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1. A few reminders

These are mainly reminders from L3, so we will move fairly quickly without
going into detail for most of the proofs. We assume that the concepts of
groups, subgroups, and group homomorphisms are already known.

1.1. Notation, basic properties

Group laws will in general be given multiplicatively. In particular, the iden-
tity element of a group G will most often be denoted 1 and the inverse of an
element x denoted x−1. For n > 0, we set xn = x.x...x (n terms), with the
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conventions x0 = 1 and x−n = (xn)−1. If the group G is abelian (i.e., com-
mutative), we will sometimes note + the operation, 0 the identity element,
and −x the inverse of x, here also known as the opposite of x. We can then
further write x− y for x+ (−y), and nx for x+ x+ . . .+ x (n terms) when
n is a positive integer, with the conventions 0.x = 0 and (−n)x = n(−x).

Remark 1.1 One should be careful not to use notation like “x/y” if G is
non-abelian as it is not clear whether this would mean xy−1 or y−1x.

Example 1.2 a) The trivial group G = {0}.

b) (R,+) and (R∗,×) are groups (but not (R,×), as the 0 element has
no inverse).

The same goes when replacing R by C or by any field1.

c) G = (Z/nZ,+), where n ∈ N∗. This is of order (i.e., of cardinality) n.
We will sometimes abbreviate Z/nZ to Z/n.

d) If G and H are groups, the set G×H where (g, h).(g′, h′) := (gg′, hh′)
is automatically a group too. This generalizes to a (not necessarily finite)
family of groups. Here we say that the resulting group is the direct product
of the original groups.

e) Let E be a set and S(E) the set of bijections from E to E. Then
S(E), endowed with the composition of functions ◦ is a group. When E =
{1, . . . , n}, we write Sn for S(E) and call this the symmetric group over n
letters (or n elements). Its order is n! and it is non-abelian for n ≥ 3.

f) Let K be a field. Then the set GLn(K) of invertible matrices (n, n) is
a group (non-abelian if n ≥ 2) for multiplication.

Definition 1.3 Suppose f : G→ G′ is a group homomorphism. If f is bijec-
tive, then f−1 is also a homomorphism and we say that f is an isomorphism
from G to G′. An isomorphism from G to itself is called an automorphism of
G.

Remark 1.4 a) The set AutG of automorphisms of G, endowed with the
composition of functions ◦ is a subgroup of S(G). It may not be commutative
even if G is (e.g., if G = Z/2×Z/2, this can be seen by observing that AutG
is isomorphic to GL2(Z/2)).

b) We will sometimes write G ≃ H to signify that “G is isomorphic to
H .”

1A field is a non-zero commutative ring in which every non-zero element has an inverse.
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Example 1.5 a) If a ∈ R, then x 7→ ax is a homomorphism from (R,+) to
itself. It is an isomorphism if a 6= 0, and this remains true when replacing R

with any other field.

b) The function z 7→ exp z is a homomorphism which is onto but not
one-to-one from (C,+) to (C∗,×).

c) If G is a group and a ∈ G, the function x 7→ ax (“left translation”) is
a bijection from G to G, but not a homomorphism (except in trivial cases).

d) If G is abelian and n ∈ N∗, then the function x 7→ xn is a homomor-
phism, but this is not true in general if G is non-abelian. Note also that for
any group G, the function x 7→ x−1 is an “antihomomorphism” from G to G,
i.e., we have (xy)−1 = y−1x−1. 2

e) If E is finite and of cardinality n, we have S(E) ≃ Sn. For n ≥ 2,
there exists a unique nontrivial homomorphism ε from Sn to {±1} called the
signature. In particular, the signature of any transposition is −1.

f) Let K be a field. The determinant is a homomorphism from GLn(K)
to K∗. If E is a K-vector space of dimension n, then GLn(K) is isomorphic
to the group (GL(E), ◦) of linear bijective functions from E to E.

We now recall the following result.

Proposition 1.6 If f : G → H is a group homomorphism, then the direct
image f(G′) of a subgroup G′ of G and the inverse image f−1(H ′) of a sub-
group H ′ of H are respectively subgroups of H and G. In particular, the
kernel ker f := f−1({1}) is a subgroup of G and the image Im f := f(G) is a
subgroup of H. The homomorphism f is one-to-one if and only if its kernel
is made up of the identity element only.

Example 1.7 a) If a ∈ R, then aZ is a subgroup of (R,+) (all subgroups
that are not dense are of this form).

b) The subgroups of Z are the nZ with n ∈ N.

c) Let n ≥ 2. The kernel of the signature ε : Sn → {±1} is a subgroup of
Sn known as the alternating group An.

d) Let K be a field. The kernel of the determinant GLn(K) → K∗ is a
subgroup of GLn(K) called the special linear group, written SLn(K).

e) If (A,+) is an abelian group and n ∈ N∗, then the set A[n] of x in
A that satisfy nx = 0 is a subgroup of A, called the n-torsion subgroup.

2In formal terms, it is a homomorphism from G to Gopp, where the latter is the group
with the same underlying set as G but with group law defined by x • y = yx.
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The group Ators :=
⋃
n∈N∗ A[n] is also a subgroup 3 of A, called the torsion

subgroup of A. Note that no good analogue to this notion exists if G is
non-abelian.

For example, the torsion subgroup of (R,+) is {0}. That of (R∗,×) is
{±1}, and that of C∗ is the multiplicative group of all of the roots of unity.

1.2. Generating sets, Lagrange’s theorem

Proposition 1.8 Let G be a group and A a subset of G. Then there exists
a smaller (for the inclusion) subgroup H of G that contains A. This is called
the subgroup generated by A and is written 〈A〉.

Proof: It suffices to take for 〈A〉 the intersection of all subgroups of G
containing A. We can also write 〈A〉 as the set of products x1...xn, where
each xi satisfies: xi ∈ A or x−1

i ∈ A (if A is empty we take 〈A〉 = {1}).

Remark 1.9 If G is abelian (given additively), it is easier to describe 〈A〉
as being simply the set of

∑m
i=1 niai with ni ∈ Z and ai ∈ A (with m an

arbitrary integer), i.e., the set of
∑

a∈A naa, where (na)a∈A is an almost zero
family of integers (that is: all but finitely many na are zero). Be careful as
this does not extend to cases where A is non-abelian (e.g., we cannot simplify
an expression like xyx in non-abelian groups).

Definition 1.10 Let G be a group and g ∈ G. The order of g is the smallest
positive integer n > 0 (if it exists) such that gn = 1. If gn 6= 1 for all n > 0,
we say that g has infinite order. The order of g is also the cardinality of the
subgroup 〈g〉 generated by g.

Recall in particular the following result.

Proposition 1.11 Let G be a group and g ∈ G. If 〈g〉 is infinite, it is
isomorphic to Z. If its cardinality is n, it is isomorphic to Z/nZ.

Definition 1.12 A group is said to be cyclic if it can be generated by one
element, whether or not the group is finite. In particular, infinite cyclic
groups are isomorphic to Z while finite ones are isomorphic to Z/nZ, where
n is the group’s cardinality.

3Warning: In general the union of subgroups is not a subgroup; this works here because
an x which satisfies mx = 0 or nx = 0 satisfies (mn)x = 0.
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The following result is of great importance.

Theorem 1.13 (Lagrange’s theorem) Let G be a finite group. Then the
order of any subgroup H of G divides the order of G. In particular, the order
of any element of G is finite and divides the order of G.

(The theorem is proved by looking at the left cosets aH for a ∈ G, which
correspond to a partition of G. However, the cardinality of each left coset
aH is the same as that of H since left translations are bijections of G onto
G).

Proposition 1.14 Let G = Z/nZ and suppose that d is a positive divisor
of n. Then G has one (and one only) subgroup of order d. This subgroup Cd
is cyclic and of order d (and thus isomorphic to Z/dZ).

Proof: First, notice that Cd := {0̄, n/d, . . . , (d− 1)n/d} is a subgroup of
order d of G. If now H is a subgroup of order d of G, Lagrange’s theorem
says that any element x of H satisfies dx = 0, or in other words, H ⊂ Cd.
As H and Cd are both of cardinality d, it follows that H = Cd.

Example 1.15 a) The group (Zn,+) is generated by the family

(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1).

b) The symmetric group Sn is generated by the set of transpositions.

c) For n ≥ 2, the orthogonal group On(R) is generated by the set of
reflections (=orthogonal symmetries with respect to a hyperplane), and for
n ≥ 3 the special orthogonal group SOn(R) := On(R)∩SLn(R) is generated
by the set of orthogonal symmetries with respect to a subspace of codimension
2.

d) The group (Q,+) cannot be generated by a finite subset (Exercice!).

