LOCAL REGULARITY PROPERTIES
OF ALMOST- AND QUASIMINIMAL SETS
WITH A SLIDING BOUNDARY CONDITION
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Résumé. On s’intéresse a la régularité jusqu’a la frontiere des ensembles presque mini-
maux et quasiminimaux sous une condition de glissement. Les compétiteurs d’un ensemble
E y sont de la forme F' = ¢1(E), ou {¢;} est une famille & un parametre d’applications
continues définies sur F, et qui préservent des ensembles frontieres donnés a avance. On
généralise des résultats connus a l'intérieur, et on démontre notamment 1’ Ahlfors régularité,
la rectifiabilité et parfois I'uniforme rectifiabilité locales des ensembles quasiminimaux, la
stabilité des classes considérées par limites, et la presque monotonie de la densité des
ensembles presque minimaux sur des boules centrées a la frontiere.

Abstract. We study the boundary regularity of almost minimal and quasiminimal sets
that satisfy sliding boundary conditions. The competitors of a set E are defined as F' =
p1(E), where {¢;} is a one parameter family of continuous mappings defined on F, and
that preserve a given collection of boundary pieces. We generalize known interior regularity
results, and in particular we show that the quasiminimal sets are locally Ahlfors-regular,
rectifiable, and some times uniformly rectifiable, that our classes are stable under limits,
and that for almost minimal sets the density of Hausdorff measure in balls centered on the
boundary is almost nondecreasing.
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FREQUENTLY USED NOTATION
B(z,r) = {y; |y — x| <r} is the open ball centered at = and with radius r > 0.
H? is the d-dimensional Hausdorff measure. See [Fe] or [Ma].
GSAQ = GSAQ(U, M, o, h) is a class of quasiminimal sets; see Definition 2.3.
W, = {y € ENB;p(y) # y} and W = U0<t§1 Wi U @i(Wh); see (2.1).
E*={z € E; HY(EN B(z,r)) > 0 for every r > 0} is the core of E; see (3.2).
dyr(E, F) is almost a normalized Hausdorff distance in B(z,); see (10.5).
T 1 delimits a proof or comment that concerns the Lipschitz assumption only.
Wy ={z eR"; f(z) # x}; see (11.19).
f(z) = (A f(x)) (used in Part IV, in the Lipschitz case); see (11.50), (12.75).
Bj = B(zj,t), j € Ji, is our first collection of balls (Part IV); see (12.8)-(12.9).
Bj = B(zj,rj), j € Ja, is the second collection of balls; see Lemma 14.6.
D; = B(yj,rj), j € J3, balls in the image, are used with the Bj; ;; see (15.12)-(15.14).
Bj ., x € Z(y;), is our third collection of balls; see (15.19) and (15.1).
h(r) is a gauge function that measures almost minimality; see (20.1) and Definition 20.2.
Z(U,a,b), Z;(U,a,b), and Z*(U,a,b) are classes of elliptic integrands; see Definition 25.3,
Claim 25.89, and (25.94).
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PART I : INTRODUCTION AND DEFINITIONS
1. Introduction

The main purpose of this paper is to study the boundary regularity properties of
minimal, almost minimal, and quasiminimal sets, subject to sliding boundary conditions
that we will explain soon.

A long term motivation is to study various types of Plateau problems, but where the
objects under scrutiny are a priori just sets (rather than currents or varifolds), and we want
to assume as little structure on them as possible. In this respect, the sliding conditions
below seem natural to the author, and should be flexible enough to allow for a variety of
applications.

Let us give a very simple example of a Plateau problem that we may want to study,
and for which we do not have an existence result yet. Let I' C R™ be a smooth closed
curve, and let Ey C R"™ be a compact set that contains I'. For instance, parameterize I'
by the unit circle, extend the parameterization to the closed unit disk, and let Ey be the
image of the disk. Many other examples are possible, but with this one we should not get a
trivial problem for which the infimum is zero. Our Plateau problem consists in minimizing
H?(E) among all sets E that can be written E = 1(FEp), where {¢;}, 0 <t < 1, is a
continuous, one parameter family of continuous mappings from Ej to R™, with ¢o(z) = =
for x € Ey and ¢y (x) € T for 0 < ¢ <1 when x € Fy N T'. Thus, along our deformation of
Ey by the ¢y, we allow the points of I' to move, but only along I'; this is why we shall use
the term “sliding boundary condition”.

Minimizers of this problem, if they exist, will be among our simplest examples of
minimal sets with a sliding boundary condition. But solutions of other types of Plateau
problems (Reifenberg minimizers as in [R1,2], [De], or [Fa], or size minimizing currents
under the boundary constraint 07 = GG, where GG denotes the current of integration along
I', when they exist, also yield minimal sets with a sliding boundary condition. Thus
regularity results for sliding minimal sets may be useful for a variety of problems, and we
can also hope that they may help with existence results.

Let us first give some definitions, and then discuss these issues a little more. The
sets that we want to study are variants of the Almgren minimal, almost minimal, or
quasiminimal sets (he said “restricted sets”), as in [A2], but where we add boundary
constraints and are interested in the behavior of these sets near the boundary.
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We work in a closed region €2 of R™, which may also be R" itself, and we give ourselves
a finite collections of closed sets L; C Q, 0 < j < jmaz, that we call boundary pieces. It
will make our notation easier to consider €2 as our first boundary piece, i.e., set

(1.1) Lo = Q.

For the elementary Plateau problem suggested above, for instance, we would work with
LQZQZRn andleI‘.

We are also given an integer dimension d, with 0 < d < n — 1, and we consider closed
sets E C (), whose d-dimensional Hausdorff measure is locally finite, i.e., such that

(1.2) HYE N B(z,7)) < +o00

for x € (2 and r > 0. The next definition explains what we mean by a deformation of
that preserves the boundary pieces.

Definition 1.3. Let B = B(y,r) be a closed ball in R". We say that the closed set
F C Q is a competitor for E in B, with sliding conditions given by the closed sets L;,
0 < j < jmaz, when F = ¢1(E) for some one-parameter family of functions p;, 0 <t <1,
with the following properties:

(1.4) (t,z) — ¢¢(x) is a continuous mapping from [0,1] x E to R,
(1.5) pi(z) =x fort =0 and for x € £\ B,
(1.6) oi(z) € Bforz e ENB andt € |0,1],

and, for 0 < 7 < Jmaz,

(1.7) @i(x) € Lj whent € [0,1] and x € ENL; N B.
We also require that

(1.8) ¢1 be Lipschitz,

but with no bounds required.

We shall sometimes say “sliding competitor in B” instead of “competitor for F in B,
with sliding conditions given by the L;, 0 < j < jiqa”, especially when our choice of 2
and the list of L; are clear from the context.

We shall soon discuss minimality, almost minimality, and quasiminimality relative to
this notion of sliding competitors, but since the class of competitors is often the most

important part of the definitions, a number of general comments on Definition 1.3 will be
helpful.



It is important here that ¢; is allowed not to be injective. So we are allowed to merge
different portions of E, or contract them to a point, or pinch them in some other way.
This, together with the fact that we shall not count measure with multiplicity, is why the
union of two parallel disks that lie close to each other will not be minimal.

We added the last requirement (1.8) because Almgren put it in his definitions, and
because this will not disturb. If we drop it, we get more competitors for E, which means
that the almost- and quasiminimality properties are harder to get. Hence the regularity
results proved here are also valid in the context where we drop (1.8). On the other hand,
(1.8) will often be easy to prove, so it does not bother us much. The author suspects that
the reason why Almgren added (1.8) may be the following. Suppose you want to show that
the support of a size minimizing current 7" is a minimal set and, to simplify the discussion,
that you are proceeding locally, in the complement of the boundary sets. You are given a
deformation {¢;} as in Definition 1.3, and of course the simplest way to use it is to show
that pushing T" by the ¢;, and in particular ¢, defines an acceptable competitor for T
(with the same boundary constraints). The constraint (1.8) just makes it possible to define
the pushforward of T' by 1, so it is convenient. See [D8] for details on this argument and
its extension to the boundary.

In the other direction, J. Harrison and H. Pugh once asked wether requiring ¢1, or
even all the ¢, to be smooth, would lead to the same classes of almost- and quasiminimal
sets. The question was raised in the local context with no boundaries, but it also makes
sense in the present context. The answer is yes under suitable conditions on the L;, and if
smooth means C!. For higher regularity, a proof seems to be manageable, but quite ugly,
and so we only give a very rough sketch of how we would proceed, using the construction
of Part IV. This is discussed in Section 27.

We are allowed to take 2 = R™, and then (1.7) for 7 = 0 is just empty and if there is
no other boundary piece we get a minor variant of Almgren’s definition of competitors in
R"™. Of course we can still restrict the list of competitors like he did, by requiring that B
lies in a fixed open set U, or that its diameter be less than some § > 0; we shall do this
when we discuss our classes of almost- and quasiminimal sets, but let us not worry for the
moment.

The main difference with Almgren’s definition comes from the sliding boundary con-
straint (1.7), and this is also why we insist on the fact that ¢; is the endpoint of a
continuous deformation. If we did not require (1.7), and we were given a continuous map-
ping 1 such that ¢1(z) = x for x € E'\ B and ¢1(x) € B for x € B, we could define
the ¢ by ¢vi(x) = te1(x) + (1 — t)z, and it is easy to check that (1.4)-(1.6) would hold
(because B is convex). We could also extend ¢; to R™, which fits with the fact that ¢
is traditionally defined on R™, not just on E. But in the present situation we want points
of the boundary L; to stay in L; (hence, (1.7)), and then it seems natural to say that the
deformation condition in (1.7) only concerns points of E: we do not want to say that the
air besides our soap film E is also concerned by the sliding boundary constraint. Notice
that the ¢, can be extended to R™ (but in a way that may not preserve the L;), so we
do not have to worry about the case where our deformations would yield a tearing apart
(cavitation) of the air besides the soap film.



Notice that with our convention that Ly = €, the set ¢ (F) stays in £, i.e.,
(1.9) pi(r) € Qfor x € E and t € |0, 1],

either because z € F'\ B and ¢i(x) = x € E C Q2 by (1.5), or else by (1.1) and (1.7) with
7 =0.

The author thinks that Definition 1.3 is a nice way to encode boundary constraints,
for instance that would be satisfied when E is a soap film in a domain. A Plateau boundary
constraint could for instance be associated to one or a few curves L;, but we could also
think about L; = 0 (or some other surface) as being a boundary along which the soap
film may slide (as if loosely attached to a wall). It is quite probable that such boundary
conditions were studied in the past, but the author does not know where.

Once we have a notion of competitors, we can define a corresponding notion of minimal
sets. Let us say, for the moment, that the closed set £ C () is minimal, with the sliding
boundary conditions defined by the L;, 0 < j < fiaq, if HY(E) < +00 and

(1.10)  HYE) < HYF) whenever F is a sliding competitor for E in some ball B,

where we allow B to depend on F'. Many variants of this definition will be proposed, where
one may localize the definition to an open set U, or add a small error term to the right-
hand side in (1.10) (this is how we will define almost minimal sets), or even allow stronger
distortions (this will give rise to quasiminimal sets). We shall give the main definitions
in Section 2 (for the generalized quasiminimal sets) and later in Section 20 (for almost
minimal sets), but for the moment the sliding minimal sets that satisfy (1.10) will give a
fair idea of what we want to study.

Of course our notion of competitors can be used to define Plateau problems, as we did
earlier with a single curve. Given a collection of boundary pieces L;, and a closed set Ej,
we can try to minimize H¢(E) among all the sets E that are sliding competitors of Ey (in
some ball B that depends on E, or in some fixed huge ball that contains ). If Ey is badly
chosen (for instance, if some sliding competitors of E are reduced to a point), the problem
may not be interesting, but it is easy to produce lots of examples where the infimum will
be finite and positive. For most of these examples, we do not have an existence result. But
it is clear that if minimizers for this Plateau problem exist, they are sliding minimal sets.

