A-module. A submodule N of M is a subgroup
of (M,+) which is also stable with respect to external multiplication by any
element of A.

In other words, a subset N of M is a submodule if and only if it contains
0 and if for any x, y in N and α in A, we have : x+ y ∈ N and αx ∈ N .

Example 1.4 a) A is an A-module, where the external operation is the
multiplication operation in A itself.

b) Any abelian group M can be seen as a Z-module with external opera-
tion : α.m = αm.

c) Let n > 0 and M be an n-torsion abelian group, i.e., one for which
nx = 0 for all x in M . Then M is a Z/nZ-module with operation ᾱ.x = αx,
where α ∈ Z is of the class ᾱ in Z/nZ.

d) Let I be a subset of A. Then I is a sub-A-module of A if and only if
it is an ideal of A.

e) Let (Mi)i∈I be a (finite or infinite) family of A-modules. Then the
product set

∏
i∈I Mi is an A-module with the obvious operations ; we call

this the product A-module of the Mi.

f) Let S be a subset of an A-module M . Then the submodule generated by
S is the set of linear combinations

∑
s∈S αss, where (αs)s∈S is an almost zero

family of elements of A. This is the smallest submodule of M that contains
S. This notion is especially useful when S is finite.

2



Definition 1.5 A homomorphism (or morphism) of A-modules is a map f :
M →M ′ between two A-modules that satisfies : f(x+ y) = f(x) + f(y) and
f(α.x) = α.f(x) for all x, y in M and α in A. We call ker f := f−1({0}) the
kernel of f and Im f := f(M) its image. These are submodules of respectively
M and M ′.

Instead of calling this a homomorphism of A-modules, we sometimes call
it an A-linear map. We continue to have notions such as isomorphism and au-
tomorphism for A-modules, as well as the usual factorization theorem (whose
proof is immediate) :

Proposition 1.6 Let M be an A-module and N a submodule of M . Then
the quotient group M/N , endowed with the external operation α.m̄ = α.m
is an A-module, called the quotient module of M by N . If f : M → M ′

is a homomorphism of A-modules, there exists a unique homomorphism f̃ :
M/ ker f →M ′ such that f = f̃ ◦π, where π :M →M/ ker f is the canonical
projection. Furthermore, f̃ is one-to-one and has image Im f .

Remark 1.7 If f : M → M ′ is a homomorphism of A-modules and N
a submodule of M contained in ker f , then f can also be factorized by a
homomorphism M/N → M ′ with image Im f (though we lose the one-to-one
property which holds when N = ker f).

The following definition is analogous to the one we had for vector spaces :

Definition 1.8 — Let (Mi)i∈I be a family of A-modules. The (“exter-
nal”) direct sum of the Mi is the submodule

⊕
i∈I Mi of the product∏

i∈I Mi of almost zero families (mi)i∈I . If I is finite, the direct sum
coincides with the direct product. Note that each Mi is injected into⊕

i∈I Mi by mapping mi to the element for which all of its components
are zero except the i-th one, which is equal to mi. Thus, we can write
any element of

⊕
i∈I Mi uniquely in the form

∑
I∈I mi with mi ∈ Mi

and almost all mi are zero.
— Let (Mi)i∈I be a family of submodules of the A-module M . Then the

sum submodule
∑

i∈I Mi is that generated by the union of the Mi.
More explicitly, it is the set of sums

∑
i∈I mi, where (mi)i∈I is an

almost zero family with mi ∈ Mi for each i ∈ I. If furthermore the
condition

∑
i∈I mi = 0 implies mi = 0 for all i, we say that the sum

of the Mi is direct ; in this case,
∑

i∈I Mi is isomorphic to the external
direct sum

⊕
i∈I Mi, and we write

⊕
i∈I Mi for

∑
i∈I Mi (“internal

direct sum”).
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Note that the sum of two submodules M1 and M2 of an A-module M is
direct if and only if M1 ∩M2 = {0}, but this cannot be generalized to more
than two submodules. Also, if M = M1 ⊕ M2, then M/M1 is isomorphic
to M2 (via the projection onto M2) but unlike in the vector space case, the
converse is not necessarily true 1 (for example, Z is not isomorphic to the
external direct sum of nZ and Z/nZ since Z has no non-zero element that
vanishes under multiplication by n).

Remark 1.9 For any family of homomorphisms of A-modules fi :Mi → N ,
there exists a unique homomorphism f from

⊕
i∈I Mi to N which induces

the homomorphism fi on each Mi (identified with a submodule of
⊕

i∈I Mi) :
f is defined by f(

∑
imi) =

∑
i fi(mi). This is what is known as the universal

property of direct sums. We write f =
⊕

i∈I fi. The direct product
∏

iMi

itself satisfies a universal property “in the other direction” : for any family
of homomorphisms gi : N →Mi, there exists a unique homomorphism N →∏

iMi which induces gi after composition with the projection on Mi.

1.2. Interlude : the determinant of a matrix with values

from a commutative ring

We will need to extend to arbitrary commutative rings classical results on
the determinant of a matrix with values from a field. We start by generalizing
to modules the notion of n-linear forms :

Definition 1.10 Let A be a commutative ring. An n-linear form (bilinear
if n = 2, trilinear if n = 3) on an A-module M is a map f : Mn → A which
satisfies, for any j ∈ {1, . . . , n} and any (x1, . . . , xj−1, xj+1, . . . , xn) in Mn

that the map
x 7→ f(x1, . . . , xj−1, x, xj+1, . . . , xn)

is A-linear from M into A. An n-linear form f is said to be alternating if
f(x1, . . . , xn) = 0 whenever there exists i 6= j for which xi = xj .

We define the ring Mn(A) of (n, n) matrices with coefficients from A in
the usual way. The determinant of a matrix M = (aij)1≤i,j≤n ∈ Mn(A) is
then defined by the usual formula :

detM :=
∑

σ∈Sn

ε(σ)

n∏

i=1

aσ(i)i.

1. In other words, an exact sequence of vector spaces is always split, but not an exact
sequence of A-modules.
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The usual properties of the determinant generally hold when A is a field, via
the properties of vector spaces (though some are no longer valid in the general
framework we find ourselves in here). It is possible to develop the properties
of alternating n-linear forms on An and thereby obtain these results. Here
we will use another approach, consisting in transporting ourselves to the case
where A is a field.

Theorem 1.11 a) If M and N are matrices in Mn(A), then

det(MN) = detM. detN.

b) The map that associates with the n column vectors (resp. row vectors)
the determinant of the matrix M formed by these vectors is an alternating
n-linear form on An. In particular, the determinant of a matrix M ∈Mn(A)
is unchanged when adding to one of its columns (resp. rows) a linear combi-
nation of the others.

c) We can calculate the determinant of any matrix M in Mn(A) via La-
place expansion along a row or a column in the same way as can be done
when A is a field.

d) Let M ∈ Mn(A) and M̃ be the adjoint of M (i.e., the transpose of its
cofactor matrix) ; then :

MM̃ = M̃M = (detM)In.

Proof: All of the claims are proved using the same technique : we first
note that if A is an integral domain, it can be seen as a subring of its field
of fractions K ; the results then follow immediately from the field case. Fur-
thermore, it is clear that if one of these claims is true for a ring A, it is also
true for any quotient ring A/I (where I is an ideal of A). In particular, we
obtain the result for any ring A which is a quotient of the integral domain
Z[X1, . . . , Xr] (where r is an integer), i.e., is of finite type as a Z-algebra.

Now it suffices to note 2 that to prove (a) for instance, all that is needed
is to replace A by the subring of A generated by the coefficients of M and
N (which is by definition a Z-algebra of finite type). The same can be done
for (b)–(d), replacing A with the subring of A generated by the coefficients
of M .

Note that with this procedure we can also prove the Cayley-Hamilton
theorem over any commutative ring A : for any matrix M ∈ Mn(A) with
characteristic polynomial χM ∈ A[X ], we have χM(M) = 0.

2. We can also simply observe that A is isomorphic to a quotient of a polynomial ring
over Z (in general with an infinite number of inderterminates).
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1.3. Free modules, modules of finite type

Definition 1.12 An A-module M is said to be of finite type if there exists
a finite subset S of M such that M is generated by S. It is said to be free
if there exists a basis for it, i.e., a family (xi)i∈I such that any element x in
M can be written x =

∑
i∈I αixi in a unique way, where (αi)i∈I is an almost

zero family of elements of A.

Remark 1.13 a) We will see that if M is free and of finite type, there exists
a finite basis for it, though this is far from clear at the moment !

b) Saying that (xi)i∈I is a basis is equivalent to the family (xi) being both a
generating set and free, the latter signifying that the condition

∑
i∈I αixi = 0

implies that the almost zero family (αi) is trivial.
c) An A-module M has a basis of cardinal n if and only if it is isomorphic

to An. More generally, it has a basis of cardinal I if and only if it is isomorphic
to A(I) (the set of almost zero families (αi)i∈I in AI). 3

d) An A-module M is of finite type if and only if it can be written as
a quotient of An for some n > 0. Do not mix up this notion with that of
A-algebras of finite type seen in the chapter on rings (which corresponds to
being a quotient of the polynomial ring A[X1, . . . , Xn]). When an A-algebra
is of finite type in the A-module sense, we sometimes call it a finite A-algebra.