1.3. Normal subgroups, quotient groups.

Let us first recall a proposition whose proof is immediate.

Proposition 1.16 Let G be a group and g ∈ G. Then the function int g :
G→ G, h 7→ ghg−1 is an automorphism of G, known as the inner automor-
phism associated with g. The function g 7→ int g is a group homomorphism
from G to (AutG, ◦).
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Definition 1.17 A subgroup H of G is said to be normal if it is invariant
with respect to any inner automorphism, i.e., for any g in G and all h in H ,
we have ghg−1 ∈ H . If so, we write: H ⊳G.

Remark 1.18 a) H ⊳ G is the same thing as gHg−1 = H for any g in G
(start with gHg−1 ⊂ H , change g into g−1, left multiply by g and right
multiply by g−1).

b) If G is abelian, all of its subgroups are normal.

c) {1} and G are always normal subgroups of G.

d) Careful: the notion of normal subgroup is relative (e.g., H is always
normal when seen as a subgroup of itself).

Example 1.19 a) If f : G → G′ is a group homomorphism and H ′
⊳ G′,

then f−1(H ′) is a normal subgroup of G. In particular ker f is a normal
subgroup of G. If H ⊳G, then f(H) is a normal subgroup of f(G) (but not
of G′ in general). The intersection of two normal subgroups of G is a normal
subgroup of G.

b) Let n ≥ 2. Then An is a normal subgroup of Sn given that it is the
kernel of the signature.

c) If K is a field, then SLn(K) is a normal subgroup of GLn(K) (given
that it is the kernel of the determinant map).

d) Suppose n ≥ 3 and H is the subgroup of Sn made up of the identity
and a transposition τ = (a, b). Then if σ ∈ Sn, we have στσ−1 = (σ(a), σ(b)),
so H is not a normal subgroup of Sn (choose σ such that σ(a) = c with c
different from a and b).

Remark 1.20 Be careful, because ⊳ is not transitive; it is possible to have
K ⊳H ⊳G without K ⊳G being true. For example, let V4 ⊂ S4 be the set
made up of the identity and the three double-transpositions (a, b)(c, d) where
{a, b, c, d} = {1, 2, 3, 4}. Then V4 is a normal subgroup of S4, isomorphic
to Z/2Z × Z/2Z, and contains subgroups of order 2 that are not normal
subgroups in S4.

Definition 1.21 A subgroup H of G is said to be characteristic if for any
ϕ ∈ AutG, we have ϕ(H) ⊂ H (in this case, we have in particular that
H ⊳G).

For example, the group A3 is a characteristic subgroup of S3 since any
automorphism of S3 has to map a 3-cycle onto an element of order 3, which
is in fact another 3-cycle. We will see, further on, two general examples
of characteristic subgroups of a group G: its center and its commutator
subgroup. We will also see that An is the commutator subgroup of Sn.
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Remark 1.22 If K is characteristic in H and H is characteristic in G, it is
easy to show (Exercise!) that K is characteristic in G.

Recall that if H is a subgroup G, then the left cosets G/H (resp. right
cosets H \G) are the sets aH (resp. Ha) for a ∈ G; The set of left cosets is
the quotient set of G for the equivalence relation x ∼ y if x−1y ∈ H (resp.
xy−1 ∈ H).

Theorem 1.23 Let G be a group and H a normal subgroup of G. Then:

a) For any a in G, we have aH = Ha and thus G/H = H \G.

b) There exists a unique group structure on G/H such that the canonical
projection p : G → G/H (which associates each a with the coset ā = aH =
Ha) is a group homomorphism. The group G/H thus obtained is called the
quotient group of G by H.

Proof: a) By the definition of a normal subgroup, we have aHa−1 ⊂ H
and a−1Ha ⊂ H , and thus aH ⊂ Ha and Ha ⊂ aH .

b) The group law on G/H must necessarily be defined by āb̄ = ab. First,
let us show that this law is well defined, i.e., that āb̄ does not depend on
which a and b are chosen. If ā = ā′ and b̄ = b̄′, from (a) we have that
a′ = h1a and b′ = bh2 with h1, h2 in H , and thus a′b′ = h1(ab)h2. Hence,
a′b′ ∈ H(abh2) = (abh2)H according to (a), but the latter set is no other
than (ab)H since h2 ∈ H . We therefore obtain a′b′ ∼ ab, as required.

The fact that the group law is well defined then comes immediately from
the fact that p is onto and from the formula p(xy) = p(x)p(y) for all x, y in
G.

Remark 1.24 a) The identity element of G/H is 1̄ = H .
b) If G is abelian, we can thus take the quotient with respect to any

subgroup, but it is easy to see that the theorem is always false if H is not a
normal subgroup of G. (“G/H is just a set”), seeing as the required property
implies that H is the kernel of the group homomorphism p.

c) The group Z/nZ is the quotient group of Z by the subgroup nZ.
d) If H is a subgroup of a group G, there is a bijection between G/H and

H \G via aH 7→ Ha−1. When these cardinalities are finite, we say that H is
a finite index subgroup of G with index [G : H ] equal to #G/#H when G
is finite.

Theorem 1.25 (Factorization theorem) Let f : G → G′ be a group ho-
momorphism. Then there exists a unique group homomorphism f̃ : G/ ker f →
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G′ such that f = f̃ ◦ p. Furthermore, f̃ is one-to-one with image Im f , i.e.,
G/ ker f ≃ Im f (“First isomorphism theorem”). In particular, when G is
finite, we have

#G = #ker f#Im f.

Proof (sketch): The function f̃ must be defined by f̃(ā) = f(a), where
ā is the image of a in G/H . This definition makes sense because if ā = b̄,
then a = bn with n ∈ ker f , and thus f(a) = f(b)f(n) = f(b). The other
properties then follow immediately.

Remark 1.26 If N is a normal subgroup of G inside ker f , then f can also
be factorized by a homomorphism f̃ : G/N → G′ with image Im f , though
f̃ is not one-to-one.

Theorem 1.27 (“Second and third isomorphism theorems”)

Let G be a group. Suppose that H is a normal subgroup of G, and note
p : G→ G/H the canonical projection. Then:

a) The subgroups of G/H are the same as those of N/H, where N is a
subgroup of G containing H. Furthermore, N/H⊳G/H if and only if N⊳G.

b) Let K be a subgroup of G. Set KH = {kh, k ∈ K, h ∈ H} (with similar
notation for HK). Then we have KH = HK, and this set is a subgroup of
G which contains H.

c) For any subgroup K of G, the subgroup p(K) of G/H is the same
as the subgroup KH/H. The latter is isomorphic to K/K ∩ H (“Second
isomorphism theorem”).

d) Let N be a normal subgroup of G that contains H. Then the group
(G/H)/(N/H) is isomorphic to the quotient group G/N (“Third isomorphism
theorem”).

Thus, in G/H “we get a subgroup if we shrink G and a quotient group if
we enlarge H”.

Proof: a) The proof is immediate that if N is a subgroup of G containing
H , then H (which is normal in G) is a fortiori normal in N , and thus N/H is
a subgroup of G/H . Inversely, if A is a subgroup of G/H , then N := p−1(A)
is a subgroup of G containing H (since A contains the identity element of
G/H), and we indeed have A = p(N) = N/H since p is onto. If A ⊳ G/H ,
its inverse image N is a normal subgroup of G, and if N ⊳G, then A = p(N)
is indeed normal in p(G) = G/H .
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b) The equality KH = HK results from the identities (valid for k ∈
K, h ∈ H): kh = (khk−1)k and hk = k(k−1hk) with khk−1 ∈ H , k−1hk ∈ H
seeing as H ⊳G. We have thus 1 = 1.1 ∈ HK; if u1, u2 ∈ KH , we can write
u1 = k1h1 and u2 = h2k2 with h1, h2 ∈ H and k1, k2 ∈ K. Then u1u2 =
k1h3k2 with h3 = h1h2 ∈ H ; as h3k2 ∈ HK = KH , we can write h3k2 = k3h4
with k3 ∈ K and h4 ∈ H , which gives that u1u2 = (k1k3)h4 ∈ KH . Finally,
if u = kh ∈ KH , then u−1 = h−1k−1 ∈ HK = KH . Thus KH is indeed a
subgroup of G.

c) Let u = kh ∈ KH . Then we have p(u) = p(k) ∈ p(K) since p(h)
is the identity element of G/H , and thus KH/H ⊂ p(K). Inversely, any
element of p(K) is of the form k̄ with k ∈ K ⊂ KH , and thus obviously
in KH/H . Now let ϕ : K → KH/H be the group homomorphism defined
by ϕ(k) = k̄ = p(k). Its kernel is clearly K ∩ H since ker p = H . As
p(K) = KH/H , we see that ϕ is onto, and the factorization theorem then
gives that K/K ∩H ≃ KH/H .

d) Let ψ : G/H → G/N be the group homomorphism defined by ψ(ḡ) =
g̃, where g̃ refers to the image of g in G/N . This definition is meaningful
because if g and g′ are elements in G with ḡ = ḡ′, then g−1g′ ∈ H ⊂ N and
thus g̃ = g̃′. We see immediately that ψ is onto with kernel N/H , and the
result follows with the help of the factorization theorem.

