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Résumé. Après une courte description de plusieurs solutions classiques du problème de
Plateau, on parle d’autres modélisations des films de savon, et de problèmes ouverts liés.
On insiste un peu plus sur un modèle basé sur des déformations et des conditions glissantes
à la frontière.

Abstract. After a short description of various classical solutions of Plateau’s problem,
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1. Introduction

The main goal of this text is to give a partial account of the situation of Plateau’s
problem, on the existence and regularity of soap films with a given boundary. We intend to
convince the reader that there are many reasonable ways to state a Plateau problem, most
of which give interesting questions that are still wide open. This is even more true when
we want our models to stay close to Plateau’s original motivation, which was to describe
physical phenomena such as soap films.

Plateau problems led to lots of beautiful results; we shall start the paper with a rapid
description of some of the most celebrated solutions of Plateau’s problem (Section 2),
followed by a description of a few easy examples (Section 3), mostly to explain more
visibly some objections and differences between the models.

With these examples in mind, we shall shortly return to the modeling problem, and
mention a few additional ways to state a Plateau problem and (in some cases) get solutions
with a nice physical flavor (Section 4).

It turns out that the author has a preference for a specific way to state Plateau
problems, coming from Almgren’s notion of minimal sets, which we accommodate at the
boundary with what we shall call sliding boundary conditions.

In Section 5, we shall describe briefly the known local regularity properties of the
Almgren minimal sets (i.e., far from the boundary), and why we would like to extend some
of these regularity results to sliding minimal sets, all the way to the boundary. We want
to do this because little seems to be known on the boundary behavior of soap films and
similar objects, but also because we hope that this may help us get existence results.

We try to explain this in Section 6, and at the same time why, even though beauti-
ful compactness and stability results for various classes of objects (think about Almgren
minimal sets, but also currents or varifold) yield relatively systematic partial solutions of
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Plateau problems, these solutions are not always entirely satisfactory (we shall call these
amnesic solutions).

We explain in Section 7 why the regularity results for sliding Almgren minimal sets
also apply to solutions of the Reifenberg and size minimization problems described in
Section 2.

The author wishes to thank K. Brakke and John M. Sullivan for allowing him to use
beautiful pictures from their site, T. De Pauw, J. Harrison, and F. Morgan for help in the
preparation of this manuscript, and the organizers of the Stein conference in Princeton
for a wonderful event. Special congratulations and thanks are due to E. Stein who is an
inspiring example as a mathematician and the leader of an amazing school.

2. SOME CELEBRATED SOLUTIONS

In this section we describe some of the most celebrated ways to state a Plateau problem
and solve it. To make things easier, we shall mostly think about the simplest situation
where we give ourselves a smooth simple loop Γ in R

3, and we look for a surface bounded
by Γ, with minimal area. Even that way, a few different definitions of the terms “bounded
by” and “area” will be used.

2.a. Parameterizations by disks, Garnier, Douglas, and Radó

Here we think of surfaces as being parameterized, and compute their area as the
integral of a Jacobian determinant. For instance, let Γ ⊂ R

n be a simple curve, which we
parameterize with a continuous function g : ∂D → Γ, where D denotes the unit disk in
R

2; we decide to minimize the area

(2.1) A(f) =

∫

D

Jf (x)dx,

where Jf (x) denotes the positive Jacobian of f at x, among a suitable class of functions
f : D → R

n such that f|∂B = g. In fact, it is probably a good idea to allow also functions
f such that f|∂B is another equivalent parameterization of Γ.

There are obvious complications with this problem, and the main one is probably the
lack of compactness of the reasonable classes of acceptable parameterizations. That is, if
{fk} is a minimizing sequence, i.e., if A(fk) tends to the infimum of the problem, and even
if the sets fk(D) converge very nicely to a beautiful smooth surface, the parameterizations
fk themselves could have no limit. Even if Γ is the unit circle and each fk(D) is equal to
D, it could be that we stupidly took a sequence of smooth diffeomorphisms fk : D → D
that behave more and more wildly.

For 2-dimensional surfaces, there is at least one standard way to deal with this prob-
lem: we can decide to use conformal parameterizations of the image, normalized in some
way, and gain compactness this way. This is more or less the approach that was taken, for
instance, by Garnier [Ga], and then Tibor Radó [Ra1] (1930) and J. Douglas [Do] (1931).

Let us say a few words about the existence theorem of Douglas, who was able to prove
the existence of a function f that minimizes A(f) under optimal regularity conditions for
Γ.

Let us say a few words about the idea because it is beautiful. We decide that f
will be the harmonic extension of its boundary values on ∂D, which we require to be a
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parameterization of Γ (but not given in advance). This is a reasonable thing to do, because
we know that such harmonic parameterizations exist, at least in the smooth case. Then
we can compute A(f) in terms of g = f|∂B, and we get that A(f) = B(g), where

(2.2) B(g) =

∫ 2π

0

∫ 2π

0

∑n
j=1 |gj(θ)− gj(ϕ)|

2

sin2
(
θ−ϕ
2

) dθdϕ,

where the gj are just the coordinates of g.
Now B is a much easier functional to minimize, in particular because there is one less

variable, and Douglas obtains a solution rather easily. The paper [Do] seems very simple
and pleasant to read.

Of course the mapping f is smooth, but there were still important regularity issues to
be resolved, concerning the way f(D) is embedded, or whether f may have critical points.
See [Laws], [Ni], or [Os].

There are two or three important difficulties with this way of stating Plateau’s prob-
lem. The minor one is that getting reasonably normalized parameterizations will be much
harder for higher dimensional sets, thus making existence results in these dimensions much
less likely.

Even when the boundary is a nice curve Γ, many of the physical solutions of Plateau’s
problem are not parameterized by a disk, but by a more complicated set, typically a
Riemann surface with a boundary. So we should also allow more domains than just disks;
this is not such a serious issue though.

But also, in many cases the solutions of Douglas do not really describe soap films
(which were at the center of Plateau’s initial motivation). For instance, if Γ is folded in
the right way, the minimizing surface f(D) of Douglas will cross itself, and because we just
minimize the integral of the Jacobian, the various pieces that cross don’t really interact
with each other. In a soap film, two roughly perpendicular surfaces would merge and
probably create a singularity like the ones that are described below. See Example 3.a and
Figures 2, 3, 5 below.

If we replaced A(f) with the surface measure (or the Hausdorff measure) of f(D),
which may be smaller if f is not one-to-one, we would probably get a much better descrip-
tion of soap films, but also a much harder existence theorem to prove. We shall return to
similar ways of stating Plateau problems in Section 4.e, when we discuss sliding minimal
sets.

2.b. Reifenberg’s homology problem

The second approach that we want to describe is due to Reifenberg [R1] (1960). Let
us state things for a d-dimensional surface (so you may take d = 2 for simplicity). Here
we do not want to assume any a priori smoothness for the solution, it will just be a closed
set E. Because of this, we shall define the area of E to be its d-dimensional Hausdorff
measure. Recall that for a Borel-measurable set E ⊂ R

n, the d-dimensional Hausdorff
measure of E is

(2.3) Hd(E) = lim
δ→0+

Hd
δ(E),
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where

(2.4) Hd
δ (E) = cd inf

{∑

j∈N

diam(Dj)
d
}
,

cd is a normalizing constant, and the infimum is taken over all coverings of E by a countable
collection {Dj} of sets, with diam(Dj) ≤ δ for all j. Let us choose cd so that Hd coincides
with the Lebesgue measure on subsets of Rd.

The main point of Hd is that it is a measure defined for all Borel sets, and we don’t
lose anything anyway because Hd(E) coincides with the total surface measure of E when
E is a smooth d-dimensional submanifold. Also, we don’t assume E to be parameterized,
which does not force us to worry about counting multiplicity when the parameterization
is not one-to-one, and we allow E to take all sorts of shapes, even if our boundary is a nice
curve; see Section 3 for examples of natural minimizers that are not topological disks.

So we want to minimize Hd(E) among all closed sets E that are bounded by a given
(d− 1)-dimensional set Γ.

We still need to say what we mean when we say that E bounded by Γ, and Reifenberg
proposes to define this in terms of homology in E. He says that E bounded by Γ if the
following holds. First, Γ ⊂ E. This is not too shocking, even though we shall see later
soap films E bounded by a smooth curve, but that seem to leave it at some singular point
of E. See Figures 4, 5, and 17. And even in this case, we are just saying that we see
Γ itself as (a lower dimensional) part of the film. The main condition concerns the Čech
homology of E and Γ on some commutative group G. Since Γ ⊂ E, the inclusion induces
a natural homomorphism from Ȟd−1(Γ;G) to Ȟd−1(E;G), and Reifenberg demands this
homomorphism to be trivial. Or, we could take a subgroup of Ȟd−1(Γ;G) and just demand
that each element of this subgroup be mapped to zero in Ȟd−1(E;G).

In the simple case when d = 2 and Γ is a simple curve, Ȟd−1(E;G) is generated by
a loop (run along Γ once), and when we require this loop to be a boundary in E, we are
saying that there is a way to fill that loop (by a 2-dimensional chain whose support lies)
in E.

Reifenberg proved the existence of minimizers in all dimensions, but only when G = Z2

or G = R/Z. This is a beautiful (although apparently very technical) proof by “hands“”,
where haircuts are performed on minimizing sequences to make them look nicer and allow
limiting arguments. Unfortunately, difficulties with limits force him to use Čech homology
(instead of singular homology, for instance) and compact groups.

Reifenberg also obtained some regularity results for the solutions; see [Re1], [Re2].
Later, F. Almgren [Al3] proposed another proof of existence, which works for more

general elliptic integrands and uses integral varifolds. But I personally find the argument
very sketchy and hard to read.

Recently, De Pauw [Dp] obtained the 2-dimensional case when Γ is a finite union of
curves and now G = Z, with a proof that uses currents; he also proved that in that case
the infimum for this problem is the same number as for the size-minimizing currents of
the next subsection. But even then it is not known whether one can build size-minimizing
currents supported on the sets that De Pauw gets.
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Reifenberg’s solutions are nice and seem to give a good description of many soap films.
Using finite groups G like Z2, one can even get non-orientable sets E. But there are some
“real-life” soap spanned by a curve that cannot be obtained as Reifenberg solutions. See
Example 3.c, for instance.