Example 1.14 a) Z/nZ is a Z-module of finite type (generated by 1̄), but
not free because in a free Z-module, αx = 0 implies α = 0 or x = 0 if α ∈ Z,
x ∈ M (such modules are called torsion-free. This is more generally the case
in any free module over an integral domain).

b) While the Z-module Q is torsion-free, it is not free since it is divisible,
i.e., if n > 0, any element x of Q can be written ny with y ∈ Q, which is not
possible in a free Z-module (take an element for which one of its components
in the basis is 1, and n ≥ 2). We will see that for a principal ideal domain,
a module of finite type that is torsion-free is also free.

c) It is easy to see that a quotient of a module of finite type is also of
finite type.

d) If A is a non-Noetherian ring, an ideal of A which is not generated by
a finite number of elements is not of finite type as an A-module, even though
it is a submodule of A (which is generated by 1). We will see that if A is
Noetherian, a submodule of a module of finite type over A is also of finite
type.

e) Let A be a ring and B an A-algebra. Suppose that B is an A-module of
finite type. Then any B-module M of finite type is also an A-module of finite

3. Be careful : if I is infinite, it does not necessarily follow that AI is free.
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type. In effect, if (m1, . . . , mn) generates the B-module M and (b1, . . . , br)
generates the A-module B, we see immediately that the family (bimj) (for
1 ≤ i ≤ r and 1 ≤ j ≤ n) generates the A-module M .

Thus, the situation is more complicated for modules than for vector
spaces. There is however a statement which is true in general : bases of
M are finite and have the same cardinality if M is free and of finite type.
This is the subject of the following theorem :

Theorem 1.15 Let A be a non-zero commutative ring. Suppose that there
exists an onto homomorphism of A-modules f : Ar → As. Then r ≥ s.

Proof: We will provide two different proofs. The first consists of linking
up with the known result for vector spaces, while the second involves matrix
calculations using the properties of determinants.

Proof 1 : Since A 6= {0}, A possesses at least one maximal ideal I
(due to Zorn’s theorem in the general case, though obviously true if A is
Noetherian). For any A-module M , we define the sub-A-module IM as that
generated by the im for i ∈ I and m ∈ M . Then M/IM is a vector space
over the field K := A/I via ām̄ := am, a ∈ A, m ∈ M . We apply this
to M = Ar, N = As. The onto homomorphism of A-modules f : M → N
induces a homomorphism f̄ of K-vector spaces M/IM → N/IN defined by
f̄(m̄) = f(m), and it is clear that f̄ is still onto. Since M/IM is isomorphic
to Kr (we map the class of (a1, . . . , ar) onto (ā1, . . . , ār)), we obtain an onto
homomorphism ofK-vector spaces fromKr toKs ; thus r ≥ s by the classical
theorem on the rank of linear maps between vector spaces. 4

Proof 2 : Let B ∈ Ms,r(A) be the matrix of the A-linear function
f : Ar → As. Since f is onto, the elements ε1, . . . , εs of the canonical basis
of As are each mapped to from something by f , this being column vectors
X1, . . . , Xs of Ar for which BXi = εi. The matrix C of Mr,s(A) whose column
vectors are the Xi thus satisfies BC = Is. If we had s > r, we could consider
the matrix B1 obtained by adding s − r non-zero columns to B, and the
matrix C1 obtained by adding s − r rows of zeros to C, and we would still
have B1C1 = Is, with B1 and C1 in Ms(A). But then detB1 detC1 = 1 (which
is not zero, since A is non-zero !), which is impossible given that according
to theorem 1.11, a matrix with a row or columns of zeros has a determinant
of zero.

4. After we have seen tensor products, we will be able to reformulate this proof : we
tensorize M and N by the A-module K = A/I ; this operation preserves the onto (but not
one-to-one) property of homomorphisms, and turns Ar into Kr. Note that if A is not an
integral domain, we cannot do the same thing by using the field of fractions.
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Corollary 1.16 Let M be a module over a non-zero ring A. If M is of finite
type and possesses a basis, then this basis is finite. In this case we say that
M is free and of finite type, and all of its bases have the same cardinality,
which is called the rank of M .

Proof: Let r be a non-negative integer. First note that if M possesses a
basis (finite or otherwise) of cardinality > r, then there exists a submodule
N of M such that M/N is isomorphic to Ar+1 (it suffices to take r + 1
elements e1, . . . , er+1 in the basis, and to choose N as the submodule made
up of the m of M whose components with respect to ei are zero for all i in
[1, r + 1]). Now, suppose that M is generated by a finite family (f1, . . . , fr).
Then we have an onto homomorphism of A-modules u : Ar → M defined
by u(a1, . . . , ar) =

∑r

i=1 aifi. If M has an infinite basis (and in particular
with cardinality > r), we would have a quotient M/N such that M/N is
isomorphic to Ar+1. Under the composition of u with the canonical projection
M → M/N , we would obtain an onto A-linear function from Ar to Ar+1,
which would contradict theorem 1.15. Thus, if M possesses a basis, this basis
is finite. The fact that all bases have the same cardinality follows immediately
from theorem 1.15.

1.4. Submodules over Noetherian rings

Though in a free module of finite type over a non-zero commutative ring
A, all bases have the same cardinality, we cannot hope to have results for
submodules that are comparable to those for vector spaces :

Example 1.17 We see that 2Z is a strict sub-Z-module of Z, even though
both have a rank of 1 (a basis of the former is {2}, the latter : {1}). Thus
2Z is not a direct summand of Z, as an N such that 2Z ⊕ N = Z would
have to be isomorphic to Z/2Z, whereas Z has no submodule isomorphic to
Z/2Z (since it has no non-zero element x for which 2x = 0). Therefore, the
free family (2) cannot be extended to a basis of Z. On the other hand, if A
is not Noetherian, the A-module A is free and of rank 1 but has submodules
(= ideals of A) that are not of finite type.

Remark 1.18 It can be shown (using fairly tedious calculations on deter-
minants, see tutorials) that if P is a matrix in Mr(A) and f the A-linear
function Ar → Ar induced by it, f is one-to-one if and only if detA is non-
zero and does not divide zero in the ring A. From this we can deduce that if
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f : Ar → As is one-to-one linear (with A 6= {0}), then r ≤ s since if we had
r > s, the matrix obtained by adding r − s rows of zeros to the matrix of f
would still be a linear one-to-one map (as it would represent the composition
of f with the one-to-one map As → Ar defined by x 7→ (x, 0, 0, . . .)) and
would have a determinant of 0. Thus, if M is a free submodule of As, then
its rank r is at most s since M ≃ Ar. In particular, an ideal I of a ring A
cannot be a free A-module if it is not generated by a single element. We can
therefore hope for a positive result only for principal ideal domains, and we
will see that this is indeed the case.

Theorem 1.19 Let A be a Noetherian ring and M an A-module of finite
type. Then any submodule of M is of finite type.

Proof: Since M is of finite type, we can write it as a quotient Ar/M ′ where
M ′ is a submodule of Ar ; a submodule of Ar/M ′ is of the form N ′/M ′, with
N ′ a submodule of Ar containing M ′. Thus it suffices to prove the result for
M = Ar since a quotient of a module of finite type is also of finite type.

We show this by induction on r. For r = 1, this corresponds to the
definition of Noetherian rings. Suppose that the result is true for all positive
integers < r, and letN be a submodule of Ar. Denote byM1 the submodule of
Ar made up of the (a, 0, 0, . . . , 0) with a ∈ A, so M1 is isomorphic to A. From
the r = 1 case, N1 := N ∩M1 is of finite type. Also, the linear map π : N →
Ar/M1 which associates x̄ with x has the kernel N1 ; the module Ar/M1 is
isomorphic to Ar−1, thus Im π is of finite type by the induction hypothesis. Let
(x̄1, . . . , x̄n) be a finite family that generates Im π (xi ∈ N) and (y1, . . . , ym) a
finite family that generates N1. Then, (x1, . . . , xn, y1, . . . , ym) generates N . 5

In effect, if x ∈ N , we can write x̄ =
∑r

i=1 αix̄i with the αi in A, which means
that

x =

r∑

i=1

αixi + y,

with y ∈ (N ∩M1) = N1, and then

x =
r∑

i=1

αixi +
m∑

i=1

βiyi,

with the βi in A.

5. More generally, if 0 → M1 → M → M2 → 0 is an exact sequence of A-modules, it is
clear that M1 and M2 being of finite type implies that M is too.
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Remark 1.20 a) Note that a submodule of M may need more generators
than N does ; e.g., take an ideal of A that is not principal. We will see that
this difficulty disappears when the ring A is a PID.

b) A module M over a commutative ring A is said to be Noetherian if
all of its submodules are of finite type (or equivalently : if every increasing
sequence of submodules of M is stationary). Theorem 1.19 means that any
module of finite type over a Noetherian ring is a Noetherian module.

2. Tensor products

2.1. Introduction

The notion of a tensor product is a little difficult to grasp at the beginning,
but it turns out to be essential when we want to deal with advanced subjects
in algebra (especially in number theory and algebraic geometry). We will
be content in this introductory course to consider some basic properties and
examples. Nevertheless, it seemed important to us not to limit ourselves to
the case of vector spaces over fields, which would have been overly restrictive
(especially as over a field, we can often use matrix methods without even
really needing tensor products).