Remark 1.28 The special case of abelian groups (A,+) is already interest-
ing here: if B is a subgroup of A, then the subgroups of A/B are the C/B,
where C is a subgroup of A containing B. More generally, the image in A/B
of a subgroup D of A is (D +B)/B ≃ D/(B ∩D).

1.4. The center and the commutator subgroup

Definition 1.29 Let G be a group. The center Z of G is the set of elements
x in G which satisfy xy = yx for all y in G.

Example 1.30 a) If K is a field, the center of GLn(K) is the subgroup of
λIn, λ ∈ K∗.

b) For n ≥ 3, the center of Sn is the identity element only, resulting
from the fact that if τ = (a, b) is a transposition and σ ∈ Sn, then στσ−1 =
(σ(a), σ(b)), and thus σ does not commute with τ upon choosing a such that
σ(a) := c (c different to a), and then b different to a and c (which is possible
to do for any σ that is not the identity, so long as n ≥ 3).

By defintion, Z is the kernel of the homomorphism int : G → AutG and
thus Z ⊳G. It is then immediate that Z is a characteristic subgroup of G.
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Definition 1.31 Let G be a group and x and y two of its elements. The
commutator of x and y is defined as the element [x, y] := xyx−1y−1. The
commutator subgroup of G is by definition the subgroup generated by the
commutators.4 We denote this subgroup D(G).

D(G) is of interest because of the following proposition.

Proposition 1.32 The subgroup D(G) is characteristic (and indeed normal)
in G. The quotient G/D(G) is abelian, and D(G) is the smallest subgroup of
G with this property. We note Gab := G/D(G) (i.e., Gab “abelianizes” G).

The abelianization of G is therefore the “largest abelian quotient” of G
in the following sense: if G/H is another abelian quotient, then G/H is a
quotient of Gab (via the third isomorphism theorem).

Proof: If ϕ is an automorphism ofG, then we have ϕ([x, y]) = [ϕ(x), ϕ(y)],
from which ϕ(D(G)) ⊂ D(G) and D(G) is characteristic. By the definition
of a quotient, any commutator of G/D(G) is trivial, so G/D(G) is abelian.
Finally, if H ⊳ G is a subgroup for which G/H is abelian, then we have
xyx−1y−1 = ē in G/H for any x and y from G, therefore [x, y] ∈ H ; hence H
contains D(G) since it contains all commutators.5

For example, D(G) = {1} if and only if G is abelian and D(S3) = A3;
in effect, we see immediately that the signature of a commutator is 1, thus
D(S3) ⊂ A3; but S3 is not commutative so D(S3) is not trivial, thus D(S3) =
A3 is the only possibility via Lagrange’s theorem, given that A3 has a cardi-
nality of 3.

We will see later that for n ≥ 3, we have D(Sn) = An and thus Sab
n ≃

Z/2Z.

2. Finite groups

2.1. Group actions, the class formula

Definition 2.1 Let G be a group and X a set. We say that G acts on X if
we are given a map G×X → X, (g, x) 7→ g.x, such that the following holds:

4Warning: The set of commutators is not in general a subgroup, though it can be hard
to construct counterexamples.

5Conversely, if H is a subgroup that contains D(G), then H is automatically normal
since if h ∈ H and g ∈ G, then (ghg−1)h−1 ∈ D(G) ⊂ H , from which ghg−1 ∈ H ; it
immediately follows that G/H is abelian.
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• For any g and g′ in G and any x in X, we have g.(g′.x) = (gg′).x

• For any x in X, we have 1.x = x

Remark 2.2 a) In particular, for any g, x 7→ g.x is a bijection from X to
X, with inverse x 7→ g−1.x. An equivalent definition consists in providing a
homomorphism Φ : G→ (S(X), ◦), setting g.x = (Φ(g))(x).

b) The above definition corresponds to left action. We can also talk
about right action, i.e., (g, x) 7→ x.g, satisfying x.(gg′) = (x.g).g′. This
corresponds to providing an antihomomorphism from G to S(X) in the place
of a homomorphism.

Example 2.3 a) G can act on itself by left translation via g.x := gx. Simi-
larly, any subgroup H of G can act on G by left translation.

b) G can act on itself by conjugation: g.x := gxg−1. Here the image
of G in S(G) is furthermore contained in AutG (which was not true in the
previous example). We then say that G acts by automorphisms.

c) Sn acts on {1, . . . , n} by σ.x = σ(x).

d) If H is a subgroup of G, G acts on the left cosets G/H by g.(aH) =
(ga)H .

Definition 2.4 Given a group action for a group G on a set X,

• the orbit of an element x in X is the set of g.x, g ∈ G. Orbits are
equivalence classes in X as defined by : x ∼ y if and only if there exists
g ∈ G such that y = g.x. If only one orbit exists, we say that G acts
transitively on X.

• the stabilizer of an element x in X is the subgroup Stabx of elements g
in G satisfying g.x = x. This subgroup is not in general normal in G.
We say that an action is faithful if the only element of G that stabilizes
all elements of X is the neutral element 1 of G, and free if all stabilizers
are {1} (a much stronger condition).

Example 2.5 a) If H is a subgroup of G, the action of H on G by left
translation is free, and the orbits are nothing but the right cosets with respect
to H . If G is finite and of order n, we get in particular that there exists a one-
to-one homomorphism (G acting on itself) from G to S(G) ≃ Sn (Cayley’s
theorem).

b) The action of Sn on {1, . . . , n} is transitive, and all stabilizers are
isomorphic to Sn−1.
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c) The action of G on G/H seen earlier is transitive. The following
proposition says that this is in some sense the “usual” kind of transitive
action.

Proposition 2.6 Given a group action for a group G on a set X and x ∈ X,
we define a bijection from G/Stabx to the orbit ω(x) of x via : ḡ 7→ g.x. In
particular, if G is finite, we have #ω(x) = #G/#Stabx (the cardinality
of ω(x) thus divides G). Then, if the action is transitive, the action of G
identifies with the action of G on G/Stabx by left translation.

Proof: First, the function ϕ : ḡ 7→ g.x from G/Stabx to X is well defined
because as ḡ = ḡ′, we have g′ = g.h with h ∈ Stabx, and thus g′.x = g.(h.x) =
g.x. Also, it is onto by the definition of an orbit. Then, if g.x = g′.x, we
have (g′−1g).x = x, i.e., g′−1g ∈ Stabx, or ḡ′ = ḡ in G/Stabx.

Corollary 2.7 (The class formula) Let G be a finite group that acts on a
finite set X. Let Ω be the set of orbits, and denote #Stabω the cardinality of
the stabilizer of x for x in the orbit ω (which is independent of the choice of
x in Ω thanks to the previous proposition). Then,

#X =
∑

ω∈Ω

#G

#Stabω
.

Proof: Since the orbits form a partition of X, the result is immediate
thanks to the previous proposition. Nevertheless, the consequences of this
result are far from trivial (as we will see later!).

Remark 2.8 The formula remains valid if G is infinite by replacing #G
#Stabω

by the index [G : Stabω] (which is finite if X is finite, via proposition 2.6).

Theorem 2.9 (Burnside’s formula) Let G be a finite group acting on a
finite set X. For any g ∈ G, note Fix g the subset of X made up of the fixed
points of g (that is: the set of x ∈ X such that g.x = x). Then

∑

x∈X

1

#ω(x)
=

1

#G

∑

g∈G

#(Fix g).

This number is also equal to the number of orbits.
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Proof: Let E be the set of pairs (g, x) of G × X that satisfy g.x = x.
Then, its cardinality is

∑
g∈G#(Fix g), as for each g in G we have Fix g

elements x of X such that (g, x) ∈ E. However, this cardinality is also∑
x∈X #Stabx =

∑
x∈X

#G
#ω(x)

since for each x ∈ X, we have #Stabx =
#G

#ω(x)

elements g in G for which (g, x) ∈ E. Hence the formula. Also, if Ω is the
set of orbits, we have

∑

x∈X

1

#ω(x)
=

∑

ω∈Ω

∑

x∈ω

1

#ω
=

∑

ω∈Ω

1 = #Ω.

2.2. p-groups and Sylow’s theorems

Definition 2.10 Suppose p is prime. A p-group is a group of cardinality pn,
where n is an integer6.