The main point of this paper is to study the general (hence often rather weak) regu-
larity properties of the minimal sets, and their almost minimal and quasiminimal variants,
in particular when we approach the boundary pieces L;. In practical terms, this means
that we will take many interior regularity results for Almgren minimal (or quasiminimal)
sets, and try to adapt their proofs so that they work all the way to the boundary. But
before we say more about this, let us comment a little more on Definition 1.3 and our
motivations.

The word sliding may be misleading in some cases, as some sets L; may be reduced
to points, where in effect no sliding will be allowed. Our assumptions on the L; will only
allow a finite number of points where FE is fixed. So, for instance, we do not consider
the case where I' is a simple curve and we require that ¢(x) = x for every point = €
E NT. This will not bother us, and probably such a condition would make it too hard
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to produce competitors and get information on F near I' when E is a minimal set with
these constraints. Of course we could always say that E is locally minimal (for instance)
in the domain U = R™\ T, and get some information from this, but this is not the point of
this paper. On the contrary, the author believes that because we allow our competitors to
slide along the L;, we will have an amount of flexibility in the construction of competitors,
which we can use to prove some decent regularity results. And at the same time (1.7)
looks like a reasonable constraint, for instance, if we want to model the behavior of soap
films.

We believe that in addition to being interesting by themselves, regularity results for
sliding minimal or almost sets could be useful to prove existence results (in very simple
cases) for the Plateau problems discussed above, and also for other similar problems,
because some other types of minimizers also yield sliding minimal sets. Let us give two
examples.

In [R1], Reifenberg proposed a Plateau problem where we are given a compact bound-
ary set L C R"™ of dimension d — 1, and we minimize H¢(E) among compact sets F that
bound L, in the sense that L C E and the natural map induced by the inclusion, from the
(d — 1)-dimensional Cech homology group of L to the (d — 1)-dimensional Cech homology
group of E, is trivial. He also proves a fairly general existence result, and good interior
regularity results for the minimizers (see [R1,2]). These results were generalized by various
authors; see for instance [Al], [De], and more recently [Fa] for a quite general existence
result. Also see [HP] for a simpler variant of [R1] in codimension 1, where one replaces the
computation of Cech homology groups with a simpler linking condition, and which comes
with a simpler proof and is related to differential chains.

It is easy to see that if the boundary set L is not too ugly, the minimizing sets that
are obtained in these papers are sliding minimal sets associated to Ly = R™ and L; = L.
See [D8] for the rather easy verification, whose main point is just that if £ bounds L and
F' is a sliding competitor for E, then F' bounds L too.

Reifenberg’ homological Plateau problem and its minimizers are very nice, and give
good descriptions of many soap films, but some people prefer the related problem of size
minimizers. That is, we are given a (d — 1)-dimensional integral current S, with 95 = 0,
and we look for a d-dimensional integral current T such that 9T = S and whose size
(understand, the H?measure of the set where the multiplicity is nonzero, but we shall be
slightly sloppy on the definitions) is minimal. If d = 2, L is a nice closed curve in R3,
and S is the current of integration on L, T. De Pauw showed in [De] that the infimum for
this problem is the same as for Reifenberg’s homological problem (where Cech homology is
computed over the group Z); but even though De Pauw showed that Reifenberg homological
minimizers exist, size minimizers are not known yet to exist. Anyway, size minimizers, if
they exist, are also supported (under reasonable conditions) on sliding minimal sets. The
point now is that if T' is supported by the closed set E and F is a sliding competitor for F,
then we can use @1 to push T and get another solution of 0T = S, which is supported on
F. See [D8] for the fairly easy verification of this, and variants where 9T is only required
to be homological to S in a boundary set L.

So we have at least two potentially interesting other examples of sliding minimal sets.
To the author’s knowledge, not much is known on the boundary behavior of these sets,
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and the results in this paper are probably a good start. A natural question is whether, if
we decide to study them by saying they are sliding minimal sets and forgetting about the
initial problem they solve, we lose important information that we may have used profitably.

Most of the results of this paper concern the weaker notion of sliding quasiminimal
sets, but let us make two short remarks on sliding minimal sets. An important tool that
we can still use in some cases is Allard’s regularity theorem from [All], which applies to
more general stationary varifolds and goes all the way to the boundary. But this result
uses some initial flatness assumption that we may not want to assume.

In the special case when Ly = R? and L; is a nice curve, G Lawler and F. Morgan
propose a conjectural list of 10 boundary behaviors for minimal sets bounded by Li; see
[LM] and [Mo3], and in particular Figure 13.9.3 (on page 137 of the third edition). The
present paper tries to go in such directions, so far in more general contexts but with less
precision.

We may now start a description of the results in this paper. Generally speaking, we
shall take local regularity results that we like, and try to extend or modify the proofs so
that they work also near the boundary pieces.

Many of our results are about what we call generalized quasiminimal sets, which are
defined in Section 2 (see Definition 2.3). In the special case without boundary pieces, the
notion is just a little bit more general than the quasiminimal sets that Almgren studied
in [A2] under the name of “restricted sets”. One advantage of the notion is that it is
rather weak and quite flexible. For instance, it is stable under bilipschitz mappings (the
quasiminimality constant M just gets larger), and contains minimizers of functionals like
[ f(z)dH%(x), where we just need to know that f is bounded and bounded from below,
and under the same sort of boundary conditions as above. Thus the graph of any Lipschitz
function F : R4 — R"~¢ is locally quasiminimal (with no boundary condition). Of course
this means that we cannot expect better regularity than Lipschitz, but this will already
be a good start, and in effect we shall not get so far from that.

We shall work locally, in an open set U, and with two set of assumptions on the
boundary pieces. In the first one, which we shall call the rigid assumption, U is the unit
ball By, we choose a dyadic grid of R", and we require all the sets L; to coincide in U with
a finite union of faces of cubes of our grid. We do not even require all these faces to be of
the same dimension.

This already gives some choice, but we do not necessarily want all the faces to be
smooth, and we expect some bilipschitz invariance, so we also allow a weaker set of as-
sumptions, which we call the Lipschitz assumption, where U and the L; are obtained from
the previous case by composing with a bilipschitz mapping from By to U. We even allow
an additional dilation that we shall skip here for simplicity. See Definition 2.7. Some
times the regularity results in this second case will require more complicated proofs, but
we decided to include them anyway.

Even this set of assumption is not entirely satisfactory, because for instance it puts
some small bounds on the number of faces that may touch a given point, but the dyadic
combinatorics are pleasant to use, and the author was afraid of the complications that may
arise in a more general case.

Let us give a rough description of our plan.
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Part I deals with the setup and definitions. After the definitions of Section 2, we
check that sliding quasiminimal sets in U, under the Lipschitz assumption, are just the
images by our bilipschitz parameterizaton of sliding quasiminimal sets in By, with the rigid
assumption. See Proposition 2.8.

In Section 3, we introduce the core E* of a closed set E (our name for the closed
support of the restriction of H? to E, see Definition 3.1), and show that the core of
a (generalized sliding) quasiminimal set is quasiminimal with the same constants. See
Proposition 3.3 (and before, Proposition 3.27 in the simpler rigid setting). The proof is a
little unpleasant (because our boundary constraint (1.7) does not obviously cooperate with
removing some parts of E), but afterwards we feel better because we can forget about the
fuzzy set E '\ E*, and restrict our attention to coral sets, i.e., sets such that E* = E.

Part II contains our first regularity results for generalized sliding quasiminimal set.

In Section 4, we show that the core E* of such a set F is locally Ahlfors regular. This
means that, if z € E*, B(x,2r) C U (the open set where we work), r > 0 is smaller than
the scale constant 0 in the definition 2.3 of quasiminimal sets, and the small parameter
h > 0 in Definition 2.3 is small enough, then

(1.11) Clr? <HYE N B(z,r)) = HYE* N B(x,r)) < Cre.

See Proposition 4.1 (under the rigid assumption) and Proposition 4.74 (for the Lipschitz
case). The proof relies on comparison arguments based on Federer-Fleming projections.
It follows the proof of [DS4] (for the case without boundaries), which itself looks a lot like
the proof in [A2] of almost the same result.

Section 5 continues along the same lines. Its main result is Theorem 5.16, which says
that quasiminimal sets (with a small enough constant h) are rectifiable. We still prove
this with a Federer-Fleming projection, and the proof is probably similar to Almgren’s
original proof (away from the boundaries). The main point is that near a point of density
of the unrectifiable part of E, we could project E on a small subset of d-faces, so small
that an additional projection on faces of dimension d — 1 is possible and allows us to make
it essentially disappear. It is interesting that the rectifiability of quasiminimal sets (and
their limits, see Part IV) was neglected in [DS4], just because we could prove stronger
properties, while here we will have to rely more on it in the cases where we don’t get
uniform rectifiability.

On a slightly more technical level, Proposition 5.1 says that for B(z,r) as above (i.e.,
E is quasiminimal, x € E*, B(x,2r) C U, r < 0, and h is small enough), there is a
Lipschitz mapping F : EN B(z,r) — R? such that H4(F(E N B(z,r))) > C~1rd; this is a
technical lemma that can be used in later proofs (typically, for uniform rectifiability). Then
Proposition 5.7 is a trick from [DS4] that allows us to pretend that F' is the orthogonal
projection on some d-plane.

Part III deals with the local uniform rectifiability of the core E* when FE is quasimin-
imal (and h is small enough, as always).

The main result of this part says that if £ is a quasiminimal set (and h is small
enough), and if some technical condition on the dimension of the faces is satisfied, then
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E* is locally uniformly rectifiable, with big pieces of Lipschitz graphs. See Theorem 6.1
under the rigid assumption, and Theorem 9.81 under the Lipschitz assumption.

Uniformly rectifiable with big pieces of Lipschitz graphs means that there are constants
A >0 and 6 > 0 such that, if B(x,r) is as above, then we can find an A-Lipschitz graph
I' of dimension d such that

(1.12) HYE N B(z,r))NT > 6r?.

Thus in B(z,r), a substantial part of F lies in the nice A-Lipschitz graph I". Recall that
by definition, I' is the graph of some A-Lipschitz function that is defined on some d-plane
P C R", and with values in the orthogonal (n — d)-plane P*. In this statement, A and
depend only on the dimensions n and d, the quasiminimality constant M in Definition 2.3,
and the bilipschitz constant A in Definition 2.7.

Unfortunately, we we only get this under the technical condition (6.2) (or its analogue
(9.83) when we use the Lipschitz assumption). It is satisfied if, except for the supporting
domain Ly = €2, all the boundary pieces L; are composed of faces of dimensions at most
d. This takes care of many interesting examples, but it is nonetheless frustrating that
we have to assume this. Of course we do not have a counterexample; the main problem
could even be that even in the case without boundary, we have only one proof of uniform
rectifiability, and this proof is complicated and fails badly when we deal with boundaries.

The positive point of uniform rectifiability is that it has the right invariance under
bilipschitz mappings, and that it is, to the author’s knowledge, the best very general (weak)
regularity result for our quasiminimal sets.

Most of Part III is devoted to a proof of Theorems 6.1 and 9.81 on the local uniform
rectifiability of E*. We essentially take the long and complicated proof from [DS4], try to
adapt it, and see where it fails.

At the start, Propositions 5.1 and 5.7 allow us to assume that for some orthogonal
projection 7 on some d-plane, H¢(7(E N B(z,r))) > C~1r?; the whole proof then consists
in showing that we can find a large subset of E'N B(z,r) where 7 is bilipschitz. Section 6
describes the general scheme of a stopping time argument which is designed to select the
large subset, why it fails in general, and why it still works in some limited cases (but really,
not so many new things happen, compared to the previous situation with no boundary).
We end up, in Proposition 6.41, with a result that says that in some cases, E N B(x,r)
contains a significant part which is bilipschitz-equivalent to a subset of R¥.

In addition to the stopping time argument described in Section 6, Theorems 6.1 and
9.81 use some amount of general uniform rectifiability theory which is done, when we work
under the rigid assumption, in Sections 7 and 8.