Before going into detail, let us first point out some examples (seen previously
in this course, or in previous years) where the tensor product is already
involved :

— Complexifying a real vector space
— When A is a subring of a commutative ring B, looking at a matrix

with coefficients in A as if they were also coefficients in B
— The proof of theorem 1.15.

In the rest of this section, we suppose that A is a commutative ring.

2.2. Tensor products of modules

First, recall a previously seen definition for when L = A :

Definition 2.1 Let M , N , and L be modules over the commutative ring A.
A map f : M × N → L is said to be A-bilinear (or simply bilinear if A is
implied) if for all m ∈ M,n ∈ N , the maps f(m, .) and f(., n) are A-linear
from N (resp. M) to L.

Let M and N be A-modules. We want to construct an A-module H ,
equipped with a bilinear map Φ :M ×N → H , which satisfies the following
universal property :
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(P) For any A-module L and bilinear map f : M × N → L, there exists
a unique homomorphism of A-modules f̃ : H → L such that f = f̃ ◦ Φ.

More explicitly : given f and Φ, we want there to always be a unique
A-linear map f̃ that makes the following diagram commutative :

M ×N
f

//

Φ
��

L

H
f̃

;;
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈

Theorem 2.2 Such a module H exists and is unique up to isomorphism. We
call it the tensor product of the A-modules M and N , and write it M ⊗A N .

Proof: If H and H ′ both satisfy (P) (with bilinear maps Φ and Φ′ res-
pectively), we first apply (P) to (H,Φ), taking for f the bilinear map Φ′,
which gives an A-linear map Φ̃′ : H → H ′ that makes the following diagram
commutative :

M ×N
Φ′

//

Φ
��

H ′

H
Φ̃′

::
✉
✉
✉
✉
✉
✉
✉
✉
✉
✉

We can therefore factorize : Φ′ = Φ̃′ ◦ Φ ; by symmetry we have also an
A-linear map Φ̃ : H ′ → H such that Φ = Φ̃ ◦ Φ′. Thus,

Φ̃ ◦ Φ̃′ ◦ Φ = Φ̃ ◦ Φ′ = Φ,

which can be rewritten as IdH ◦Φ = (Φ̃ ◦ Φ̃′) ◦Φ. Uniqueness in the universal
property (P) (applied to (H,Φ) with bilinear map f = Φ) then gives Φ̃◦ Φ̃′ =
IdH and, similarly, Φ̃′ ◦ Φ̃ = IdH′ , and hence an isomorphism between H and
H ′.

We now show the existence of an (H,Φ) satisfying (P). Consider the A-
module A(M×N) of almost zero families of elements of A indexed by M ×N ,
where we denote by (ex,y)(x,y)∈M×N the canonical basis (all components of ex,y
are zero except that of (x, y) which is equal to 1). Let H be the quotient of
A(M×N) by the submodule R generated by elements with one of the following
forms :

ex1+x2,y − ex1,y − ex2,y, ex,y1+y2 − ex,y1 − ex,y2, eax,y − aex,y; ex,ay − aex,y,

with x1, x2, x ∈M , y1, y2, y ∈ N , and a ∈ A.

Now let θ : M × N → A(M×N) be the map that sends (x, y) to ex,y. It is
not a priori bilinear, but if we note Φ : M × N → H the map induced by
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θ, which sends (x, y) to the image ex,y of ex,y in H = A(M×N)/R, then Φ is
bilinear by the definition of R.

If now f : M × N → L is a bilinear map, the homomorphism u of A-
modules A(M×N) → L which sends each ex,y to f(x, y) has a kernel which
contains R due to the bilinearity of f , and therefore induces a homomorphism
f̃ : H → L upon taking the quotient. By the definition of θ, we have a
commutative diagram :

M ×N
f

//

θ
��

L

A(M×N)

u

;;
✇
✇
✇
✇
✇
✇
✇
✇
✇

whence (taking the quotient) a commutative diagram :

M ×N
f

//

Φ
��

L

H
f̃

;;
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈

In other words, we have f = f̃ ◦Φ, and it can be immediately seen that f̃ is
the only homomorphism of A-modules of H in L that satisfies this property.
We have therefore indeed shown that the universal property (P) holds for
(H,Φ).

Remark 2.3 a) Strictly speaking, we should use the notation (M ⊗A N,Φ)
for the tensor product, but in general the bilinear map Φ is implicitly known.

b) When M and N are abelian groups, we will often write M ⊗ N for
M ⊗Z N .

c) For (x, y) ∈M ×N , we will denote by x⊗ y the image of (x, y) by Φ.
Thus, any element of M ⊗A N can be written (generally non-uniquely) as a
finite sum

∑
i xi ⊗ yi with (xi, yi) ∈ M × N . Hence the map (x, y) 7→ x ⊗ y

is A-bilinear on M ×N .

The universal property is therefore now : for all bilinear maps f : M ×
N → L, there exists a unique linear map f̃ :M ⊗N → L such that

f(x, y) = f̃(x⊗ y)

for all x ∈M , y ∈ N .

d) The elements of M ⊗A N of the form x ⊗ y with x ∈ M and y ∈ N
are sometimes known as decomposable elements of M ⊗A N . Keep in mind
that they generate the A-module M ⊗AN , but seen as a set, they cannot be
a submodule of M ⊗A N .

12



Example 2.4 a) The universal property means that

M ⊗A A = A⊗A M =M,

where by abuse of notation, we have written “=” instead of “≃”. More gene-
rally, if N = Ae1 is free and with basis (e1), then u : m 7→ e1⊗m is an isomor-
phism from M to N ⊗A M . Indeed, if we set f(λe1, m) = λm for all λ ∈ A,
m ∈M , this gives us a well-defined bilinear map from N×M to M (seeing as
(e1) is a basis of N). The universal property therefore means there is a linear
map f̃ : N ⊗A M → M which makes the following diagram commutative :

N ×M
f

//

Φ
��

M

N ⊗A M
f̃

::
✉
✉
✉
✉
✉
✉
✉
✉
✉
✉

Thus, f̃(e1 ⊗ m) = m for all m ∈ M , which implies that f corresponds to
an inverse of the linear map u (by noticing that any element of N ⊗A M is
a sum of elements of the form λe1 ⊗ m with m ∈ M and λ ∈ A, which by
bilinearity can be written e1 ⊗m with m ∈M).

b) Let r and s be two integers that are prime with each other. Then
Z/rZ⊗ZZ/sZ = 0. In effect, there exists integers u and v such that ur+vs =
1 (Bézout). For x ∈ Z/rZ and y ∈ Z/sZ, we therefore have :

x⊗ y = (ur + vs)(x⊗ y) = urx⊗ y + x⊗ vsy = 0⊗ y + x⊗ 0 = 0.

c) Let M be an abelian group and suppose n ∈ N∗. We show using the
universal property that

M ⊗Z Z/nZ ≃ M/nM.

For this, we define Φ :M×Z/nZ →M/nM by Φ(m, ā) = a.m for all m ∈M
and a ∈ Z, where ā is the class of a in Z/nZ ; this makes sense because if we
modify a by an element in nZ, we modify a.m by an element in nM . Thus,
if f :M × Z/nZ → L is bilinear, we have for all m ∈M , a ∈ A :

f(m, ā) = f(m, a1̄) = f(am, 1̄),

and therefore have the commutative diagram

M × Z/nZ
f

//

Φ
��

L

M/nM
f̃

::
✉
✉
✉
✉
✉
✉
✉
✉
✉
✉
✉
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where f̃ is the A-linear map f(., 1̄), which is well-defined on M/nM (note
that if y = nz is in nM , then f(y, 1̄) = f(z, n̄) = 0). Also, f̃ is clearly the
only A-linear map with this property.

In particular, if M is a divisible abelian group (e.g., M = Q), we have
M ⊗Z Z/nZ = 0.

Proposition 2.5 a) (Commutativity) If M and N are A-modules, then

M ⊗A N ≃ N ⊗A M.

b) (Associativity) If M , N , and P are A-modules, then

P ⊗A (M ⊗A N) ≃ (P ⊗A M)⊗A N.

c) (Distributivity) If (Mi) is a family of A-modules and N an A-module,
then 6

(
⊕

i

Mi)⊗A N ≃
⊕

i

(Mi ⊗N).

In other words, “the tensor product commutes with direct sums”.

Proof (sketch): All follows from the universal property (P). Let us prove
for example (c) by showing that

⊕
i(Mi⊗N) satisfies the universal property

of (
⊕

iMi)⊗A N . Define

Φ : (
⊕

i

Mi)×N →
⊕

i

(Mi ⊗N)

by mapping (
∑

imi, n) onto
∑

imi ⊗ n. Now let f : (
⊕

iMi) × N → L be
bilinear ; this induces for each i a bilinear map fi : Mi × N → L, which
factorizes (via the universal property of Mi ⊗ N) through a unique linear
map f̃i : Mi ⊗ N → L. Then, via the universal property of the direct sum
(remark 1.9) we have a unique homomorphism f̃ :

⊕
i(Mi⊗N) → L satisfying

f = f̃ ◦ Φ defined by f̃ =
⊕

f̃i.