Proposition 2.11 Let G be a nontrivial p-group. Then :

a) The center Z of G is nontrivial.

b) If G has cardinality p or p2, then it is abelian.

Proof: a) We begin by having G act on itself by conjugation. There are
#Z orbits made up of only one element each, and the cardinalities of the
other orbits divide pn := #G (not equal to 1), and are thus divisible by p.
Hence pn (with n > 0) is the sum of the cardinality of Z and a multiple of
p, so p divides #Z.

b) If G is of cardinality p, then the order of any nontrivial element of
G divides p and is thus of order p, so G is cyclic. Now suppose that G is
of cardinality p2. If G is non-abelian, the cardinality of Z would be p from
(a), and thus G/Z would be cyclic (since it is of cardinality p). However, a
contradiction occurs via the following lemma :

Lemma 2.12 Let G be a group with center Z for which G/Z is cyclic. Then
G is abelian.

The lemma can be proved by selecting a generator ā of G/Z. Then, any
element g of G can be written g = amz with z ∈ Z, and it immediately
follows that the two elements of G commute.

6Some authors consider that the trivial group is not a p-group; we prefer the convention
that it is, thus allowing us to affirm that a subgroup of a p-group is always a p-group.
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We now move on to Sylow’s theorems, which arise from the following
question : Given a finite group G and an integer n that divides its cardinality,
can we find a subgroup of order n? In general the answer is no (e.g., A4 is of
cardinality 12 but has no subgroup of order 6. Exercise!), but in the special
case of p-subgroups, we will see that the answer is affirmative.

Definition 2.13 Let p be prime and let G be a group of cardinality n = pαm
with α ∈ N, m ∈ N∗. Suppose that p is not a divisor of m. A Sylow p-
subgroup (or p-Sylow for short) is then defined as a subgroup H of cardinality
pα.

In other words, a p-Sylow is a p-subgroup of G whose index is prime to p
(this notion is of interest if p divides the order of G; otherwise a p-Sylow is
simply the trivial group).

Theorem 2.14 (Sylow’s first theorem) Let G be a finite group and p a
prime number. Then G contains at least one Sylow p-subgroup.

The proof is based on two lemmas, which are of interest in their own
right.

Lemma 2.15 Let H be a subgroup of G. If G contains a p-Sylow S, then
there exists a ∈ G such that aSa−1 ∩H is a p-Sylow of H.

This lemma shows that in order to prove the Theorem for a group H , it
is sufficient to prove it for some group G containing H as a subgroup.

Lemma 2.16 Let Fp = Z/pZ (field with p elements) and Gp := GLn(Fp)
with n ∈ N∗. Then Gp has a p-Sylow.

Sylow’s first theorem follows easily from these lemmas. In effect, all that
remains to be proved is that G is isomorphic to a subgroup of Gp. To this
end, note that G is isomorphic to a subgroup of Sn by Cayley’s theorem,
and Sn embeds into Gp by applying the permutation σ to the matrix Mσ,
mapping the vector ei to eσ(i), where (e1, . . . , en) is the canonical basis. 7 It
therefore only remains to prove the two lemmas.

7Note that if we permute the coordinates instead of the basis vectors, we get an anti-
homomorphism rather than a homomorphism.
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Proof of lemma 2.15 : The group H acts on the left cosets G/S via
(h, aS) 7→ (ha)S. We see immediately that the stabilizer StabH(aS) of aS for
this action is aSa−1∩H . Each of these StabH(aS) is a p-group, so it suffices
to show that one of them has an index in H that cannot be divided by p.
However, this index #H

#StabH(aS)
is also the cardinality of the orbit ωH(aS). As

p does not divide the cardinality of the set G/S (since S is a p-Sylow of G),
the result comes from the fact that the orbits form a partition of G/S.

Proof of lemma 2.16 : First we calculate the cardinality of Gp. This is
the same as the number of bases in the Fp-vector space Fnp (indeed, if B is
such a basis, there is one and only one element of Gp that maps the canonical
basis to B), which is equal to

(pn − 1)(pn − p)...(pn − pn−1).

Essentially, we have pn − 1 choices for the choice of the first basis vector
(any non-zero vector e1), then pn− p choices for the second (any vector that
is not a multiple of e1), etc. As a result, a p-Sylow of Gp is of cardinality
p1+2+...+n−1 = pn(n−1)/2, and the set of upper triangular matrices with 1s on
the diagonal is a subgroup of Gp with this cardinality.

Remark 2.17 As an exercise, it can be shown that a group of cardinality
pαm, where p is not a divisor of m, contains subgroups of order pi for all
i ≤ α (hint: start with a p-group and use induction on the cardinality,
treating abelian and non-abelian G cases separately).

The following theorem looks at the conjugation of p-Sylows.

Theorem 2.18 (Sylow’s second theorem) Let G be a finite group of car-
dinality n = pαm where p does not divide m. Then :

a) If H ⊂ G is a p-group, there exists a p-Sylow of G that contains it.

b) If S and S ′ are two p-Sylows of G, then they are conjugate (i.e., there
exists g ∈ G such that S ′ = gSg−1). Furthermore, the number k of p-Sylows
divides n.

c) k is congruent to 1(mod p), thus k divides m.

15



Proof: a) According to Sylow’s first theorem, there exists at least one
p-Sylow of G. Lemma 2.15 then says that there exists a ∈ G such that
aSa−1∩H is a p-Sylow of H , i.e., aSa−1∩H = H since H is a p-group. Thus
H is contained in aSa−1, a p-Sylow of G.

b) If H is a p-Sylow of G, we have furthermore that H = aSa−1 in
cardinality, thus any p-Sylow of G is conjugate to S. Hence let G act by con-
jugation on the set X of p-Sylows. As there is only one orbit, its cardinality
k (which divides that of G via proposition 2.6) is the same as X, i.e., the
number of p-Sylows.

c) Let S be a p-Sylow of G, and have S act on X by conjugation. Let
XS be the set of fixed points of this action (i.e., the orbits consisting of one
single element) and Ω′ the set of the other orbits. The class formula is given
by

k = #XS +
∑

ω∈Ω′

#ω.

The cardinality of the orbits found in Ω′ divides the cardinality of S (which
is a power of p) and is not equal to 1; thus, it is divisible by p. To conclude,
it therefore suffices to show that there is only one orbit that is made up of
one point only (that of S), i.e., if T is a p-Sylow of G such that sTs−1 = T
for any s in S, then S = T .

To show this, we introduce the subgroup N of G generated by S and T .
Clearly S and T are p-Sylows of N and therefore conjugate by an element of
N via (b). But T is normal in N via the fact that sTs−1 = T for any s in
S; in effect, the set of g ∈ G satisfying gTg−1 = T is clearly a subgroup of
G (called the normalizer of T ), and we now know that it contains T and S,
and thus also the subgroup N generated by them. Hence, T = S. 8

An important special case is whenm has no divisor 6= 1 which is congruent
to 1 modulo p. Then G has a unique p-Sylow, which is therefore normal. For
example, a group of order 63 is not simple, i.e., it has a normal subgroup
other than itself and the trivial group; indeed its number k of 7-Sylows must
divide 9 and be congruent to 1 modulo 7, and therefore k = 1, which implies
that the unique 7-Sylow is normal. The same argument works for a group of
order 255.

8This style of reasoning is called “Frattini’s argument”.
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2.3. Further details on Z/nZ

We start with the following elementary proposition, which we recall without
proof :

Proposition 2.19 Let n ∈ N∗, s ∈ Z. Then the following properties are
equivalent:

i) s and n are coprime.
ii) s̄ generates the additive group Z/nZ.
iii) s̄ belongs to the group of units (Z/nZ)∗ in the ring Z/nZ.

Care should be taken not to confuse additive and multiplicative structures
(e.g., do not replace (iii) with “ s̄ generates (Z/nZ)∗”, which is trivially false
for example for s = 1; we will see that the multiplicative group (Z/nZ)∗ is
not cyclic in general, e.g., for n = 8). Also be careful not to write “x and
n are coprime” for an element x in Z/nZ (instead of ”s and n are coprime”,
where s is an integer such that s̄ = x), the notion of coprime elements having
no meaning in a ring with zero divisors.

We are now going to specify a little the structure of (Z/nZ)∗ and its
connection with Aut((Z/nZ,+)). For any n ∈ N∗, we denote ϕ(n) Euler’s
totient function of n, i.e., the number of integers x in [1, n] which are prime
to n.