The uniform rectifiability of an Ahlfors regular set F can be defined in lots of (even-
tually equivalent) ways, and in Section 7 we discuss two of them. The first one, called
BPBI, asks for the existence, in each ball B(x,r) centered on F, of a substantial part of
E N B(z,t) that can be send to a subset of R¢ by a bilipschitz mapping. In the case of
quasiminimal sets, we first restrict to the core E* and work only locally, i.e., on balls such
that B(x,2r) C U, but let us forget these details. Now Proposition 6.41 gives something
like this, but not in enough balls B(z,r), so one has to work more, and in effect go through
the BWGL below.

11



A second definition of uniform rectifiability is by the bilateral weak geometric lemma
(BWGL), which asks that for most balls B(z,r) (defined in terms of Carleson measures
but please don’t mind), there is a d-plane P such that E N B(x,r) is er-close to PN B(x, )
(in Hausdorff distance, and where € > 0 is a fixed small constant). It turns out that this
one is easier to get.

The only place in Section 7 where the quasiminimality of E is used directly (as opposed
to, via a regularity result of a previous section) is to show that if all the points of ENB(x, )
lie within er of some d-plane P, then the converse is also true: all the points of PNB(z, 3t/2)
lie within er of E/, and in addition the orthogonal projection from E to P is locally surjective
(see (7.46)). See Lemma 7.38 for a more precise statement that takes into account the
position of the boundary pieces L;, and Lemma 9.14 for a generalization of this first
statement.

This lemma helps because it is relatively easy to find balls where E stays close to a
plane, but the BWGL requires a bilateral approximation that Lemma 7.38 then provides.
The rest of Section 7 consists in playing with bad sets of balls and various definitions of
uniform rectifiability, to get the BPBI property (for every small ball, not just the good
ones in Proposition 6.41). See Proposition 7.85. So E is locally uniformly rectifiable.

In Section 8, we keep the rigid assumption and go from the BPBI to the BPLG, i.e.,
the existence of big pieces of Lipschitz graphs, as in the statement of Theorem 6.1. For
this, the general theory says that we have to find big projections (see Theorem 8.5) and,
roughly speaking, this is provided by the BWGL or even its unilateral version the WGL,
plus another application of Lemma 7.38 (and (7.46) in particular).

In Section 9 we prove the analogue of Theorem 6.1 under the more general, but some
times more painful, Lipschitz assumption. The relevant statements are now Lemma 9.14
(for the generalization of Lemma 7.38) and Theorem 9.81 (for the main uniform rectifia-
bility result).

A consequence of the uniform rectifiability of E*, that has been quite useful for the
study of limits far from the boundaries, is the concentration property introduced by Dal
Maso, Morel, and Solimini [DMS] in the context of the Mumford-Shah functional. The
point is that for any sequence {Fj} of sets that satisfies this property (with uniform
constants) and converges to F' in Hausdorff distance, and any open set V', we have the
lower semicontinuity property HI(F NV) < liminfy s o HE(F N V).

We prove this property in Corollary 8.55 (under the Lipschitz assumption) and Corol-
lary 9.103 (under the Lipschitz assumption), as simple consequences of the local uniform
rectifiability, but then with the additional technical assumption (9.2) or (9.105). Fortu-
nately, there is another proof of uniform concentration along sequences that does not use
these assumptions; see Proposition 10.82.

Most of this Part III is not needed for the next ones; the failure of Theorems 6.1 and
9.81 in some cases lead the author to finding ways to prove the subsequent theorems (and
in particular the results on limits, see Part V) that would not use uniform rectifiability.
So the reader will get something positive out of the weakness of this part.

Part IV contains our main results on the limits of quasiminimal sets. The main
statement for this part is Theorem 10.8, which says that if F is the Hausdorff limit (locally
in the open set U) of the sequence { E} } of coral (i.e., E} = Ej) quasiminimal sets which all
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lie in a class GSAQ(U, M, d, h), with h small enough, then E lies in the same quasiminimal
class GSAQ(U, M, §, h) as the Fj.

Here again, when we work under the Lipschitz assumption, we only prove this under a
minor additional regularity assumption on the faces that compose the L;. Typically, when
such a face is more than d-dimensional, we require the face to be C! in a neighborhood of
H?-almost each of its interior points. See (10.7), or Remark 19.52 for a weaker condition.

The main ingredient for Theorem 10.8 is the lower semicontinuity estimate in Theo-
rem 10.97, which says that for { £} as above,

(1.13) HYENV) < liminf HY(E, NV) for every open set V C U.

k——+o0

This is deduced from Dal Maso, Morel, and Solimini’s result [DMS] and the fact that the
sets E} are uniformly concentrated, as in Proposition 10.82. In turn Proposition 10.82 is
obtained a little bit like Corollaries 8.55 and 9.103, but instead of uniform rectifiability,
we use the fact that the limit F is rectifiable (as in Proposition 10.15), and a compactness
argument (Proposition 10.21). The surprising part, at least to the author, is the rectifia-
bility of the limit, which is just proved like Theorem 5.16 (the rectifiability of a single Ey),
with suitable modifications.

Even though Theorem 10.97 is the main ingredient in Theorem 10.8, the full proof
takes the rest of Part IV (Sections 11-19). It follows the argument of [D2], but unfortu-
nately with many small modification that force us to give a full proof.

Perhaps we should mention that it is important to prove limiting results like Theo-
rem 10.8 and Theorem 10.97 in the context of sets. In the context of integral currents,
for instance, the lower semicontinuity of the mass and strong compactness theorems exist,
that have been used very profitably. Here we get an acceptable substitute for some of that.
Without this, it would be hard to say much about the blow-up limits of almost minimal
sets, for instance.

In Part V we study the stronger notion of almost minimality, and extend the stability
results of the previous parts to them. A few different definitions are possible, but let us give
a simple one that works when we do not localize. In addition to the list of boundary pieces
L; (which we keep as above), we give ourselves a gauge function & : (0, 4+00) — [0, +00],
such that lim, o h(r) = 0. Often we also ask h to be nondecreasing and continuous from
the right, and for some results to have a sufficient decay near 0. A typical choice would
be to pick a@ > 0 and take h(r) = r® for 0 < r < § and h(r) = +oo for r > 4. A sliding
almost minimal set (of type A’) in R™ is then a closed set E such that (1.2) holds, and for
which

(1.14) HYENB) <HYF N B)+ h(r)r?

for each closed ball B = B(z,r) and each sliding competitor F for E in B. When h(r) = 0,
we recover the definition of sliding minimal sets defined by (1.10). This notion can be
localized to an open set U, and three slightly different types of sliding almost minimal sets
(called Ay, A, A’) are introduced in Definition 20.2. Of course we expect better regularity
properties for the sliding almost minimal sets, especially when A is small; here we shall
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not really look for such properties, but rather prepare the ground with some preliminary
results on limits of almost minimal sets and monotonicity properties for their density.

In Section 20 we give the three definitions of sliding almost minimal sets (Defini-
tion 20.2), but then prove that the two last ones (A and A’) are equivalent. This is
Proposition 20.9; the proof follows [D5], were similar notions were defined (to try to unify
some definitions with Almgren’s initial ones).

In section 21 we use our limiting theorem on quasiminimal sets (Theorem 10.8) to
show that limits of coral sliding almost minimal sets (of a given type) with a given gauge
function h are also coral sliding almost minimal sets, of the same type and with the same
gauge function. This is Theorem 21.3. Also see Remark 21.7 and Corollary 21.15 that say
that the limit of a locally minimizing sequence of uniformly quasiminimal sets is locally
minimal.

In Section 22 we prove an upper semicontinuity result for H%: if the sequence {Ey} of
coral sliding almost minimal sets in U converges to E (as in Theorem 21.3), then for each
compact set H in U,

(1.15) HYENH) > limsup HY(E, N H);

k—+oco

see Theorem 22.1, which is specific to the case when A(r) tends 0. For quasiminimal sets,
we cannot expect such a neat estimate, but we still have the less precise

(1.16) (1+Ch)MHYEN H) > limsup H*(Ex N H)

k—+oco

which is proved in Lemma 22.3 and is often useful too. Again similar results were proved
in [D5] Lemma 13.12, and probably many more places before. Surprisingly, the proof only
uses the rectifiability of the limit E, some covering lemmas, and an application of the
definition of quasiminimality in some flat balls.

Theorems 10.8 and 21.3 have an obvious defect: in many situations, such as for blow-
up limits with boundaries L; that are not cones, we may want to take limits in situations
where the domains, and more importantly the boundary sets L;, change mildly. We do
this in Theorem 23.8, but rather than redoing the whole proof, we reduce to the previous
statements by composing with a variable change of variables that sends us back to a fixed
domain (the limit). Our proof forces us to restrict to variable domains that are close to
the limiting domain in the bilipschitz category, which is probably not optimal.

We apply this in Section 24 to blow-up limits. Under reasonably mild flatness condi-
tions on the sets L; at the origin (see Definitions 24.8 and 24.29, and Proposition 24.35
that says that the individual flatness of faces (as in Definition 24.29) is enough), we show
that the blow-up limits at the origin of a sliding almost minimal set, are sliding minimal
sets in R"”, associated to boundary sets Lg obtained from the L; by the same blow-up. See
Theorem 24.13.

Part VI deals with two extensions of our notions of quasiminimality and almost min-
imality. The main one is related to elliptic integrands. Instead of using the Hausdorff
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measure H?(E) in our various definitions, we may want to use slightly distorted versions
like [, f(z)dH%(z), where f:R™ — [1, M] is a continuous function, or even

(1.17) I(B) = | fa TBy @),

where f is now defined on R™ x G(n, d), G(n,d) denotes the Grasssman manifold of vector
d-planes in R™, and we restrict to rectifiable sets so that the approximate tangent plane
T, E is defined almost everywhere on E (see (25.2) for a slightly artificial definition, but that
would also work on d-sets that are not rectifiable). See Definition 25.3 for an acceptable
class of elliptic integrands, which is just a little larger than the one introduced by Almgren
[A1], [A3].

The main point of Section 25 is that the technique of [DMS] also allows us to prove
lower semicontinuity results like (1.13), but for integrals like J;(£). This was noticed by
Yangqin Fang [Fa|, who wanted such a result to extend Reifenberg’s existence theorem for
his homological Plateau problem to the context of elliptic integrands, and Fang’s proof is
so simple that it would have been stupid not to give it here.

In Theorem 25.7, we prove that if the sequence {E}} of sliding quasiminimal sets
in U satisfies the main assumptions of our limiting Theorem 10.8, and if the integrand
f:R"™ x G(n,d) — [a,b] satisfies the condition of Definition 25.3, then

(1.18) J(ENV) < lklgigf J¢(ErNV) for every open set V C U,
where as usual E is the limit of the Ej.

The proof contains the lower semicontinuity result that we used for Theorems 10.8
and 21.3, so the reader that would not be familiar with [DMS] can read Section 25 instead
and get a slightly more direct proof, even for f = 1. We still kept the reference to [DMS]
for the other readers, and also because this is really where the ideas are coming from.

The notions of quasiminimality and almost minimality can also be defined in terms of
an elliptic integrand f as above. Since a < f < b for some a, b > 0, the list of quasiminimal
sets is the same, only the constants are different. This is why we do not need to be careful
when we state Theorem 25.7. In Section 26 we explain how to extend Theorem 10.8 to
limits of f-quasiminimal sets; see Claim 26.4. The same thing would happen with other
results of Part V, but we omit the details.

We included Section 27 to answer partially a question of J. Harrison (initially raised
far from the boundary), and to say that the question is probably not as simple as it
seems. Suppose, in the definition of competitors (Definition 1.3), that we only included
competitors for which ¢; is smooth; would the resulting sets of quasiminimal (or almost
minimal) sets be different? We discuss some partial positive results, and a possible strategy
for further ones, in Section 27.