Corollary 2.6 Let M be a free A-module with basis (ei)i∈I . Then any ele-
ment of M⊗AN can be written uniquely as

∑
i ei⊗yi, where (yi) is an almost

zero family of elements of N . In particular, if K is a field and (fj)j∈J a basis
of the K-vector space N , then (ei⊗ fj)i∈I,j∈J is a basis of the K-vector space
M ⊗K N . When M and N are both finite-dimensional over K, we have :

dim(M ⊗K N) = dimM. dimN.

6. Warning : this property is not true in general if we replace the direct sum by the
direct product of an infinite number of modules ; however, it can be extended to what we
call a direct limit (or colimit) of A-modules—see tutorial.
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Proof: We write M =
⊕

iAei, from which M ⊗A N =
⊕

i(Aei)⊗A N via
proposition 2.5 (c). We then use example 2.4 (a) which says that any element
of (Aei)⊗A N can be written uniquely as ei ⊗ yi with yi ∈ N .

Remark 2.7 The associativity of the tensor product makes it possible to
unambiguously define the tensor product M1⊗A⊗A . . .⊗AMn of n modules,
for which we have a universal property like (P) : there is an n-linear map

Φ :M1 × . . .×Mn →M1 ⊗A . . .⊗A Mn; (m1, . . . , mn) 7→ m1 ⊗ . . .⊗mn

such that for any n-linear map f :M1 × . . .×Mn → L, there exists a unique
linear map f̃ :M1⊗A ⊗A . . .⊗AMn → L which makes the following diagram
commutative :

M1 × . . .×Mn

f
//

Φ
��

L

M1 ⊗A . . .⊗A Mn

f̃

77
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦

In other words, we have

f(m1, . . . , mn) = f̃(m1 ⊗ . . .⊗mn)

for all m1, . . . , mn in M .

Definition 2.8 Let u : M → M ′ and v : N → N ′ be homomorphisms of
A-modules. Then by the universal property (P) applied to the bilinear map
(x, y) 7→ u(x)⊗ v(y), there exists a unique homomorphism of A-modules

u⊗ v :M ⊗A N → M ′ ⊗A N
′

such that
(u⊗ v)(x⊗ y) = u(x)⊗ v(y)

for all x ∈M, y ∈ N . We call u⊗v the tensor product of the homomorphisms
u and v.

2.3. Tensor product with an A-algebra

Let B be an A-algebra, associated with a ring homomorphism ϕ : A→ B.
Let M be an A-module. Note that a B-module N is automatically also an
A-module : define a.n = ϕ(a).n for all a ∈ A, n ∈ N . The tensor product
allows us to—in a sense—perform the inverse operation :
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Definition 2.9 Let B be an A-algebra, and M an A-module. We define a B-
module structure on M⊗AB by setting, for each b ∈ B, b.z := (IdM⊗mb)(z),
where mb : B → B is multiplication by b. In other words, we have

b.(m⊗ b′) := m⊗ bb′ (1)

for all m ∈ M , b, b′ ∈ B. We say that the B-module M ⊗A B is obtained
from M by scalar extension of A to B.

Note that we can immediately check the axioms for B-module structure
via formula (1) and the fact that any element of M⊗AB is a sum of elements
of the form m⊗ b′ with m ∈M and b′ ∈ B.

Example 2.10 The same procedure allows us to define a B-module struc-
ture onM⊗AN for anyA-moduleM andB-moduleN , by setting b.(m⊗n) :=
m⊗ (b.n) for all m ∈M,n ∈ N, b ∈ B. Let us show that we have

(M ⊗A B)⊗B N ≃M ⊗A N

as B-modules. For this, let us show directly that the B-module M ⊗A N
satisfies the universal property required to be isomorphic to the tensor pro-
duct (on the ring B) (M ⊗A B)⊗B N . We start by defining a B-linear map
Φ : (M ⊗A B)×N →M ⊗A N which satisfies

Φ(m⊗A b, n) = m⊗A bn = b.(m⊗A n) (2)

for all m ∈ M,n ∈ N, b ∈ B. For this, we take (for each fixed n ∈ N) for
Φ(., n) the A-linear map IdM ⊗A (.n) from M⊗AB to M⊗AN . By definition,
the map Φ is then A-bilinear, and it is in fact B-bilinear via formula (2) and
the definition of the B-module structure on M ⊗A B.

If now f : (M ⊗A B) × N → L is a B-bilinear map, there exists a
unique B-linear map f̃ which makes the following diagram commutative :

(M ⊗A B)×N
f

//

Φ
��

L

M ⊗A N
f̃

88
q
q
q
q
q
q
q
q
q
q
q
q

In effect, since f is B-bilinear, we have in particular that

f(m⊗A 1, bn) = b.f(m⊗A 1, n) (3)

for all b ∈ B,m ∈ M,n ∈ N . Then, by the universal property of the tensor
product M ⊗A N , there exists a unique A-linear map f̃ :M ⊗A N → L such
that

f̃(m⊗A n) = f(m⊗A 1, n)
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for all m ∈ M,n ∈ N . We thus see that f̃ is in fact B-linear via formula (3)
since

f̃(b.(m⊗An)) = f̃(m⊗Abn) = f(m⊗A1, bn) = b.f(m⊗A1, n) = b.f̃ (m⊗An),

and furthermore, f̃ indeed makes the diagram commutative since

f̃(Φ(m⊗A b, n)) = f̃(m⊗A bn) =

f(m⊗A 1, bn) = f(b.(m⊗A 1), n) = f(m⊗A b, n).

We also see immediately that this is the only map that has this property.

Example 2.11 a) Let L be a field and K a subfield of L. For any K-vector
space M , we have the L-vector space M ⊗K L. From corollary 2.6, its dimen-
sion as an L-vector space is that of M seen as a K-vector space since if (ei)
is a basis of the K-vector space M , then (ei ⊗ 1) is a basis of the L-vector
space M ⊗K L since any element x of M ⊗K L can be written uniquely as

x =
∑

i

ei ⊗ li =
∑

i

li.(ei ⊗ 1),

with the li in L. This corresponds for example to the notion of complexifying
an R-vector space.

b) More generally, the same reasoning shows that if M is a free A-module
of rank r, then M ⊗A B is a free B-module of rank r, and if we suppose
simply that M is an A-module of finite type, we again get that M ⊗A B is a
B-module of finite type.

c) Let M and N be free A-modules of finite rank. Let (ei)1≤i≤r and
(fj)1≤j≤s be the respective bases of M and N . Let f : M → N be an A-
linear map represented by the matrix Q in these bases. Then the map

f ⊗ IdB :M ⊗A B → N ⊗A B

is B-linear and its matrix is Q (seen as a matrix with coefficients in B) in
the bases (ei ⊗ 1)1≤i≤r, (fj ⊗ 1)1≤j≤s. We can for example apply this to an
A-linear map Ar → As to obtain (after tensorizing by B) a B-linear map
Br → Bs with the same matrix.

d) If M is an A-module and I an ideal of A, then we have the isomorphism
M ⊗A A/I ≃ M/IM , where IM designates the submodule of M generated
by the im with i ∈ I and m ∈M . The proof of this is basically the same as
that for the special case A = Z, I = nZ (example 2.4 (c)).
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If B and C are A-algebras, then we can endow B⊗AC with an A-algebra
structure in the following way. Consider the quadrilinear map

g : B × C × B × C → B ⊗A C

defined by g(b, c, b′, c′) = (bb′) ⊗ (cc′) for all b, b′ ∈ B and c, c′ ∈ C. By the
universal property in remark 2.7, this factorizes via an A-linear map

g̃ : B ⊗A C ⊗A B ⊗A C → B ⊗A C,

which makes it possible to define an internal product on B ⊗A C which in
particular satisfies :

(b⊗ c).(b′ ⊗ c′) := g̃(b⊗ c⊗ b′ ⊗ c′) = (bb′)⊗ (cc′),

which implies immediately that it is associative, commutative, and distribu-
tive with respect to addition. Furthermore, this product is compatible with
the A-module structure of B ⊗A C ; in other words, it makes B ⊗A C an
A-algebra.

Definition 2.12 The algebra B ⊗A C is the A-algebra which is the tensor
product of the A-algebras B and C. It comes with 7 the A-algebra homomor-
phisms uB : B → B ⊗A C and uC : C → B ⊗A C defined respectively by
b 7→ b⊗ 1 and c 7→ 1⊗ c.

The A-algebra B ⊗A C has the following universal property :

Proposition 2.13 For any A-algebra D and homomorphisms of A-algebras
fB : B → D and fC : C → D, there exists a unique homomorphism of
A-algebras f : B ⊗A C → D such that fB = f ◦ uB and fC = f ◦ uC.

Proof: We apply the universal property of B ⊗A C to the A-bilinear map
ϕ : B × C → D defined by

ϕ(b, c) = fB(b)fC(c); b ∈ B, c ∈ C.

This gives us an A-linear map f : B ⊗A C → D satisfying

f(b⊗ c) = fB(b)fC(c) (4)

for all b ∈ B, c ∈ C, from which f(b⊗1) = fB(b) and f(1⊗ c) = fC(c). From
(4) it also follows that f is a ring homomorphism.

