151. Dimension d'un espace vectoriel : indications de solutions

- 1. Il est essentiel ici de bien comprendre que prendre une base \mathcal{B} de E et essayer d'obtenir une famille génératrice de F à partir de \mathcal{B} n'a aucune chance de marcher, car la difficulté est qu'on doit fabriquer des éléments qui restent dans F et il n'y a aucune raison que les éléments de \mathcal{B} soient dans F. La méthode correcte est de raisonner avec les familles libres et non pas génératrices. On prend une famille libre \mathcal{F} de F de cardinal $m \in \mathbb{N}$ maximal, ce qui est possible puisque toute famille de vecteurs de E de plus de E éléments est liée vu que E possède une famille génératrice de cardinal E0 n sait donc déjà que E1 n, et (comme toute famille libre maximale dans un espace vectoriel) la famille E2 est alors une base de E3.
- **2.** a) Supposons x algébrique sur K. Alors il existe une famille finie $(a_0,...,a_{k-1})$ d'éléments de K tellle que

$$x^k + a_{k-1}x^{k-1} + \dots + a_0 = 0.$$

On vérifie alors immédiatement par récurrence sur n que pour tout $n \geq k$, x^n est dans le K-espace vectoriel engendré par $1, x, ... x^{k-1}$, ce qui prouve que le K-espace vectoriel K[x] engendré par tous les x^n est de dimension au plus k. En sens inverse, si K[x] est de dimension finie, alors la famille infinie des x^n est liée, ce qui donne immédiatement qu'il existe un polynôme non nul P (qu'on peut supposer unitaire, quitte à diviser par le coefficient dominant) P de K[X] tel que P(x) = 0.

b) Il est immédiat que K[x] est un sous-anneau de L. Si $x \neq 0$ est algébrique, alors on a une équation du type

$$x^k + a_{k-1}x^{k-1} + \dots + a_0 = 0$$

avec les a_i dans K, et on peut supposer $a_0 \neq 0$ (quitte à factoriser par une puissance de x). Alors

$$x^{k-1} + \dots + a_0/x = 0,$$

ce qui montre (en divisant par a_0) que $1/x \in K[x]$. Ainsi K[x] est bien un corps. En sens inverse, si x n'est pas algébrique, alors on voit tout de suite que $P \mapsto P(x)$ est un isomorphisme de K-algèbres de K[X] sur K[x], donc K[x] ne peut pas être un corps.

c) Il est clair que 0 et 1 sont dans E. Si x est dans E, le K-ev engendré par les x^n est clairement le même que celui engendré par les $(-x)^n$, donc (-x) est dans E d'après a). De même, si $x \neq 0$ est dans E, il vérifie une équation du type

$$x^k + a_{k-1}x^{k-1} + \dots + a_0 = 0,$$

donc $1 + a_{k-1}x + ... + a_0/x^k = 0$, ce qui montre que 1/x est encore dans E, vu qu'il annule un polynôme non nul à coefficients dans K. Il reste à montrer que si $x, y \in E$, alors (x + y) et xy sont dans E. Or, le K-espace vectoriel K[x + y] engendré par x + y est un sous-ev du K-espace vectoriel K[x, y] = (K[x])[y] (constitué des polynômes en y à coefficients dans K[x]). On a vu en b) que K[x] est un corps; comme y est algébrique sur K, il l'est a fortiori sur K[x], donc K[x, y] est de dimension finie sur K[x]. Comme K[x] est de dimension finie sur K, le théorème de la base télescopique donne que K[x, y] est de dimension finie sur K, donc aussi K[x + y] qui en est un sous-espace. De même pour K[xy]. On conclut avec a).

- 3. a) Pour tout $n \in \mathbb{N}$, l'ensemble $\mathbf{Q}_n[X]$ des polynômes de degré au plus n est dénombrable, car en bijection avec \mathbf{Q}^{n+1} . L'ensemble Z_n des éléments de $\overline{\mathbf{Q}}$ qui annulent un polynôme non nul de $\mathbf{Q}_n[X]$ est donc dénombrable, puisque chaque polynôme non nul de $\mathbf{Q}_n[X]$ n'a qu'un nombre fini de racines. On en déduit que $\overline{\mathbf{Q}}$, qui est réunion dénombrable des Z_n pour $n \in \mathbb{N}$, est dénombrable.
- b) Soit $P = X^n + a_{n-1}X^{n-1} + ... + a_0$ un polynôme unitaire à coefficients dans $\overline{\mathbf{Q}}$. Alors $\mathbf{Q}(a_0)$ est un \mathbf{Q} -ev de dimension finie car a_0 est algébrique sur \mathbf{Q} . Par récurrence, on voit que $K := \mathbf{Q}(a_0, ..., a_{n-1})$ est de dimension finie sur \mathbf{Q} (car chaque a_i est algébrique sur \mathbf{Q} , donc a fortiori sur $\mathbf{Q}(a_0, ..., a_{i-1})$). Soit x une racine de P, alors x est algébrique sur K par définition, donc K(x) est de dimension finie sur K, donc finalement aussi sur K0 puisque K1 est de dimension finie sur K2. Comme K3 est un sous-espace de K4 est également de dimension finie sur K4, ce qui signifie que K5 est algébrique sur K6, i.e. K6 est algébrique on voulait.
- c) On vient de voir que $\overline{\mathbf{Q}}$ est un sous-corps algébriquement clos de \mathbf{C} qui contient \mathbf{Q} . C'est le plus petit car si L est un tel corps, il contient les racines de tous les polynômes non nuls à coefficients dans \mathbf{Q} , donc il contient $\overline{\mathbf{Q}}$. Plus généralement, si F est un corps inclus dans un corps algébriquement

