Exercices : groupes (IV); caractères d'un groupe abélien, représentations

D. Harari

Agrégation

- 1. Soit G un groupe fini. On note \widehat{G} le groupe des morphismes de G dans \mathbf{C}^* (la loi étant la multiplication des fonctions). Autrement dit les éléments de \widehat{G} sont les représentations de G de degré 1.
- a) Montrer que si G est d'ordre n, alors tout élément de $\chi: G \to \mathbf{C}^*$ de \widehat{G} est à valeurs dans le groupe μ_n des racines n-ièmes de l'unité.
- b) Montrer que tout élément $\chi: G \to \mathbf{C}^*$ de \widehat{G} induit le morphisme constant égal à 1 sur le sous-groupe dérivé D(G) de G. En déduire que \widehat{G} est isomorphe à \widehat{G}^{ab} .
 - c) Montrer que si G est cyclique d'ordre n, il en va de même de \widehat{G}
- d) Montrer que si $G = \mathcal{S}_n$ avec $n \geq 2$, alors \widehat{G} est de cardinal 2 (on pourra utiliser la simplicité de \mathcal{A}_n pour $n \geq 5$).
- **2.** (Suite de l'exercice 1). Soit G un groupe abélien fini, noté multiplicativement. Soit H un sous-groupe de G. On se propose de montrer que tout morphisme χ de H dans \mathbf{C}^* peut être prolongé en un morphisme de G dans \mathbf{C}^* . On raisonne par récurrence sur l'indice d = [G:H] de H dans G; le cas [G:H] = 1 étant clair, on suppose le résultat vrai pour [G:H] < d.
- a) On choisit $x \in G$ avec $x \notin H$. Soit n le plus petit entier > 0 tel que $x^n \in H$ (n existe car x est d'ordre fini). Montrer que si $m \in \mathbf{Z}$, alors on a $x^m \in H$ si et seulement si n divise m.
- b) On pose $h_0 = x^n$ et $t = \chi(x^n)$ et on choisit $w \in \mathbb{C}^*$ tel que $w^n = t$. Soit H' le sous-groupe de G engendré par H et x. Montrer que tout élément de H' s'écrit $h' = hx^a$ avec $h \in H$ et $a \in \mathbb{Z}$, et que le nombre complexe $\chi(h)w^a$ ne dépend pas de l'écriture choisie.
- c) En déduire qu'il existe un morphisme de H' dans ${\bf C}^*$ qui prolonge $\chi,$ et conclure.

- d) Montrer que si G n'est plus supposé abélien, alors le résultat peut tomber en défaut même si H est abélien (on pourra utiliser l'exercice 1).
 - **3.** (Suite des exercices 1 et 2) Soit G un groupe abélien fini.
- a) Montrer que si H est un sous-groupe de G, alors il existe un morphisme surjectif $\widehat{G} \to \widehat{H}$ dont le noyau est isomorphe à $\widehat{G/H}$ (on utilisera l'exercice 2).
- b) En déduire, par récurrence sur l'ordre de G, que \widehat{G} et G ont même ordre
- c) Soit $\varepsilon: G \to \widehat{\widehat{G}}$ le morphisme qui envoie $x \in G$ sur le morphisme $\widehat{G} \to \mathbf{C}^*$ défini par $\chi \mapsto \chi(x)$. Montrer que ε est un isomorphisme.

On dit parfois que \widehat{G} est le dual du groupe abélien G.

- **4.** Soit $\rho: G \to \operatorname{GL}(V)$ une représentation linéaire d'un groupe fini G, dont on note χ le caractère. Soit V^* le dual de V; pour tous $x \in V$ et $x' \in V^*$, on note $\langle x, x' \rangle$ le nombre complexe x'(x).
 - a) Montrer qu'il existe une unique représentation ρ^* de ρ vérifiant :

$$\langle \rho_s(x), \rho_s^*(x') \rangle = \langle x, x' \rangle$$

pour tous $s \in G, x \in V, x' \in V^*$. On dit que ρ^* est la représentation contragrédiente de ρ .