7. Note that these homomorphisms have no analogs when B and C are just A-modules.
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Example 2.14 Let F1, . . . , Fs be polynomials from A[X1, . . . , Xr]. Take B =
A[X1, . . . , Xr]/(F1, . . . , Fs). Proposition 2.13 then gives that for anyA-algebra
C :

B ⊗A C ≃ C[X1, . . . , Xr]/(F1, . . . , Fs).

In particular, we have

A[X1, . . . , Xr]⊗A C ≃ C[X1, . . . , Xr].

For example,

A[X1, . . . , Xr]⊗A A[Y1, . . . , Ys] ≃ A[X1, . . . , Xr, Y1, . . . , Ys].

2.4. Tensor products and exact sequences

An exact sequence of A-modules does not necessarily remain one when
tensorizing by an A-module.

Example 2.15 Consider the one-to-one map f from Z to Q (both seen as
Z-modules). The Z-linear map

Z⊗Z Z/nZ → Q⊗Z Z/nZ

obtained after tensorizing by the identity of Z/nZ gives (cf. example 2.4 (c))
the zero map Z/nZ → 0, which is not one-to-one.

It is therefore unrealistic to expect that we will conserve the one-to-one
property when tensorizing by any given A-module. 8 Nevertheless, we do have
the following result :

Theorem 2.16 Let
N ′ f

→ N
g
→ N ′′ → 0

be an exact sequence of A-modules, and M an A-module. Then the sequence

N ′ ⊗A M
fM→ N ⊗A M

gM→ N ′′ ⊗A M → 0

(obtained by tensorizing the arrows f and g by the identity homomorphism
M →M) remains exact.

8. Well-behaved A-modules in this respect are called flat. For example, it can be shown
that if A is a principal ideal domain, the flat A-modules are those that are torsion-free ;
see tutorials.
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Proof: Since N ′′ ⊗A M is generated by the x′′ ⊗ y with x′′ ∈ N ′′, y ∈ M ,
the onto property of gM comes directly from that of g and the formula :
gM(x⊗ y) = g(x)⊗ y for all x ∈ N, y ∈ M . Similarly, the fact that g ◦ f = 0
immediately implies that gM ◦ fM = 0 since gM(fM(x′ ⊗ y)) = g(f(x′)) ⊗ y
for all x′ ∈ N ′, y ∈M . Thus, gM factorizes through an onto map

g̃M : (N ⊗A M)/fM(N ′ ⊗A M) → N ′′ ⊗A M.

It now remains to show that g̃M is one-to-one.

For any x′′ ∈ N ′′, denote u(x′′) ∈ N/f(N ′) its antecedent by the isomor-
phism N/f(N ′) → N ′′ induced by g. We therefore have a bilinear map

N ′′ ×M → (N ⊗A M)/fM (N ′ ⊗A M)

which sends (x′′, y) onto the class of u(x′′)⊗ y (which is well-defined modulo
fM(N ′⊗AM) since u(x′′) is defined modulo f(N ′)). By the universal property
of the tensor product, this map factorizes through an A-linear map

θ : N ′′ ⊗A M → (N ⊗A M)/fM(N ′ ⊗A M).

Note that if x ∈ N , we have u(g(x)) = x in N/f(N ′) since x is an antecedent
of g(x) by g. By construction, we have therefore that for any x ∈ N, y ∈ M
(and noting z̄ the class in (N ⊗A M)/fM(N ′ ⊗A M) of an element z of
N ⊗A M) :

(θ ◦ g̃M)(x⊗ y) = θ(g(x)⊗ y) = u(g(x))⊗ y = x⊗ y,

which shows that θ◦ g̃M is the identity of N⊗AM . In particular, g̃M is indeed
one-to-one.

Example 2.17 a) If f : Ar → As is an onto A-linear map, then for any
A-algebra B, the A-homomorphism Br → Bs induced by tensorizing by B is
onto. By taking B = A/I, where I is a maximal ideal, we end up back with
the first proof of theorem 1.15.

b) All free A-modules are flat. In effect, if N ′ → N is a one-to-one A-
linear map, the induced A-homomorphism N ′ ⊗A M → N ⊗A M remains
one-to-one thanks to corollary 2.6. In particular, if K is a field, any module
(= vector space) on K is flat.
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3. Modules over principal ideal domains

3.1. Main theorems

In this section, A designates a principal ideal domain. The first result
considerably refines theorem 1.19 in this setting.

Theorem 3.1 Let A be a principal ideal domain. Then any submodule N of
An is free and of finite rank m ≤ n.

Remark 3.2 Since A is Noetherian, we already know that N is of finite
type. If we knew that N was free, the fact that its rank would be at most n
would follow from remark 1.18, so it is indeed the freedom of N that is the
difficulty here, and fails when A is not a PID.

Proof: We proceed by induction on n. For n = 1, it is the definition of
a principal ideal domain. Suppose therefore that the result is true for all
positive integers < n. Let N be a submodule of An, and set M1 = Ae2 ⊕
. . . ⊕ Aen, where (e1, . . . , en) is the canonical basis of An. In other words,
M1 is the submodule of An made up of elements of the form (0, . . . , . . .). If
N ⊂ M1, the result is true by induction since M1 is isomorphic to An−1.
Therefore, we only need to consider N 6⊂ M1. By induction, (N ∩M1) has a
basis (f2, . . . , fm) where m ≤ n. The difficulty is now in finding an element
of N to add to this to make it a basis of N .

Let us consider the subset I of A made up of the b ∈ A for which there
exists some y ∈ M1 with be1+y ∈ N . We have also I = p(N) where p : N → A
is the projection An → A onto the first coordinate. Since p is A-linear, we
have that I is an ideal of A, and this ideal is not zero since N contains an
element which is not in M1. Since A is a PID, we can write I = (d) with
d 6= 0 in A. By the definition of I, we therefore have an element f1 = de1+y1
in N with y1 ∈ M1. Note that f1 6= 0, since otherwise d would be zero as
An = Ae1 ⊕M1. We now show that (f1, . . . , fm) is a basis of N .

First let us show that (f1, . . . , fm) generates N . If x ∈ N , we have x =
be1+y with b ∈ A and y ∈M1. But then b ∈ I, from which b = ad with a ∈ A.
This gives x = af1+(y−ay1), and thus (x−af1) is in N ∩M1, which means
we can decompose it in the basis (f2, . . . , fm) of N ∩M1. Hence x = af1 + x′

with x′ ∈ Af2 + . . .+ Afm, which shows that (f1, . . . , fm) generates N .

We now show finally that (f1, . . . , fm) is free. For this it suffices to show
that (f1) is free and that we have Af1 ∩ (N ∩M1) = {0}, since (f2, . . . , fm)
is already free by hypothesis. The first point is easy to see : decompose f1
(which is not zero) in the canonical basis of An and use the fact that A is
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an integral domain. For the second point, if λf1 is in M1 with λ ∈ A, then
λde1 + λy1 ∈ M1, from which (λd)e1 ∈ M1, but by the definition of M1 and
the canonical basis of An, this implies that λd = 0 and thus λ = 0 by the
fact that A is an integral domain.

To go further in the classification of modules over PID, the following more
precise result is required. It is probably the most important theorem in this
chapter.

Theorem 3.3 (“’adapted basis”) Let A be a principal ideal domain, M a
free A-module of rank n and N a submodule of M . Then there exists a basis
(e1, . . . , en) of M and elements (d1, . . . , dr) of A (with r ≤ n) such that :

1. (d1e1, . . . , drer) is a basis of N .

2. We have the following divisibilities : d1 | d2 | . . . | dr.

In particular, the di are non-zero, and we can replace each di by any
element of A it is an associate of. Note that we already knew that N was free
and of rank ≤ n via theorem 3.1.

The proof of this theorem is long and fairly complex. We start with a
lemma that initiates an argument by induction on n.

Lemma 3.4 Suppose that N 6= {0}. Then there exists a linear map f1 :
M → A such that

1. f1(N) is maximal (for inclusion) among the f(N) where f : M → A
is linear.

2. If we set f1(N) = (d1), then there exists e1 ∈ M such that f1(e1) = 1
and u1 := d1e1 is in N .

Proof: First we fix a basis (ε1, . . . , εn) for M (which has no reason to be
well-adapted forN). We then have (for 1 ≤ i ≤ n) the linear form ε∗i :M → A
which associates with any x ∈ M its i-th coordinate in this basis. For any
linear form f : M → A, f(N) is an ideal of A. The first result then follows
from the fact that A is a PID (and thus Noetherian), which also makes it
possible to write f1(N) = (d1), with d1 6= 0 since N is not zero, and so one
of the linear forms ε∗i has a non-null restriction to N .

Now suppose that u1 ∈ N such that f1(u1) = d1. If f :M → A is a linear
form, we set d = f(u1) and show that d1 divides d (be careful since we still
do not know whether f1(N) is the largest element of the f(N) with f a linear
form on M ; this will be proved in the following lemma). Set e = (d, d1) ; by
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Bézout’s theorem, there exists α and β in A such that (αf + βf1)(u1) = e.
This implies that (αf + βf1)(N) ⊃ eA ⊃ d1A, and by the maximality of
f1(N) = d1A, we have (αf + βf1)(N) = d1A, from which dA = eA, which
signifies that e and d1 are associates, and thus d1 | d.

