Exercices: groupes (I); Généralités

D. Harari

Agrégation

- 1. Soit G le groupe abélien $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, muni de la loi +, qu'on peut aussi voir comme un espace vectoriel sur le corps $\mathbb{Z}/2\mathbb{Z}$.
- a) Montrer que si $f: G \to G$ est un morphisme de groupes, alors f est aussi un morphisme de $\mathbb{Z}/2\mathbb{Z}$ -espaces vectoriels.
- b) En déduire que le groupe $\operatorname{Aut} G$ des automorphismes du groupe G est isomorphe à $\operatorname{GL}_2(\mathbf{Z}/2\mathbf{Z})$ (il est donc non commutatif, bien que G le soit).
- **2.** Soit G un groupe. Les applications suivantes de G dans G sont-elles toujours des morphismes?
 - a) $x \mapsto ax$, où $a \in G$ est fixé.
 - b) $x \mapsto x^n$ pour $n \in \mathbf{N}^*$.
 - c) $x \mapsto x^{-1}$.
- $\bf 3.$ a) Montrer que l'intersection d'une famille quelconque de sous-groupes d'un groupe G est aussi un sous-groupe.
- b) Soient A et B deux sous-groupes d'un groupe G. Montrer que $A \cup B$ n'est pas un sous-groupe, sauf si on a $A \subset B$ ou $B \subset A$.
- **4.** Soit K un corps. Soit A une partie de $M_n(K)$ telle que A soit un groupe pour la multiplication des matrices. A est-elle toujours un sous-groupe de $GL_n(K)$?
 - **5.** Soit (A, +) un groupe abélien.
- a) Soit n > 0. Montrer que l'ensemble $A[n] := \{x \in A, nx = 0\}$ est un sous-groupe de A, appelé sous-groupe de n-torsion de A.
- b) Montrer que $A_{\text{tors}} := \bigcup_{n>0} A[n]$ est un sous-groupe de A, appelé sous-groupe de torsion de A.
- c) Quel est le cardinal de A_{tors} lorsque $A = \mathbb{R}$? Lorsque A = K, où K est un corps commutatif quelconque?

- ${\bf 6.}$ Montrer que le groupe additif ${\bf Q}$ n'est pas engendré par une partie finie.
- 7. Soit G un groupe. Soit H un sous-groupe de G. Montrer que $aH \mapsto Ha^{-1}$ est une bijection de l'ensemble G/H des classes à gauche sur l'ensemble $H \setminus G$ des classes à droite. Le cardinal de ces ensembles, s'il est fini, se note [G:H] et s'appelle *l'indice* de H dans G (c'est aussi l'ordre du groupe G/H si H est distingué dans G).
 - **8.** Soit G un groupe.
- a) Montrer que si H est distingué dans G. alors on a f(H) = H pour tout automorphisme intérieur f de G.
- b) Montrer qu'une intersection de sous-groupes distingués est encore un sous-groupe distingué.
- c) On prend $G = \mathcal{S}_4$. On fixe une double transposition τ de G. Soit H le sous-groupe de G constitué de l'identité et des doubles transpositions. Soit K le sous-groupe $\{\mathrm{id},\tau\}$ de G. Montrer que $K \triangleleft H$, $H \triangleleft G$, mais K n'est pas distingué dans G.
- d) Soient H un sous-groupe de G et K un sous-groupe caractéristique de H. Montrer que si H est caractéristique (resp. distingué), dans G, alors K est caractéristique (resp. distingué) dans G.
- 9. Soient H et N deux groupes. On dit qu'un groupe E est une extension de H par N s'il existe un morphisme surjectif $E \to H$ dont le noyau est isomorphe à N (voir aussi l'exercice 3 de la feuille II). Montrer que les groupes $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ et $\mathbb{Z}/4\mathbb{Z}$ sont tous deux des extensions de $\mathbb{Z}/2\mathbb{Z}$ par $\mathbb{Z}/2\mathbb{Z}$.
- 10. Soit $n \geq 3$. Montrer que le centre de S_n est réduit à l'identité (Utiliser la formule $\sigma \tau \sigma^{-1} = (\sigma(a), \sigma(b))$ pour $\sigma \in S_n$ et $\tau = (a, b)$ transposition).