Exercice 1. (Bases in Fock spaces) We denote by $c_{\mathrm{c}}(\mathbb{N}, \mathbb{N})$ the set of sequences of integers equal to 0 except for a finite number of terms. For $\vec{k} \in c_{\mathrm{c}}(\mathbb{N}, \mathbb{N}), k=$ $\left(k_{1}, \ldots, k_{d}\right)$ we set

$$
|\vec{k}|=k_{1}+\cdots+k_{d}, \vec{k}!=k_{1}!\ldots k_{d}!.
$$

Let \mathcal{Y} a separable Hilbert space with an orthonormal basis $\left\{e_{i}\right\}_{i \in \mathbb{N}}$. We set

$$
e_{\vec{k}}:=e_{1}^{\otimes k_{1}} \otimes \cdots e_{d}^{\otimes k_{d}} \in \Gamma_{\mathrm{s}}(\mathcal{Y})
$$

1) Show that

$$
\left\{\frac{\sqrt{|\vec{k}|!}}{\sqrt{\vec{k}!}} e_{\vec{k}}:|\vec{k}|=n\right\}
$$

is an o.n. basis of $\Gamma_{\mathrm{s}}^{n}(\mathcal{Y})$.
2) Formulate the appropriate extension if \mathcal{Y} is not separable.
3) For $J=\left\{i_{1}, \cdots, i_{n}\right\} \subset\{1, \ldots, d\}$ with $1 \leq i_{1}<\cdots<i_{n} \leq d$, set

$$
e_{J}:=e_{i_{1}} \otimes_{\mathrm{a}} \cdots \otimes_{\mathrm{a}} e_{i_{n}}
$$

Prove that

$$
\left\{\sqrt{\# J!} e_{J}: J \subset I,, \# J=n\right\}
$$

is an o.n. basis of $\Gamma_{a}^{n}(\mathcal{Y})$.
4) Same question as 2).

Exercice 2. (Exponential law for Fock spaces)

1) Find the formula giving

$$
\left\|\prod_{i=1}^{n} a^{*}\left(y_{i}\right) \Omega\right\|^{2}, y_{i} \in \mathcal{Y}
$$

both in the bosonic and fermionic case.
Hint: use the $C C R / C A R$ and properties of the vacuum vector.
2) Let $\mathcal{Y}_{1}, \mathcal{Y}_{2}$ be two Hilbert spaces. Show that there exists a unique linear map:

$$
U: \Gamma_{\mathrm{s}}\left(\mathcal{Y}_{1}\right) \otimes \Gamma_{\mathrm{s}}\left(\mathcal{Y}_{2}\right) \rightarrow \Gamma_{\mathrm{s}}\left(\mathcal{Y}_{1} \oplus \mathcal{Y}_{2}\right)
$$

such that:

$$
\begin{aligned}
& a^{(*)}\left(y_{1} \oplus y_{2}\right) U=U\left(a^{(*)}\left(y_{1}\right) \otimes \mathbb{1}+\mathbb{1} \otimes a^{(*)}\left(y_{2}\right)\right), \forall y_{i} \in \mathcal{Y}_{i}, \\
& U \Omega \otimes \Omega=\Omega
\end{aligned}
$$

3) Show without lengthy computation that U is unitary. Hint use 1).

Exercice 3.

1) Let \mathcal{H} be a Hilbert space, $\mathcal{D} \subset \mathcal{H}$ a dense subspace, and c, a two linear operators on \mathcal{D} such that
(1) $c, a: \mathcal{D} \rightarrow \mathcal{D}$;
(2) $c \subset a^{*}, a \subset c^{*}$;
(3) $a^{2}=c^{2}=0, a c+c a=\mathbb{1}$ as operator identities on \mathcal{D}.

Show that c, a extend as bounded operators on $\mathcal{H}, c=a^{*}$ and $\|a\|=\|c\|=1$.
2) Deduce from 1) that the fermionic creation/annihilation operators are bounded with $\left\|a^{(*)}(y)\right\|=\|y\|$.

Exercice 4. (Essential selfadjointness of field operators)
Use Nelson's commutator theorem to prove that the bosonic field operators $\phi(y)$ $y \in \mathcal{Y}$ are essentially selfadjoint on $\Gamma_{\mathrm{s}}^{\mathrm{fin}}(\mathcal{Y})$.

Exercice 5. (Creation/annihilation operators from field operators)
Let $\phi(y), y \in \mathcal{Y}$ the bosonic field operators, acting on the Fock space. We admit that $\operatorname{Dom} \phi(y) \cap \operatorname{Dom} \phi(\mathrm{i} y)$ is dense in $\Gamma_{\mathrm{s}}(\mathcal{Y})$.

1) Prove that the operators

$$
a(y):=\frac{1}{\sqrt{2}}(\phi(y)+\mathrm{i} \phi(\mathrm{i} y)), a^{*}(y):=\frac{1}{\sqrt{2}}(\phi(y)-\mathrm{i} \phi(\mathrm{i} y)),
$$

with domain $\operatorname{Dom} \phi(y) \cap \operatorname{Dom} \phi(\mathrm{i} y)$ are closed and adjoint from one another.