Finally, f(u1) ∈ d1A for any linear form f : M → A, and this is true
in particular for all linear forms ε∗i . Thus, all of the coordinates of u1 in the
basis (ε1, . . . , εn) are divisible by d1, which means we can find e1 ∈ M such
that u1 = d1e1. Then, f1(e1) = 1 seeing as f1(u1) = d1 6= 0 and A is integral.

We now move on to the next lemma.

Lemma 3.5 With the hypotheses and notation from the previous lemma, we
have :

1. M = Ae1 ⊕ ker f1 and N = Au1 ⊕ (ker f1 ∩N).

2. For any linear form f :M → A, f(N) ⊂ d1A.

Proof: 1. Since f1(e1) = 1, Ae1 ∩ ker f1 = {0} is clear. Any x in M
can be written x = f1(x)e1 + (x − f1(x)e1) with (x − f1(x)e1) ∈ ker f1, so
M = Ae1 ⊕ ker f1. The same for any x in N satisfying f1(x) = ad1 with
a ∈ A, from which x = au1+(x−au1) with (x−au1) ∈ (ker f1∩N). Finally,
Au1 ∩ ker f1 = {0} results from f1(u1) = d1 6= 0 and A being integral.

2. Let f : M → A be linear. Via 1., we define the linear g : M → A by :
g(x) = f(x) if x ∈ ker f1, and g(e1) = 1. Then, since g(u1) = d1, we have
g(N) ⊃ d1A, and thus g(N) = d1A by the maximality of f1(N) = d1A. In
particular the restriction of f to (ker f1∩N) has its image contained in d1A ;
so does also the restriction of f to N , since N is the sum of (ker f1 ∩N) and
Au1, while f(u1) = d1f(e1) is divisible by d1.

End of the proof of the Theorem : The n = 0 and N = 0 cases
are trivial. For n = 1, we can suppose that M = A and the result follows
from the definition of a principal ideal domain upon taking e1 = 1 and d1
a generator of the ideal N ⊂ A (note that (d1) is therefore then a basis
of N due to A being an integral domain). Suppose the result is true for the
positive integers < n. We then apply lemma 3.5 and the induction hypothesis
to the A-module ker f1 (which is free due to theorem 3.1, and of rank n− 1
by corollary 1.16 and the fact that M = Ae1 ⊕ ker f1, given that the rank
of Ae1 is 1) and its submodule (ker f1 ∩ N). We obtain a basis (e2, . . . , en)
of ker f1, and elements d2, . . . , dr of A with r ≤ n and d2 | . . . | dr such that
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M = Ae1⊕ . . .⊕Aen and N = A(d1e1)⊕ . . .⊕A(drer). Finally, d1 divides d2
by applying lemma 3.5 to the “second coordinate” linear form (in the basis
(e1, . . . , en)) on M .

Be careful not to fall into the usual traps : the theorem does not say that
N is a direct summand of M nor that we can complete a basis of N with a
basis of M (take for instance A = Z, M = Z, N = 2Z).

Theorem 3.6 Let M be a module of finite type over a principal ideal domain
A. Then there exist non-null and non-invertible d1, . . . , ds in A for which M
is isomorphic to

Am ⊕

s⊕

i=1

(A/diA)

with m ∈ N and d1 | d2 | . . . | ds.

Proof: Since M is of finite type, it is generated by n elements, which
means that there is an exact sequence of A-modules

0 → N → An p
→M → 0

(this simply means that M is isomorphic to a quotient of An).
We apply Theorem 3.3 to the submodule N of the free A-module An. We

obtain

An =
n⊕

i=1

Aei

N =
r⊕

i=1

A(diei).

Now let zi be the image of ei in M (by p). Then M =
⊕n

i=1Azi. In effect,
the zi generate M (by the onto nature of p), and also if

∑n

i=1 λizi = 0 where
λi ∈ A, then

∑n

i=1 λiei ∈ N and so each λi is a multiple of di for 1 ≤ i ≤ r
(resp. is equal to zero for r < i ≤ n) since (diei)1≤i≤r is a basis of N ; hence
each λiei is in N , i.e., λizi = 0.

Now, each A.zi is isomorphic to (A/diA) for 1 ≤ i ≤ r and to A for
r < i ≤ n, since the kernel of the onto map λi 7→ λzi from A to A.zi is diA
for 1 ≤ i ≤ r (resp. 0 for r < i ≤ n), still because (diei)1≤i≤r is a basis of the
kernel N of p. We obtain M ≃ An−r ⊕

⊕r

i=1(A/diA), but for invertible di we
have A/diA = 0, so we can just keep the non-invertible di’s.
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Definition 3.7 Let M be a module over a commutative ring A. Remember
that M is said to be torsion-free if ax = 0 (with a ∈ A, x ∈ M) implies
either a = 0 or x = 0. We say that M is a torsion module if for each x in M ,
there exists a non-null a in A such that ax = 0.

Note that “torsion-free” is not in general the opposite of “torsion”. For
example, Z⊕Z/2Z is neither when seen as a Z-module. Clearly, a free module
over an integral domain is torsion-free. We can now prove the reverse is also
true for PID :

Corollary 3.8 Let M be a module of finite type over a principal ideal domain
A. Then M is free if and only if it is torsion-free.

Proof: This results immediately from theorem 3.6, since the condition that
M is torsion-free implies that s = 0 (for non-invertible d, A/dA is non-null,
and all elements of A/dA are killed by d.

This corollary is quite specific to principal ideal domains. If A is a Noe-
therian integral domain, any ideal I of A is a torsion-free A-module of finite
type, but from remark 1.18, I is not free if it is not principal. Furthermore,
the finite type hypothesis is important since for example, Q is a torsion-free
Z-module and we have already seen that it is not free (example 1.14).

Remark 3.9 If A is a commutative ring, an A-module (of finite type) M is
said to be projective if it is a direct factor of a free module, i.e., if there exists
an A-module N such that M⊕N is free. We have therefore in particular that
a projective module (of finite type) over a principal ideal domain is always
free. 9 It is also true for any local ring, i.e., those with only one maximal ideal,
and for K[X1, . . . , Xn] when K is a field (the Quillen-Suslin theorem, 1976,
formerly known as Serre’s conjecture).

3.2. p-primary decompositions

To finish up the classification of modules of finite type over a principal
ideal domain A, we require uniqueness results. Surprisingly, it is not easy to
directly prove such results using theorem 3.6 ; it is much more usual to work
with what are known as p-primary components, which are also useful in their
own right.

9. The finite hypothesis is not indispensable, but the proof is much more complex
without it ; see the article by Kaplansky in Ann. Math. 68 (1958).
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Definition 3.10 Let p be an irreducible element in A. We say that an A-
module is p-primary if it is isomorphic to a module of the form

⊕s

i=1(A/p
viA)

with vi ∈ N∗ for all i ∈ [1, s].

In particular, a p-primary A-module is a torsion module of finite type
(with the notation below, any element x of a p-primary A-module is killed
by pmax(vi)).

For any non-zero d in the principal ideal domain A, we as usual denote
by vp(d) the largest power of the irreducible element p that divides d.

Proposition 3.11 1. Let d = u
∏

p∈S p
αp be a decomposition of d into a

product over irreducible elements (where S is a finite set of irreducible
elements that are not associates pairwise, and u ∈ A∗). Then

A/dA ≃
⊕

p∈S

(A/pαpA).

2. Let M =
⊕s

i=1(A/diA) with d1 | d2 | . . . | ds. Then for any irreducible
element p of A and any integer k ≥ vp(ds), we have

M/pkM ≃

s⊕

i=1

(A/pvp(di)A).

3. Let M be a torsion A-module of finite type. Let P be a system of
irreducible representatives of A. Then

M =
⊕

p∈P

Mp,

where Mp is a p-primary module for which Mp = M/pkM for large
enough k, and almost all of the Mp are equal to zero. We say that the
Mp are the p-primary components of M .

Proof: 1. It is simply the Chinese remainder theorem when A = Z.
By reasoning by induction on the cardinality of S, it suffices to show that
A/(d1d2)A ≃ A/d1A × A/d2A when d1 and d2 are elements of A that are
prime with each other. The map that links a ∈ A with (a1, a2), where ai
is the class of a in A/diA for i = 1, 2, clearly has the kernel (d1d2)A since
(d1, d2) = 1. It is onto via Bézout’s theorem : let b, c ∈ A ; then there exists
α, β ∈ A such that αd1 + βd2 = 1, and so x := βbd2 + αcd1 is in the same
class as b in A/d1A and c is in A/d2A.
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2. As p is fixed, we remark that if q is an irreducible element of A that
is not an associate of p, then multiplication by p is onto in A/qmA for all
m ∈ N, since by writing out Bézout’s identity for qm and p, we see that the
class of p is an invertible element of A/qmA. We deduce that if Q is a q-
primary module, then since it is a direct sum of modules of the form A/qmA,
multiplication by pn is onto in Q for all n ∈ N, i.e., Q/pnQ = 0.