clos F', on obtient la clôture algébrique de F en prenant l'ensemble des éléments de F' algébriques sur F; la difficulté pour montrer l'existence de la clôture algébrique est qu'il faut d'abord montrer l'existence d'un tel F', ce qui nécessite entre autres le lemme de Zorn.

- d) Non : il suffit pour voir cela de trouver des polynômes irréductibles de $\mathbf{Q}[X]$ de degré d arbitrairement grand car alors une racine x d'un tel polynôme vérifiera $[\mathbf{Q}[x]:\mathbf{Q}]=d$ arbitrairement grand (alors que ce nombre serait majoré par la dimension $[\overline{\mathbf{Q}}:\mathbf{Q}]$ si celle-ci était finie). Or le polynôme X^d-p pour p premier est irréductible sur \mathbf{Q} via le critère d'Eisenstein.
- 4. Non, E est isomorphe à $K^{(I)}$ (familles presque nulles à coefficients dans K), par contre E^* est bien isomorphe à K^I (se donner une forme linéaire revient à se donner ses valeurs sur une base). Noter qu'on n'a pas de "base duale" en dimension infinie, la famille correspondante n'engendrant pas tout E^* mais seulement les formes linéaires qui s'annulent sur presque tous les vecteurs de la base de départ. Bien que ce ne soit pas évident, K^I n'est jamais isomorphe à $K^{(I)}$ si I est infini (penser au cas $K = \mathbb{Z}/2\mathbb{Z}$, où le premier a le cardinal de l'ensemble des parties de I et le deuxième celui de l'ensemble des parties finies de I, qui est le même que celui de I si I est infini). Le théorème de I0 dit que I1 admet une base, donc est isomorphe à I2 pour un certain ensemble I3, mais on ne peut pas déterminer explicitement I3 en général!
- 5. On voit tout de suite que l'hypothèse px = 0 permet de voir A comme un $\mathbf{Z}/p\mathbf{Z}$ -espace vectoriel. Il est fini, donc de dimension finie $d \in \mathbf{N}$, donc isomorphe à $(\mathbf{Z}/p\mathbf{Z})^d$ (comme groupe abélien ou comme espace vectoriel sur $\mathbf{Z}/p\mathbf{Z}$). Si A est infini, en admettant l'existence d'une base dans tout espace vectoriel, on peut juste dire que A est isomorphe à $(\mathbf{Z}/p\mathbf{Z})^{(I)}$ pour un certain cardinal I (qui est le cardinal de la base).
- **6.** On voit tout de suite que E est un espace vectoriel réel, mais pas complexe à cause de la formule $(\lambda A)^* = \bar{\lambda} A^*$. L'espace E est l'ensemble des matrices de la forme

$$\begin{pmatrix} a & z \\ \bar{z} & -a \end{pmatrix}$$

avec $a \in \mathbf{R}$ et $z \in \mathbf{C}$, donc en écrivant z = b + ic avec a, b réels, on voit que E est de dimension 3.

7. a) On note $e_1 = (1, 0, ...0)$, $e_2 = (0, 1, 0, ...)$ etc. Si $a = (a_1, ..., a_r)$ est dans $(A/I)^r$, posons $\bar{a} = (\bar{a_1}, ..., \bar{a_r})$, où \bar{x} désigne la classe dans A/I d'un élément x de A. Définissons $\bar{f} : (A/I)^r \to (A/I)^s$ par $f(\bar{a}) = \overline{f(a)}$. Cette

application est bien définie via le fait que si $x = (x_1, ..., x_r)$ avec tous les x_i dans I, alors

$$f(x) = f(x_1e_1 + \dots + x_re_r) = x_1f(e_1) + \dots + x_rf(e_r)$$

est dans I^r , ce qui montre que $\overline{f(x)} = 0$. Il est immédiat que f est A/I-linéaire et qu'elle reste surjective car f l'est.