Proposition 2.20 Let n ∈ N∗, and write n factorized as powers of distinct
primes pi: n =

∏r
i=1 p

αi

i . Then:
a) The cardinality of (Z/nZ)∗ is ϕ(n). For p prime, we have ϕ(p) = p−1,

and more generally ϕ(pα) = pα−1(p− 1) if α ≥ 1.
b) The group Aut(Z/nZ) of automorphisms of the additive group9 Z/nZ

is isomorphic to the multiplicative group (Z/nZ)∗.
c) We have a ring isomorphism

Z/nZ ≃

r∏

i=1

Z/pαi

i Z

and a group isomorphism

(Z/nZ)∗ ≃

r∏

i=1

(Z/pαi

i Z)∗.

d) We have ϕ(n) =
∏r

i=1 p
αi−1
i (pi − 1) = n

∏r
i=1(1−

1
pi
).

9And not of the ring; the only automorphism of the ring (Z/nZ) is the identity, seeing
as 1̄ has to be mapped to 1̄.
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Proof: (a) is a result of the previous proposition, and the fact that integers
in [1, pα] that are not prime to p are the multiples of p.

b) It is immediate that the function Φ from the group ((Z/nZ)∗,×) to the
group (Aut(Z/nZ), ◦) which maps a to x 7→ ax is a group homomorphism.
The latter is one-to-one because if Φ(a) is the identity, then ax = x for all
x, so a = 1 by taking x = 1̄. It is also onto because if ϕ ∈ Aut(Z/nZ), then
by setting a = ϕ(1̄), we get that for any x in N, ϕ(x̄) = ϕ(1 + . . . + 1) (x
terms), so ϕ(x̄) = ax̄. Also, a ∈ (Z/nZ)∗ since 1̄ must be the image of some
element of Z/nZ by ϕ.

c) The map from Z/nZ to
∏r

i=1 Z/p
αi

i Z that sends x̄ to (xi)1≤i≤r, where
xi is the class of x mod pαi

i is clearly a ring homomorphism. The latter is one-
to-one because if x can be divided by all of the pαi

i , it can also be divided by
their product n since they are pairwise coprime. As Z/nZ and

∏r
i=1 Z/p

αi

i Z

have the same cardinality, this map is also onto10. The second assertion of
(c) can be seen immediately by noting that isomorphic rings have isomorphic
groups of units.

d) Follows directly from (a) and (c).

To go further, we would now like to determine the structure of (Z/pαZ)∗

when p is prime and α ∈ N∗. We begin with the α = 1 case.

Theorem 2.21 Le K be a field11 and G a finite subgroup of the multiplicative
group K∗. Then G is cyclic.

Proof: We will use the following lemma in the proof :

Lemma 2.22 Let n ∈ N∗. Then,

n =
∑

d|n

ϕ(d).

This lemma immediately follows from proposition 1.14: the elements of
order d in Z/nZ are necessarily in the unique subgroup Cd of Z/nZ of cardinal
d; but since Cd is isomorphic to Z/dZ, it contains ϕ(d) elements of order d,
so in fact Z/nZ contains ϕ(d) elements of order d; the lemma follows after
sorting the elements of Z/nZ by their order.

10This is one way to formulate the Chinese remainder theorem.
11Remember that we impose that the multiplication in K is commutative; otherwise

this theorem is false, since e.g., the quaternion algebra H over C contains a non-abelian
subgroup of H∗ of order 8.
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We now return to the proof of theorem 2.21. Let n be the cardinality of
G and suppose that G contains an element x of order d. Then the subgroup
Gd generated by x is of cardinality d, and all of its elements g satisfy gd = 1.
However, in the field K, the polynomial equation Xd − 1 = 0 has at most
d solutions, which means that Gd has to be the set of these solutions. As it
is cyclic of order d, it contains ϕ(d) elements of order d which are the same
elements as those of order d in G (any element of order d in G satisfies the
equation Xd − 1 = 0, i.e., is in Gd). We have therefore shown that for any d
that divides n, G has either 0 or ϕ(d) elements of order d, i.e., at most ϕ(d)
elements of order d. From the lemma, we have that n >

∑
d|n,d6=n ϕ(d), and

would thus have a contradiction if G had no elements of order n. This proves
that G is cyclic.

Corollary 2.23 If p is prime, the group (Z/pZ)∗ is cyclic (and thus isomor-
phic to Z/(p− 1)Z).

Indeed, in this case Z/pZ is a field (special case of proposition 2.19).
Note that to find a generator of (Z/pZ)∗ explicitly is algorithmically hard in
general.

We now move on to the general setting.

Theorem 2.24 Let p be prime (p 6= 2) and α ∈ N∗. Then the group
(Z/pαZ)∗ is cyclic (and thus isomorphic to the additive group Z/pα−1(p −
1)Z).

We will see later that this result is false if p = 2 and α ≥ 3.
To prove the theorem, we begin by showing the existence of an element

of order pα−1 in (Z/pαZ)∗ with the help of the following lemma.

Lemma 2.25 Let p be prime ( 6= 2) and k ∈ N∗. Then

(1 + p)p
k

= 1 + λpk+1

with λ an integer not divisible by p.

Proof: We proceed by induction on k. For k = 1, we write

(1 + p)p = 1 + pC1
p + p2C2

p + . . .+ pp = 1 + p2(1 + C2
p + . . .+ pp−2)

and use the fact that p divides Ck
p for 1 ≤ k ≤ p− 1 (note that for p = 2 this

step does not work since p does not divide pp−2), which implies that

1 + C2
p + . . .+ pp−2
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is not divisible by p.
Now suppose that the result is true for k. Thus,

(1 + p)p
k+1

= (1 + λpk+1)p = 1 + λpk+2 + pk+2

p∑

i=2

C i
pλ

ipi(k+1)−(k+2),

and since p divides
∑p

i=2C
i
pλ

ipi(k+1)−(k+2) (it divides C i
p for 2 ≤ i ≤ p − 1,

and pp(k+1)−(k+2)), we obtain that

λ′ := λ+

p∑

i=2

C i
pλ

ipi(k+1)−(k+2)

is not divisible by p by the induction hypothesis. The lemma is therefore
proved.

We also require a classical lemma on abelian groups:

Lemma 2.26 Let G be an abelian group, given multiplicatively. Let x ∈ G
be an element of order a and y ∈ G an element of order b. If a and b are
coprime, then the order of xy is ab.

Note that the result is false if we do not assume a and b are coprime (take
y = x−1), and also false in a non-abelian group if x and y do not commute
(take a transposition and a 3-cycle in S3).

Proof of lemma 2.26: Let n ∈ N∗ such that (xy)n = 1. Then, xn = y−n,
whereby y−na = 1 and b divides na. As b is prime to a, we obtain that
b divides n and also a divides n, from which ab divides n (also because
(a, b) = 1). Since it is also true that (xy)ab = 1, we see that the order of xy
is indeed ab.

Proof of theorem 2.24: According to lemma 2.25, the element s = 1 + p
is of order pα−1 in (Z/pαZ)∗. We now look for an element of order p− 1. We
have an onto homomorphism π : (Z/pαZ)∗ → (Z/pZ)∗ obtained by mapping
x̄ to the class of x modulo p (in effect, x is invertible modulo pα if and only
if it is invertible modulo p). Let u be a generator of (Z/pZ)∗ (which is cyclic
from corollary 2.23) and v ∈ (Z/pαZ)∗ such that π(v) = u. Let m be of
order v, then vm = 1̄ and therefore um = π(vm) = 1̄ and p − 1 (which is of
order u) divides m. Setting r = vm/(p−1), we have that r is of order p− 1 in
(Z/pαZ)∗. Now rs is of order (p− 1)pα−1 in (Z/pαZ)∗ by lemma 2.26.
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The p = 2 case is special and comes with its own theorem:

Theorem 2.27 For any integer α ≥ 3, the multiplicative group (Z/2αZ)∗ is
isomorphic to the additive group Z/2Z× (Z/2α−2Z).

Thus for α ≥ 3 the group (Z/2αZ)∗ is not cyclic (the order of all elements
divides 2α−2). The α = 1 and α = 2 cases are trivial, (Z/2αZ)∗ being
respectively isomorphic to {0} and Z/2Z.

Proof: It is easy to show by induction on k ≥ 1 that we have : 52
k

=
1 + λ2k+2, where λ is some odd integer. As a result, the order of 5̄ in
(Z/2αZ)∗ is exactly 2α−2; in other word, the subgroup N generated by 5̄ is of
cardinality 2α−2. Its intersection with the subgroup C = {±1̄} is 1̄, since any
power of 5 (unlike for −1) is congruent with 1 modulo 4. Thus, (n, c) 7→ nc
is a one-to-one homomorphism from N ×C to (Z/2αZ)∗, and is therefore an
isomorphism due to cardinality. We conclude by noting that N is isomorphic
to the additive group Z/2α−2Z and (Z/4Z)∗ to the additive group Z/2Z.