According to 1.,M is isomorphic to
⊕

q∈SMq withMq a q-primary module
(since S is a finite sum of irreducible elements that pairwise are not associates,
obtained by decomposing all of the di). Hence M/pkM =Mp/p

kMp since for
q 6= p in S, we have Mq/p

kMq = 0. Since from 1. we have that Mp =⊕s

i=1(A/p
vp(di)A), we obtain M/pkM =Mp as soon as k is larger than all of

the vp(di), i.e., for k ≥ vp(ds).

3. The structure theorem 3.6 means we can write M ≃
⊕s

i=1(A/diA).
According to 1., we then have

M =
⊕

p∈P

Mp,

with Mp a p-primary module, and from 2., we therefore have M/pkM =
Mp/p

kM = Mp for large enough k. Furthermore, Mp = 0 when p divides
none of the di, which is true for almost all p ∈ P.

From this we can deduce the wished-for uniqueness result :

Theorem 3.12 Let M be a module of finite type over a principal ideal do-
main A, and write it as

M ≃ Am ⊕

s⊕

i=1

(A/diA)

with non-null and non-invertible d1, . . . , ds such that d1 | . . . | ds. Then m, s,
and the di up to association depend only on M .

In other words, if we have another decomposition :

M ≃ Am′

⊕
s′⊕

i=1

(A/d′iA),

then m = m′, s = s′, and d′i is an associate of di for all i.
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Proof: Let Mtors be the torsion submodule of M , i.e., the set of x in M for
which there exists a 6= 0 in A for which ax = 0. Then Mtors ≃

⊕s

i=1(A/diA)
and M/Mtors ≃ Am. By the rank invariance of free modules of finite type, m
depends only on M so we can assume that M is a torsion module.

It therefore suffices to show that for any irreducible p, the sequence of
vp(di) is uniquely defined. Since a torsion A-module M is the direct sum of
its p-primary components Mp =

⊕s

i=1(A/p
vp(di)A), which are characterized

by Mp = M/pkM for large enough k, we find ourselves in the setting where
M is p-primary.

Suppose therefore that M =
⊕s

i=1(A/p
αiA), where (αi) is an increasing

sequence of strictly positive integers. Since A is a PID and p irreducible,
A/pA is a field and furthermore, for any k ∈ N, the A-module with p-torsion
pkM/pk+1M is canonically equipped with an A/pA-vector space structure
(like in example 1.4 (c)). We see that if Mi := (A/pαiA), we have for all
integers k : pkMi/p

k+1Mi = 0 if k ≥ αi (since then pkMi ⊂ pαiMi = 0) ; but
if k < αi, then pkM ⊃ pk+1M ⊃ pαiA, from which

pkMi/p
k+1Mi = (pkA/pαiA)/(pk+1A/pαiA) ≃ pkA/pk+1A.

However, A/p is isomorphic to pkA/pk+1A via ā 7→ pkā, so finally we obtain
that pkMi/p

k+1Mi ≃ A/pA if k < αi. In particular, for any k ∈ N, the
number of αi > k is none other than the dimension of the A/pA-vector space
pkM/pk+1M ≃

⊕s

i=1 p
kMi/p

k+1Mi, so
∑

αi>k 1. Hence this number depends
only on M , and the same is also true for the increasing sequence of integers
(αi).

3.3. Applications

We now present three important examples of the application of the theo-
rems we have just seen.

Abelian groups of finite type.

In the A = Z case, the general structure theorem (theorems 3.6 and 3.12)
gives :

Theorem 3.13 Let M be an abelian group of finite type (i.e., generated by
a finite number of elements). Then M is isomorphic to

Zr ⊕
s⊕

i=1

Z/diZ,
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where r ∈ N, and the di are integers ≥ 2 satisfying d1 | . . . | ds. Furthermore,
r and the di are entirely determined by M .

Of course, M is finite if and only if r = 0. If it is, we obtain the p-Sylow
Mp of M via the p-primary decomposition.

Equivalence of matrices with coefficients in a principal ideal do-
main.

Let A be a commutative ring. We note GLn(A) the group of inver-
tible elements of the (non-commutative if n ≥ 2) ring Mn(A). According
to the comatrix identity, this is simply the matrices of Mn(A) with inver-
tible determinants in A, where the inverse of such a matrix M is given
by M−1 = (detM)−1.M̃ (in the other direction : if there exists a matrix
N ∈ Mn(A) with MN = In, then (detM).(detN) = 1 and so detM is
invertible).

Definition 3.14 Let p and q be positive integers. We say that the matrices B
and C of Mp,q(A) are equivalent if there exists U ∈ GLp(A) and V ∈ GLq(A)
such that C = UBV . This is the same as saying that there exists respective
bases B and B′ of Aq and Ap such that if u is the linear map represented by
B in the canonical bases of Aq and Ap, we have : MatB,B′(u) = C.

When A is a field, this falls back to the classical definition (which we
should be careful not to mix up with the more subtle relation of similarity
when p = q). The following theorem characterizes the equivalence classes
under this notion of equivalence when A is a PID.

Theorem 3.15 Let A be a principal ideal domain. Then :

1. Any matrix B of Mp,q(A) is equivalent to a block matrix of the form

(
D 0
0 0

)
,

where D = Diag(d1, . . . , dr), r ≤ min(p, q), and d1, . . . , dr are non-null
elements of A satisfying d1 | . . . | dr.

2. The matrices

(
D 0
0 0

)
and

(
D′ 0
0 0

)
with D = Diag(d1, . . . , dr), D

′ =

Diag(d′1, . . . , d
′
r′) in the form described above are equivalent if and only

if : r = r′ and for all i, di and d′i are associates. In other words, the
sequence (d1, . . . , dr) in 1. only depends (up to association) on the
equivalence class of B.
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The d1, . . . , dr are called the invariant factors of B, and sometimes the
quotients d2/d1,. . . ,dr/dr−1 are known as their elementary divisors. Note that
r is none other than the rank of B seen as a matrix of Mp,q(K), where
K := FracA.

Proof: We first prove 1. Let u : Aq → Ap be the map defined by B in
the canonical bases. We must find respective bases B and B′ of Aq and Ap

so that the matrix of u in these bases has the required form. Let us apply
Theorem 3.3 to the submodule Im u of the free module Ap of finite type. We
obtain a basis (e1, . . . , ep) of Ap and a sequence (d1, . . . , dr) of elements of
A \ {0}, with d1 | . . . | dr, such that (d1e1, . . . , drer) is a basis of Im u. We
then choose ε1, . . . , εr in Aq such that u(εi) = diei for i = 1, . . . , r. Then
(u(ε1), . . . , u(εr)) is free, and therefore (ε1, . . . , εr) is free. We also have that

Aq = ker u⊕
r⊕

i=1

Aεi

since (u(ε1), . . . , u(εr)) is free (which gives ker u ∩
⊕r

i=1Aεi = {0}), and
any element x in Aq satisfies : u(x) is a linear combination of the diei =
u(εi), so x can be written as the sum of an element in ker u and a linear
combination of the εi. We can then (thanks to theorems 3.1 and 1.16) take a
basis (εr+1, . . . , εq) of ker u, and we obtain a basis B = (ε1, . . . , εq) of Aq. It
then suffices to take B′ = (e1, . . . , ep) to obtain the required form. Note that
if B is the matrix of a one-to-one map from Aq to Ap, the di associated with
it are the same as those given by Theorem 3.3 for the submodule Im u ≃ Aq

of Ap.

To prove 2., the major step consists of proving the following lemma :

Lemma 3.16 For any matrix B in Mp.q(A) and any positive integer s (less
than or equal to min(p, q) or to rank(B)), we denote ms(B) the smallest
common divisor of the minors of length s of B. Then :

a) If B and C are equivalent, ms(B) and ms(C) are associates.

b) If B =

(
D 0
0 0

)
with D = Diag(d1, . . . , dr) and d1 | . . . | dr, then :

ms(B) = d1...ds

for all s ∈ {1, . . . , r}.
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Proof: a) It suffices to notice that if U ∈ Mp(A), then the rows of UB
are linear combinations of the rows of B and if V ∈ Mq(A), the columns of
BV are linear combinations of the columns of B. From this we deduce (with
the help of theorem 1.11 (b)) that any minor of size s of UBV is a linear
combination with coefficients in A of minors of size s of B, which implies that
ms(B) divides ms(UBV ). By symmetry, ms(B) and ms(C) are associates if
B and C are equivalent.

b) When B has this particular form, any minor m of size s is the sum
of products e1...es, where the ei are pairwise distinct in the set {d1, . . . , dr}.
From the divisibility property of the di, e1...es is divisible by d1...ds. Since
also the principal minor of order s of B is d1...ds, we obtain the desired result.

End of the proof of theorem 3.15 (2). We already have r = r′ by
the rank invariance of equivalent matrices. From lemma 3.16 (a), we have
ms(D) = ms(D

′) (up to association), and then also with part (b) of the
same lemma we have

d1...ds = d′1...d
′
s

for all s with 1 ≤ s ≤ r. By induction on s, we then see that ds = d′s (up to
association) for all s in [1, r].