Anyway, many interesting problems (existence for other homologies and groups like
Z, equivalence with other problems) remain unsolved in the Reifenberg framework of this
subsection. The author does not know whether too much was done after [Re2], concerning
the regularity of the Reifenberg minimizers. But at least the regularity results proved for
the Almgren minimal sets (see Section 5) are also valid for the Reifenberg minimizers; we
check this in Section 7 for the convenience of the reader.

2.c. Integral currents

Currents provide a very nice way to solve two problems at the same time. First,
they will allow us to work with a much more general class of objects, possibly with better
compactness properties. That is, suppose we want to work with surfaces in a certain class
S, typically defined by some level of regularity, and we want to prove the existence of some
S ∈ S that minimizes (some notion of) the area A(S) under some boundary constraints.
Then let {Sk} be a minimizing sequence, which means that each Sk lies in S and satisfies
the boundary constraints, and that A(Sk) tends to the infimum of the problem. We would
like to extract a subsequence of {Sk} that converges, but typically the S-norms of Sk will
tend to +∞, and we will not be able to produce a limit set S ∈ S. Of course even if S
exists, we shall not be finished, because we also need to check that S satisfies the boundary
constraints, and that A(S) ≤ limk→+∞ A(Sk), but this is a different story.

So, in the same spirit as for weak (or more recently viscosity) solutions to PDE, we
want to define Plateau problems in a rough setting, and of course hope that as soon as we
get a minimizer, we shall be able to prove that it is so regular that in fact it deserves to
be called a surface.

The second positive point of using currents is that even with these rough objects, we
will be able to define a notion of boundary, inherited from differential geometry, and thus
state a Plateau problem. We need a few definitions.

A d-dimensional current is nothing but a continuous linear form on the space of
smooth d-forms. This is thus the same as a d-vector valued distribution. In fact, most of
the distributions that will be used here are (d-vector valued) finite measures, which are
thus not too wild.

There are two main examples of currents that we want to mention here. The first
one is the current S of integration on a smooth, oriented surface Σ of dimension d, which
is simply defined by

(2.5) 〈S, ω〉 =

∫

Σ

ω for every d-form ω.

But of course we are interested in more general objects. The second example is the
rectifiable current T defined on a d-dimensional rectifiable set E such that Hd(E) < +∞,
on which we choose a measurable orientation τ and an integer-valued multiplicity m. Re-

call that a rectifiable set of dimension d is a set E such that E ⊂ N ∪
⋃

j∈N

Gj , where
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Hd(N) = 0 and each Gj is a C1 embedded submanifold of dimension d. But we could
have said that Gj is the Lipschitz image of a subset of Rd, and obtained an equivalent
definition. We shall only consider Borel sets E, and such that Hd(E) < +∞. For such a
set E and Hd-almost every x ∈ E, E has what is called an approximate tangent d-plane
x+ V (x) at x, which of course coincides with the usual tangent plane in the smooth case.
A measurable orientation can be defined as the choice of a simple d-vector τ(x) that spans
V (x), which is defined Hd-almost everywhere on E and measurable. We set

(2.6) 〈T, ω〉 =

∫

E

m(x) ω(x) · τ(x) dHd(x)

when ω is a (smooth) d-form, and where the number ω(x) · τ(x) is defined in a natural
way that won’t be detailed here. We assume that the multiplicity m is integrable against
1EdH

d, and then the integral in (2.6) converges.
Return to general currents. The boundary of any d-dimensional current T is defined

by duality with the exterior derivative d on forms, by

(2.7) 〈∂T, ω〉 = 〈T, dω〉 for every (d− 1)-form ω.

When Σ is a smooth oriented surface with boundary Γ, S is the current of integration
on Σ, and G is the current of integration on Γ, Green’s theorem says that ∂S = G.
This allows us to define Plateau boundary conditions for currents. We start with a (d−1)-
dimensional current S, for instance the current of integration on a smooth oriented (d−1)-
dimensional surface without boundary, and simply look for currents T such that

(2.8) ∂T = S.

Notice that ∂∂ = 0 among currents, just because dd = 0 among forms. So, if we want
(2.8) to have solutions, we need ∂S = 0; this is all right with loops (when d = 2), and
this is why we want the smooth surface above to have no boundary. But other choices of
currents S would be possible.

We often prefer to restrict to integral currents. An integral current is a rectifiable
current T as above (hence such that the multiplicity m is integer-valued and integrable
against 1EdH

d), and such that ∂T is such a rectifiable current too. If T solves (2.8),
the condition on ∂T will be automatically satisfied, just because we shall only consider
rectifiable boundaries S. The fact that we only allow integer multiplicities should make
our solutions more realistic, and make regularity theorem easier to prove. Otherwise, we
would expect to obtain solutions with very low density, or (at best) foliated and obtained
by integrating other solutions.

So here is how we want to define a Plateau problem in the context of integral cur-
rents: we start from a given integral current S, with ∂S = 0 (for instance, the current of
integration on a smooth loop) and we minimize the area of T among integral currents T
such that ∂T = S.

The most widely used notion of area for currents is the mass Mass(T ), which is just
the norm of T , seen as acting on the vector space of smooth forms equipped with the
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supremum norm (the norm of uniform convergence). In the case of the rectifiable current
of (2.6),

(2.9) Mass(T ) =

∫

E

|m(x)|dHd(x).

The corresponding Plateau problem works like a geometric measure theorist’s dream. First,
the problem of finding an integral current T such that Mass(T ) is minimal among all the
solutions of (2.8) has solutions in all dimensions, and as soon as S is an integral current
with compact support and such that ∂S = 0. This was proved a long time ago by Federer
and Fleming [FF], [Fe1]; De Giorgi also had existence results in the codimension 1 case, in
the framework of BV functions and Caccippoli sets.

What helps us here is the the lowersemicontinuity ofM (not so surprising, it is a norm),
and the existence of a beautiful compactness theorem that says that under reasonable
circumstances (the masses of the currents Tk and ∂Tk stay bounded, their supports lie in
a fixed compact set), the weak limit of a sequence {Tk} of integral currents is itself an
integral current.

Moreover, the solutions of this Plateau problem (we shall call them mass minimizers)
are automatically very regular away from the boundary. Let T be a mass minimizer of
dimension d in R

n, and denote by F its support (the closure of the subset of E above
where m(x) is nonzero), and by H the support of S = ∂T . If d = n − 1 and n ≤ 7, F
is a C∞ embedded submanifold of Rn away from H, and if d = n − 1 but n ≤ 8, E may
have a singularity set of dimension n − 8 away from H, but no more. See [Fe2]. And in
larger codimensions, the dimension of the singularity set is as most d−2 [Al5]. There were
also important partial results by W. Fleming [Fl], Simons, and Almgren [Al2]; see [Mo5],
Chapter 8 for details.

With this amount of smoothness, mass minimizers cannot give a good description of
all soap films in 3-space, because some of these have obvious interior singularities. Also,
the fact that the notion of current naturally comes with an orientation is a drag for some
examples (like Möbius films). We shall discuss this a little more in the next section.

For the author, the main reason why mass minimizers do not seem to be a good model
for soap films (regardless of their obvious mathematical interest), is because the mass is
probably not the right notion of area for soap films. So we may want to consider the size
Size(T ) which, is the case of the rectifiable current of (2.6), is defined by

(2.10) Size(T ) = Hd
({
x ∈ E ; m(x) 6= 0

)}
.

That is, we no longer count the multiplicity as in (2.9), we just compute the Hausdorff
measure of the Borel support. This setting allows one to recover more examples of soap
films, and to eliminate some sets that are obviously not good soap films; see the next
section. But the price to pay is that the existence and regularity results are much harder
to get.

The Plateau problem that you get when you pick a rectifiable current S with ∂S = 0,
and try to minimize Size(T ) among all integral currents T such that ∂T = S, is very
interesting, but as far as the author knows, far from being solved. There are existence
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results, where one use intermediate notions of area like
∫
E
|m(x)|αdHd(x) (instead of (2.9)

or (2.10)) for some α ∈ (0, 1); see [DpH]. But for instance we do not have an existence
result when d = 2 and S is the current of integration over a (general) smooth closed
curved in R

3. The compactness theorem above does not help as much here, because if
{Tk} is a minimizing sequence, we control Size(Tk) but we don’t know that Mass(Tk)
stays bounded, so we may not even be able to define a limit which is a current. See [Mo1],
though, for the special case when Γ is contained in the boundary of a convex body.

The size-minimizing problem is not so different from the Reifenberg Plateau problem
of Section 2.b, and in some cases the infimum for the two problems was even proved to be
the same [Dp].

Let us not comment much about the (mostly interior) regularity results for size mini-
mizers, and just observe that the regularity results for Almgren minimal sets apply to the
support of T when T is a size minimizer. See Section 7.

3. SIMPLE CLASSICAL EXAMPLES

It is probably time to rest a little, and try the various definitions above on a few
simple examples. Most of the examples below are very well known; hopefully they will be
convincing, even though we can almost never prove that a given set, current, or surface, is
minimal. (Sadly, the main way to prove minimality is by exhibiting a calibration for the
given object, which would often implies an algebraic knowledge that don’t have). We will
try to give a more detailed account than usual of what happens, to make it easier for the
reader.

3.a. Crossing surfaces: the disk with a tongue

The next example is essentially the same as in [Al1]. Construct a (smooth) boundary
curve Γ, as in Figure 1, which contains a main circular part, and two roughly parallel lines
that cross the disk, near the center; then solve a Plateau problem or drop the wire into a
soap solution and pull it back.

Most probably (but in fact the author can’t compute!), the parameterized solution
of Douglas is a smooth, immersed surface Ed, that crosses itself along a curve I, which
lies near the center of the disk and connects the two parallel lines; the two pieces have no
reason to really interact (the functional A in (2.1) does not see that the two pieces get
close to each other). See Figure 1.