We conclude this section by stating the finite abelian group structure
theorem, the proof of which will be given in the chapter on modules (an
abelian group being nothing but a module over the ring Z).

Theorem 2.28 Let A be a finitely generated abelian group. Then there exists
an integer r ∈ N and integers d1, . . . , dm with values ≥ 2 satisfying :

a) The group A is isomorphic to the direct product Zr×Z/d1×. . .×Z/dm.

b) We have d1|d2| . . . |dm.

Furthermore, this decomposition is unique.

3. Further details related to normal subgroups

3.1. Exact sequences

We start with the very useful notion of an exact sequence, which can also be
extended to vector spaces (and, as we will see later, to modules).

Definition 3.1 We say that a (finite or infinite) sequence

. . .→ Gi
fi
→ Gi+1

fi+1

→ Gi+2 → . . .
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is exact (here the Gi are groups and the fi homomorphisms) if for any i, we
have Im fi = ker fi+1. In particular,

1 → N
i
→ G

p
→ H → 1

is an exact sequence (said to be short) if and only if the following three
properties hold : i is one-to-one, p is onto, and Im i = ker p. In this case, we
have G/N ≃ H (by matching N with i(N)) via the factorization theorem,
and we say that G is an extension of H by N . 12

Remark 3.2 a) Just as subgroups and quotients should not be confused,
neither should “larger groups” (with respect to inclusion) and extensions be.

b) When all of the groups are abelian and given additively, we often write
0 instead of 1 in short exact sequences.

Example 3.3 a) If K is a field, then the sequence

1 → SLn(K) → GLn(K)
det
→ K∗ → 1

is exact.

b) The sequences

1 → SOn(R) → On(R)
det
→ {±1} → 1

and
1 → SUn(C) → Un(C)

det
→ S1 → 1

are exact, where S1 designates the multiplicative group of complex numbers
of modulus 1. Here On(R) (resp. Un(C)) is the orthogonal group (resp.
unitary group) made up of real (resp. complex) matrices A of size (n, n) for
which A∗A = In.

c) If n ≥ 2, the sequence

1 → An → Sn
ε
→ {±1} → 1

is exact.

d) Let G be a group with center Z. The group (IntG, ◦) of interior
automorphisms of G is isomorphic to G/Z via the exact sequence

1 → Z → G
int
→ IntG→ 1.

12Certain authors, e.g., D. Perrin, instead call this an extension of N by H .
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e) The group Z/4 can be seen as an extension of Z/2 by Z/2, via the
exact sequence

0 → Z/2 → Z/4 → Z/2 → 0, (1)

where the arrow Z/4 → Z/2 maps each x̄ ∈ Z/4 to the class of x in Z/2,
and the arrow Z/2 → Z/4 maps each ȳ ∈ Z/2 to the class 2y in Z/4. Note
that Z/4 is nevertheless not isomorphic to the product of Z/2 with itself.

3.2. Semidirect product of groups

Be careful with this notion as it tends to be the source of many errors, notably
at the oral examination for the agrégation.

Recall that when G1 and G2 are groups, we have the direct product
G1×G2, which corresponds to defining the law (g1, g2)(h1, h2) = (g1g2, h1h2)
on the product set.

The semidirect product generalizes this idea. Let N and H be groups
and ϕ : H → AutN a group homomorphism, one that in particular defines
an action h.n := ϕ(h)(n) of N on H (but here we ask also that the action
is by automorphisms, i.e., the image of ϕ has to be contained in AutN , and
not only in S(N)).

Theorem 3.4 Let us define a group law on the product set N×H as follows:

(n, h).(n′, h′) := (n(h.n′), hh′).

This group is called the semidirect product of N and H with respect to the
action ϕ; this is denoted N⋊ϕH (or simply N⋊H if the action ϕ is implied).

Proof: Clearly, (1, 1) is the identity element of the law as defined (we
already use here that h.1 = 1, which comes from the fact that the action
takes values in AutN). Also, (n, h) has the inverse (h−1.n−1, h−1) (to see this
is also a left inverse, we use h−1.(n−1n) = (h−1.n−1)(h−1.n)). All that is left
is to show associativity.

We have

[(n1, h1)(n2, h2)](n3, h3) = (n1(h1.n2), h1h2)(n3, h3) = (n1(h1.n2)[(h1h2).n3], h1h2h3)

and

(n1, h1)[(n2, h2)](n3, h3)] = (n1, h1)(n2(h2.n3), h2h3) = (n1[h1.(n2(h2.n3))], h1h2h3).
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However, (h1.n2)[(h1h2).n3] = [h1.(n2(h2.n3))] due to the axioms of group
action and the fact that n 7→ h1.n is an automorphism of N . The result
follows.

Remark 3.5 a) Speaking of the semidirect product of N and H only makes
sense if we provide the action; several actions may exist and thus several
semidirect products. Also always keep in mind that N and H do not play
the same role in the definition and are not interchangeable.

b) The trivial action corresponds to the direct product.

Proposition 3.6 With the above notation, let G = N ⋊H. Then :

a) We have an exact sequence

1 → N
i
→ G

p
→ H → 1

with i(n) = (n, 1) and p(n, h) = h. In particular N identifies to a normal
subgroup (still denoted N) 13 in G.

b) The exact sequence is split, i.e., there exists a homomorphism s : H →
G (“splitting”) satisfying p ◦ s = IdH . Thus H identifies to a subgroup (still
denoted H) of G.

c) In G, we have N ∩H = {1} and NH = G, where NH is by definition
the set of nh with n ∈ N and h ∈ H. Further, the action of H on N is given
by h.n = hnh−1, where the right product takes place in G.

Proof: a) i and p are homomorphisms via

(n, 1)(n′, 1) = (n(1.n′), 1) = (nn′, 1)

and
(n, h)(n′, h′) = (n(h.n′), hh′).

It is immediately obvious that the sequence is exact.

b) It suffices to set s(h) = (1, h).

c) From (a), N ∩ H is the set of (n, h) with n = h = 1, and is thus
simply the identity element of G. If g = (n, h) is an element of G, we have
g = (n, 1).(1, h), and thus G = NH . Finally, in G we have:

hnh−1 = (1, h)(n, 1)(1, h−1) = (h.n, h)(1, h−1) = (h.n, 1) = h.n.

13the symbol ⋊ resembles ⊳ and helps us to remember the “direction” in which the
semidirect product is taken.
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Via the previous proposition, we can now write the elements of N ⋊ H
uniquely in the form nh (n ∈ N, h ∈ H) with the commutativity rule given
by hn = (h.n)h.

Remark 3.7 Suppose G := N ⋊ϕ H . If H ⊳ G, we have n−1(h.n)h ∈ H
(for all n ∈ N , h ∈ H) because n−1(h.n)h = n−1hn ∈ H . This implies that
n−1(h.n) ∈ H and since N ∩ H = {1}, we have that n−1(h.n) = 1, i.e.,
the action is trivial. The semidirect product is abelian if and only if this
condition holds and N and H are both abelian.

There is a kind of inverse version of the previous proposition to help know
when a group can be broken down into a semidirect product.

Proposition 3.8 a) (“Internal” form) Let G be a group containing subgroups
N and H, where

i) N ⊳G,
ii) N ∩H = {1},
iii) G = NH.
Then G ≃ N ⋊H for the action h.n = hnh−1.

b) (“External” form) Let

1 → N → G→ H → 1

be an exact sequence that admits a splitting s : H → G. Then G ≃ N ⋊ H
for the action h.n = s(h)ns(h)−1.

Proof: a) Let ϕ be the action of H on N defined by ϕ(h)(n) = hnh−1.
Then the function Φ : N ⋊ϕH → G which associates with (n, h) the product
nh (in G) is a homomorphism since Φ((n, h)(n′, h′)) = Φ(n(hn′h−1), hh′) =
nhn′h′. Φ is one-to-one from (ii) and onto from (iii).

b) Set H1 = s(H). As s is one-to-one seeing as p ◦ s = idH , H1 is
a subgroup of G isomorphic to H and from (a) it suffices to show that :
N ∩ H1 = {1} and NH1 = G (we have identified N with its image in G).
If h1 ∈ N ∩ H1, then p(h1) = 1 but h1 = s(h) with h ∈ H , from which
1 = p(s(h)) = h and h1 = 1. If now g ∈ G, then g and s(p(g)) have the
same image under p, so they differ by one element from the kernel N of p,
i.e., g = nh1 with h1 := s(p(g)), and g ∈ NH1.

It is in general the second criterion which is the most useful for obtaining
semi-direct product decompositions, but we will keep clearly in mind the way
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to determine the operation of H on N according to the exact sequence and
the splitting.