Remark: It is much more difficult to determine the similarity classes of
matrices in Mn(A). In fact, we only know how to do so when A is a field,
since as we will now see, this is linked to the classification of modules over
the ring A[X ]—which is not a PID if A is not a field.

The reduction of endomorphisms of a finite dimensional K-vector
space.

Let K be a field, E a K-vector space of (finite) dimension n, and u
an endomorphism of E. We want to find a basis in which the matrix of u
has a pleasant form, and more precisely : determine the similarity classes in
Mn(K). This is the subject of the main theorem in this section. Let us begin
by recalling some notation.

Definition 3.17 Let P = Xd +
∑d−1

i=0 aiX
i be a monic polynomial whose
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coefficients are from K. We denote C(P ) the matrix :



0 ... ... ... −a0
1 0 ... ... −a1
0 1 0 ... −a2
... ... ... ... ...
0 ... ... 1 −ad−1




which is known as the companion matrix associated with P .

If u is the endomorphism associated with C(P ) in a basis B and x is
the first vector of this basis, then B = (x, u(x), . . . , ud−1(x)). In particular,
a polynomial Q such that Q(u) = 0 is of degree at least d ; since P (u) = 0
(seeing as ud(x) = −

∑d−1
k=0 aku

k(x)), the minimal polynomial of C(P ) is P .
From the Cayley-Hamilton theorem, this is also its characteristic polynomial
(this can also be checked directly) Such an endomorphism u is said to be
cyclic.

Theorem 3.18 1. For any endomorphism u of a finite dimensionalK-vector
space E, there exists a basis of E in which the matrix of u is block diagonal
of the form (“Frobenius normal form”) :




C(P1)
C(P2)

...
C(Ps)




where the Pi are monic polynomials fromK[X ] of degree at least 1, satisfying :
P1 | P2 | . . . | Ps.

2. The Pi are entirely determined by u ; we call them the invariants of
tensors of u. Two matrices in Mn(K) are similar if and only if they have the
same invariants of tensors. 10

3. Let B ∈ Mn(K) and let C := XIn − B be the characteristic matrix of
B (it is a matrix of rank n in Mn(K[X ])). Then the sequence of invariant
factors of C is (1, . . . , 1, P1, . . . , Ps), where P1, . . . , Ps are the invariants of
tensors of B. In particular, these invariants are given by the formula :

P1...Ph = mh+n−s(C)

for h = 1, . . . , s, where mi(C) designates the greatest common divisor of the
minors of size i of C in K[X ]. 11

10. Of course, the invariants of tensors of a matrix are by definition the invariants of the
endomorphism it represents in the canonical basis.

11. Beware of the shift in indices due to the invertible invariant factors of C.
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Note that the minimal polynomial of u is Ps (be careful : this is the
“largest” Pi, not the smallest !) and the characteristic polynomial of u is
P1...Ps. We can iteratively calculate the Pi starting with Ps, using the for-
mulas Ps = mn(C)/mn−1(C), Ps−1 = mn−1(C)/mn−2(C), etc.

The proof of this theorem is based on the theory of modules over the
PID A := K[X ]. More precisely, we define an A-module structure M over
the K-vector space E via : P.v := P (u)(v) for P ∈ K[X ] and v ∈ E. We
immediately note that this is a torsion A-module since if π(u) = 0 (ex. π
is the characteristic polynomial of u) we have π.v = 0 for all v in M . Also,
it is generated by any basis of the K-vector space E since A contains all of
the constants of K. To connect the invariants linked to M with those of the
characteristic matrix C, we need the following lemma :

Lemma 3.19 Let (ε1, . . . , εn) be a fixed basis of E, B = (aij) the matrix of
u in this basis, and (e1, . . . , en) the canonical basis of the A-module K[X ]n.
Let ϕ be the (onto) A-linear map from K[X ]n to M that sends ei to εi for all
i = 1, . . . , n. Set fj = Xej −

∑n

i=1 aijei for j = 1, . . . , n. Then (f1, . . . , fn) is
a basis of the A-module kerϕ.

Proof: We already have fj ∈ kerϕ seeing as ϕ(fj) = X.εj −
∑n

i=1 aijεi =
u(εj)−

∑n

i=1 aijεi = 0 by the definition of the matrix B.
We now show that (f1, . . . , fn) generates the A-module kerϕ. Any element

Y of K[X ]n can be written Y =
∑n

j=1 λjej with λj ∈ K[X ]. We then see that
we can rewrite Y in the form Y =

∑n

j=1 µjfj +
∑n

j=1 bjej with µj ∈ K[X ]
and bj a constant in K : in effect, by K-linearity, it suffices to see this when
Y = Xkej with k ∈ N ; in this case, this can be deduced by induction on k
with the formula fj = Xej −

∑n

i=1 aijei

If now Y is also in kerϕ, then
∑n

j=1 bjej is too, and the following holds :∑n

j=1 bjεj = 0, and finally all of the bj are equal to zero since (ε1, . . . , εn) is
a basis of the K-vector space E.

Let us now subsequently show that the family (f1, . . . , fn) is free in the
A-module kerϕ. If

∑n

j=1 λjfj = 0 with λj ∈ A, then

n∑

j=1

(λjX)ej =
∑

1≤i,j≤n

λjaijei =

n∑

j=1

(

n∑

i=1

ajiλi)ej ,

and since (e1, . . . , en) is a basis for the A-module K[X ]n, we obtain for all
j = 1, . . . , n : Xλj =

∑n

i=1 ajiλi, which implies that all of the λj are equal
to zero, since otherwise there would be a contradiction when taking j such
that λj has maximal degree (say d) within λ1, . . . , λn, since then Xλj would
be of degree d+ 1 and

∑n

i=1 ajiλi of degree at most d.
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Proof of theorem 3.18 : With the notation from the previous lemma,
let ψ be the inclusion map from kerϕ to K[X ]n. Its matrix in the bases
(f1, . . . , fn) and (e1, . . . , en) is by definition C = XIn − B, whose deter-
minant is non-zero (it is indeed the characteristic polynomial of u). The
sequence of its invariant factors is thus of the form (1, . . . , 1, P1, . . . , Ps) with
P1 | . . . | Ps, and we can choose the Pi to be monic of degree at least 1.
As we saw in the proof of the first point of theorem 3.15 (on the equivalence
of matrices with coefficients in A), the A-module M ≃ (K[X ]n/ kerϕ) is
therefore isomorphic to

⊕s

i=1(A/Pi.A), and M =
⊕s

i=1A.zi, where zi is the
image in M (via ϕ) of the i-th vector of an adapted basis for the inclusion
ψ. The ideal generated by Pi is then the annihilator of zi in the A-module
M , i.e.,

(Pi) = {P ∈ A, P.zi = 0}.

Let Ei be the submodule A.zi of M . Then in particular Ei is a vector
subspace of E and is stable by u ; more precisely, it is the image of the k-
linear map P 7→ P.zi = P (u)(zi) from A to M . Thus Ei is isomorphic to
A/Pi.A, which is a K-vector space of dimension di := degPi (a basis is made
up of classes of (1, X, . . . , Xdi−1), via Euclidean division by Pi). Now the
family Bi := (zi, u(zi), . . . , u

di−1(zi)) is a basis of the K-vector space Ei (of
cardinality di and free, still because the annihilator of zi is Pi.A). The matrix
of the restriction of u to Ei in Bi is C(Pi) by the definition of C(Pi) and since
(Pi(u))(zi) = 0. Since E =

⊕s

i=1Ei (as an A-module or a K-vector space),
we deduce the first point by concatenating the bases Bi.

If now u has a matrix in the above form with polynomials (Q1, . . . , Qs′)
in another basis, then the A-module M is the direct sum of the submodules
Ni, where each Ni corresponds to an endomorphism v = u|Ni

whose matrix
in a certain basis (y, u(y), . . . , um−1(y)) is C(Qi), where m = degQi. As
above, the A-module Ni is isomorphic to (A/Qi.A) via the A-linear map
ψ : P 7→ P.y = P (u)(y) from A to Ni, since the kernel of ψ is Qi.A via the
fact that Qi is the minimal polynomial of C(Qi), and thus of v. Finally the
A-module M is isomorphic to

⊕
i(A/Qi.A). The fact that the Pi are entirely

determined by u then comes from the uniqueness theorem 3.12. The second
point is thus proved.

To conclude, we saw that (1, . . . , 1, P1, . . . , Ps) was the sequence of inva-
riant factors of C. The end of the third point therefore results from lemma 3.16.

Remark 3.20 a) In the special case where the characteristic polynomial of
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u is split, we end up with the Jordan normal form as a decomposition in p-
primary components of M , seeing as the irreducible factors of each Pi are of
the form (X −λ) with λ ∈ K. In effect, the p-primary component associated
with λ corresponds to a matrix of the form λI+N with nilpotent N ; however
since a companion matrix of the form C(Xk) is none other than a Jordan
matrix 12

b) Theorem 3.18 for example allows us to see immediately that if two
matrices in Mn(K) are similar on a field extension of K, they are already
similar on K, a result that is not at all obvious (in particular if K is finite).
Other applications will be seen in the tutorials.
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12. Up to transposition, but it suffices to write the basis in the other direction to get
the classical Jordan form.
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