Next orient Γ, let S be the current of integration on Γ, and minimizeMass(T ) among
integral currents T such that ∂T = S; then let Em denote the closed support of T . By
Fleming’s regularity theorem [Fl], Em is smooth away from Γ, so we can be sure that
Em 6= Ed (also see Subsection 3.d for a simpler argument). Quite probably, Em looks like
the surface suggested in Figure 2, which we could obtain from Ed by splitting Ed along
I into two surfaces, and letting them go away from each other and evolve into something
minimal. This creates a hole near I, where one could pass without meeting Em. This also
changes the topology of the surface: now Em is (away from Γ) a smooth surface with a
hole, not the continuous image of a disk. Also, Em is oriented, because it is smooth and
comes from the current T , whose boundary lives in Γ. That is, locally and away from Γ,
we can write T as in (2.6), where τ(x) is smooth; then the fact that ∂T = 0 locally implies
that the multiplicity m is locally constant, and this gives an orientation on Em (if Em

connected, as in the picture).
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Figure 1. The Douglas solution. Figure 2. The mass minimizer Em.
The circular little arrows mark the orientation, and the longer oriented arrows try to show
how Em turns in the two curved transition zones.

Notice that the surface in Figure 2 is orientable, but if we had chosen to use the
symmetric way to split Ed along I, we would have drawn a surface that goes in the direction
of the front when we go down along the upper part of the tongue. This would have created
a surface Ẽm which, near I, is roughly no one the image of Em by the symmetry with
respect to a vertical plane. But Ẽm is not orientable, hence the mass minimizing Plateau
problem is not allowed to chose Ẽm. The situation is reversed when we twist the thin part
of Γ to change the orientation, which physically should not matter much though.

Now let us build Γ and plunge it into a film solution. Based on a few rough experi-
ments, the author claims the following (which should surprise no one anyway).

Figure 3 (left). The size minimizer Es.
Figure 4 (right). A soap film which does not touch the whole boundary.

We should not even try to obtain Ed, if we believe that Almgren almost minimal
sets give a good description of soap films, and indeed the author managed not to see Ed.
Films that look like Em are not so hard to get; we also get a third set Es which we could
roughly obtain from Em as follows: add a small (topological) disk to fill the hole, and let
again evolve into something minimal (so that the boundary of the disk will be a set of
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singularities of type Y ); see Figure 3, or the left part of Figure 5. Also see the double disk
example in Figure 7 for a more obvious singularity set of type Y ). Or we could obtain
Es from Ed by pinching it along I. In practice, we often obtain Es first, especially if our
tongue is far from perpendicular to the horizontal disk (otherwise, it seems a little less
stable), and one can obtain Em from Es by killing the small connecting disk.

We can also kill the lower part of the tongue by touching it, and get a singular curve
of type Y where the upper tongue connects to the large disk-like piece. See Figure 4, or
the right-hand part of Figure 5. When this happens, we get an example of a soap film
whose apparent boundary is a proper subset of the curve Γ. This phenomenon is known,
and has been described in the case of a trefoil knot in [Br4], for instance. See Figure 17 for
another, more beautiful example. For all these physical observations, the fact that the two
main pieces of the boundary are connected and make a single curve is not useful, and we
get a similar description when Γ is composed of two disjoint non parallel ellipses (a large
one and a small one) with the same center.

Figure 5. The sets of Figure 3 and 4. Images by John M. Sullivan, Technische Universität
Berlin, used by permission.

Finally (returning to the case of a single curve), if the part that connects the tongue
to the circular part of Γ is not too long or complicated, we obtain an often more stable,
more complicated soap film with a singularity of type T , like the set depicted Figure 6. In
fact, this one is often easier to get, and we then retrieve Es and Em by removing faces.
See Section 3.e, and in particular Figures 9 and 10, for explanations and pictures of type
T singularities.

We leave it as an exercise for the reader to determine whether Es (or its vaguely

symmetric variant Ẽs) is probably the support of a size minimizer with the boundary S,

and whether Es and Ẽs are probable solutions of Reifenberg’s problem. We shall treat the
simpler example of two circles instead.

Let us nonetheless say that (not even based on real experiments) the author believes

that the fact that soap films will choose Em rather than Ẽm, mostly depends on the angle
of the tongue with the horizontal disk, or rather the way we pull Γ out of the soap solution,
and is not based on orientation. Often we get Em or Ẽm by passing through Es and Ẽs

first, which themselves should not depend much on orientation.
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Figure 6. Another soap film bounded by the same curve. The picture only shows the
singular set composed of curves where E looks like a Y , and which meet at a point where
E looks like a T .

3.b. Two parallel circles

Let Γ be the union of two parallel circles C1 and C2, as in Figure 7.
There are three obvious soap film solutions: a catenoid H (that here looks a lot like

a piece of vertical cylinder), the union D1 ∪D2 of two disks, and a set E composed of a
slightly smaller disk D in the center, connected along the circle ∂D to C1 and C2 by two
piece of catenoids that make angles of 120 degrees along ∂D. See Figure 7.

For the analogue of the Douglas problem, we would probably decide first to parame-
terize with two disks or with the cylinder, and then get D1 ∪D2 or H.

For the mass minimizing problem, we first choose an orientation on both circles C1

and C2, and for instance, use the sum S = S1 + S2, where Si is the current of integration
on Ci. If we choose parallel orientations, H is not allowed because the orientations do
not fit, and, with a fairly easy proof by calibration (use the definition of ∂T to compute
〈T, dx1dx2〉) we can show that the current of integration on D1 ∪D2 is the unique mass
minimizer.

If we choose opposite orientations on the Ci (or equivalently set S = S1 − S2), then
both D1 ∪D2 and H will provide acceptable competitors, and we should pick the one with
the smallest mass. Here too, we should be able to pick a vector field (pick one for each of
the two competitors) and use it to prove minimality by a calibration argument.

We could also try another choice of S, like S = S1 + 2S2, but we would get the set
D1 ∪D2 again.

The size-minimizing problem has a different solution when we take parallel orienta-
tions. Let D be a slightly smaller disk, parallel to D1 and D2, and that we put right in
the middle. Complete D with two pieces of catenoids H1 and H2, connecting ∂D to the
Ci (see Figure 7). The best choice will be when the Hi make an angle of 120 degrees with
D along ∂D.

It is easy to construct a current T , with ∂T = S, and which is supported on E: take
twice the integration on D, plus once the integration on each catenoid, all oriented the
same way. The fact that ∂T = S is even easier to see when one notices that T = T1 + T2,
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where Ti is the current of integration on D ∪Hi and ∂Ti = Si. If the two circles are close
enough, it is easy to see that Size(T ) is smaller (almost twice smaller) than the size of
the mass minimizer above. It should not be too hard to show that in this case, T is the
unique size minimizer, but the author did not try. Again, H is not allowed, because the
orientations do not fit.

Figure 7. The set E. Figure 8. Same thing with a handle.

When we use opposite orientations on the Ci, H is allowed, and E never shows up: if
T is supported on E and ∂T = S1 − S2, the multiplicity on each Hi should be constant,
equal to (−1)i (check ∂T ); the multiplicity on D should also be constant, and in fact equal
to 0 if we want ∂T to vanish near ∂D. Then the support of T is H1 ∪H2, and in fact H
was doing even better than both H1 ∪H2 and E, so we should have no regret.

Returning to the case of parallel orientations, notice that when H2(E) ≤ H2(D1∪D2),
T is a size minimizer but Size(T ) = H2(E) > H2(H), which is possible because H is not
a competitor.

The situation is simple enough for us to comment on the Reifenberg problem. But
even then, let us just think about simplicial homology on the group Z. Here Γ = C1 ∪C2,
and there are two obvious generators γ1 and γ2 for the homology group H1(Γ,Z). Let us
choose the γi so that they correspond to parallel orientations of the Ci.

One way to state a Plateau problem is to minimize H2(F ) among sets F such that
γ1 + γ2 represents a null element in the homology group H2(F,Z). Notice then that
F = D1 ∪ D2 is allowed (because D1 ∪ D2 gives a simplicial chain supported in F and
whose boundary is γ1+γ2), but H is not. To check this we would have to check that γ1+γ2
does not vanish in H2(H,Z), which we kindly leave as an exercise because we do not want
to offend any reader that would know anything about homology. Here E = D∪H1 ∪H2 is
allowed too, because each D ∪Hi contains a simplicial chain whose boundary is γi. And,
if D1 and D2 are close enough, the Reifenberg minimizer will be E (but the verification
will be more painful than before).

The situation would be the same if we required that γ1+2γ2 represents a null element
in H2(F,Z), or if we required the whole group H1(Γ,Z) to be mapped to 0 in H2(F,Z).

On the other hand, if we just require γ1−γ2 to be mapped to 0, then both H, D1∪D1,
and E are allowed, and the minimizer will be H if D1 is close to D2.

As far as the author knows, the verifications would be more painful, but at the end
similar to the verifications for size-minimizing currents. The point should be that if F is
a competitor in the Reifenberg problem, we should be able to construct chains inside F
(whose boundary is a representative for γ1 + γ2, for instance), possibly approximate them
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with polyhedral chains, and integrate a differential form on them to complete a calibration
argument. This is an easy exercise, but slightly above the author’s competence.

We may also want to work on the group Z/2Z; then γ1 + γ2 = γ1 − γ2, H is allowed
in all cases, and is the unique minimizer when the disks are close to each other.

Very easy soap experiments show that the three sets E, D1 ∪ D2, and H are con-
structible soap films, with a noticeable preference for E when D1 and D2 are close to each
other.