Part VII deals with the monotonicity, or near monotonicity, of the density
(1.19) 0(r) = r*HYE N B(z,r))

for sliding minimal or almost minimal sets, but only for balls B(z,r) centered on the
boundary pieces.
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The simplest result is Theorem 28.4, which says that if z = 0, E' is coral and locally
sliding minimal near 0, and the L; are cones, 6 is nondecreasing near » = 0. When instead
F is only almost minimal with a gauge function h that satisfies a Dini condition, and in
addition 0 € E (at least, if we deal with A-almost minimal sets), Theorem 28.7 says that
6 is nearly monotone, i.e., that we can multiply it by a continuous function with a nonzero
limit at the origin and get a nondecreasing function.

The case when the L; are not exactly cones centered at x is discussed in Remark 28.11
and Theorem 28.15.

The case of equality in Theorem 28.4, i.e., when E is minimal, the L; are cones, and
0 is constant on some interval, is treated in Section 29. Theorem 29.1 says that in this
case F coincides, in the corresponding annulus, with a minimal cone with the same sliding
boundary conditions. We use the proof of [D5], by lack of a better idea.

We apply this to blow-up limits of coral sliding almost minimal sets and show in Corol-
lary 29.53 that, under reasonable assumptions, they are sliding minimal cones associated
to the blow-up limits of the L.

We also use the case of equality above, and a compactness argument, to find situations
where, if the function 6 is nearly constant on an interval, then E can be well approximated
by a minimal cone, both in terms of Hausdorff distance and measure. See Proposition 30.3
for a general statement with annuli, and Proposition 30.19 for a simpler case in a ball.

In a last Section 31, we rapidly discuss a few directions in which this work could be
continued or used.

The author wishes to thank Thierry De Pauw, Yangqin Fang, Vincent Feuvrier, Jenny
Harrison, Xiangyu Liang, Frank Morgan, and Harison Pugh for helpful discussions and
remarks concerning this project. He gladly acknowledges the generous support of the
Institut Universitaire de France, and of the ANR (programme blanc GEOMETRYA, ANR-
12-BS01-0014).

2. Generalized sliding quasiminimal sets

In this section we give the definition of our most general class of quasiminimizers (the
sets for which we shall prove most of our regularity results), and also describe the two
standard sets of assumptions on the boundary pieces L; that will be allowed.

The following notion comes from [D5], where it was introduced to generalize both
the notion of Almgren quasiminimal set (or “restricted set”, see [A2]) and some simpler
notions of almost minimal sets.

For the next definition, we shall use a quasiminimality constant M > 1, a diameter
9 € (0,400], and a small number h € [0,1). We want to be able to localize our definitions,
which forces us to work in an open set U; but of course we are free to take U = R™.

Given a closed set F, with H%(E N H) < +oo for every compact set H C U, and a
one-parameter family {¢;}, 0 <t <1, such that (1.4)-(1.8) hold, we set

(2.1) Wi =1{y € ENB;p(y) # y}
for 0 <t <1, and then

(2.2) W= U Wi Ui (Wh).

0<t<1

16



Note that W, C W C B, where B is as in (1.4)-(1.8), but they may be smaller and in
particular we shall not force B to be contained in U.

Definition 2.3. Let 2 C R" and the Lj, 0 < j < jpaa, be as above. Let M > 1,
d € (0,400], h € [0,1), and the open set U be given. Let E C Q) be a closed set in U such
HYE N B) < +oo for every closed ball B C U. We say that E € GSAQ(U, M, 6, h) when,
for every choice of closed ball B = B(z,r) such that 0 < r < §, and every one-parameter
family {¢+}, 0 <t <1, such that (1.4)-(1.8) hold and

(2.4) Wccu

(i.e., W is contained in a compact subset of U ), we have
(2.5) HIW1) < MHY (o1 (Wh)) + hrt,
where as before W = {y e ENB;p(y) # y}

Here GS AQ) stands for generalized sliding Almgren quasiminimal set; we should prob-
ably have mentioned € and the L; in the notation, but this could have been too heavy.

Definition 2.3 is the sliding analogue of Definition 2.10 in [D5]. The case when h =0
corresponds to quasiminimal sets, as in [A2] and [DS4], except that here we insist that our
final deformation ¢; comes as the end of a one-parameter family of continuous maps that
satisfy the constraints (1.7). Without these constraints and if U were convex, it would not
have been necessary to mention this (because we could take p:(x) = (1 — t)z + ty1(x)),
but here we need to be more careful.

Notice that we allow competitors of E in balls B that are not necessarily contained in
U, but only require (2.4). It would have been essentially as reasonable to restrict to B C U;
this would have given an apparently larger classes GSAQ, and probably our main results
are still valid in that class. Here we opted for the definition which is closest to Almgren,
also because the invariance under changes of variables is a little better (Proposition 2.8
below would not work as nicely). If the reader ever encounters a GSAQ set for the weaker
version, but not the one we give, she will probably get the desired results inside U by
noticing that it is also a GSAQ set (official definition) in a slightly smaller open set.

Notice also that our Lipschitz mappings ¢; are only defined on E. If they were
allowed to take values in R”, this would not matter because we could extend them. Here
we also require in (1.7) that our set ¢1(F) is a deformation of F, with the constraints
mentioned above, but we see no need to require that ¢; extends to a mapping from €2 to
(1, for instance, and requiring boundary constraints like (1.7) on the L; \ E seems really
unnatural. We want to say that the soap is attached in some way to the boundaries, not
that every deformation comes from some global deformation in space.

When we take M = 1 and h small, we get a notion which is closer to the notions
of almost minimality used in [D5]. We are allowed to take § = +oo, but often taking
0 < +oo will help. For instance, sliding almost-minimal sets will be sets E that lie in
GSAQ(1,6,h()) for § small, and with an h(J) that tends to 0 with 4.

The difference between (2.5) and its analogue for quasiminimal sets (i.e., when h = 0)
is not enormous; the only situations where we expect (2.5) to be harder to use are when
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HE(W1) and He (1 (W7)) are very small, i.e., when (; only moves very few points of E.
The point of a good part of Section 2 in [D5] was to show that these situations can be
avoided when we prove regularity theorems. Here we shall also need to check that we can
adapt the proofs to the case of sliding boundary conditions.

We shall work with reasonably strong assumptions on 2 and the L;, and already this
will give us some notational trouble. Let us distinguish between two sets of assumptions.

We introduce first a set of assumptions for 2 and the L;, which we shall call the
“rigid assumption”. Its main advantage is its simplicity, and many results will be proved
first under the rigid assumption, and generalized (some times painfully) to the Lipschitz
assumption below. Again set {2 = Ly, as in (1.1), to simplify the notation.

We shall say that the rigid assumption is satisfied when there is an integer m > 0
such that, for each 0 < j < jmaz,

58 L; coincides in the unit ball with the union of a finite
(26) number of faces F}; of dyadic cubes of side length 27,

We shall sometimes refer to the largest 27 such that (2.6) holds as the rigid scale of the
L;.

Our cubes and faces will always be closed, by convention. When we say dyadic cube
of side length 27, we mean a set [0,27™]" + 27k, with k € Z". The dimensions of the
faces F;; may be anything from 0 to n, and they may be different from each other, even
for a fixed j. With this definition, it happens that the origin plays a special role (it lies
on the boundary of all the faces of dimension > 1 that touch it), but we shall never need
this coincidence (and it will disappear in the next definition).

In terms of combinatorics, this definition still allows a lot of different possibilities. We
also authorize sets L; that are unions of faces of large dimensions, connected to each other
by lower dimensional faces, for instance, or that just meet at one point.

For us the rigid assumption is a toy model for more general Plateau problems with
boundary conditions of mixed dimensions. We decided to work with faces of dyadic cubes
because this will make our life much easier in some case, at least in terms of notation but
maybe not only. There are two main objections with this. The first one is the rigidity of
the faces, and the next definition will take care of this. The second one is that the dyadic
structure puts some constraints on the combinatorics of our boundary sets (for instance, it
gives a small bound on the number of 2-dimensional faces that touch a given 1-dimensional
face), and this will not be addressed. See Remarks 2.12 and 2.13.

So we want to be able to use less rigid faces, which are fairly smooth but not completely
flat. Also, at least as far as quasiminimal sets are concerned, we expect some biLipschitz
invariance of our results, so we introduce the following weaker “Lipschitz assumption”,
where we keep the same structure for the L;, but allow Lipschitz faces.

Definition 2.7. We say that the Lipschitz assumption is satisfied in the open set U when
there is a constant A > 0 and a bilipschitz mapping ¢ : \U — B(0, 1) such that the sets
Y(AML; NU)), 0 < j < jmae, satisfy the rigid assumption.

Obviously, in this definition AU = ¢ ~1(B(0,1)) needs to be bilipschitz equivalent to
B(0,1), but this will not be a problem. In fact, all our conditions and results will be local,
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so even if our initial domain U is not a nice open set, we can try to apply our results to a
smaller domain V' C U (such that AV is bilipschitz equivalent to B(0, 1)), using the fact
that £ € GSAQ(V,M,6,h) as soon as E € GSAQ(U, M, 6, h).

Notice that the Lipschitz assumption comes with two important constants: the bilip-
schitz constant for v, and the rigid scale 27" above. The last constant A > 0 is just a
normalization, and should never play a serious role in the estimates. In fact, we could have
decided to take A = 1 in the definition, and this would only have forced us to apply our
results to dilations of the considered sets and domains.

As far as quasiminimal sets are concerned, there will not be too much difference
between our two assumptions; the following proposition will allow us to to go from the
rigid assumption to the Lipschitz assumption, at the price of making some constants larger.

Proposition 2.8. Suppose that the Lipschitz assumption is satisfied in the open set U,
and let A\ and 1 be as in Definition 2.7. Also denote by A > 1 the bilipschitz constant for .
Then, for each E € GSAQ(U, M, 6, h), the set ) (AE) lies in GSAQ(B(0, 1), A2 M, A=\, A%?h).

Indeed, let {¢:}, 0 < t < 1 be as in Definition 1.3 (relative to the definition of a
competitor for ¥)(AF)), and also assume that W cc B(0,1). Set ¢(z) = ¢(Az); thus ¥ is
the natural mapping from U to B(0,1). Then set ¢ = Voot for 0 <t <1. It is
easy to see that the {¢;}, 0 <t < 1, satisfy the conditions of Definition 1.3, except that B
should be replaced with ¢ ~1(B), which itself is contained in a ball B’ of radius 7 < AA 17,
where r is the radius of B.

In addition, the analogue for the {{;} of Wis W = i/;_l(/W)? which is compactly
contained in U because W CC B(0,1).

If < A=\, then 7 < §, and the analogue of (2.5) yields

(2.9) HEWL) < MHY G, (Wh)) + hi?,
with W, = {y € ?,Zfl(E); o1(y) # y} = @Zfl(Wl). We apply 1; and get that

HAW) = HA(P(WA)) < XEATH (W)
(2.10) < NACMHY(GL(Wh)) + AP AR
= MAIMHN G (W) + A2hrd

by (2.9). In addition, 851(W1) =9y lop o 12(/1/171) =71 o (W), so (2.10) says that
(2.11)  HA W) < XNATMHA (! 0 o1 (W) + A2t < A2 MH (o1 (Wh)) + A*hr?,

as needed for Proposition 2.8. 0]

Because of Proposition 2.8, we shall sometimes be able to deduce local regularity prop-
erties for the quasiminimal sets under the Lipschitz assumption from their counterparts
under the rigid assumption. This will work fine for regularity properties that are invariant
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under bilipschitz mappings (local Ahlfors regularity, rectifiability, or even uniform rectifi-
ability), but for more sensitive properties, or when we want a precise dependence on the
quasiminimality constants, we shall often need to conjugate our rigid proofs and check
painfully that they extend to the Lipschitz assumption.

Remark 2.12. Our sets of boundaries are not nearly as general as they should be (for the
weak regularity properties that we shall prove). There should not be anything so special
about dyadic cubes, and we should probably have considered more general nets constructed
with convex polyhedra, with a lower bound on the angles in the subfaces. But then the
notations would have been somewhat worse, and the author was just afraid. Possibly the
difficulty is only a matter of organization, but the reader should be warned that in a few
places, we shall use the description of the L; with standard dyadic cubes to give short
proofs, and the author did not even think about how these proofs could be adapted to
more general nets. We explain about this a few times, but when other things become more
complicated (for instance, in Part IV), we simply forget the issue.

