Liste de résultats d'algèbre commutative pour le cours de géométrie algébrique 2013/2014

David Harari

Par convention tous les anneaux sont supposés commutatifs.

Chapitre 1.

- AC 1. Soit A un anneau. Alors tout idéal I de A autre que A est inclus dans un idéal maximal. [AM], théorème 1.3.
- **AC 2.** Soit A un anneau. Soit I un idéal de A. Alors le radical \sqrt{I} de I est l'intersection des idéaux premiers contenant I. [AM], proposition 1.14.

Chapitre 2.

AC 3. La localisation est un homomorphisme plat. [Li], corollaire 2.11 page 10.

Chapitre 3.

- \mathbf{AC} 4. Si A est un anneau noethérien, alors A[X] est noethérien. [AM], théorème 7.5.
- **AC 5.** Soient k un corps parfait de clôture algébrique \bar{k} et soit K une extension de corps de k. Alors les propriétés suivantes sont équivalentes :
- i) L'anneau $K \otimes_k k$ est intègre (i.e. reste un corps); ii) Le corps k est algébriquement fermé dans K.
 - cf. [La], VIII., paragraphe 4.

Chapitre 4.

AC 6. [Cohen/Seidenberg] Soit $A \to B$ un morphisme *injectif* d'anneaux. On suppose que B est entier sur A. Alors le morphisme associé Spec $B \to \operatorname{Spec} A$ est surjectif, et on a dim $A = \dim B$.

[Mat], théorème 5 p. 33.

AC 7. (Lemme de normalisation d'E. Noether) Soit A une algèbre de type fini sur un corps k. Alors il existe des éléments $y_1, ..., y_r$ de A, algébriquement indépendants sur k, tels que A soit entier sur $k[y_1, ..., y_r]$. En particulier dim A = r.

Supposons en outre A intègre. Alors dim A est le degré de transcendance degtr (K/k) du corps des fractions K de A sur k. De plus pour tout idéal premier \wp de A, on a

$$\dim A = \operatorname{ht} \wp + \dim \left(A/\wp \right)$$

[Mat], corollaire 1. p. 91 et corollaire 3. p. 92.

Chapitre 5.

AC 8. (Lemme de Nakayama) Soit M un module de type fini sur un anneau local R (dont on note k le corps résiduel). Alors une partie E de M engendre M si et seulement si son image \widetilde{E} dans $M \otimes_R k$ engendre $M \otimes_R k$.

Chapitre 6.

AC 9. Soit A un anneau normal. Alors $A[X_1, ..., X_n]$ est normal. [Mat], proposition 17b) p.116.

AC 10. Soit A un anneau noethérien et normal. Alors

$$A = \bigcap_{\wp \in \operatorname{Spec} A, \operatorname{ht} \wp \le 1} A_{\wp}$$

(tous les anneaux étant considérés ici comme sous-anneaux du corps des fractions de A).

[Li], lemme 1.13 p. 118.

- **AC 11.** a) (Hauptidealsatz de Krull) Soit A un anneau noethérien. Soit a un élément non inversible de A. Alors les idéaux premiers minimaux parmi ceux qui contiennent a sont de hauteur ≤ 1 , et exactement 1 si a n'est pas diviseur de zéro. [Li], théorème 2.5.12. p. 71. Si A est de plus intègre, il est factoriel si et seulement si tout idéal premier de hauteur 1 est principal.
- b) Soit A un anneau local noethérien. Soient \mathcal{M} l'idéal maximal de A et $f \in \mathcal{M}$. Alors dim $(A/fA) \ge \dim A 1$, avec égalité si f n'est dans aucun idéal premier minimal de A (c'est le cas par exemple si f n'est pas diviseur de zéro). [Li], théorème 2.5.15. p. 72.
- c) Soit A un anneau local noethérien d'idéal maximal \mathcal{M} et de corps résiduel k. Alors

$$\dim_k \mathcal{M}/\mathcal{M}^2 \ge \dim A$$

En particulier $\dim A$ est finie.