3.c. Two disks but a single curve

In the previous example, we managed to represent all the soap films as reasonable
competitors in one of the two standard problems about currents, even though in some
cases, stable soap films are not absolute minimizers. But we expect difficulties in general,
again because of orientation issues

In fact, is easy to produce a Möbius soap film, which is not orientable and hence is not
the support of a mass- or size-minimizing current. Unless we use some tricks (like work
modulo 2, or use covering spaces), as in Sections 4.a and 4.b. For instance, the author
believes that a Möbius soap film may be a solution of the Reifenberg problem above, where
we decide to compute homology over the group Z2

Let us sketch another example, which is just a minor variant of the previous one. Cut
two very small arcs out of C1∪C2, one above the other, and replace them with two parallel
curves g1 and g2 that go from C1 to C2; this gives a single simple curve Γ1, as in Figure 8.
This is also almost the same curve that is represented in K. Brakke’s site under the name
“double catenoid” soap films. There are many constructible soap films bounded by Γ1 (see
Brakke’s site) but let us concentrate on the one that looks like the set E above, plus a thin
surface bounded by g1 and g2 (call this set E1). The difference with the previous example
is that now there is only one curve, the orientations on the two circular main parts of Γ1

are opposite, and (as in the case of opposite orientations above) E1 is not the support of an
integral current T such that ∂T is the current of integration on Γ1. Similarly, E1 cannot
solve the Reifenberg problem either, just because a strictly smaller subset is just as good
(we can check that we can remove the central disk from E1, and that Γ1 is the boundary
of the remaining surface, which is orientable).

If instead of taking g1 and g2 parallel, we make them twist and exchange their upper
extremities, we get parallel orientations again, and the corresponding set Ẽ1 is a competitor
in the Reifenberg and size-minimizing problems.

Two last comments for this type of examples: if we have only one Plateau problem,
as is the case in any of the categories above if the boundary is just one curve, then in
generic situations we can only get one solution. This is usually not enough to cover the
variety of different soap films. But this alone would not be so bad if we could cover all the
example as stable local minima. Also, orientation seems to be the main source of trouble
here, which suggests that we use varifolds. But boundary conditions are harder to define
for varifolds.

3.d. The minimal cones Y and T , and why mass minimizers do not cross

There are three types of tangent cones that can easily be seen in soap films: planes
(that we see at all the points where the film is smooth), the sets Y composed of three half
planes that meet along a line with 120 degrees angles, and the sets T that are obtained as
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the cone over the union of the edges of a regular tetrahedron (seen from its center). See
Figure 9. Also see Figure 10 for a soap film with a singularity of type T .

These are the three cones of dimension 2 in R
3 that are minimal sets in the sense of

Almgren (see Section 5 below), but let us consider currents for the moment.

The plane is the only cone that can be seen as a blow-up limit of the support of a
2-dimensional mass minimizer in R

3; this comes from Fleming’s regularity theorem, but
we want to discuss this a little more.

Figure 9. The set T . Figure 10. A film with three T points.

Let us first say why the support of a mass minimizer T never looks like two smooth
surfaces that cross neatly. Denote by E this support, and suppose that in a small box,
E looks like the union of the two planes (or smooth surfaces) suggested in Figure 11.
First assume that T has multiplicity 1 on these planes, with the orientation suggested
by the arrows. Replace E, near the center, with two smoother surfaces (as suggested in
Figure 12). This gives a new current T1, and it is easy to see that ∂T1 = ∂T (both ∂T and
∂T1 vanish near the center, and the contributions away from the center are the same too).
It is also easy to choose the two smoother surfaces so that Mass(T1) < Mass(T ).

Figure 11. Two oriented planes

Notice that the modification suggested in Figure 13) is not allowed (how would we
orient the surfaces?), and that the modifications above are the same as what we suggested
in the tongue example of Subsection 3.a.
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Figure 12. A better competitor. Figure 13. Unauthorized competitor (half picture).

We assumed above that T has multiplicity 1 on the two planes. If the multiplicities are
different, say, 1 ≤ m1 < m2, denote by T0 the current on E with the constant multiplicity
m1, replace T0 with m1 times the current of integration on the two smooth surfaces, and
keep T − T0 as it is. We still get a better competitor. This looks strange, and the author
sees this as a hint that the mass is too linear a functional to be completely honest.

Return to the cone Y , and let us first say why it is the support of a current with no
boundary. Put an orientation on the three faces Fj that compose Y . The orientation of
each Fj gives an orientation of the common boundary L, and we can safely assume that
the three orientations of L that we get coincide. Denote by Tj the current of integration on
Fj , and set T = T1+T2−2T3. It is easy to see that ∂T = 0 because the three contributions
cancel.

One can show (and the best argument uses a calibration; see [Mo1]) that T is locally
size minimizing. More precisely, for each choice of R > 0, set TR = 1B(0,R)T ; the com-
putation shows that ∂TR is of the form S1 + S2 − 2S3, where Sj denotes the current of
integration on the (correctly oriented) half circle Fj ∩∂B(0, R), and one can show that for
each R > 0, TR is the unique size minimizer W under the Plateau condition ∂W = ∂TR.

Now Y is not the support of a local mass minimizer T : the multiplicity would need to
be constant on the three faces Fj , the sum of these multiplicities should be zero because
∂T = 0 near the line, and then we could split T into two pieces (each with two faces) that
we could improve independently, as in the previous case.

The third minimal cone T is also the support of a currentW with vanishing boundary;
again we have to put (nonzero integer) multiplicities mj on the six faces Fj , so that their
contribution to each of the four edges cancel. Let us give an example of multiplicities that
work. Let H denote the closed convex hull of the tetrahedron that was used to define T .
Then T ∩ ∂H is composed of six edges Γj = Fj ∩ ∂H; we orient Γj so that ∂(1HTj) = Sj

along Γj , and then we set S =
∑

j mjSj . Figure 14 describes a choice of multiplicities and
orientations of the Γj for which ∂S = O and so (this is the same condition) ∂W = 0.

With such multiplicities, 1HW is the only size minimizer for the Plateau condition
∂T = S. See [Mo1]. Of course it is not a mass minimizer, because it contains a lot of
singularities of type Y , which are not allowed.
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Figure 14 (left). Orientations and multiplicities to make a size minimizer supported on
T . The dots represent vertices of a tetrahedron, and the arrows sit on the edges Γj .

Figure 15 (right). Two size-competitors for the union of two planes (half pictures).

Return to the union of two planes in Figure 11 and let T be obtained by putting
nonzero integer multiplicities on the four half faces; suppose that ∂T = 0 in some large
ball and, for convenience, that the two planes are nearly orthogonal. Then the two sets
suggested in Figure 15 support currents that have a smaller size than T . (It could be that
we can take a vanishing multiplicity on the middle triangular surface, and then one of the
competitors of Figures 12 and 13 is allowed and does even better.)

3.e. Mere local minima can make soap films

We have seen that (real-life) soap films can exist, even if they do not minimize mass,
size, or Hausdorff measure in one of the Plateau problems quoted above. If Γ is a curve,
each Plateau problem usually comes with one solution, and many soap films exist, often
with different topologies (but maybe the same homology constraints). We shall see in
the next section a few attempts to multiply the number of Plateau problems, in order to
accommodate more examples.

It is expected that soap films are not necessarily global minima, even for a given
topology, i.e., that stable local minima work as well. Things like this are unavoidable. But
the situation is even worse: Figure 16 shows a soap film which can be retracted, inside
itself, into its boundary which is a curve. But the retraction is long, and the soap will not
see it and stay at the local minimum. The author admits he does not see the retraction
either, and was unable to construct a soap example.

This example is due to J. Frank Adams (in the appendix of [Re1]), and the picture
comes from K. Brakke’s web page.

We add in Figure 17 one of the many pictures of soap films bounded by a union of
three circles in a Borromean position. This one leaves one of the three circles for some
time, like the film of Figures 4 and 5. See the web page of K. Brakke for many more.
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Figure 16 (left). A soap film that retracts onto itself (J. Frank Adams).
Figure 17 (right). One of the many soap films bounded by a Borromean ring. Both
pictures are courtesy of K. Brakke.

4. OTHER MODELS FOR PLATEAU PROBLEMS

Various tricks, often clever, have been invented to increase the number of Plateau
problems, for instance associated to a given curve, and thus accommodate the various
examples. As we have seen, one of the unpleasant things that we often have to deal with
is orientation. We briefly report some of these tricks.

4.a. Compute modulo p

One can define integral currents modulo k, by saying that two integral currents are
equivalent when their difference is k times an integral current. Then Möbius strips, for
instance, can can support currents modulo 2 without being orientable, and even solve a
mass minimizing Plateau problem as in Section 2, but with integral currents modulo 2.
Similarly, the double disk set E of Figure 2 is the support of a a current modulo 3 with
multiplicity ±1.

4.b. Use covering spaces

In [Br4], K. Brakke manages to treat many of the simple soap film examples above in
the general formalism of mass (not even size!) minimizers. His construction works for sets
of codimension 1. He starts from the base manifold M = R

n \Γ, where Γ is our boundary
set, constructs a covering space over M , which branches along Γ, and eventually gets the
desired soap film E as the projection of boundaries of domains in the covering space, that
minimizes the mass under some constraints that we don’t want to describe here. The
boundaries are orientable even if E is not, and almost every point of E comes from two
boundary points in the covering (as if, a little as what happens in real soap film, E were
locally composed of two layers, coming from different levels in the covering).

The construction is very beautiful, but apparently limited to codimension 1. Also,
the fact that a whole new construction seems to be needed for each example is a little
unsettling.
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4.c. Use varifolds

Almgren [Al3] used varifolds to present another proof of existence for the solutions of
the Reifenberg problem of Section 2.b. Varifolds look like a very nice concept here, because
they don’t need to be orientable (which was an unpleasant feature of currents), and we
can compute variations of the area functional on them. This gives a notion of stationary
integral varifold, which englobes the minimal cones above, and Allard and Almgren prove
compactness theorems on these classes that are almost as pleasant as for the integral
currents above. See [Al1], where the author expresses very high hopes that varifolds are
the ultimate tool for the study of minimal sets and Plateau problems. But (possibly
because varifolds are not oriented), it seems hard to state and solve a Plateau problem, as
we did in Section 2.c for currents with the boundary operator ∂. We shall return briefly
to this issue in Section 6.

4.d. Differential chains

J. Harrison [Ha3] proposes yet another way to model and solve a Plateau problem.
Again the point is to get rid of the difficulties with orientation, and at the same time to
keep a boundary operator. To make things easier, let us consider 2-dimensional sets in
R

3. We are looking for a representation of soap films as slight generalizations of “dipole
surfaces”, where a dipole surface associated to a smooth oriented surface Σ is defined as

(4.1) ∆S = lim
t→0

1

t
(S+ − S),

where S is the current of integration on Σ and S+ is the current of integration on the
surface Σ+ obtained from Σ by a translation of t in the normal direction. Thus dipole
surfaces are currents of dimension 2, but they act on forms by taking an additional normal
derivative (which means that they have one less degree of smoothness).