Hopefully, the lack of generality of our rigid and Lipschitz assumptions will be slightly
reduced by the fact that we allowed bilipschitz images. But on the other hand, we are
missing many simple combinatorial cases. For instance, if we want to allow an L; where
20 faces of dimension 2 bound a single segment, we will have to adapt the definitions and
proofs below, or play a dirty trick such as pretending we live in R19.

When we deal with more precise regularity properties that are not invariant under
bilipschitz mappings, we may have to choose new sets of assumptions that are not as
restrictive as the rigid assumption (which forces angles between faces to be multiples of
90°, for instance), and not as lenient as the Lipschitz assumption (which allows ugly
Lipschitz faces). Typically, this will happen in Section 24, when we study blow-up limits,
and where we will allow C?! faces that make different angles.

Remark 2.13. On the other hand, at first sight it looks like we are making our life more
complicated than needed, by allowing large integers m > 1. Let us discuss this in the
simple case of the rigid assumption. We are interested in local regularity properties of an
almost- or quasi minimal set F near a point xg. If we concentrate on balls of size smaller
than 27™~2, we are reduced to the situation where each L; is a cone, centered at the origin
(or at the point of the dyadic grid of size 27™ that lies closest to z(). This seems simpler
than the situation we described, but in fact the difference is not enormous because the
combinatorics of the intersections of our cones with a small sphere are not much simpler
than the combinatorics of the intersections of small dyadic cubes in one less dimension.
So we would essentially win a dimension, but we should not expect drastic simplifications
in the combinatorics. Also, and this is the main reason, allowing m to be large will not
complicate our proofs.

Remark 2.14. The following convention may be useful. We shall say that out list of
boundaries {L;} is complete when

(2.15) for every choice of 0 <4,k < jyqez, Li N Ly is one of the L;
and also
(2.16) each L; is connected.
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Replacing the initial list of L; with a complete one costs us nothing. Indeed, adding L; N L;
to our list does not upset (1.7), because (1.7) for L; N Ly is an immediate consequence
of (1.7) for L; and (1.7) for L. And (1.7) for L; is equivalent to (1.7) for each of its
component, because of (1.4); since we shall only consider sets L; which have a finite
number of connected components, the new collection of sets L; stays finite. We may also
assume that €2 is connected, because otherwise we could study minimal or almost minimal
sets component by component.

3. Coral GSAQ and Lipschitz retractions on the L;

In this section we deal with two technical problems. First, we shall later find it more
reassuring to restrict our attention to “coral” quasiminimal sets, defined as follows.

Definition 3.1. For E C R” closed, with locally finite H? measure, we denote by E* the
closed support of the restriction of H? to E; thus

(3.2) E*={z € FE; HYE N B(z,r)) > 0 for every r > 0}.
We say that E is coral when E* = E.

The definition comes from [D4], where E* was also called the core of F, and we wanted
to distinguish coral from a slightly different notion of “reduced”. The main goal of this
section is to check that if £ € GSAQ(M,J,h), then automatically E* € GSAQ(M, 6, h),
but since this unexpectedly does not seem to follow too obviously from the definitions, we
shall restrict to the Lipschitz setting for the sets L; that was described in Section 2.

Proposition 3.3. Suppose that E € GSAQ(U, M, 4, h) and the Lipschitz assumption is
satisfied on the open set U. Then E* € GSAQ(U, M, é,h).

Observe that we do not say that E* is a competitor for F, and indeed it is not always
true: it may happen that E is a nice d-dimensional surface, plus a (d — 1)-dimensional
handle that cannot be deformed away (or to a subset of E*) inside Q. The proof of
Proposition 3.3 will be slightly complicated because when some part of E '\ E* lies on the
L;, it adds some constraints on the competitors that we want to use. Put in another way,
we have to show that if E* is not a GSAQ set because of some deformation {¢;}, we cannot
add a set of vanishing measure to £, in particular on the L;, in such a clever way that
we would not be able to extend ¢; so that (1.7) holds also on E \ E*.

Before we really start the proof, we want to construct Lipschitz retractions from a
neighborhood of each L; onto L;. In fact we shall do this for any finite union of faces of
dyadic cubes of the same side length.

Lemma 3.4. Let L be a finite union of faces of dyadic cubes of side length 1, possibly of
different dimensions, and set

(3.5) L" = {y e R"; dist(y, L) < n},
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where in fact we shall take n = 1/3. There is a Lipschitz mapping ©= = 7y, : L" — L such
that

(3.6) m(x) =x forx € L

and (F) C F for each face F (of any dimension) of each dyadic cube of side length 1.
The Lipschitz constant for m is less than C', where C' depends only on n.

We shall construct 7 as a composition of mappings py,.

For m > 0, denote by A,, the set of faces of dimension n —m (of dyadic cubes of side
length 1) which touch L but are not contained in L.

We may stop at m = n — 1, because A,, = () by definition. Then set

(3.7) T.=Lu[ |J (FnLM)].
FeA,,

We shall define p,, on T,,, also as a composition of simpler mappings. But let us first
check a few facts about distances. We shall often use the fact that

if F', F' are faces of unit dyadic cubes and F' is neither a point

(3.8) . . : :
nor contained in F’; then dist(y, F’) > dist(y, OF) for y € F.

Here and below, OF is the boundary of the face F'; it is thus the union of some sub faces
of dimension one less (except if F' is a point and OF = (). Now (3.8) can be deduced from
simple considerations of Euclidean geometry; if we were dealing with faces of polyhedra,
we would merely get that dist(y, F') > no dist(y, OF'), where 19 depends on the smallest
angles that adjacent faces of polyhedra can make, and on the smallest distance between
non adjacent faces, and this would only force us to take n smaller in Lemma 3.4. But let
us just check (3.8) for faces of dyadic cubes.

Let [ be the dimension of F'; thus [ > 1. Without loss of generality, we may assume
that F is given by the equations 0 <y; <1for 1 <j <[, and y; =0 for j > [. Since (3.8)
is trivial for points of OF, we just consider points y € F' such that 0 < y; < 1 for j <.
Notice that dist(y,0F') is the smallest of the Min(y,,1 —y;), 1 <j <.

Let z € F' minimize |z — y|. If z; # y; for some j < [, then z; ¢ (0,1), because
otherwise we could replace z; with y;, and get a new point 2’ that still lies in F’, but is
strictly closer to y. In this case, |z — y| > |z; — y;| > Min(y;,1 — y;) > dist(y, 0F), as
needed. So we may assume that z; = y; for 1 < j < [. If |z;/ > 1 for some j > [, then
|z —y| > |2z; —y;]| = |7;] > 1 > dist(y, OF), which is fine. Otherwise, we can replace all z;,
j > 1, with 0, and get a new point 2’ € F’. But 2’ = y, hence y € F’. This is impossible,
because 0 < y; < 1 for 1 <4 <[ (recall that y € F'\ OF), and this would force F' C F”
(because F'is the smallest face that contains y). This proves (3.8).

Let us deduce from (3.8) that when F' € A,,,
(3.9) dist(y, L) > dist(y,0F) fory e F.
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Indeed, if z € L and F’ is a face of L that contains z, we know that F’ does not contain
F by definition of A,,, and also that F' is not reduced to one point because m < n (recall
that A,, = 0), so (3.8) says that |y — z| > dist(y, F’) > dist(y, OF). Similarly,

(3.10) dist(y, T), \ F') > dist(y,0F) for FF € A,, and y € F,

because if z € T),, \ F', then either z € L and we can apply (3.9), or else z lies in some other
face F' € A,,, and we can apply (3.8) because F' # F’ and they have the same dimension.

For each face F' € A,,, denote by xr the center of F' and by pg the radial projection
from F'\ {zr} to OF. That is, pr(y) is the point z € OF such that y € [xp, z]. By (3.9),
dist(zp, L) > 1/2, hence pp is defined and Lipschitz on F' N L.

Extend pp to Ty, by setting pr(y) =y for y ¢ F. This is coherent, because if F” is a
different face of A,,, then F' N F’ C OF (recall that F' and F’ have the same dimension),
and similarly L N F C OF by (3.9); hence both definitions yield pr(y) = y on these sets.

Observe that pp respects the faces, i.e., pr(G NT,,) C G for every face G of any
dimension of a dyadic cube of side length 1. This is clear when G does not meet the
interior of F', because then pr(y) = y on G; otherwise, when G meets the interior of F', G
contains F' and we just need to know that pp(F) C F. Next let us check that

(3.11) pr is 64/n-Lipschitz on T,,.

Recall that dist(zp, L) > 1/2 by (3.9), so dist(zp, L") > 1/2 —n = 1/6, and hence pp is
6+/n-Lipschitz on T, N F. Tt is trivially 1-Lipschitz on T, \ F, and for y € T,,, N F and
zeTm \ F,

ipr(y) —pr(2)| = Ipr(y) — 2| < Ipr(y) —yl + |y — 2|
(3.12) < V/ndist(y, 0F) + |y — 2|
< Vndist(y, T \ F) + |y — 2| < (1 +v/n)ly — 2|

by (3.10). Thus (3.11) holds.

Now define p,,, on T}, to be the composition of all the pr, F € A,,. Notice that since
pr only moves the interior points of F', which lie out of L by (3.9) and out of the other
F’ € A, because distinct faces of the same dimension have disjoint interiors, we see that
the order of composition does not matter (each point is moved at most once), and in fact
pm(y) = pr(y) on F for each F' € A,,, and p,,(y) = y on L. Also, p,, is C-Lipschitz,
with C' < 36n (refine the proof of (3.11), or brutally observe that on {x,y}, p, is the
composition of two 6/n-Lipschitz mappings).

Next we want to compose the p,,. Let us first check that

for ' € A, and y € F N L". If we were working with polyhedra, we would use (3.9) to
show that dist(pr(y), L) < Cdist(y, L), and this would be fine too, except that we would
need to choose a smaller 7 at the end.
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In order to prove (3.13), we may assume that
(3.14) F:{yGR”;OSyiS1for1§i§m—nandyi:0fori>m—n}

and, by symmetry, that all the coordinates of y lie in [0,1/2]. Set ¥y = pr(y); then
0<y; <y; for 1 <i<m—mn, because 0 < y; < 1/2, the coordinate of zp.

Let z € L lie closest to y; we just want to find Z € L such that |z —y| < |z — y|.
Since |z — y| < 1/3, all the coordinates z; lie in [—1/3,5/6]. Let i be such that z; < 0; we
keep z; = z;, and obviously |z; — y;| = |z; — Ui| < |2zi — yi|. For the other i, we know that
0 < z; < 5/6, and we just set z; = y;; notice that the point z that we get this way lies in
the same faces as z, because we only replaced some coordinates that lie in (0, 1) with other
ones in [0, 1], and this operation preserves any face. Thus z € L, just like z, and since by
construction |z; — y;| < |z; — ;| for all ¢, we completed the proof of (3.13).

Since pp is the identity out of F', (3.13) is also valid for y € T,,, C L"7. We claim that

(3.15) pm(Tm) CLU[ | J (OF NL")] C Ty
FeA,,

Let w € pp(T),) be given, and let y € T, be such that w = p,,(y). If y € L, then
pr(y) = y for all F' (because FN L C OF, by (3.9)), hence w =y € L. If y € F for
some F' € A,,, then pr(y) € OF by construction, and then all the other pp/ preserve OF,
because they preserve every face of every cube; thus w = p,,(y) lies in OF too (recall that
we can compose the pr in any order that we like). Also, w € L by successive applications
of (3.13).

For the second inclusion, let F' € A,, and w € OF N L" be given. Let H be a
(m — n — 1)-dimensional face of OF that contains w. If H C L, we are happy because
L C T,,4+1. Otherwise, as soon as we prove that H meets L, we will know that H € A,,11
(by definition of A,,11), hence w € H N L" C Ty,4+1, as needed. Now dist(w,L) < n
because w € L7, so we can find z € L such that |z; — w;| < 1/3 for all i. When i is such
that z; # w;, we can replace both z; and w; with some integer n; which is close to both of
them, without changing the fact that w € H and 2z € L; this way we get a point of H N L.
This completes the proof of our claim (3.15).