[Mat], (12J) pp. 77-78 et p. 141, ou [Li], corollaire 5.14. p. 71.

- **AC 12.** Si A est un anneau local régulier et $\wp \in \operatorname{Spec} A$, alors A_{\wp} est régulier. Tout anneau local régulier est intègre et factoriel.
- [Li], proposition 2.11 p. 129 ou [Mat], théorème 36 p. 121; [Mat], p.139 et p. 142.

AC 13. Soit A un anneau et M un A-module.

- a) Si A est un anneau de Dedekind, alors M est plat si et seulement s'il est sans torsion. [Li], corollaire 2.5. p. 8.
- b) Le A-module M est plat si et seulement si pour tout \wp de Spec A, le module localisé $M_{\wp} = M \otimes_A A_{\wp}$ est plat sur A_{\wp} . Un homomorphisme d'anneaux $\varphi: A \to B$ est plat si et seulement si pour tout $\wp \in \operatorname{Spec} B$, l'homomorphisme $A_{\varphi^{-1}(\wp)} \to B_{\wp}$ est plat. [Li], proposition 2.13. p. 10 et corollaire 2.15. p. 11.
- c) Si A est un anneau local et M un A-module de type fini, alors M est plat si et seulement s'il est libre. [Li], théorème 2.16. p. 11.
- **AC 14.** Soit A un anneau noethérien et soit M un A-module de type fini. Alors M est plat si et seulement si c'est un module projectif (=facteur direct d'un libre). Il revient au même de dire que pour tout \wp de Spec A, le module M_{\wp} est libre sur A_{\wp} . Si de plus A est intègre, c'est encore équivalent à : pour tout \wp de Spec A, la dimension de $M \otimes_A k(\wp)$ sur le corps résiduel $k(\wp)$ est la même.

[Mil], théorème 2.9. p. 11.

- AC 15. a) Le composé de deux homomorphismes plats est plat. [Li], proposition 2.2.d) p. 7.
- b) Si M est plat sur A et si B est une A-algèbre, alors $M \otimes_A B$ est plat sur B. [Li], proposition 2.2.c) p. 7.
- **AC 16.** Un morphisme plat entre des spectres d'anneaux locaux est fidèlement plat. Si $\varphi: A \to B$ est un homomorphisme plat entre anneaux, alors φ satisfait le "going-down" : si \wp_1 et \wp'_1 sont deux idéaux premiers de A avec $\wp_1 \subset \wp'_1$, alors pour tout idéal premier \wp'_2 de B au-dessus de \wp'_1 , il existe un idéal premier \wp_2 de B au-dessus de \wp_1 avec $\wp_2 \subset \wp'_2$.

[Mat], théorème 4 p. 33.

AC 17. Soit $f: X \to Y$ un morphisme fini et surjectif entre schémas réguliers. Alors f est plat.

[Mat], chapitre 6, théorème 46.

Chapitre 8.

AC 18. Soient A un anneau noethérien, $M \subset N$ des A-modules de type fini et \mathbf{a} un idéal de A. Alors pour tout n > 0, il existe $n' \geq n$ tel que $\mathbf{a}^n M \supset M \cap \mathbf{a}^{n'} N$.

[Mat], th. 15 p.68.

Références

- [AM] M. Atiyah, I. Macdonald: Introduction to commutative algebra, Addison-Wesley Publishing Co., 1969.
- [Bki] N. Bourbaki : Algèbre commutative, (Éléments de mathématique, Fasc. 30), chapitre 6.
- [H] R. Hartshorne: Algebraic Geometry, Springer-Verlag, 1977.
- [La] S. Lang : Algebra
- [Li] Q. Liu: Algebraic Geometry and Arithmetic Curves, Oxford University Press, 2002.
- [Mat] H. Matsumura : Commutative Algebra, Benjamin/Cummings Publishing Co. Inc. 1980.
- [Mil] J.S. Milne: Étale Cohomology, Princeton University Press 1980.
- [Nag] M. Nagata: Local rings, J.Wiley, 1962.