Corrigé de la feuille d'exercices 2 sur les groupes

D. Harari

Agrégation

- 1. a) Nécessairement on doit avoir $\bar{f}(\bar{x}) = f(x)$. L'hypothèse $H \subset \ker f$ montre que cette application est bien définie, et il est alors immédiat que \bar{f} est un morphisme vérifiant $f = p \circ \bar{f}$.
- b) Si $z = xyx^{-1}y^{-1}$ est un commutateur, alors on obtient que $f(z) = f(x)f(y)f(x)^{-1}f(y)^{-1}$ vaut 1 puisque A est abélien. Ainsi ker f contient tous les commutateurs, donc contient le sous-groupe D(G) qu'ils engendrent. Avec a), on obtient que f induit un morphisme de $G^{ab} = G/D(G)$ dans A.
- **2.** a) Si x est d'ordre d, il engendre un sous-groupe de cardinal d, qui est donc C_d . Réciproquement, si x engendre C_d , il est d'ordre d par définition puisque C_d est de cardinal d.
- b) Comme C_d (qui est isomorphe à $\mathbf{Z}/d\mathbf{Z}$) possède $\varphi(d)$ éléments d'ordre d, il y a exactement $\varphi(d)$ élements d'ordre d pour tout diviseur d de n. La formule résulte alors de a) en triant les éléments de $\mathbf{Z}/n\mathbf{Z}$ par leur ordre.
- c) Soit x un élément d'ordre d de G. Soit H le sous-groupe de G engendré par x, il est de cardinal d et tout élément y de G satisfait l'équation $y^d=1$ via le théorème de Lagrange. Comme K est un corps, cette équation a au plus d solutions, qui sont donc exactement les éléments de G. Parmi ceux-ci, ceux d'ordre exactement d sont au nombre de $\varphi(d)$, comme dans tout groupe cyclique de cardinal d. Finalement, on a montré que dès qu'il y a au moins un élément d'ordre d, il y a exactement $\varphi(d)$ éléments d'ordre d dans G.
- d) Pour tout diviseur d du cardinal n de G, désignons par N_d le nombre d'éléments d'ordre d. On a, en triant les éléments par leur ordre :

$$\sum_{d|n} N_d = n.$$

Par ailleurs $N_d \leq \varphi(d)$ d'après c); d'après la formule $\sum_{d|n} \varphi(d) = n$, toutes les inégalités ci-dessus sont des égalités. En particulier $N_n = \varphi(n) > 0$, i.e. il y a au moins un élément d'ordre n, ce qui veut dire que G est cyclique.

- $\bf 3.$ a) L'image de la première flèche est le groupe trivial par définition, et de même le noyau de la dernière flèche est H tout entier. L'énoncé en résulte.
 - b) C'est le théorème de factorisation.
- c) Il suffit de remarquer que le déterminant est un morphisme surjectif de $GL_n(K)$ dans K^* , de noyau $SL_n(K)$.
- d) De même, le déterminant est un morphisme surjectif de $O_n(\mathbf{R})$ dans $\{\pm 1\}$ de noyau $SO_n(\mathbf{R})$; c'est aussi un morphisme surjectif de $U_n(\mathbf{C})$ dans S^1 de noyau $SU_n(\mathbf{C})$.
- e) On obtient un morphisme surjectif de G dans Int G en envoyant tout $g \in G$ sur $x \mapsto gxg^{-1}$. Par définition du centre, le noyau de ce morphisme est Z.
- 4. a) Les matrices de H sont toutes inversibles, car le déterminant de $M_{a,b}$ est $|a|^2 + |b|^2$, qui ne s'annule que si a = b = 0. On vérifie immédiatement que $I_2 \in H$ et que H est stable par produit. Enfin, l'inverse d'une matrice non nulle $M_{a,b}$ de H est

$$\frac{1}{|a|^2 + |b|^2} M_{\bar{a}, -b},$$

qui est encore non nul et dans H.

b) On vérifie facilement les relations

$$IJ = -JI = K; JK = -KJ = I; KI = -IK = J; I^2 = J^2 = K^2 = -1,$$

qui impliquent que H_8 est un sous-groupe non commutatif de H de cardinal 8.

- c) Les relations ci-dessus donnent que le centre de H_8 est $Z=\{\pm 1\}$. Le sous-groupe dérivé n'est pas trivial, et H_8/Z est de cardinal 4, donc abélien, donc Z contient le sous-groupe dérivé. La seule possibilité est donc que ce sous-groupe dérivé soit Z.
- d) L'abélianisé H_8/Z est de cardinal 4, et tous ses éléments sont d'ordre au plus 2 via les relations ci-dessus. Il est donc isomorphe à $(\mathbf{Z}/2)^2$.
- 5. Les groupes d'ordre 2, 3, 5, 7 sont cycliques car d'ordre premier. Si G est un groupe de cardinal 4, alors tout élément autre que le neutre est d'ordre 2 ou 4. S'il y a un élément d'ordre 4, le groupe est cyclique. Sinon les trois éléments a, b, c de G autre que le neutre sont d'ordre 2; on obtient un isomorphisme de $(\mathbf{Z}/2\mathbf{Z})^2$ dans G en envoyant (\bar{x}, \bar{y}) sur $a^x b^y$. Soit enfin G un groupe de cardinal 6. Le théorème de Sylow donne un sous-groupe G_2 de cardinal 2 et un sous-groupe G_3 de cardinal 3. On sait que G_3 est distingué (d'indice 2 dans G) et G_2G_3 est donc un sous-groupe, qui contient G_2 et G_3 , ce qui implique

 $G_2G_3=G$ (puisque le cardinal de G_2G_3 est divisible par 2 ou 3). On a aussi $G_2\cap G_3=\{1\}$ via le théorème de Lagrange. Ainsi G est produit semi-direct $G_3\rtimes G_2$. Les deux actions possibles de G_2 sur G_3 sont l'action triviale (qui donne $G=\mathbf{Z}/2\mathbf{Z}\times\mathbf{Z}/3\mathbf{Z}\simeq\mathbf{Z}/6\mathbf{Z}$) et l'action non triviale (correspondant au morphisme non trivial de G_2 dans $\mathrm{Aut}(G_3)\simeq\mathbf{Z}/2\mathbf{Z}$). L'action non triviale correspond comme on l'a vu en cours à S_3 .

6. a) On montre par récurrence sur $n \in \mathbb{N}^*$ que

$$A^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix},$$

ce qui montre que A est d'ordre infini.

- b) Il s'agit de montrer que A est semblable à A^2 . Or l'endomorphisme représenté par A^2 dans la base canonique (e_1, e_2) a pour matrice A dans la base $(e_1, 2e_2)$.
 - c) Pour tout entier n, on a

$$gA^ng^{-1} = (gAg^{-1})^n = A^{2n},$$

ce qui montre que gHg^{-1} est le sous-groupe de H engndré par A^2 , qui est un sous-groupe strict de $H=\langle A\rangle$ puisque A est d'ordre infini. Ainsi l'ensemble des x de G tels que $xHx^{-1}\subset H$ contient g mais pas g^{-1} (sinon on aurait $gHg^{-1}=H$). Cet ensemble n'est donc pas un sous-groupe de G.

d) On a vu en cours que $N_G(H)$ est un sous-groupe (cela se vérifie sans difficulté). Si H est fini et qu'on a $xHx^{-1} \subset H$, alors comme xHx^{-1} a même cardinal de H, on a bien $xHx^{-1} = H$.