One of the ideas is that the orientation disappears (the dipole surface obtained from
Σ with the opposite orientation is the same), which allows one to represent the branching
examples of Section 3 as (limits of) dipole surfaces. The boundary ∂(∆S) is a dipole
version of ∂S, taken in the direction of the unit normal to Σ (along ∂Σ).

J. Harrison works with the closure F of all finite sums of ∆S as above, with the norm
coming from the duality with Lipschitz 2-forms (with the L∞ norm on the form and its
derivative), starts from a nice curve Γ, chooses a smooth normal vector field on Γ, uses it
to define a dipole curve G based as above on the current of integration on Γ, and finally
looks for a current T ∈ F that solves ∂T = G, and for which the correct analogue of the
mass (called the volume form) is minimal. In the case of a small ∆S above, the volume
form is equal to H2(Σ); for general elements of F , it is defined by density.

It turns out that when we restrict to dipoles (that is, limits of dipole polyhedral
chains, for the norm of duality with the forms with one Lipschitz derivative), there is a
construction (based on filling the holes with a Poincaré lemma) that allows one to invert
∂ and construct competitors in the problem above. This construction may be a main
difference with the situation of varifolds.

But at the same time the elements of F are not so smooth, and one still needs to
check some details, not only about the existence of minimizer for the problem above, but
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also to get some control on the solutions and show that they are more than extremely
weak solutions. For instance, it would be nice to prove that their support is a rectifiable
set, maybe locally Almgren-minimal, as in the discussion below.

4.e. Sliding deformations and sliding Almgren minimal sets

We now describe the author’s favorite model, which we describe with some generality,
but for which very little is known, even for 2-dimensional sets in R

3.
We give ourselves a finite collection of boundary pieces Γj , 0 ≤ j ≤ jmax, (those are

just closed subsets of Rn for the moment), and an initial competitor E0 (a closed set). We
simply want to minimize Hd(E) in the class F(E0) of sliding deformations of E, which we
define as follows. A closed set E lies in F(E0) if E = ϕ1(E0), where {ϕt}, 0 ≤ t ≤ 1, is a
one-parameter family of mappings such that

(4.2) (t, x) → ϕt(x) : [0, 1]×E0 → R
n is continuous,

(4.3) ϕ0(x) = x for x ∈ E0,

(4.4) ϕt(x) ∈ Γj when 0 ≤ j ≤ jmax and x ∈ E0 ∩ Γj ,

and

(4.5) ϕ1 is Lipschitz.

We decided to require (4.5), mostly by tradition and to accommodate size minimizers
below, but this is negotiable. Notice that we do not require any quantitative Lipschitz
bound for ϕ1.

Of course we should check that

(4.6) 0 < infE∈F(E0)H
d(E) < +∞,

because otherwise the minimization problem below is not interesting. And then we want
to minimize Hd(E) in the class F(E0).

Let us just give a few comments here, starting with the good news.
This definition seems natural for soap films. We allow the soap film to move continu-

ously, and we impose the constraint that points that lie on a boundary piece Γj stay on Γj

(but may move along Γj). We also allow deformations ϕ that are not injective (including
on the Γj); so we are allowed to pinch and merge different parts of E0. This seems to be
all right with real soap films.

Some boundary pieces may play the role of the curve Γ in the Plateau problems of
Section 2, but we may also consider the case when some Γj are two-dimensional, and the
surface boundary is allowed to slide along Γj , like a soap film that would be attached to
a wall. Or we could use a set Γ0 that contains E0 to force our films to stay in the given
region Γ0.
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The fact that we choose an initial E0 also gives us some extra flexibility; this looks
like cheating, because given a soap film, we can always try it as our initial set E0 and
see what happens. But at the same time, it is probable that real soap films do something
like this. And we don’t have to think too hard about how to model each given soap film,
or to wonder about which precise topological property (for instance, belonging to some
homology class, for some group that we would need to choose) defines the correct class of
competitors.

The definition above is not really new, even though the author did not find more than
allusions to this way of stating Plateau problems in the literature. But Brakke’s software
“Surface Evolver” allows this as one of the main options. Maybe people just did not want
to state a problem that looked too hard to solve.

Our definition looks like Almgren’s definition of “restricted”, or (M, ε, δ)-minimal sets,
but in the present situation, Almgren would tend to work on the open set U = R

n\
(
∪jΓj

)
,

and would use the (much too strong) condition that ϕt(x) = x for x in a neighborhood
of the Γj . A minor difference is that Almgren typically considers only ϕ1, regardless
of the existence of a one-parameter family of mappings that connects it to the identity;
this usually makes no difference, because in most results everything happens in a small
ball contained in U , and the one-parameter family can easily be obtained by convexity.
He can also play with the small parameter δ, which limits the diameter of the authorized
modifications and can be used to forbid mappings ϕ1 that are not homotopic to the identity
inside U .

We could have taken a more restrictive approach and just required that ϕt(x) = x
when x ∈ Γj , but the author thinks that soap does not really act like this. For instance,
for 2-dimensional films in R

3, with a boundary Γj which is a plane, we expect solutions
that look like two half planes with a common boundary (a line) in Γj , and that lie on the
same side of Γj . With (4.4), they should make equal angles with Γj ; with the stronger
“sticking boundary” condition, any two planes should work (provided that they make an
angle of at least 120 degrees), and even more complicated sets bounded by a curve in Γj .
The definition with (4.4) also has the advantage, since it allows more competitors, to make
it slightly easier to prove regularity results for the minimizers.

Also, we decided to define the ϕt only on E, because we do not want to force any
deformation {ϕt} that the soap may choose, to extend continuously the the whole space
and respect boundary constraints where the soap is not even present.

Of course we expect that some soap films in nature will exist just because they are
stable local minima of Hd without really minimizing, even in the same class F(E0). Even
worse, the set depicted in Figure 6 (Section 3.e) can be deformed into a set of vanishing
measure, without even going through a set of larger Hausdorff measure, so the only way
to exclude this deformation would be to disqualify it because it is too long.

At the same time, we should observe that solutions of the mass-minimizing problem
of Section 2.c (where the boundary is a nice curve) provide local solutions. Indeed let T
minimize Mass(T ) among solution of ∂T = S, where S is the current of integration on
a smooth curve Γ, and let E0 denote its support. By [HS] and if Γ is C2, the set E0 is
regular, including along the boundary, and then it is easy to see that E0 is locally minimal
in the following sense: there is a small δ > 0 such that H2(E0) ≤ H2(E) whenever E is a
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deformation of E0 in a ball B of radius δ. This last means that E ∈ F(E0) is obtained as
in (4.2)-(4.5), but with mappings ϕt such that ϕt(x) = x for x ∈ B and ϕt(B) ⊂ B. Of
course we only get one local sliding minimizer E0 this way, and it is always smooth, so the
main defect of this point of view, in the author’s opinion, is that it never gives a soap film
with a singularity.

Now the worse news. We are again trying to play with parameterizations (here, with
the initial set E0 as a source set), and we know that it will be hard to find optimal ones,
and that we will lack compactness at the crucial moment if we are not careful. That is,
if we select a minimizing sequence in F(E0), the limits of convergent subsequences will in
general not lie in F(E0).

And indeed no general existence result is known so far, even when d = 2, n = 3,
there is a single piece of boundary Γ, which is a loop, and E0 is the continuous image of
a disk that closes the loop. Notice that the Douglas solution does not help here, because
we look at a different functional which takes care of interactions between pieces. Thus the
situation is as bad (and probably a tiny bit worse) than for size-minimizing currents.

It still looks interesting to study sliding minimizers. First because there is still a small
chance that this approach will work is some cases, by selecting carefully a nice minimizing
sequence before we take any limit. See [Da6], where a short description of two recent
results of this type is given, but for simpler problems where there the class F(E0) is not
given in terms boundary pieces Γj as above, but of softer topological conditions.

Also, the chances of proving existence results will probably increase if we understand
better the regularity results for minimizers, all the way to the boundary. We shall see in
Section 7 that such results could also be used for the solutions of the Reifenberg and size
minimization problems (when they exist).

4.f. Variants of the Plateau problem

Let us just mention here that there are many other interesting problems where one
tries to minimize Hd(E) (or some variant) under topological conditions on E (separations
conditions in codimension 1, homology conditions in higher codimensions, etc.) We refer
to [Da3] and [Da6] for some examples, but we do not develop here.

5. REGULARITY RESULTS FOR ALMGREN ALMOST MINIMAL SETS

5.a. Local regularity

The following notion was introduced by Almgren, as a very good model for studying
the local regularity properties of soap films and bubbles (among other objects). We simplify
the definition a bit, but not in a significant way.

We give ourselves an open set U ⊂ R
n, a dimension d ≤ n, and a nondecreasing gauge

function h : (0,+∞) → [0,+∞), such that

(5.1) lim
r→0

h(r) = 0,

which will measure how close we are from minimality. Taking h(r) = 0 corresponds to
minimality, and h(r) = Crα with 0 < α ≤ 1 is a standard choice. This is a way to
accommodate slightly more complicated functionals than just Hd.
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We say that the closed subset E of U is a d-dimensional almost minimal set in U ,
with gauge function h, if the following holds.

For each closed ball B = B(x, r) ⊂ U , and each Lipschitz mapping ϕ : Rn → R
n such

that

(5.2) ϕ(x) = x for x ∈ R
n \B and ϕ(B) ⊂ B,

then

(5.3) Hd(E ∩B) ≤ Hd(ϕ(E) ∩B) + rdh(r);

we also demand that

(5.4) Hd(E ∩B) < +∞

for all B ⊂ U as above, to avoid stupidly large sets.
Notice again that ϕ is allowed not to be injective, and that since B is convex, we could

easily connect ϕ with the identity by a one parameter family of mappings that satisfy (5.2)
(take ϕt(x) = tϕ(x) + (1− t)x).