- b) Montrer que le caractère de ρ^* est le conjugué $\bar{\chi}$ de celui de ρ .
- ${\bf 5.}$ Soit G un groupe fini. Montrer que G est abélien si et seulement si toutes ses représentations irréductibles sont de degré 1.
- **6.** Soit $G = H_8$ le groupe des quaternions d'ordre 8 (voir l'exercice 4 de la feuille II). Rappelons qu'on peut le voir comme constitué de 8 éléments $\pm 1, \pm i, \pm j, \pm k$, qui vérifient les relations $i^2 = j^2 = k^2 = -1$, ij = -ji = k, jk = -kj = i, ki = -ik = j. Son centre et son sous-groupe dérivé sont tous deux égaux à $\{\pm 1\}$, et son abélianisé est isomorphe à $(\mathbf{Z}/2\mathbf{Z})^2$.
- a) Montrer que G possède 4 caractères de degré 1, dont on explicitera les valeurs sur les divers éléments de G.
 - b) Montrer que G possède 5 classes de conjugaison.
 - c) En déduire la table de caractères de G.
- 7. Soit $n \geq 2$ un entier. Soit $G = D_n$ le groupe diédral des isométries du plan laissant stable un polygone régulier convexe à n côtés. Rappelons que G est de cardinal 2n, composé :

-des n rotations r^k , $1 \le k \le n-1$ avec r rotation d'angle $2\pi/n$, qui forment un sous-groupe cyclique C_n distingué de cardinal n de G.

-de n réflexions.

Si s est une réflexion dans G, alors G est produit semi-direct de C_n par le groupe de cardinal 2 engendré par s, et on a $srs = s^{-1}$. On fixe une racine primitive n-ième de l'unité ω .

- 1. On suppose n pair.
- a) Montrer que l'abélianisé G^{ab} de G est isomorphe à $(\mathbf{Z}/2\mathbf{Z})^2$, et en déduire que G possède 4 caractères irréductibles de degré 1.
- b) Montrer que pour tout entier h avec 0 < h < n/2, il existe une unique représentation ρ^h de degré 2 qui associe à r la matrice $\mathrm{Diag}(\omega^h, \omega^{-h})$ et à s la matrice

 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

- c) Montrer que les représentations ρ^h définies ci-dessus sont irréductibles, et deux à deux non isomorphes.
- d) Montrer que les représentations irréductibles de G à isomorphisme près sont les 4 représentations de degré 1 (cf. a)) et les n/2-1 représentations ρ^h ci-dessus. Écrire la table de caractères de D_4 , et comparer à celle de H_8 .
- 2. On suppose maintenant n impair. Montrer que G possède (à isomorphisme près) 2 représentations irréductibles de degré 1, et que toutes les autres représentations irréductibles sont les ρ^h définies comme ci-dessus pour $0 < h \le (n-1)/2$.
- 8. Soit C le cube de l'espace euclidien \mathbf{R}^3 dont les 8 sommets ont pour coordonnées $(\pm 1, \pm 1, \pm 1)$. Soit G le groupe des isométries de \mathbf{R}^3 qui laissent stable le cube, i.e. permutent ses 8 sommets. Soit T le tétraèdre de sommets (1,1,1), (1,-1,-1), (-1,1,-1), (-1,-1,1).
 - a) Montrer que C est réunion de T et de τT , où $\tau = -\mathrm{Id}$.
- b) Soit S(T) le groupe des isométries de T. Montrer que G est produit direct de $S(T) \simeq \mathcal{S}_4$ et de $\{\mathrm{Id}, \tau\}$.
 - c) Montrer que G a deux fois plus de caractères irréductibles que S_4 .
 - d) Décrire les caractères irréductibles de G et écrire sa table de caractères.
- **9.** Soit G un groupe abélien infini. Soit p un nombre premier; on suppose que tout élément x de G vérifie $x^p = 1$.
- a) Soit n un entier positif. Montrer que si K est un corps de caractéristique différente de p, alors G ne peut pas être un sous-groupe de $GL_n(K)$.
- b) Soit F un corps quelconque. Montrer que le groupe infini $(\mathbf{Z}/2\mathbf{Z})^{\mathbf{N}} \times (\mathbf{Z}/3\mathbf{Z})^{\mathbf{N}}$ n'admet pas de représentation linéaire fidèle de dimension finie sur F