Now we set m = p,_10...0pg. This is a Lipschitz mapping which is defined on T, = L"
and takes values in T}, = L. Thus 7n(L") C L. Next, (3.6) holds because pr(y) =y on L
for al F'; finally, 7 preserves the faces because it is a composition of mappings that preserve
the faces of all dimensions. Thus 7 is the desired mapping, and Lemma 3.4 follows. 0

Remark 3.16. For 0 < n < 1/3, we also get a mapping 77, as in Lemma 3.4, which is just
the restriction to L" of the mapping that we construct with n = 1/3. That is, we always
use the same formulas, only the domains of definition differ.

The retraction from Lemma 3.4 is the endpoint of a deformation; we shall not need
this fact before Lemma 8.8, but let us check it now before we forget the notation.

Lemma 3.17. Let L, 0 <n < 1/3, and L" be as in Lemma 3.4. Then there is a Lipschitz
mapping Iy, : L" x [0,1] — R™ such that

(3.18) IIy(x,t) =x forx € L and for t =0,
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(3.19) Iy (z,1) =np(x) forx e L7,
(3.20) g (x,t) — g (x,s)| < Cdist(x, L)|t — s| forz € LM and 0 < s,t < 1,

(3.21) Ty (z,t) — L (y,t)| < Clx —y| forz,y € L" and 0 <t <1,
and 11y, also preserves the faces of all dimensions, i.e.,

Iy (z,t) € F whenever F is any face (of any dimension)

3.22
( ) of a dyadic cube of side length 1, x € F, and 0 <t < 1.

The constant C' in (3.20) and (3.21) depends only on n.

To see this, observe that 7, is obtained by composing a bounded number of Lipschitz
mappings pg, where F € U,, A,, is some face of dyadic cube. Recall from the definition
below (3.10) that when F' € A,,, F is of dimension n — m, pr is defined on the set T,,
of (3.7), and is equal to the identity everywhere, except on F' itself, where it is a radial
projection on OF. We easily go from the identity to pr by setting

(3.23) pr(z,t) =tpp(x) + (1 —t)x for x € T), and 0 < ¢ < 1;
then the pr(-,t) also preserve the faces of all dimensions, are 6,/n-Lipschitz like pg, and
(3.24) lpr(z,t) —pr(z,s)| < Cnlt —s| for x € T}, and 0 < s,¢ < 1,

because |pp(x,t) — x| < Cn.

When we used pg, we composed it with a previous mapping h, which maps L" to T,,
by (3.15) and because the other pp/, F' C A,,, map T;, to T,,. Then we can go from h
to pr o h by setting hp(x,t) = pp(h(z),t) for z € LT and 0 < ¢ < 1. The mapping hp is
C-Lipschitz in x and C'n-Lipschitz in ¢, because h is C-Lipschitz.

We now concatenate all the deformations h g, reparameterize by the unit interval, and
get a mapping II;, that satisfies (3.18)-(3.22), except that in (3.20) we only get n instead
of dist(z, L). But Remark 3.16 extends to our mapping pr(x,t) and II;: the mapping
that we would construct on L, with n/ = dist(z, L), is just the restriction to L of the
mapping that we constructed here on L". Therefore, (3.20) is just the same thing as (3.24)
for x, but applied to the mapping I, associated to 7’. O

Remark 3.25. Of course we can also define 7wy, and II;, when L is a finite union of faces
of dyadic cubes, not necessarily of size one. That is, if L is a finite union of faces dyadic
cubes of size 27 (as in the definitions of our L), we define 7y, by

(326) 7TL(Z) = 2_m7T2mL(2mZ),

and use a similar definition for II;,. When we define the 7L, associated to our boundary
pieces L;, we shall use this convention; if by luck some L; are also unions of dyadic faces
of larger diameters, we shall ignore that fact and stay with the same m.
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Next we want to prove Proposition 3.3 in a simpler setting. We shall later see how
the proof of Proposition 2.8 allows us to reduce to this case.

Proposition 3.27. Suppose E € GSAQ(By, M,d,h), where we set By = B(0,1), and
that the rigid assumption is satisfied. Then E* € GSAQ(By, M, ,h).

So let E € GSAQ(By, M,d,h) be given. We shall go from E to E* in a finite number
of steps, where each time we remove a set in some L;. We may assume that the set of L;
is complete, as in Remark 2.14, and that when we enumerate the various L;, we start with
the largest ones for the inclusion relation.

We shall first define some intermediate sets ;. Set

(328) Z/ =F \ E* and Zj = Z’ \ [UiZjLi] for 0 S j S jmam + 1.

This is a nondecreasing sequence of open subsets of E. The first one is Zy = (), because
Ly = Q contains F, and the last one is Z; 11 = Z’. Note that

(3.29) HYZ') = HUE\ E*) =0,

by definition of E* (see (8.26) on page 58 of [D4], for instance, for the elementary proof).
Then set

(330) E] :E\Z] for 0 S] S.jma:r‘f‘l

This is a nonincreasing sequence of closed sets, with Ky = F and E; , +1 = E*. We
want to prove by induction that E; lies in GSAQ(By, M, 6, h), just like E. The induction
assumption holds for j = 0, so let us assume that 0 < j < j,,,., and that

(3.31) E; € GSAQ(Bo, M, 5,h),

and prove that

(3.32) Ej+1 € GSAQ(By, M,0,h).
Set
(3.33) Z=Ej\Ej1=Zj1\ Zj ={Z'\ [Vizj1 L]} \ {Z"\ [Vi; Li]}

= [Z' N L]\ UisjaLi] = [ENLj \ E*]\ [Uisj41Li).

So we want to prove (3.32). We take a sliding competitor F' = ¢(E;4+1) for Ej4; in
some closed ball B, and we want to prove the analogue of (2.5) for E; . It is tempting to
use the same one-parameter family {¢;} and apply (2.5) to it, but since it is only defined
for x € Ej 41, we have to extend it to x € E;. The difficult part will be to make sure that
we still have (1.7), in particular at points of Z. At any rate, we want to define p;(z) for
z € Fj and 0 <t <1, and logically we would like to keep

(3.34) ¢i(z) = pi(x) for z € Ejq
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(so that we would only need to define @;(x) when x € Z); we also would like to keep
¢t(z) =z when t = 0 and when = € E;\ B’, where B’ is a closed ball with the same center
as the ball B of Definition 1.3, but just a tiny bit larger, so we should mostly worry about
ZNB.

We extend ¢ first, in a Lipschitz way. That is, we have a Lipschitz mapping ¢,
defined on E;4, and we first extend it to ;11 U [E; \ B’] by setting

(3.35) o1(x) =z forz € E; \ B.

This map is still Lipschitz, although with a possibly very large constant (but we don’t
care). Indeed, since ¢ is Lipschitz on E;i; and on E; \ B’, we only need to estimate
lo1(z) — p1(y)| when z € Ej4q and y € E; \ B’ say; if z € B and y € 2B’, we say that
lo1(x) — o1(y)] < lp1()] + |e1(y)| < 2C < 2C(r" —r)~L|x — y|, where C is a bound for
¢ on 2B’ and r,r" denote the radii of B and B’. If x ¢ B, p1(x) — p1(y) = x —y by
definition, and the last case when z € B and y ¢ 2B’ is even easier. So ; is Lipschitz on
E;11 U[E; \ B']. Now we use the Whitney extension theorem to get a Lipschitz extension
Q1 - EJ — R"™.

Next we set pg(z) = x, as we should do, and get a mapping (z,t) — ¢:(x) defined
on [E; x {0,1}] U [E;4+1 x [0,1]]. This mapping is continuous; this is clear at points (x,t)
where 0 < ¢t < 1; when « € Ej;; and ¢t € {0,1}, we use the continuity of the previous ¢,
and the fact that ¢y and ¢ are Lipschitz; finally when « € E; \ E;;1, we use the fact that
E; 4 is closed, hence far from .

We can also set ¢i(z) = = for 0 < ¢t < 1 and x € E; \ B’. The two definitions
coincide when ¢t = 1, by (3.35), when t = 0 by definition of our first extension, and
when z € E;;; by (1.5); we now get a mapping (x,t) — ¢¢(r) which is defined on
[E; x {0,1}] U [Ej+1 x [0,1)]] U [(E; \ B") x [0,1]]. Let us check that this mapping is
continuous. We just need to check this at points (z,t) that lie in the intersection of
the closures of our two sets (where we already know that the function is continuous).
When x € Ej;4, our first extension was already defined at x, with ¢;(z) = = because
x € Ejx1N(E;\B')” C Ej+1\ B, and by (1.5). Since the second definition also yields
i(z) = x, we get the continuity at (x,t). Now suppose x € E; \ E;y1. As before, since
E;i; is closed, x is far from E;,; and this forces t € {0,1}. In this case too, ¢:(z) was
already defined for the first extension, with ¢(z) = x, so ¢4 is continuous at (x,t).

We now use the Titze extension theorem. This gives a continuous mapping (x,t) —
@¢(z), from E; x [0, 1] to R™. This mapping satisfies the continuity condition in (1.4), (1.5)
(with B replaced with B’), and (1.8). Since we also want (1.6), we compose its values on
B’ with the 1-Lipschitz radial projection from R™ to B’; this does not change the values
on E; 4, by (1.6), and does not destroy (1.4), (1.5), or (1.8). Of course our last property
(1.7) is not automatically satisfied, so we’ll need to modify the ¢; again.

Define a slightly better f; for 0 <t <1 by

(3.36) ft(x) = Gty (),
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where () is a Lipschitz function of d(z) = dist(x, E;41) such that

Y(z) =1 when d(z) < ¢,
(3.37) 0 <9Y(x) <1 whene <d(x) <2,
Y(x) =0 when d(x) > 2¢,
and where € > 0 is a very small number that will be chosen soon. Near E; 1, we do not

change anything (because 1(x) = 1). Let g > 0 be given. Let us check that if ¢ > 0 is
small enough, then

(3.38) dist(z, Ej41 N Lj) < &g for z € Z such that d(z) < 2e.

Otherwise, we could find a sequence {zx} in Z, with d(zj) tending to 0, and that stays

eo-far from E;1; N L;. Replace {x;} with a subsequence with some limit x; then z € L;

because Z C L; by (3.33), and L; is closed. In addition, € E;1; because d(x) = 0 and

E;11 is closed, a contradiction with the fact that dist(zy, Ej11 N L;) > €o; (3.38) follows.
Next observe that

(339) QOt(l‘) € Lj for x € Ej+1 N Lj and t € [0, 1],

by (1.7). Hence, by (3.38) and the uniform continuity of ¢; on [0,1] x E;, we get that for
each ¢; > 0, we can find € > 0 such that

(3.40) dist(p¢(x), Lj) < ey for t € [0,1] and x € Z such that d(z) < 2e.

