1. FILLING SOME GAPS IN THE LECTURES

Let (X, σ) be a real pre-symplectic space. For $\eta \in L_s(X)$ we have the conditions $(C) \ \eta \ge 0, \ |x_1 \cdot \sigma x_2| \le 2(x_1 \cdot \eta x_1)^{\frac{1}{2}}(x_2 \cdot \eta x_2)^{\frac{1}{2}}, \ x_1, x_2 \in X.$

1.1. How to obtain a quasi-free state on $CCR^{pol}(X,\sigma)$ from a quasi-free state on $CCR^{Weyl}(X,\sigma)$. Let (X,σ) a real pre-symplectic space and ω be a quasi-free state on $CCR^{Weyl}(X,\sigma)$, with covariance η . Let $(\mathcal{H}, \pi, \Omega)$ its GNS triple. We denote by $\mathcal{D} \subset \mathcal{H}$ the dense subspace $\mathcal{D} = \{\pi(A)\Omega : A \in CCR^{Weyl}(X,\sigma)\}$.

Lemma 1.1. set $W_{\pi}(x) := \pi(W(x)) \in U(\mathcal{H})$ (unitary operators on \mathcal{H}). Then for $x \in X$ the one-parameter group $\mathbb{R} \ni t \mapsto W_{\pi}(tx)$ is strongly continuous.

Proof. By standard arguments it suffices to prove the strong continuity at t = 0. By a density argument it suffices to show that for $u \in \mathcal{D}$ one has $W(tx)u - u \to 0$ in \mathcal{H} when $t \to 0$. We can assume by linearity that $u = W_{\pi}(y)\Omega, y \in X$. Then

$$||u - W_{\pi}(tx)u||^{2} = (\Omega|W_{\pi}(-y)(1 - W_{\pi}(-tx))(1 - W_{\pi}(tx))W_{\pi}(y)\Omega),$$

and using the CCR :

$$W_{\pi}(-y)(\mathbb{1} - W_{\pi}(-tx))(\mathbb{1} - W_{\pi}(tx))W_{\pi}(y)$$

= $2\mathbb{1} - W(-tx)e^{-iy\cdot\sigma x} - W(tx)e^{iy\cdot\sigma x}.$

Therefore

$$||u - W_{\pi}(tx)u||^{2} = \omega(21 - W(-tx)e^{-iy\cdot\sigma x} - W(tx)e^{iy\cdot\sigma x})$$
$$= 2 - e^{-\frac{1}{2}t^{2}x\cdot\eta x - iy\cdot\sigma x} - e^{-\frac{1}{2}t^{2}x\cdot\eta x + iy\cdot\sigma x},$$

which tends to 0 when $t \to 0$. \Box

From Lemma 1.1 we can define the *field operator* $\phi_{\pi}(x)$ as the generator of the strongly continuous unitary group $\mathbb{R} \ni t \mapsto W_{\pi}(tx)$. The operator $\phi_{\pi}(x)$ will be selfadjoint and actually unbounded. The definition is

$$\phi_{\pi}(x)u := \mathrm{i}^{-1}\frac{\mathrm{d}}{\mathrm{d}t}W_{\pi}(tx)u_{|t=0}, \ u \in \mathrm{Dom}\phi_{\pi}(x),$$

where by definition the domain $\text{Dom}\phi_{\pi}(x)$ is the set of u such that the derivative exists (in the norm topology of \mathcal{H}).

Lemma 1.2. $\mathcal{D} \subset \text{Dom}\phi_{\pi}(x)$, actually $\phi_{\pi}(x)$ is essentially selfadjoint on \mathcal{D} .

Proof. the first part of the claim is easy : it suffices to check that for $u = W_{\pi}(y)\Omega$, the map $t \mapsto W_{\pi}(tx)u$ is strongly differentiable at t = 0. This is done by the same computation as in Step 1. The essential selfadjointness can be shown using the following theorem of Nelson :

if $U(t) = e^{itH}$ is a strongly continuous unitary group, and $\mathcal{D} \subset \mathcal{H}$ is a dense subspace included in the domain of H which is invariant under U(t), then H is essentially selfadjoint on \mathcal{D} .

Lemma 1.3. on \mathcal{D} one has :

(1) $X \ni x \mapsto \phi_{\pi}(x)$ is \mathbb{R} -linear, (2) $[\phi_{\pi}(x), \phi_{\pi}(y)] = ix \cdot \sigma y \mathbb{1}$, for $x, y \in X$. It follows that

 $\pi : \mathrm{CCR}^{\mathrm{pol}}(X, \sigma) \in \phi(x) \mapsto \phi_{\pi}(x) \in L(\mathcal{D})$

generates a representation of the $*-algebra \operatorname{CCR}^{\operatorname{pol}}(X, \sigma)$.