It is clear that any solution of the sliding Plateau problem mentioned in Section 4.d
is a minimal set in the complement of the ∂Γj . (We prefer to say ∂Γj , because some Γj

may be n-dimensional and designed to contain E0 and all its competitors.) We shall see
in Section 7 that this also applies to minimizers of Reifenberg’s problem, or supports of
size minimizers.

The local regularity in U of the almost minimal sets was started by Almgren [Al4],
and continued in [Ta2], [DS], [Da1,4,5], and others. For general dimensions and codi-
mensions, we get that, modulo a set of vanishing Hd-measure, the almost minimal set
E is locally Ahlfors-regular, rectifiable, and even uniformly rectifiable with big pieces of
Lipschitz graphs. When E is 2-dimensional in R

3, Taylor [Ta2] proved that it is locally
C1-equivalent to a minimal cone (a plane, or a set Y or T as in Section 3.d), and this was
partially extended to higher ambient dimensions in [Da4,5]. Also see [Da6] for a slightly
more detailed survey of these results.

The reader may regret that this is not very smooth, but notice that the C1 description
of J. Taylor is nearly optimal, since after all the minimal cones above are almost minimal
sets; the situation for d > 2 is widely open.

A last property of the notion of almost minimal sets that may turn out to be useful is
its stability under limits [Da1]: if {Ek} is a sequence of almost minimal sets, with the same
gauge function h, and that converges (relative to the Hausdorff distance, and after cutting
out unneeded sets of vanishing measure) to a limit E, then E is also almost minimal, with
the same gauge function h. In addition,

(5.5) Hd(E ∩ V ) ≤ lim inf
k→+∞

Hd(Ek ∩ V )

for every relatively compact open subset V of U ; that is, the restriction of Hd
|V to our

sequence is lowersemicontinuous.

22



5.b. Regularity near the boundary

Not so many regularity results exist that go all the way to the boundary. The author
knows about [All] (for varifold, near a flat point), and [HS] and [Wh] (for mass minimizers).
Also see [LM2], Figure 5.3, or [Mo5], Figure 13.9.3 on page 137 in my third edition, for a
conjecture about the types of singularities of a soap film near the boundary, and [Br3] for
a description of soap films near a point where they leave a boundary curve.

It is nonetheless interesting to see what can be done near the boundary, in the context
of Almgren almost minimal sets. Let the closed boundaries pieces Γj , 0 ≤ j ≤ jmax, be
chosen, as in Section 4.e, and let E ⊂ R

n be a closed set, with Hd(E) < +∞.

Definition 5.6. We say that E is almost minimal, with the sliding conditions defined by
the boundaries Γj , if

(5.7) Hd(E ∩B) ≤ Hd(ϕ1(E) ∩B) + rdh(r)

(as in (5.3), but) whenever B = B(x, r) ⊂ R
n and the {ϕt} : E → R

n, 0 ≤ t ≤ 1, are such
that

(5.8) (t, x) → ϕt(x) : [0, 1]× E → R
n is continuous,

(5.9) ϕ0(x) = x for x ∈ E,

(5.10) ϕt(x) ∈ Γj when 0 ≤ j ≤ jmax and x ∈ E ∩ Γj ,

(5.11) ϕ1 is Lipschitz.

as in (4.2)-(4.5), and, for 0 ≤ t ≤ 1,

(5.12) ϕt(x) = x for x ∈ E \B and ϕt(B) ⊂ B.

Thus, when we take h = 0, we get that E is a minimizer if it solves the problem
of Section 4.e with E0 = E. The local almost minimality property above amounts to a
little less than taking infinitely many boundary pieces, equal to the points of Rn \ U , and
applying the definition with (5.7)-(5.12).

Notice that the fact that we are now allowed to move points of the boundaries is good
for us, because it allows more competitors and we can hope to get some direct information
at the boundary.

Anyway, the author decided to run all the local regularity proofs he knows, and try to
extend them to the boundary. So far (subject to additional proofreading), local Ahlfors-
regularity, rectifiability, and limiting theorems seem to be under control, assuming for
instance that the boundary pieces are all faces (possibly of all dimensions) of a dyadic
grid, or of the image of a dyadic grid by a C1 diffeomorphism. The next stages for an
extension of J. Taylor’s result would be to get some control on the blow-up limits of E
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at a boundary point (a new, larger list of cones that we also need to determine), and
some version of the monotonicity of density, including for balls that are centered near the
boundary, but not exactly on the boundary. This last could be problematic (but worth
trying).

Quite a few interesting things can happen at the boundary, even when d = 2 and
the boundary is a smooth curve. See Figure 7 and other pictures of soap films over the
Borromean Rings in K. Brakke’s website, and a description [Br3] of what may happen
when the minimal surface leaves the curve (as in the examples of Figures 2.d and 7).

6. AMNESIC SOLUTIONS OF THE PLATEAU PROBLEM

In this short section we try to clarify some issue about existence results for Plateau
problems. To make things simpler, let us consider the case of sliding minimizers, with only
one piece of boundary, a smooth closed curve Γ ⊂ R

3. We parameterize Γ by γ : ∂D → Γ,
extend γ to the unit disk, and get an initial set E0. Then we consider the set F(E0) of
deformations E = ϕ1(E0) of E0, where the ϕt preserve Γ (see near (4.2)). We would like
to find E ∈ F(E0) such that Hd(E) = m, where

(6.1) m = inf
{
H2(F ) ;F ∈ F(E0)

}
.

Notice that we look for an absolute minimizer here, which in principle should make things
simpler, but at the same time would forbid us from using solutions of other problems in
other classes, such as mass minimizers.

An approach like the one we shall describe here would also make sense in more general
situations, or for the Reifenberg problems of Section 2.b, but we shall not elaborate. Also,
the reader may want to skip part of the construction of an amnesic solution just below,
and go directly to one of the main points of the section, which is what the author means
by amnesic solutions and why he thinks they are not entirely satisfactory.

Select a minimizing sequence {Ek}. That is, Ek ∈ F(E0) and H2(Ek) ≤ m + εk,
where εk tends to 0 (and we may assume that εk ≤ 2−k). Let B be a large closed ball
that contains Γ and E0; we can assume that every Ek is contained in B (otherwise, project
radially on B and you will get a competitor which is at least as good). Then replace {Ek}
with some subsequence that tends to a limit E (for the Hausdorff distance on compact
sets).

We would like E to be a minimizer for our problem, but if we don’t pay attention,
this will surely not happen. Indeed, we can easily choose Ek with lots of long and thin
hair, with almost no area, but so that Ek is 2−k-dense in B. If we do this, we get E = B,
which is not even be 2-dimensional.

But there is a way to pick the Ek carefully, so that the limit E represents a more
respectable attempt. In [Re1], Reifenberg does this by carefully cutting the hair of an
initial Ek. Let us say two words about a slightly different way; we refer to [Da6] for a more
detailed account of the strategy and some applications.

We start from our initial Ek ∈ F(E0) and first use a construction of Feuvrier [Fv2] to
build a sort of dyadic grid Gk adapted to Ek. That is, instead of decomposing R

3 into the
almost disjoint union of dyadic cubes of size 2−l for some very small l, we use polyhedra
instead of cubes. The polyhedra will all have a diameter comparable to some 2−l (the
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mesh of Gk), and we make sure that 2−l << 2−k in the construction. We do not have a
lower bound for the mesh, but we shall not need one.

We want to replace Ek with a Federer-Fleming projection on the grid Gk, but since
we are afraid of Γ, we shall only do this reasonably far from Γ. Denote by Vk the union of
all the polyhedra of Gk that lie at distance at least 2−k from Γ. On Vk, we replace Ek with
its Federer-Fleming projection on the grid. That is, for each polyhedron Q ⊂ Vk, we take
an interior point xQ ∈ Q \ Ek, and replace Ek ∩ Q with its projection on the boundary
∂Q, where the projection is the radial projection centered at xQ. Outside of Vk, we change
nothing. This gives a new set E′

k.

Then we do the same construction in the 2-dimensional faces of the grid. Just consider
the faces F that are contained in the interior of Vk, and such E′

k does not fill the interior
of F . That is, such that we can find an interior point xF ∈ F \E′

k; we then use this point
to project E′

k ∩ F to the boundary of F . These manipulations are independent, and we
don’t need to define the projections elsewhere, because now E′

k ∩ Vk is contained in the
union of the 2-faces. We do this projection for all the faces F where this is possible, and

get a new set E
(2)
k . Notice that E

(2)
k ∈ F(E0), because Ek ∈ F(E0), the Federer-Fleming

projections are deformations, and we made sure not to move anything near Γ.

By the construction of the adapted grid (and maybe by choosing a little more carefully,
by a Fubini argument, the place ∂Vk where we do the interface between the identity and

the Federer-Fleming projections), we get that E
(2)
k ≤ Hd(Ek) + 2−k ≤ m + 2−k+1; the

general point is that we construct Gk so that Ek is often very close to 2-faces of the grid,
so that the projections will not make H2(Ek) much larger.

At last E
(2)
k looks nicer inside Vk. That is, let V ′

k ⊂ Vk denote the union of the
polyhedra Q of Gk such that every polyhedron R of the grid that touches Q is contained in

Vk (we just remove something like one exterior layer of polyhedra). Then inside V ′
k , E

(2)
k

is composed of entire 2-faces of the grid Gk, plus possibly parts of 1-faces of Gk. We could
continue one more step to get rid of the 1-faces that are not entirely covered, but this will
not be needed.

Now E
(2)
k is not yet our cleaner competitor. We look for deformations F of E

(2)
k inside

V ′
k, that are also composed, inside V ′

k, of entire 2-faces of the grid, plus possibly parts of

1-faces of the grid, and for which H2(F ) is minimal. Here deformation of E
(2)
k inside V ′

k

means that F = ϕ1(E
(2)
k ), where the ϕt, 0 ≤ t ≤ 1, are such that ϕt(x) = x for x ∈ R

3 \V ′
k

and ϕt(V
′
k) ⊂ V ′

k, in addition to the usual (5.8), (5.9), and (5.11). Minimizers for this
problem exist trivially, because modulo sets of dimension 1, there is only a finite number
of sets F . We select a minimizer Fk, which is our cleaner competitor.