Remarque 3.9 We will see in the exercice sessions two sufficient conditions
to obtain isomorphic semi-direct products for various actions :

a) Let N and H be groups, and ϕ and ψ homomorphisms H → AutN . If
there exists u ∈ AutN such that ψ(h) = u ◦ ϕ(h) ◦ u−1 (“conjugate actions”),
we have that N ⋊ϕ H ≃ N ⋊ψ H .

b) Let N and H be groups, and ϕ and ψ homomorphisms H → AutN . If
there exists α ∈ AutH such that ϕ = ψ ◦ α, then N ⋊ϕ H ≃ N ⋊ψ H .

Example 3.10 a) For n ≥ 2, the exact sequence

1 → An → Sn
ε
→ Z/2Z → 1

admits the splitting s which maps 0̄ onto Id and 1̄ onto an (arbitrary) trans-
position τ . We can then deduce the decomposition: Sn ≃ An ⋊ Z/2Z.

b) Let K be a field and n ∈ N∗. The exact sequence

1 → SLn(K) → GLn(K)
det
→ K∗ → 1

is split (map λ ∈ K∗ onto the matrix Diag(λ, 1, . . . , 1)). Thus, GLn(K) ≃
SLn(K)⋊K∗.

c) The group Z/4Z is not a semi-direct product of Z/2Z by Z/2Z. In
effect, it is a direct product since Z/4Z is abelian. However, Z/4Z is not iso-
morphic to the direct product Z/2Z×Z/2Z (the former has elements of order
4 but not the latter). In particular, the exact sequence (1) in example 3.3 is
not split.14

d) Let n ≥ 3, and note Dn the dihedral group (consisting of isometries
of a regular n-sided polygon). This contains the n rotations with center O
(the center of the polygon) and angle 2kπ/n (0 ≤ k ≤ n − 1) and the n
reflections with respect to lines passing by O and the vertices (if n is odd) or
the midpoints of the edges (if n is even). We have an exact sequence

1 → Z/nZ → Dn → Z/2Z → 1

by taking the determinant of a given isometry, with values in {±1}. It is
split (we map the nontrivial element ε from Z/2Z to a reflection), leading to
the decomposition Dn ≃ Z/nZ⋊ Z/2Z. Note that the corresponding action
from Z/2Z to Z/nZ consists in setting ε.x = −x for x ∈ Z/nZ.

14We thus see that even in very simple cases, we cannot always “reconstitute” a group
from its subgroups. In particular, knowledge of simple finite groups is absolutely not
sufficient in order to know all finite groups, contrary to fairly widespread popular belief
(especially among students taking the agrégation exam!).
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A study of the group of automorphisms of Z/nZ makes it possible to
construct nontrivial semi-direct products. Here is a simple application of
this idea :

Theorem 3.11 Let p and q be primes with p < q. Then :

• If p does not divide q − 1, any group of order pq is cyclic.

• If p divides q − 1, there are two (isomorphic) groups of order pq : the
cyclic group, and a semi-direct product Z/qZ ⋊ Z/pZ (which is non-
abelian).

For example, the only group of order 15 is Z/15Z, and for q ≥ 3, the two
groups of order 2q are the cyclic group and the dihedral group Dq.

Proof: Let G be of order pq. Then G has a q-Sylow Q. According to
Sylow’s second theorem, the number of q-Sylows is congruent to 1 mod q,
and divides p, so is therefore 1 since p < q. Hence Q is normal in G. We
thus obtain an exact sequence

1 → Q→ G
f
→ G/Q→ 1.

We show now that this sequence is split: the group G contains a p-Sylow
P , the restriction of f to P is thus one-to-one since the cardinality of its
kernel P ∩ Q must divide p and q. Hence f induces a bijection from P
to G/Q, and the inverse bijection provides the required splitting. Hence G
is a semi-direct product Z/qZ ⋊ Z/pZ, associated with a homomorphism
ϕ : Z/pZ → Aut(Z/qZ) ≃ Z/(q − 1)Z.

If p does not divide q− 1, the cardinality of the image of ϕ divides p and
q − 1, and is thus 1, i.e., ϕ is constant and the product is direct. As p and q
are prime, G is isomorphic to Z/pqZ via the Chinese remainder theorem.

If p does not divide q − 1, we have a nontrivial homomorphism ϕ by
mapping 1̄ onto the class of (q − 1)/p, and thus a noncommutative semi-
direct product. The fact that up to isomorphism this is the only one follows
easily from remark 3.9 (b).

3.3. Simple groups, the alternating group example

Recall that a group is simple if its only nontrivial normal subgroups are itself
and {1}. For example, the simple abelian groups are the Z/pZ where p is
prime. It is not necessarily easy to find other examples of simple groups.
The goal of this section is to prove the following theorem.
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Theorem 3.12 For n ≥ 5, the alternating group An is simple.

Note that the result is also (trivially) true for n = 2 and n = 3, but
not for n = 4, since the group made up of double transpositions in A4 is a
nontrivial normal subgroup.

Before moving to the proof, we first look at a few corollaries of this result.

Corollary 3.13 For n ≥ 5, we have D(An) = An and D(Sn) = An.

Note that the second assertion is true for all n ≥ 2 (only the n = 4 case
needs to be proved separately, see the tutorials).

Proof: We have D(An) ⊂ An given that any commutator has a signature
of 1, but D(An) is normal in An and nontrivial given that for n ≥ 4, An is
non-abelian (two 3-cycles whose supports have one or two shared elements
do not commute). Hence D(An) = An as An is simple. Similarly, D(Sn) is
a nontrivial subgroup of An, normal in An (it is already normal in Sn), so
D(Sn) = An from the theorem.

Corollary 3.14 If n ≥ 5, Sn has three normal subgroups : {Id}, An, and
Sn.

Proof: Let H be a normal subgroup of Sn. Then, H ∩ An is normal in
An, so by the theorem, H ∩ An is equal to An or reduced to {Id}. In the
former case, H ⊃ An, thus H = An or H = Sn since An has an index of 2
in Sn. Suppose therefore that H ∩ An = {Id} and let us show that H is the
trivial group. If τ and σ are (different) nontrivial elements in H , then τσ
has a signature of (−1)(−1) = 1, so τ = σ−1. From this, H = {Id, σ, σ−1},
but then H is an onto map to {±1} by the signature, which is impossible
as it is of cardinality 3, and 2 does not divide 3. This means that H has to
be of cardinality 1 ou 2. However, a subgroup of cardinality 2 of Sn is of
the form {Id, τ} where τ is a product of transpositions whose supports are
disjoint, so such a subgroup cannot be normal if n ≥ 3, which can be seen
using calculations similar to those in example 1.19 (d).

Corollary 3.15 Let H be a subgroup with index n of Sn for n ≥ 2. Then,
H ≃ Sn−1.
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Proof: The n = 2 and n = 3 cases are trivial. For n = 4, H is of
cardinality 6, but cannot be cyclic (there are no elements of order 6 in S4,
seeing that the order of an element is the least common multiple of the length
of the cycles in its decomposition) so is isomorphic to the dihedral group D3,
i.e., to S3. Suppose therefore that n ≥ 5. Then, Sn acts by translation
on the set E := Sn/H of left cosets, from which comes a homomorphism
ϕ : Sn → S(E). The kernel is a normal subgroup of Sn, and cannot contain
An since this kernel is inside H (the stabilizer of the identity element’s class
is H), which is of cardinality (n− 1)! < n!

2
. From the previous corollary, the

kernel is thus trivial. Hence, ϕ is one-to-one, and since E is of cardinality n,
it is an isomorphism. Now define U := ϕ(H). As we have seen, the subgroup
U ⊂ S(E) is the stabilizer of the element H in E. As E is of cardinality n,
we get that U (which is isomorphic to H) is isomorphic to the stabilizer of a
point in Sn, i.e., to Sn−1.

Remark 3.16 This corollary does not imply that H is the stabilizer of a
point for the natural action of Sn on {1, . . . , n}. This is however true if
n 6= 6, and is linked to the fact that for n 6= 6, the only automorphisms of
Sn are interior ones (see tutorials).

Proof that An is simple for n ≥ 5. The proof requires two fairly simple
lemmas :

Lemma 3.17 For n ≥ 3, the 3-cycles generate An.

Proof: Since Sn is generated by the transpositions, An is generated by
the products of transpositions. Then, if a, b, c, d are four distinct elements in
[1, n], we have (a, b)(b, c) = (a, b, c), (a, b)(a, c) = (a, c, b), and (a, b)(c, d) =
(a, b)(a, c)(a, c)(c, d) = (a, c, b)(a, c, d).

Lemma 3.18 For n ≥ 5, the 3-cycles are conjugate in An.

