190. Méthodes combinatoires, problèmes de dénombrement: questions

- 1. Soit $f_n(k)$ le nombre de permutations de $\{1, ..., n\}$ admettant exactement k points fixes. Calculer $\sum_{k=0}^{n} k f_n(k)$.
 - **2.** a) Soit n un entier naturel. Pour tout entier i de $\{0, 1, ..., n\}$, calculer

$$\sum_{k=i}^{n} (-1)^{n-k} \binom{n}{k} \binom{k}{i}$$

(on distinguera les cas i = n et $i \neq n$).

b) Soient $u_0, ..., u_N$ et $v_0, ..., v_N$ des éléments d'un groupe abélien (noté additivement) G. On suppose que pour tout $n \in \{0, ..., N\}$, on a

$$u_n = \sum_{k=0}^{n} \binom{n}{k} v_k.$$

Montrer qu'on a, pour tout $n \in \{0,...,N\}$:

$$v_n = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} u_k.$$

c) Soit $S_{p,n}$ le nombre de surjections d'un ensemble à p éléments dans un ensemble à n éléments. Montrer que

$$n^p = \sum_{k=0}^n \binom{n}{k} S_{p,k}.$$

- d) En déduire une formule pour $S_{p,n}$.
- e) En utilisant b), retrouver aussi la formule donnant le nombre de permutations sans point fixe d'un ensemble à n éléments.
 - 3. Quelques utilisations du principe des tiroirs :

- a) Soit K un corps fini de caractéristique différente de 2. En comptant le nombre de carrés dans K, montrer que toute forme quadratique de rang au moins 3 sur K possède un zéro non trivial.
- b) i) Soit x un réel non rationnel. Montrer que si (p_n) et (q_n) sont des suites d'entiers avec $q_n > 0$, et si la suite (p_n/q_n) tend vers x, alors (q_n) tend vers $+\infty$.
- ii) Soit $n \in \mathbb{N}^*$. En considérant les parties fractionnaires des nombres kx pour k = 0, 1, ..., n, montrer qu'il existe des entiers p_n et q_n avec $q_n > 0$ tels que

$$|q_n x - p_n| < \frac{1}{n} \le \frac{1}{q_n}.$$

iii) En déduire qu'il existe une infinité d'entiers q>0 tels qu'il existe un entier p vérifiant

$$|x - \frac{p}{q}| < \frac{1}{q^2}.$$

- c) i) Soit (N_{α}) une famille au plus dénombrable de parties mesurables (pour la mesure de Lebesgue μ) de \mathbf{R}^n . On note $N = \bigcup_{\alpha} N_{\alpha}$. Soit $k \in \mathbf{N}^*$. Montrer que si $\sum_{\alpha} \mu(N_{\alpha}) > k\mu(N)$, alors il existe un point de \mathbf{R}^n qui appartient à au moins k+1 des ensembles N_{α} .
- ii) Soit M une partie mesurable de \mathbf{R}^n telle que $\mu(M) > k$. Soit $D = ([0,1])^n$, pour tout $\alpha \in \mathbf{Z}^n$, on note $M \alpha$ l'ensemble des $x \alpha$ pour $x \in M$. Montrer que

$$\sum_{\alpha \in \mathbf{Z}^n} \mu(D \cap (M - \alpha)) > k\mu(\bigcup_{\alpha \in \mathbf{Z}^n} (D \cap (M - \alpha))).$$

- iii) En déduire que M contient k+1 points distincts de \mathbf{R}^n dont les différences deux à deux sont à coordonnées entières (théorème de Blichfeldt).
- **4.** a) Soit E un espace vectoriel de dimension n sur un corps K. Quelles sont les orbites pour l'action de GL(E) sur l'ensemble W des sous-espaces vectoriels de E donnée par : g.F = g(F) pour tout $g \in GL(E)$ et tout $F \in W$?
- b) On suppose K fini de cardinal q. Dénombrer le nombre de sous-espaces vectoriels de dimension p de E.