A second property of the adapted grids is that we have uniform lower bounds on
the angles of the faces of the polyhedra that compose them. Because of this, the set
Fk has some regularity inside V ′

k: its minimality property implies that it is “Almgren
quasiminimal” far from R

3 \ V ′
k, and this is enough to imply some lowersemicontinuity of

Hd, restricted to the sequence {Fk}. That is, (5.5) holds for the Fk, and for any open set
V which is compactly contained in R

3 \ Γ.

Here we are going a little fast; all these things need proofs, but we just want to give
an idea of why it helps to make this complicated construction. We should also say that
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our restriction to n = 3 and d = 2 is not needed for this part of the argument; it just
makes things more explicit. In other contexts (currents, varifolds), this stage could be less
painful, because there exist powerful lowersemicontinuity results that can take care of the
analogue of (5.5).

We now take a subsequence so that {Fk} converges to a set F , and we would like to
say that F is a solution of our problem. First, because of (5.5) (and because H2(Γ) = 0),
we really get that

(6.2) H2(F ) ≤ lim inf
k→+∞

H2(Fk) ≤ lim inf
k→+∞

H2(E
(2)
k ) ≤ m,

so F looks like a good candidate. We can also say more about F in U = R
3 \ Γ. From

the fact that Fk nearly minimizes H2 in the class F(E0), the fact that F(E0) is stable
under local deformations in compact balls B ⊂ U (as in (5.2)), and the lowersemicontinuity
property (5.5), one can deduce that

(6.3) F is an Almgren minimal set in U = R
3 \ Γ.

That is, (5.3) holds, with h(r) = 0.

This is not so bad, but let us now say why we may call F an amnesic solution.
In order to get a real solution to the initial problem, we would still need to check that
F ∈ F(E0), and this would involve finding a deformation {ϕt} from E0 to F . This will be
hard if we keep the argument as it is suggested, because we have no control on the various
deformations {ϕk

t } associated to the Fk. The situation is not completely hopeless, and one
can prove some existence results in similar contexts (but not yet for Plateau’s problem
with a curve); see [Da6].

Return to our set F . It looks like a solution of Plateau’s problem, especially far from
Γ; in addition to (6.3), something probably remains from the initial problem that was used
to construct F . We know that F lies in the closure of F(E0), and in some problems this
may be enough information, but otherwise it is hard to say exactly what properties are
preserved. In the specific sliding problem here, an intermediate information would be to
prove that F is a sliding minimal set, i.e., a solution of the problem above, where we replace
E0 with F itself, but even then we will not be entirely happy, because some information
may have been lost in the limit.

Part of the reason for this section was to insist on the difference, in the author’s view,
between a complete solution of a Plateau problem (like the one above, or some of the more
classical variants of Section 2) and an amnesic solution, which is often easier to produce.
The difference may be subtle though, because it may turn out that in fact all the amnesic
solutions are true solutions. That is, it seems hard to find an example of an amnesic
solution with some clearly missing feature.

7. REIFENBERG MINIMIZERS AND SUPPORTS OF SIZE MINIMIZERS
ARE SLIDING MINIMAL

In this last section we record the fact that in many cases, the solutions of general-
izations of the Reifenberg problem of Section 2.b, as well as the size minimizing current
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problem of Section 2.c, give sliding minimal sets. Thus boundary regularity results for
sliding minimal sets may be used in these contexts as well, even though one may object
that they may be easier to obtain directly.

Also notice that just by restricting to the complement U of the boundary set, we see
that locally in U , these problems yield locally Almgren minimal sets, for which the interior
regularity results of Section 5.a apply. This fact is apparently part of the folklore.

We start with variants of the Reifenberg problem. Choose integers 0 < d < n, and a
notion of homology (including the choice of an abelian group G). Any usual choice will
do; we shall just use the homotopy invariance and the fact that ∂ is a natural map.

Also choose a closed boundary set Γ ⊂ R
n, and a collection {γj}, j ∈ J , of elements

of the homology group Hd−1(Γ). Let us assume that

(7.1) Hd(Γ) = 0;

this will allow us to add Γ to our competitors F at no cost, and the definitions will be
much easier to apply.

Then let F denote the class of closed sets F ⊂ R
3 that contain Γ and for which

i∗(γj) = 0 in Hd−1(F ) for all j ∈ J , where i∗ : Hd−1(Γ) → Hd−1(F ) is the natural map
coming from the injection i : Γ → F .

We shall say that E is Reifenberg-minimal (relative to the choices above) if E ∈ F
and

(7.2) Hd(E) = infF∈F Hd(F ) < +∞.

Proposition 7.3. If (7.1) holds and E is Reifenberg-minimal, then it is also a minimal
set of dimension d, as in Definition 5.6, with the sliding conditions defined by the unique
boundary piece Γ.

Indeed, let B and the ϕt be as in Definition 5.6; we want to show, as in (5.7), that
Hd(E ∩ B) ≤ Hd(ϕ1(E) ∩ B). Since here Hd(E) < +∞, we can add Hd(E \ B) to both
terms, and this simplifies to Hd(E) ≤ Hd(ϕ1(E)). Then set F = Γ ∪ ϕ1(E); by (7.1), it
is still enough to prove that Hd(E) ≤ Hd(F ), and for this (and by (7.2)) we just need to
prove that F lies in F .

So let j ∈ J be given, and let us check that i∗(γj) = 0 in Hd−1(F ), where i∗ :
Hd−1(Γ) → Hd−1(F ) comes from the injection i : Γ → F . Denote by i0 : Γ → E the initial
injection. Since E ∈ F , i0,∗(γj) = 0 in Hd−1(E), which means that there exists a chain σ
in E such that ∂σ = i0,∗(γj).

Apply the mapping ϕ1 to this. Set σ1 = ϕ1,∗(σ); this is a chain in ϕ1(E), and

(7.4) ∂σ1 = ∂ϕ1,∗(σ) = ϕ1,∗(∂σ) = ϕ1,∗(i0,∗(γj)) = (ϕ1 ◦ i0)∗(γj)

because ∂ is natural and by definition of σ.
Notice that for 0 ≤ t ≤ 1, ϕt is defined on Γ (because E contains Γ since E ∈ F), and

ϕt(Γ) = ϕt(Γ∩E) ⊂ Γ by (5.10). Call ϕ : Γ → Γ the restriction of ϕ1 to Γ (to distinguish),
and set

(7.5) γ′j = ϕ∗(γj) ∈ Hd−1(Γ).
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Recall that ϕ0(x) = x on Γ (by (5.9)), so the ϕt, 0 ≤ t ≤ 1, provide a homotopy from the
identity to ϕ (among continuous mappings from Γ to Γ). Now we use the invariance of
homology under homotopies, and get that γ′j = γj in Hd−1(Γ) because ϕ and the identity
induce the same mapping on Hd−1(Γ).

Next denote by i1 : Γ → ϕ1(E) the inclusion, and notice that ϕ1 ◦ i0 = i1 ◦ ϕ (as a
map from Γ to ϕ1(E)). Then (7.4) yields

(7.6) ∂σ1 = (ϕ1 ◦ i0)∗(γj) = (i1 ◦ ϕ)∗(γj) = i1,∗(γ
′
j) = i1,∗(γj)

in Hd−1(ϕ1(E)); hence i1,∗(γj) = 0 in Hd−1(ϕ1(E)), because it is a boundary.
We compose with a last injection i′ : ϕ1(E) → F , and get that i∗(γj) = (i′ ◦ i1)∗(γj) =

i′∗(i1,∗(γj)) = 0 in Hd−1(F ), as needed.
So F ∈ F , and E is a minimal set, as promised. The main goal of the detailed com-

putations above was to convince homology nincompoops such as the author that nothing
goes wrong with the arrows. �

Remark 7.7. Our assumption (7.1) is not infinitely shocking (for instance, curves in R
n

satisfy this when d = 2, and (7.1) still allows lots of room for chains of dimension d− 1),
but it is not clear that it should really be there.

In the definition of F ∈ F , it makes sense to take F closed, not necessarily containing
Γ, and to say that i∗(γj) = 0 in Hd−1(E ∪Γ), where i now denotes the injection from Γ to
E ∪ Γ.

But if Hd(Γ) > 0, we have some problems with the proof above. We used the fact
that E contains Γ to say that our ϕt are defined on Γ (and not just E ∩ Γ), and this was
used to compute i∗(γj). We don’t want to include Γ if Hd(Γ) > 0, because E ∩ Γ should
not be minimal (maybe a big part of Γ is just useless).

If for some reason we know that our mapping (t, x) → ϕt(x), from [0, 1]× (E ∩ Γ) to
Γ, has a continuous extension from [0, 1]× Γ to Γ, we can compute as above.

Otherwise, and if we can choose chains in Γ that represent the γj, and whose supports
are all contained in a close set Γ′ ⊂ Γ, with Hd(Γ′) = 0, we can also try to finesse the issue
by showing that E ∪ Γ′ is minimal, with the sliding condition associated to Γ, but this is
hard if the support of σ is not contained in E ∪ Σ′ (but has a significant piece in the rest
of Γ). Let us not try to get a statement.

Next we turn to size-minimizing currents, as in Section 2.c, but again we shall consider
a slightly more general problem.

Let 0 < d < n be integers, and let Γ be a compact subset of Rn. Also let S be an
integral current of dimension d − 1 in R

n, with ∂S = 0 and with support in Γ. This last
just means that 〈S, ω〉 = 0 when the (d− 1)-form ω is supported in R

n \ Γ.
Next let S denote the collection of all the integral current S′ of dimension d − 1

that are supported on Γ and homologous to S on Γ. This last means that there exists a
d-dimensional current V , supported on Γ, and such that ∂V = S − S′.

Finally denote by T the set of integral currents T such that ∂T ∈ S. This is our set
of competitors, and we want to minimize Size(T ) over T .

Notice that this setting includes the simple example of Section 2. Indeed, let Γ be a
smooth orientable surface of dimension d−1, and let S be the current of integration on Σ.
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Notice that S = {S}, because if V is a d-dimensional current supported on Γ, then V = 0.
In this case we just want to minimize Size(T ) over the solutions of ∂T = S, as above.