Proof: Let τ = (a1, a2, a3) and τ ′ = (b1, b2, b3) be 3-cycles. Then, there
exists σ ∈ Sn such that σ(ai) = bi for i = 1, 2, 3, from which στσ−1 = τ ′. If
ε(σ) = 1, we are done. Otherwise, replace σ by σ′ = σ(c, d), where c and
d are two distinct elements in [1, n] and also distinct in a1, a2, a3 (here, the
hypothesis n ≥ 5 is used).
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As a result of these lemmas, any normal subgroup of An containing a
3-cycle is equal to An if n ≥ 5.

We now prove the result for n = 5 :

Proposition 3.19 The group A5 is simple.

Proof: The cardinality of A5 is 60. We begin by sorting its elements by
their order, using their decompositions into cycles.

The elements of order 2 are the products of transpositions with disjoint
supports; there are 5 × 3 = 15 of these (5 choices for the fixed point, and 3
double transpositions in S4).

The elements of order 3 are the 3-cycles, of which there are C3
5 × 2 = 20

(C3
5 choices for the permuted elements, and two 3-cycles in S3).
There is no element of order 4 (the 4-cycles have a signature of −1).
The elements of order 5 are the 5-cycles, of which there are 4! = 24, since

a 5-cycle c corresponds to providing c(1) (4 choices), then c2(1) (3 choices),
etc.

Now, suppose H is a normal subgroup of A5. We show that if H contains
an element of order ω, with ω ∈ {2, 3, 5}, then it contains all of the elements
of order ω. If ω = 3, this is a result of the first lemma. If ω = 2, it
suffices to see that the elements of order 2 are conjugate in A5; however,
if τ = (a1, a2)(a3, a4)(a5) and τ ′ = (b1, b2)(b3, b4)(b5) are two such elements,
there exists an element σ in S5 such that σ(ai) = bi for i = 1, . . . , 5, and thus
στσ−1 = τ ′. If σ has a signature of −1, we replace it by σ(a2, a1). Finally,
while the 5-cycles are not all conjugate in A5

15, the subgroups of order 5 are,
since these are the 5-Sylows of A5; hence if H contains an element of order
5, it contains the subgroup generated by it, thus all of the subgroups of order
5, and therefore all of the elements of order 5.

Now suppose that H 6= {Id}. Then there can exist no ω ∈ {2, 3, 5} such
that all nontrivial elements in H are of order ω, because otherwise, after
what we have just seen, H would be of cardinality 15 + 1, 20 + 1, or 24 + 1,
and none of these numbers divide 60. There must therefore be at least two
numbers ω and ω′ out of 2, 3, 5 for which H contains all of the elements of
order ω and ω′, but if so, the cardinality of H would be greater than 60/2,
and H = A5 since its cardinality must divide 60.

In fact, A5 is the smallest simple group apart from the Z/pZ with prime
p (see tutorials).

15In fact, if c and c′ are 5-cycles, c is conjugate to either c′ or c′2, which is all that is
required for the current argument.
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Proof of the theorem in the general case. Let E = [1, n] and suppose
H is a subgroup of An that is not simply the identity element. Choose a
nontrivial σ in H . We intend to manoeuvre ourselves to the n = 5 case
by constructing an element of H which acts on a subset of cardinality of
at most 5 in E. For this, we are not going to consider a conjugate of σ
(which would have the same number of fixed points as σ), but a commutator
ρ = τστ−1σ−1 (which has a chance of having more). We choose τ in the
following way : let a be in E such that b := σ(a) is distinct from a, then
c in E distinct from a, b, and σ(b). We then set τ = (a, c, b), which means
that ρ = (τστ−1)σ−1 is indeed in H . Then, τ−1 = (a, b, c), from which
ρ = (a, c, b)(στ−1σ−1) = (a, c, b)(σ.a, σ.b, σ.c). As σ.a = b, we see that there
exists a subset F of E which has at most 5 elements (and we can take one
whose cardinality is exactly 5) such that ρ acts trivially outside F , and F
contains {a, b, c, σ(b), σ(c)}.

This gives us a one-to-one homomorphism i from A(F ) to An by extend-
ing a permutation of F to the identity outside F . Now, set H0 = i−1(H),
which is a normal subgroup of A(F ) ≃ A5. However, H0 is not trivial be-
cause it contains the restriction of ρ to F , and we have ρ(b) = τσ(b) 6= b
(seeing as σ(b) 6= c = τ−1(b)). Thus, H0 = A(F ) thanks to the n = 5 case.
In particular, H0 contains a 3-cycle, so H does too, and therefore H = An

via the two lemmas.

3.4. Solvable and nilpotent groups

Here we stick to a few definitions and initial properties of these. A more
in-depth treatment can be found in Hall’s text [1].

Definition 3.20 Let G be a group16. We say that G is solvable if there
exists a finite sequence

{1} = G0 ⊂ G1 ⊂ . . . ⊂ Gn = G

whereby for any i ∈ [1, n], Gi−1 ⊳Gi and Gi/Gi−1 is abelian.

The following characterization of solvable groups is useful:

Proposition 3.21 Let G be a group, and set D0(G) = G, D1(G) = D(G),
and Di(G) = D(Di−1(G)) for all i ≥ 2. Then G is solvable if and only if
there exists an integer n such that Dn(G) = {1}.

16This notion is of most interest for finite groups, but is not necessarily limited to them.
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Proof: If there exists an n such that Dn(G) = {1}, then each quotient
Di(G)/Di−1(G) is an abelian group by the definition of commutator sub-
groups, so G is solvable via the sequence of Di(G). Note that each Di(G) is
normal in G itself since the derived subgroup of a group H is characteristic
in H , and this property is transitive.

In the reverse direction, if G is solvable, let (Gi)1≤i≤n be a sequence like in
definition 3.20. Then, G/Gn−1 is abelian, so Gn−1 ⊃ D(G). By induction on
i, we have Gn−i ⊃ Di(G) (if Gn−i+1 ⊃ Di−1(G), and thus since Gn−i+1/Gn−i

is abelian, we have Gn−i ⊃ D(Gn−i+1) ⊃ D(Di−1(G)) = Di(G)). For i = n,
this gives Dn(G) = {1}.

Remark 3.22 a) Proposition 3.21 says that we can also require that each
Gi be normal in G (using the sequence of commutator subgroups Di(G)).
Thus, G solvable means that it can be deduced, starting from {1}, using a
finite sequence of extensions with abelian kernels :

1 → Gi/Gi−1 → G/Gi−1 → G/Gi → 1.

b) If G is finite and we do not impose that Gi⊳G, we can instead require
thatGi/Gi−1 be cyclic with prime order instead of abelian; in effect, any finite
abelian group H has a sequence H ⊃ . . . ⊃ {1} where all of the Hi/Hi−1 are
simple (and thus cyclic with prime order since they are abelian), which can
be shown by induction on #H . On the other hand, requiring that Gi/Gi−1

be cyclic and Gi ⊳ G for all i is a stronger condition (the groups here are
called supersolvable).

c) The term solvable comes from Galois theory. If P is an irreducible
polynomial with coefficients in Q, and K ⊂ C its splitting field (the smallest
field containing all of its roots), we define the Galois group G of P as the
group of automorphisms of the fieldK. Galois theory states that the equation
P (x) = 0 is solvable by radicals if and only if G is solvable. The fact that
Sn is not solvable for n ≥ 5 implies that there is no solution in radicals to
general polynomial equations of degree 5. We will see this in more detail in
the chapter on Galois theory.

A concept even stronger than solvable (even more so than supersolvable
for finite groups) is that of nilpotent groups :

Definition 3.23 We say that a group G is nilpotent if there exists a finite
sequence

{1} = G0 ⊂ G1 ⊂ . . . ⊂ Gn = G
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such that for any i ∈ [1, n] : Gi ⊳G and the extension

1 → Gi/Gi−1 → G/Gi−1 → G/Gi → 1

is central, i.e., Gi/Gi−1 is in the center of G/Gi−1.

This means that G can be deduced starting from {1} using a finite se-
quence of central extensions.

Example 3.24 a) Abelian groups are nilpotent.

b) Any p-group G is nilpotent: this can be seen immediately using induc-
tion on its cardinality, given that its center is nontrivial if G is nontrivial,
and the quotient of G by its center remains a p-group.

c) Sn and An are not solvable for n ≥ 5. This is a result of D(Sn) =
D(An) = An, and proposition 3.21.

d) S4 is solvable via the sequence

S4 ⊃ A4 ⊃ V4 ⊃ {1},

where V4 is the subgroup made up of the identity and the double transposi-
tions, but cannot be nilpotent since its center is trivial. The same conclusions
hold for A4 and S3.

e) S3 is supersolvable but not A4.

f) A subgroup or quotient of a solvable group is solvable, as is the exten-
sion of a solvable group by a solvable group.
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