Then we also get that

(3.41) dist(fi(x), L;) < e for t € [0,1] and « € Z such that d(x) < 2¢

by (3.36) and because ti(x) € [0, 1]. But then

(3.42) dist(fi(x),L;) <ej fort € [0,1] and = € Z,

because when = € Z and d(z) > 2¢, ¢ (t) = 0, hence f;(z) = po(x) = z, so fi(x) € L; too.
This proximity to L; is the reason why f; is better than ¢;. On the other hand,

observe that fi1(x) = @y()(z) is not necessarily Lipschitz, because we did not require

¢ to be Lipschitz in ¢, or even in x when ¢ < 1, so we shall fix this now and construct

new functions g;. The first step is, given a small e; > 0, to choose a Lipschitz function
¢ : E; x[0,1] = R", such that

(3.43) o(z,t)=x forx € E;\ B and for t =0
and
(3.44) lo(z,t) — pi(x)| <&y forze E;NB and 0 <¢ < 1.
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This is easy to do, and we just sketch the proof. On the set A; = [E;\B'|x[0,1]|J E,; x{0},
we simply take ¢(x,t) = p¢(z) = x. Then we use the uniform continuity of (x,t) — @¢(z)
on F;x[0, 1] (which is easy because we just need to consider the compact set £;12B’ %[0, 1])
to get 7 > 0 such that

(3.45) oe(2) — s (y)] < e

for z,y € Ej and ¢, s € [0,1] such that |z —y| + |t —s| < 1007. We select a maximal subset
Ay of {(z,t) € E; x [0,1]; dist((z,t), A1) > 7}, whose points lie at mutual distances at
least 7, and decide that ¢(z,t) = p(x) for (z,t) € As. Finally we use a partition of unity
to complete the definition of ¢. We get that ¢ is Lipschitz on E; x [0, 1] by construction,
with a very large constant that depends on 7 (but this is all right), and (3.44) holds because
for each (z,t) € E; x [0,1], ¢(z,t) is an average of values of p(y,s) = ¢s(y) on A; U Ay
at nearby points (y, s), and by (3.45). If by bad luck ¢(z,t) falls out of B’ for some pairs
(xz,t) € B’ x [0,1], compose again with the radial Lipschitz projection onto B’, without
altering (3.44) or the Lipschitz constants.

Next we choose a Lipschitz function h(z) of d(x) = dist(x, Ej41), such that 0 < h <1
everywhere, h(z) = 1 when d(z) = 0 (i.e., when x € Ej;1), and h(z) = 0 when d(z) > ¢/2.
And we set

(3.46) ¢'(z,1) = h(z)pe(z) + (1 — h(z))p(z, t)

on B, x [0,1]. Notice that ¢/(z,t) = ¢¢(z) on Ej41 (because h(z) = 1 there), and that
(3.47) o' (2, 1) — pe(x)| < &1

by (3.44). Set

(3.48) ge(z) = ¢' (2, th(x))

(compare with (3.36)). Then

(3.49) l9¢(x) — fu(@)] = ¢ (2,14 (2)) = pry@) ()| < €1 for (z,t) € Ej x [0, 1],

by (3.47). We still have that g;(z) € B’ when x € B’ (because of similar properties for ¢
and ¢(z,-), and since B’ is convex), and

(3.50) gi(x) =x forxz € E;\ B and t =0,

because ¢.(x) = z by construction (see above (3.36)), p(z,t) = = by (3.43), ¢'(z,t) = x
by (3.46), and finally ¢g;(z) = x by (3.48). Next,

(3.51) gi(x) = @¢(x) on E;jqq x [0,1],
because d(z) = 0, hence h(x) = ¢(x) = 1 and ¢'(z,t) = ¢i(x) by (3.46). Note that
(t,z) — g¢(x) is continuous because all the ingredients in (3.48) and (3.46) are continuous.

Let us also check that

(3.52) g1 is Lipschitz on Ej;.
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In the region where d(z) < e, (3.37) says that ¥(z) = 1, so g1(z) = ¢'(x,1) = h(z)p1(z) +
(1 —h(x))e(x,1) by (3.48) and (3.46), which is Lipschitz in particular because ¢; is Lips-
chitz. In the region where d(z) > ¢/2, h(z) = 0so ¢'(x,t) = p(z,t) and g1 (z) = p(x, P (z)),
which is Lipschitz by definition of ¢. This proves (3.52) because we have more than enough

room for the gluing.
We still have

(3.53) go(z) = ¢'(2,0) = h(z)po(z) + (1 — h(x))p(z,0) =z for z € Ej,
by (3.48), (3.46), (3.43), and the definition of the extension of ¢;, but we are still missing
(1.7). We shall now set

(3.54) oi(x) = 7mj(ge(x)) for x € Z and t € [0,1],

where we denote by 7; the Lipschitz retraction 7, onto L; that we constructed with the
help of Lemma 3.4, after scaling as in (3.26). Recall that 7; is defined on a n-neighborhood
of L;, where n = 27™ /3 is now the third of the side length of the dyadic cubes that compose
L;. Note that the definition in (3.54) makes sense because for x € Z and 0 <t <1,

(3.55) dist(g¢(z), L) < dist(fi(x),L;) +e1 <261 <7

by (3.49), (3.42), and if we choose 1 < 1/2. Recall from (3.34) that we would like to
set @(z) = @¢(x) on E; \ Z = E;41, but the desired Lipschitzness of ¢; at the interface
between Z and F;1; will force us to modify this slightly on a small region near L;. Let
€9 > 0 be very small, to be chosen later, and let £ be defined by

E(y) =1 for 0 <y <eq/2,
(3.56) E(y) =0 for y > eo,
¢ 1is affine on [e2/2, &2).

Also set
(3.57) di(z) = dist(¢¢(z), L; N B') for x € E;41 and t € [0,1].

Notice that if £(d¢(x)) # 0, then dist(p:(x),L;) < di(x) < €2 and hence (if 2 < 7)
7j(pe(z)) is defined. This allows us to set

(3.58) @i(x) =t&odi(x) mi(pe(z)) + (1 —t&odi(x)) pe(z) for x € Ejq and t € [0,1].

We now start checking that the ¢; satisfy the required properties (1.4)-(1.8) on Ej.
We first show that

(3.59) (x,t) = @¢(x) is continuous on E; x [0, 1].

Since it is clearly continuous on Z x [0,1] and on Ej;; x [0, 1], the only potential problem
is at a point (z,t) such that x € ZNE;,; (recall that E;; is closed), and it is even enough
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to show that our two continuous definitions (3.54) and (3.58) give the same result at such
a point. But then x € L; (by (3.33) and because L; is closed), so ¢(x) € L; (by (1.7) and
because z € E; 1), and using (3.54) yields the result

(3.60) mi(g¢(2)) = mi(pe(2)) = pi()

by (3.51), (3.26), and (3.6). But (3.58) also yields ¢:(z), because 7;(p:(x)) = pi(x) by
(3.60). So (3.59) holds.

Next we check that ¢; is Lipschitz. Again ¢ is Lipschitz on Z and on E;;, but we
need to be careful about the interface. That is, we just need to estimate |@1(z) — ¢1(y)|
when x € ;1 and y € Z. We'll distinguish between a few cases.

When dy(x) < e5/2, £ odi(x) =1 and (3.58) says that

(3.61) p1(z) = m(e1(x)) = 75(91(2))

by (3.51), 50 [31(2) — F1(9)] = Im5(01(2)) — 3 (g1())] < Cla — yl by (3.54) and the fact
that g, and 7; are Lipschitz.

We claim that if ¢ > 0 is chosen small enough (depending on €2), we have that d; (x) <
€2/2 when x € E;y; and y € Z are such that | — y| < ¢ and dist(z, B") < e. Indeed,
otherwise we can find sequences {zx} in E;;; and {yx} in Z, such that |z, — yx| < 27F
and dist(zy, B') < 27% but dy(xp) > £2/2. We can extract a subsequence so that {x;}
converges to a limit x € E; 1 N B’ (recall that we chose B’ closed). Then = € L;, because
all the y, liein Z C L, so ¢1(x) € L; by (1.7). In addition, 1 (z) € B’ by (1.6) (if z € B)
or by (1.5) (if x € B\ B), and so di (z) = 0, which contradicts the fact that dy(zy) > e2/2
because d; is continuous. This proves our claim.

If |z —y| > €, we simply use the fact that |1 (z) — p1(y)| < C < Ce™a —y| (because
1 is Lipschitz on each piece, hence bounded) to get a (very bad) Lipschitz bound. So we
may assume that |z —y| < e and, since we already treated the case when d;(x) < e2/2, our
claim allows us to suppose that dist(x, B’) > e. Then ¢1(z) =z by (1.5), and y € Z\ B’
because |z — y| < e.

Let us compute @1 (y). First observe that o (y) = y for 0 <t < 1, becausey € Z\ B’ C
E; \ B’ and by the definition of ¢, below (3.35) (just before we use the Titze extension
theorem). Also, ¢(y,t) =y for 0 <t < 1, by (3.43), and hence g1(y) = ¢'(y,¥(y)) = v,
by (3.48) and (3.46). And also ¢1(y) = 7;(91(y)) = m;(y) by (3.54). In addition, observe
that

(3.62) mi(y) =y forye Z

because Z C L; by (3.33), and then by (3.26) and (3.6). So here ¢1(y) = 7;(y) = y and
now

1@1(z) — 21(y)| = |€(d1(2)) w5 (01 () + (1 — E(di(x))) p1(x) —
(3.63) <|mj(p1(x)) =yl + lp1(x) =yl = |7j(2) =yl + |z — |
= |mj(x) = (Y)| + |z —y| < Clo -y
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by (3.58), because ¢1(x) = = by (1.5), and by (3.62). So ¢; is Lipschitz, which takes care
of (1.8). Next we check that

(3.64) Po(x) =z for xz € Ej.

Notice that ¢o(z) = x by the definition below (3.35), ¢(z,0) = x by (3.43), and go(z) = =
by (3.46) and (3.48). If z € Z, m;(x) = = by (3.62), and (3.54) yields go(x) = 7;(go(x)) =
x. If v € Ejiq, t&(di(x)) = 0 because t = 0, so (3.58) says that ¢o(z) = po(x) = z; hence
(3.64) holds.

For (1.5), we’ll need to know that

(3.65) or(x) =2 forxe Z\ B and t € [0,1],

and indeed, g;(z) = z by (3.50) and ¢¢(x) = 7;(g:(x)) = = by (3.54) and (3.62). Similarly,
let us check that

(3.66) oi(x) =z for z € Ej4q \ B” and t € [0, 1],
where
(3.67) B" = {z e R"; dist(z, B') < &3}

is just a tiny bit larger than B’ and B. This time ¢(x) = = by (1.5), hence di(x) >
dist(x, B') > €2 by (3.57), { odi(z) = 0 by (3.56), and hence ¢r(x) = p¢(x) = = by (3.58).
Since E; = Z U Ej41, we get that (1.5) holds for B” (or any larger ball).

Next we check (1.6), but with an even larger ball B. Let w € R™ denote the center of
B, and let r» and 7’ denote the respective radii of B and B’. Set

(3.68) F=1'+4Ce, and B = B(w,7)

where C' is a bound for the Lipschitz constant for 7; and € is as in (3.44) and (3.55) (in
fact, any small number chosen in advance), and let us check that

(3.69) ¢i(z) € B forz € E;N Band t € [0,1].

First suppose that z € Z. If z € Z\ B’, (3.65) says that ¢;(z) = x € B, and we are done.
Otherwise, g:(z) € B’ (see below (3.49)), and

(3.70) |P1(2) = ge(2)] = |m;(9:(2)) — g:()| < 2C dist(ge(2), L) < 4Ce,

by (3.54), because 7;(2) = z on L; and =; is C-Lipschitz, and by (3.55). Then ¢;(x) € B,
as needed.
So we may assume that z € E;;. If x € E;1; \ B”, (3.66) says that ¢(z) = = €

B" C B. If instead = € E;y1 N B”, first notice that ¢.(z) € B” (by (1.6) or (1.5)). If
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in addition di(z) > €9, then £ o d(z) = 0 by (3.56) and @¢(x) = @i(z) € B” by (3.58).
Otherwise

B.71)  [@e(x) — wu(@)] < |mjlpe(x) — @i(2)] < 2C dist(pi(x), L) < 2Cdy(x) < 2Ces

by (3.58), again because 7;(z) = z on Lj, and by (3.57). If €5 is small enough, depending

on £, we get that @;(z) € B because ¢.(z) € B”. So (3.69) and (1.6) hold.
We finally check (1.7). So we pick 0 < i < j4. and want to show that

(372) gEt(x) € L; forxe Ej N L;.

We start with the case when « € Ejy;. Notice that ¢.(z) € L;, by (1.7) and because
x € Ej;1 N L;. Let F be a face of L; that contains ¢;(x); then m;(pi(x)) € F because
Lemma 3.4 says that m; respects the faces of all dimensions. Now (3.58) says that ¢;(x)
is a convex combination of ¢;(z) and 7;(¢¢(z)), hence ¢(z) € F' C L;, as needed.

