Midterm exam M2 "Géométrie algébrique"

Université d'Orsay (D. Harari)

December 2, 2009; 2h; notes allowed

By convention, all rings, fields and algebras are assumed to be commutative. In each exercise, it is allowed to use the result of a question in a further question.

Exercise 1 : Closed points of a scheme (8 points).

Let X be a non empty scheme.

1. Let F be a minimal irreducible closed subset of X (that is: if F' is an irreducible closed subset of X with $F' \subset F$, then F' = F).

a) Let x be a point of F. What is the closure $\overline{\{x\}}$ of the point x?

b) Show that F consists of one single point.

2. Let G be a closed subset of X. Let x be a closed point of X with $x \in G$. Assume that G contains a point y such that $\overline{\{y\}} = G$.

a) Let $U = \operatorname{Spec} A$ be an open subset of X with $x \in U$. Show that the closed subset $U \cap G$ of U is the closed subset $V(\wp)$ of $\operatorname{Spec} A$, where \wp is the prime ideal of A corresponding to y.

b) Deduce that $\mathcal{O}_{X,y}$ is a localization of $\mathcal{O}_{X,x}$.

3. Suppose further that X is a noetherian scheme.

a) Show that X contains a closed point x.

b) Assume further that for every closed point x of X, the ring $\mathcal{O}_{X,x}$ is reduced. Is the scheme X necessarily reduced ?

Exercise 2 : Fibred products (6 points).

Let S be a scheme. Let X and Y be S-schemes with respective structural morphisms $f: X \to S$ and $g: Y \to S$.

1. Assume that the fibred product $X \times_S Y$ is not empty. Show that there exist $x \in X$ and $y \in Y$ such that f(x) = g(y).

2. Suppose conversely that there exist $x \in X$ and $y \in Y$ such that f(x) = g(y). Set s = f(x) = g(y).

a) Show that there exists a field K satisfying: there exist morphisms f_1 : Spec $K \to X$ and g_1 : Spec $K \to Y$ with $f \circ f_1 = g \circ g_1$.

b) Deduce that $X \times_S Y$ is not empty.

Exercise 3: k-algebras of finite type (6 points).

Let k be an algebraically closed field.

1. Let *B* be a *k*-algebra with $B \neq 0$. Let *b* be a non nilpotent element of *B* and let $\rho: B \to B_b$ be the localization homomorphism.

a) Show that the localized ring B_b has a maximal ideal I.

b) Assume further that B is a finitely generated k-algebra. Show that $\rho^{-1}(I)$ is a maximal ideal of B. Is it possible that $\rho^{-1}(I)$ contains b?

2. Let $X = \operatorname{Spec} A$ be an affine scheme. Assume that X is reduced and of finite type over k. Let $f : X \to \mathbf{A}_k^n$ be a k-morphism. Denote $\varphi : k[T_1, ..., T_n] \to A$ the k-algebra homomorphism corresponding to f. Set $f_i = \varphi(T_i)$ (i = 1, ..., n) and identify the set $\mathbf{A}_k^n(k)$ of k-points of the affine space \mathbf{A}_k^n to k^n .

a) Show that for every k-point x of X, the equality $f(x) = (f_1(x), ..., f_n(x))$ holds, where f(x) is viewed as an element of $\mathbf{A}_k^n(k) = k^n$ and $f_i(x)$ is the evaluation of $f_i \in A = \mathcal{O}_X(X)$ at x.

b) Prove that if an element ψ of A satisfies $\psi(x) = 0$ for every k-point x of X, then $\psi = 0$.