Moreover we can define a state ω^{pol} on $\operatorname{CCR}^{\operatorname{pol}}(X,\sigma)$ by :

 $\omega^{\mathrm{pol}}(A) := (\Omega | \pi(A)\Omega), \ A \in \mathrm{CCR}^{\mathrm{pol}}(X, \sigma).$

Proof. the first part are routine computations. The second part is obvious. \Box

Lemma 1.4. one has

$$\omega^{\mathrm{pol}}(\phi(x_1)\phi(x_2)) = x_1 \cdot \eta x_2 + \frac{i}{2}x_1 \cdot \sigma x_2.$$

 ${\bf Proof.}~{\rm We}~{\rm have}:$

$$\begin{split} \omega^{\text{pol}}(\phi(x_1)\phi(x_2)) &= (\Omega|\phi_{\pi}(x_1)\phi_{\pi}(x_2)\Omega) \\ &= (\mathrm{i})^{-2} \frac{\mathrm{d}}{\mathrm{d}t_1} \frac{\mathrm{d}}{\mathrm{d}t_2} (\Omega|W_{\pi}(t_1x_1)W_{\pi}(t_2x_2)\Omega)|_{t_1=t_2=0} \\ &= (\mathrm{i})^{-2} \frac{\mathrm{d}}{\mathrm{d}t_1} \frac{\mathrm{d}}{\mathrm{d}t_2} (\Omega|W_{\pi}(t_1x_1+t_2x_2)\mathrm{e}^{-\frac{\mathrm{i}}{2}t_1t_2x_1\cdot\sigma x_2}\Omega)|_{t_1=t_2=0} \\ &= (\mathrm{i})^{-2} \frac{\mathrm{d}}{\mathrm{d}t_1} \left(\mathrm{e}^{-\frac{\mathrm{i}}{2}(t_1x_1+t_2x_2)\cdot\eta(t_1x_1+t_2x_2)})\mathrm{e}^{-\frac{\mathrm{i}}{2}t_1t_2x_1\cdot\sigma x_2}\right)_{|t_1=t_2=0}. \end{split}$$

Computing the last derivative proves the claim. \Box

Lemma 1.5. one has :
$$($$

$$(H^{\text{pol}}) \begin{cases} \omega^{\text{pol}} (\phi(x_1) \cdots \phi(x_{2m-1})) = 0, \\ \omega^{\text{pol}} (\phi(x_1) \cdots \phi(x_{2m})) = \sum_{\sigma \in \text{Pair}_{2m}} \prod_{j=1}^m \omega (\phi(x_{\sigma(2j-1)})\phi(x_{\sigma(2j)}). \end{cases}$$

Proof. same proof as before, writing :

$$\omega \big(\phi(x_1) \cdots \phi(x_n) \big)$$

$$= (\mathbf{i})^{-n} \frac{\mathrm{d}}{\mathrm{d}t_1} \frac{\mathrm{d}}{\mathrm{d}t_2} \cdots \frac{\mathrm{d}}{\mathrm{d}t_n} \omega (\prod_{1}^n W(t_i x_i))_{|t_1 = \cdots = t_n = 0},$$

then using the CCR and clever computations. \Box

2. How to complete the missing points in my lectures

Assume first that one is given a quasi-free state ω on $CCR^{Weyl}(X, \sigma)$ with covariance η , ie by definition

$$(H^{Weyl}) \omega(W(x)) = e^{-\frac{1}{2}x \cdot \eta x}, \ x \in X.$$

One constructs by Lemma 1.3 the associated state ω^{pol} on $\text{CCR}^{\text{pol}}(X, \sigma)$. Using Lemma 1.3 one obtains the condition (C). The fact that if η satisfies (C) then ω given by $(H)^{\text{Weyl}}$ is a state on $\text{CCR}^{\text{Weyl}}(X, \sigma)$ was completely proved in the lectures.

Assume next that one is given a quasi-free state ω_1 on $\operatorname{CCR}^{\operatorname{pol}}(X, \sigma)$, is a state given (H^{pol}) , and the covariance η is given by Lemma 1.4.

By Lemma 1.3 this implies condition (C).

Conversely let $\eta \in L_s(X, \sigma)$ satisfying condition (C).

We can define a state ω on $\operatorname{CCR}^{Weyl}(X, \sigma)$. Consider the state $\omega^{\operatorname{pol}}$ on $\operatorname{CCR}^{\operatorname{pol}}(X, \sigma)$, which is defined by condition (H^{pol}) . This is the quasi-free state on $\operatorname{CCR}^{\operatorname{pol}}(X, \sigma)$ that we want.