Comme A est non nul, on peut choisir pour I un idéal maximal, ce qui dit que A/I est un corps. Le théorème du rang appliqué à \overline{f} (qui est un morphisme de A/I-espaces vectoriels) donne alors $r \geq s$.

b) Si M admet des bases de cardinal respectifs r et s, alors il est isomorphe à A^r et à A^s , qui sont donc isomorphes comme A-modules. Ainsi $r \geq s$ et $s \geq r$ d'après a), donc r = s.

Par contre, le **Z**-module $\mathbb{Z}/2\mathbb{Z}$ n'a pas de base (sinon il serait infini vu que \mathbb{Z} est infini). Le **Z**-module \mathbb{Z} est libre de rang 1 (une base en est (1)), tout comme son sous-module strict $2\mathbb{Z}$ (dont une base est (2)). La théorie des modules sur un anneau principal dit quand même que tout sous-module de \mathbb{Z}^r est libre de rang au plus r, mais c'est un résultat plus difficile.

- c) Supposons $\det P \in A^*$. Alors l'identité de la comatrice $P\widetilde{P} = \widetilde{P}P = (\det P)I_r$ (où \widetilde{P} est la transposée de la comatrice) donne que P est inversible, d'inverse $(\det P)^{-1}\widetilde{P}$. Noter que l'identité de la comatrice est bien valable sur un anneau commutatif quelconque, elle résulte de la formule du développement par rapport à une ligne ou une colonne (on peut aussi observer que comme on la connaît sur \mathbf{Q} qui est un corps, on la connaît sur \mathbf{Z} , et qu'elle correspond à des identités entre polynômes à coefficients dans \mathbf{Z} , donc ces identités sont valables sur tout anneau commutatif A via le morphisme canonique de \mathbf{Z} dans A). Si maintenant P est inversible, l'application f est bijective, donc en particulier surjective. Supposons enfin f surjective. Alors on construit une matrice Q telle que $PQ = I_r$ en prenant pour vecteurs colonnes de Q des vecteurs envoyés sur les vecteurs $e_1, ..., e_2, ..., e_r$ de la base canonique. Alors $(\det P).(\det Q) = 1$, donc $\det P$ est inversible. Noter qu'on peut retrouver a) et b) via ce résultat.
- d) Supposons det P non diviseur de zéro. Soit X un vecteur colonne tel que P.X=0. Alors $(\widetilde{P}P)X=0$, d'où $(\det P).X=0$, ce qui implique que toutes les coordonnées de X sont nulles puisque det P n'est pas diviseur de zéro. Ainsi f est injective. Supposons réciproquement que det P=a vérifie ab=0 avec b non nul dans A, et montrons que f n'est pas injectif. Si tous les coefficients p_{ij} de P vérifient $p_{ij}.b=0$, il est clair que f n'est pas injective, puisque P annule par exemple le vecteur (b,b,...,b). Sinon, on peut choisir un mineur m de taille maximale tel que $mb \neq 0$, et ce mineur est de taille

s < r vu que det P.b = 0. Supposons (pour simplifier les notations) que ce soit le mineur correspondant aux s premières lignes et aux s premières colonnes de P. Soit X le vecteur $(x_1, ..., x_s, x_{s+1}, 0, ..., 0$ avec $x_i = b(-1)^i m_i$, où $m_{s+1} = m$ et pour $1 \le i \le s$, m_i est le mineur (s, s) obtenu en gardant les s premières lignes et les s+1 premières colonnes à l'exception de la i-ième. Alors $X \ne 0$ car $x_{s+1} \ne 0$ vu que $bm \ne 0$; mais les coordonnées y_i de PX sont toutes nulles : en effet, la formule de développement du déterminant par rapport à une ligne donne qu'elles sont obtenues soit (pour les s premières) comme le produit de s par un déterminant de taille s+1 ayant deux lignes égales, soit (pour les suivantes) comme le produit de s par un mineur de taille s+1 de s+10, produit qui est nul par hypothèse. Donc s+10 n'est pas injective.

- e) Soit j l'injection linéaire de A^r dans A^s qui envoie $(x_1, ..., x_r)$ sur $(x_1, ..., x_r, 0, ...0)$. Si $g: A^s \to A^r$ était linéaire injective, il en irait de même de $f:=j\circ g: A^s \to A^s$. Mais la matrice de f dans la base canonique a ses (s-r) dernières lignes nulles, donc son déterminant est nul, donc d'après d) l'application linéaire g ne peut pas être injective.
- f) Un A-module M engendré par r éléments est un quotient de A^r , et il suffit donc de montrer qu'une famille $(x_1, ... x_s)$ de s éléments avec s > r est liée dans A^r . Ceci résulte de e), vu que l'application linéaire de A^s dans A^r qui envoie $(\alpha_1, ... \alpha_s)$ sur $\sum_{i=1}^s \alpha_i x_i$ ne peut pas être injective.

Il en résulte que si M est un A-module libre de type fini r, un sous-module libre de M est forcément de rang au plus r. Par exemple, un idéal non principal d'un anneau commutatif non nul A ne peut pas être un A-module libre.