But we could also take for Γ some 2-dimensional torus along a closed curve, pick
a closed loop on Γ, let S be the current of integration over that loop, and S will allow
the current of integration over any Lipschitz deformation of that loop in Γ (see the proof
below). This is a way to encode a possibly sliding boundary.

Proposition 7.8. Let Γ, S, and T be as above, and let T ∈ T be such that

(7.9) Size(T ) = infR∈T Size(R) < +∞.

Denote by Z the closed support of ∂T , and assume that

(7.10) Hd(Z) = 0.

Also assume that Γ is a Lipschitz neighborhood retract. Let E denote the support of T ;
then E∪Z is a minimal set of dimension d, as in Definition 5.6, with the sliding conditions
defined by the single boundary piece Γ.

Probably we can prove (7.10) (instead of assuming it) in some cases, but let us not
bother. Our conclusion that E ∪ Z is minimal, rather than just E, looks unpleasant (the
Hausdorff measures are the same, but there is a difference because the boundary constraint
(5.10) for the competitors may be different). Under fairly weak assumptions, one can show
that if F is minimal (with some sliding boundary conditions), then the closed support of
the restriction of Hd to F is minimal too (with the same sliding boundary conditions),
which could be simpler.

Our neighborhood retract assumption is just that there is a small neighborhood W of
Γ, and a mapping h : W → Γ, which is Lipschitz and such that h(x) = x for x ∈ Γ. The
reader should not pay too much attention to all these details, which are mostly technical.

So let T be a size minimizer, as in the statement. Recall that T has an expression like
(2.6), namely,

(7.11) 〈T, ω〉 =

∫

A

m(x) ω(x) · τ(x) dHd(x),

when ω is a (smooth) d-form, where A is a rectifiable set, τ(x) is a d-vector that spans the
approximate tangent d-plane to A at x, and m is an integer-valued multiplicity function
on A, integrable against 1EdH

d. Also recall that

(7.12) Size(T ) = Hd(A′), with A′ =
{
x ∈ A ; m(x) 6= 0

}
.

The Borel support A′ may be strictly smaller than E, which is in fact equal to the closure
of A′, so we need to be careful about Hd(E \A′). We claim that

(7.13) Hd(E \ (Z ∪ A′)) = 0.
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That is, away from the support Z of ∂T , E\A′ has vanishing Hausdorff measure. Let merely
sketch the proof here. There is a monotonicity formula, which says that for x ∈ E \ Z,
the density function r → r−dHd(A′ ∩B(x, r)) is nondecreasing on (0, dist(x, Z)). This is,
classically, obtained by replacing T on any small ball B(x, r) with the cone over its slice on
∂B(x, r), comparing, and then integrating the result. Next let ωd denote the Hd-measure
of the unit ball in R

d; since A′ is rectifiable,

(7.14) lim
r→0

r−dHd(A′ ∩B(x, r)) = ωd for Hd-almost every x ∈ A′;

see [Ma], for instance, for this and the next density results. Hence (by monotonicity)

(7.15) Hd(A′ ∩B(x, r)) ≥ ωdr
d for 0 < r < dist(x, Z)

for almost-every x ∈ A′, and hence (take a limit) for every x ∈ E too. But by a standard
density theorem,

(7.16) lim
r→0

Hd(A′ ∩B(x, r)) = 0 for Hd-almost every x ∈ R
n \A′,

and (7.13) follows by comparing (7.16) and (7.15).

We are now ready to check that E′ = E ∪ Z is minimal, with sliding conditions
associated to Γ. Let B and the ϕt be as in Definition 5.6 (for E′); we want to show that
Hd(E′ ∩B) ≤ Hd(ϕ1(E

′) ∩B), and since

(7.17)
Hd(E′) = Hd(E ∪ Z) = Hd(E \ Z) +Hd(Z) = Hd(E \ Z)

≤ Hd(E \ (Z ∪A′)) +Hd(A′) = Hd(A′) < +∞

by (7.10), (7.13), and (7.12), we can add or subtract Hd(E′ \ B) = Hd(ϕ1(E
′) \ B), and

so we just need to check that

(7.18) Hd(E′) ≤ Hd(ϕ1(E
′)).

We want to build a competitor for T , and logically we use ϕ = ϕ1 to push T forward and
set T1 = ϕ♯T . Recall (for instance from the end of 4.1.7 in [Fe1]) that when ϕ is smooth,
ϕ♯T is defined by 〈ϕ♯T, ω〉 = 〈T, ϕ♯ω〉, for every d-form ω, where at each point x, (ϕ♯ω)(x)
is obtained by applying to ω(x) the (d-linear version of the) differential of ϕ at x. Since T
is given by (7.11), we get that

(7.19) 〈T1, ω〉 = 〈T, ϕ♯ω〉 =

∫

A

m(x) (ϕ♯ω)(x) · τ(x) dHd(x),

which we may transform into an integral on ϕ(A), with a multiplicity m(y) that is a sum
of multiplicities m(x), x ∈ ϕ−1(y). For general Lipschitz functions ϕ, ϕ♯T is defined by
a limiting argument (see 4.1.14 in [Fe1]), but it is not hard to see that T1 = ϕ♯T is an
integrable current, associated to the rectifiable set A1 = ϕ1(A), and whose Borel support
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A′
1 is contained in ϕ1(A

′); it may be strictly smaller because two different pieces of A′ may
be sent to the same piece of ϕ1(A

′), and the multiplicities may end up canceling. So

(7.20) Size(T1) ≤ Hd(ϕ1(A
′)).

Our next task is to show that T1 ∈ T , because as soon as we do this, the minimality of T
will yield

(7.21) Hd(E′) ≤ Hd(A′) = Size(T ) ≤ Size(T1) ≤ Hd(ϕ1(A
′)) ≤ Hd(ϕ1(E

′))

by (7.17) and because A′ ⊂ E′; then (7.18) and the conclusion will follow.
We know from 4.1.14 in [Fe1] that ∂T1 = ∂(ϕ♯T ) = ϕ♯(∂T ). Since T1 is an integral

current, we just need to show that ∂T1 ∈ S. The support of ∂T1 is contained in ϕ(Z). Let
us check that

(7.22) Z ⊂ (E ∪ Z) ∩ Γ = E′ ∩ Γ and ϕ(Z) ⊂ Γ;

indeed Z, the closed support of ∂T , is contained in Γ because ∂T ∈ S; the first part now
follows from the definition of E′, and then ϕ(Z) = ϕ1(Z) ⊂ Γ by (5.10) for E′.

So ∂T1 is supported in Γ. We still need to show that ∂T1 is homologous to S on Γ.
Since T ∈ T , ∂T is homologous to S, and it is enough to show that ∂T1 is homologous to
∂T .

We would like to use the homotopy, from the origin to ϕ = ϕ1, given by the ϕt, but
there is a minor difficulty, because we did not assume ϕt(x) to be a Lipschitz function of
x and t. This is where we shall need a smoothing argument and our assumption that Γ is
a Lipschitz neighborhood retract.

Recall that ϕt is defined on Z, because Z ⊂ E′ ∩ Γ (by (7.22)), and in addition
ϕt(Z) ⊂ Γ, again by (5.10) as in (7.22).

Let ε > 0 be so small that W contains a 2ε-neighborhood of Γ, and let ψ : [0, 1]×Z →
R

n be a smooth function such that |ψ(t, x) − ϕt(x)| ≤ ε for (t, x) ∈ [0, 1] × Z. Such a
function is easy to obtain: first extend (x, t) → ϕt, and then smooth it. Next define a
homotopy {ψt}, 0 ≤ t ≤ 3, from the identity (on Z) to ϕ by

(7.23)

ψt(x) = (1− t)x+ tψ(0, x) for 0 ≤ t ≤ 1,

ψt(x) = ψ(t− 1, x) for 1 ≤ t ≤ 2,

ψt(x) = (t− 2)ϕ(x) + (3− t)ψ(1, x) for 2 ≤ t ≤ 3.

Recall that ϕt(x) ∈ Γ for x ∈ Z, so dist(ψt(x),Γ) ≤ ε for (t, x) ∈ [0, 3] × Z, and we can
define ξ(t, x) = ξt(x) = h(ψt(x)) for (t, x) ∈ [0, 3]× Z, where h : W → Γ is the Lipschitz
retraction of the statement, and this defines a Lipschitz homotopy from the identity to ϕ,
with values in Γ. Now the homotopy formula for currents (4.1.9 and 4.1.14 in [Fe1]) says
that

(7.24) T1 − T = ϕ♯T − T = ∂ξ♯([0, 3]× T ) + ξ♯([0, 3]× ∂T );
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we take the boundary and get that

(7.25) ∂T1 − ∂T = ∂ξ♯([0, 3]× ∂T ),

which is fine because ξ♯([0, 3]× ∂T ) is a current of degree d supported in Γ. Thus ∂T1 is
homologous to ∂T on Γ, T ∈ T , and this completes our proof of Proposition 7.8. �
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[Lam] E. Lamarle, Sur la stabilité des systèmes liquides en lames minces. Mém. Acad. R.
Belg. 35 (1864), 3–104.

[Lawl] Gary Lawlor, Pairs of planes which are not size-minimizing. Indiana Univ. Math. J.
43 (1994), 651–661.

33



[LM1] Gary Lawlor and Frank Morgan, Paired calibrations applied to soap films, immiscible
fluids, and surfaces or networks minimizing other norms. Pacific J. Math. 166 (1994),
no. 1, 55–83.

[LM2] G. Lawlor and F. Morgan, Curvy slicing proves that triple junctions locally minimize
area. J. Diff. Geom. 44 (1996), 514–528.

[Laws] H. Blaine Lawson Jr, Lectures on minimal submanifolds. Vol. I. Second edition.
Mathematics Lecture Series, 9. Publish or Perish, Inc., Wilmington, Del., 1980.
iv+178 pp. ISBN: 0-914098-18-7.
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[Lu] T. D. Luu, Régularité des cônes et ensembles minimaux de dimension 3 dans R
4.
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