Now suppose that z € Z N L;. By (3.33),

(3.73) vel;\ |J L
k>j+1

so we have that 7 < j. In addition, if L; N L; were a proper subset of L;, our completeness
assumption (2.15) would say that it is one of the Ly, and since we enumerated our bound-
aries in nonincreasing order (see above (3.28)), we would get that k > j+1, a contradiction
with (3.73) since z € Ly. So L; N L; = Lj, i.e., Ly C L; and it is enough to check that
oi(z) € Lj. But (3.54) says that ¢;(x) = m;(g+(x)), which lies in L; by definition of =;.
This completes our verification of (1.7).

We already checked (1.4), (1.5), (1.6), and (1.8) before, so this completes the verifica-
tion that F' = ¢, (F;) is a sliding competitor for E; in B. Recall that we may take 1 and
r" —r, and hence also 7 — r in (3.68), as small as we want. Now we apply our induction
assumption (3.31) and Definition 2.3 to get that

(3.74) HUW) < MHY(G1(W)) + 7h,
where
(3.75) W={zekE;gi(z) #x}.

We are interested in H¢(W), where

(3.76) W ={z€Eji1; () # x},

because we want an analogue of (3.74) for ¢, and we’ll cut W into pieces. Write E; 11 =
Ag U A, where

(377) A() = A()(Eg) = {1‘ € Ej+1 ;0 < dl(QZ) < 52}
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and A= E;; \ Ap. Observe that

(3.78) lim HY(Ag(2)) =0

eo—0

because Ag(e2) C Ej41 N B for ey small, H4(E;,, N B) < +00, and because the monotone
limit of the sets Ag(e2) (when ey tends to 0) is the empty set. So, given B’ and a small
ez > 0, we know that

(3.79) HY(Ag(e2)) < e3

for e small enough. Next let us check that

(3.80) o1(x) = p1(x) for xz € A.

Write A = A; U Ay, with

(3.81) ={z € Ej41;di(x) =0} and Ay ={z € Ej11; di(2) > e2}.

When x € Ay, {odi(z) = 1 by (3.56), so ¢1(x) = mj(e1(z)) by (3.58). In addition,
p1(z) € Lj, because di(z) = 0 and by (3.57), and 7;(¢1(x)) = ¢1(x) by (3.26) and (3.6),
as needed for (3.80). When z € Ay, {(x) = 0 and (3.58) directly ylelds that @1(x) = ¢1(x).
So (3.80) holds.

If z € WNA, then ¢1(x) = p1(x) # = by (3.80) and (3.76); hence W N A C W and

HEIW) < HUAo) + HIW N A) < es +HUW N A)

(3:82) < oy b M) < 25 + MHAG () + 7h

because W C Ej;1 and Ej;1 = Ag U A by definition, by (3.79), and by (3.74).
Next we estimate H?(@1(W)). Notice that E; = ZUFE;j11 = ZU AgU A by (3.33), so

(3.83) W cZU(Wn[A U A)
since W C E;. First,
(3.84) H(p1(2)) =0

because ¢1 is Lipschitz and Z C E'\ E* is negligible (see (3.33), (3.28), and (3.29)). Next,
v1(x) = p1(x) on A (by (3.80)), so WNA=WnA and gpl(W NA)=p(WnNA), hence

HUGL(W)) = HUGL(W N [Ag U A]) < HUG1(W N Ag)) + H(p1(W N A))

3.85
(3:55) < HY(B1(Ag)) + H (pr1(W)).

by (3.83) and (3.84). We have no nice formula for ¢; on Ag, but let us check that
(3.86) @1 is C-Lipschitz on Ay,
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with a constant C' that may be enormous and depend on various Lipschitz constants (in
particular for ¢; and 7;), but does not depend on 5. Recall that on Ay, ¢; is given by
(3.58), i.e

- 51(2) = €0 di (@) mi (i1 (2) + (1~ €0 (2)) 1 (0
' ) —

= p1(z) + § o di(z)[m;(p1(z)) — p1(z)],

where £ and d; are still given by (3.56) and (3.57), and only the variations of € o d; (z) will
be dangerous here (because they could involve some e; D). Write, for z,y € Ay,

[P1(x) = L1(y)] < lpa(z) —pr(y)| + 1€ 0 di(z) = § o di(y)[mj(p1(2)) — @r(a)]
(3.88) +&odi(y)|mi(pr(x)) — 1(z) — mi(1(y) + @1 ()]
< Clz—yl+[§odi(x) — o di(y)llm;(p1(x)) — pr(z)|

because all the other functions are Lipschitz with estimates that do not depend on 5. By
(3.56), (3.57), and because ¢, is C-Lipschitz,

(3.89) € o di(x) — € odi(y)| < 2e5 ' |di(x) — di(y)| < Ceytla —yl,
while
(3.90) 75 (1(2)) — 1) < Cdist(1(2), Ly) < Cdy () < Ce

because m;(z) = z on Lj, by (3.57), and because x € Aj (see the definition (3.77)).
Altogether, |¢1(z) — ¢1(y)] < Clx — y| by (3.88), (3.89), and (3.90); this proves (3.86).
Now

(3.91) HYP1(Ag)) < CHY(Ap) < Ces
by (3.79), and

HAW) < e+ MHY(G1(W)) +7h
(3.92) < g+ MHY(P1(Ag)) + MH (o1 (W) + 7
< MHY oy (W) +7h + (1 + MC)es

by (3.82), (3.85), and (3.91). Recall that 7 can be chosen as close to r as we want, and
that €3 can be chosen arbitrarily small. So we get that HI(W) < MH (o1 (W)) + rh.
That is, (2.5) holds. This completes our proof of (3.32) given (3.31), and at the same time
our proof of Proposition 3.27 by induction (recall that E; . 41 = E*, see below (3.30)).
0J

Proof of Proposition 3.3. We now assume that the Lipschitz assumption is satisfied
on the open set U, and want to check that E* € GSAQ(U,M,d,h) as soon as E €
GSAQ(U,M,é,h). We cannot use Proposition 2.8 directly, because it would give us bad
constants, but we can change variables and apply the proof above. That is, let A > 0 and
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¢ : AU — B(0,1) be as in Definition 2.7, and then define ¢ by ¢(z) = 1(Az) and set
F = (E). This is a quasiminimal set in B(0, 1) (by Proposition 2.8), but we don’t care so
much, and the closed support of the restriction of H? to F is F* = {E(E*) We construct
a nonincreasing sequence of sets Fj, 0 < j < jpqee + 1, as we did near (3.30), and we set
E; = J‘l(Fj). Thus Fp = F and Ej,,, +1 = E*, and we want to show by induction that
E; e GSAQ(U,M,6,h).

This is the case for j = 0, and for the induction step, we give ourselves a shdlng
competitor ¢1(E;41) for E; in some ball B. We consider the mappings f; = zp opopt
on Fj, 1, which define a sliding competitor for Fj; in H = ¢(B). Of course H is not a
ball, but we don’t really care, we still can use the proof of Proposition 3.27 to construct
mappings ft, that define a sliding competltor for F; in a set H' which is just a tiny bit

little larger than H. Then the ¢; = w Lo ft o w define a sliding competitor for Ej;, in

the set @Z‘l(H’) which is a tiny bit larger than B. We apply the definition (2.5) to this
competitor and get that

(3.93) HUW) < MHYG (W) + 7,

where 7 is the radius of a ball that contains ¥ ~*(H’) (and can be taken as close to r as we
want), and

(3.94) W ={zeE;; gz ac}

Then we estimate H%(W), where W = {z € Ej;1; ¢1(z) # x} as we did after (3.76); the
error terms, like the ones in (3.79), (3.84), and (3.91) become C' times larger because we

compose with ¥ and ¥~!, but the argument goes through. U

Remark 3.95. Here we defined the rigid assumption, and then the Lipschitz assumption,
in terms of dyadic cubes, but we could have obtained similar results if we used a net of
convex polyhedra instead, with a rotundity assumption where we ask all the angles in the
faces of all dimensions to be bounded from below. The only place where the argument
needs to be modified is in the proof of Lemma 3.4. See Remark 2.12 and the comments
after (3.8) and (3.13).

Remark 3.96. In Propositions 3.3 and 3.27, we can get a slightly stronger conclusion
under the same assumption, namely that all the closed sets F' such that E* C F' C FE lie
in the same GSAQ(U, M, 5, h) as E. That is, we never use the fact that E* is the closed
support of ’H|E, but just the fact that E* C E and HY(E \ E*) = 0.

This could be useful if we tried to extend Proposition 3.27 to a situation where we
only assume that U is covered by a finite collection of domains where we have the Lipschitz
assumption, and try to go from F to E* in a finite number of steps. We would need to
check what happens to a sliding competitor in a ball that is not entirely contained in one
domain, though. We shall not pursue this here, as Proposition 3.27 shall be enough for
our purposes.

The conclusion of this section is that we shall feel free to restrict our attention to coral
quasiminimal sets, with no apparent loss of generality. We could probably have managed,
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in the rest of this paper, not to assume that F is coral, and then prove regularity results on
E*, and we may even do this in some cases (so as not to rely on the proof of Propositions
3.3 and 3.27), but we shall find it more comfortable to know that we can work work directly
with coral sets. Recall that we do not say that every quasiminimal set is a competitor for
its core E*, or the other way around (both things are wrong in general), but just that they
have the same minimizing properties.

PART II : AHLFORS REGULARITY AND RECTIFIABILITY

In this part we prove basic regularity properties for the (core of) sliding quasiminimal
sets. The main ones are their local Ahlfors regularity (Proposition 4.1), which is of constant
use, and rectifiability (Theorem 5.16), which will be important for the theorems of Part
IV on limits.

Most of the results of this part and the next one (where we prove the local uniform
rectifiability in some cases), and their proofs, are generalizations of results of [DS4], except
for rectifiability which was proved in [A2] and ignored in [DS4] (because we thought uniform
rectifiability was better), but for which the proof of [DS4] works as well.

We cannot repeat all the arguments from [DS4] (this would be too long), but fortu-
nately many of the intermediate results there can be used essentially without modification
here, and there are only a few places where we need to be careful, because a competitor
for our quasiminimal set is used. We will try to give an idea, but all the details, of the
arguments that work with only minor modifications, and be as precise as possible on the
differences, i.e., places where a competitor is defined. Hopefully this will make the reading
of this text not too unpleasant, probably at the price of often believing the author when
he says that some old estimates estimates still apply.

4. Local Ahlfors regularity of quasiminimal sets.

We start now our long study of regularity properties of sliding quasiminimal sets with
the very convenient local Ahlfors regularity of the core E*. We start with the rigid case.

Proposition 4.1. For each choice of M > 1, we can find h > 0 and Cy; > 1, de-
pending on M and the dimensions n and d, so that the following holds. Suppose that
E € GSAQ(By, M, 6,h), where we set By = B(0,1), and that the rigid assumption is sat-
isfied. Let 1o = 27" € (0, 1] denote the side length of the dyadic cubes used to define the
rigid assumption. Then if x € E*N By and 0 < r < Min(rg, §) are such that B(x,2r) C By,
we have that

(4.2) Cyfrt <HYEN B(x,r)) < Cyr.

Recall that E*, the core of F, is as in (3.2). We could also have assumed that F is
coral, and then obtained that (4.2) holds for x € EN By (instead of E* N By). Also observe
that we can replace E with E* in (4.2), since E* C E and H*(E \ E*) = 0.

By Proposition 2.8 and the bilipschitz invariance of local Ahlfors regularity, this result
implies the corresponding one when the bilipschitz assumption holds. See Proposition 4.74.
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We want to say that the standard proof given in [DS4] goes through in the present
setting. We cannot repeat it entirely (this will make this paper too huge and boring), so
we shall only recall how the proof goes, and concentrate on the minor modifications that
we need to make, in particular in the choices of cubes.

There are two main differences, compared to the initial situation in [DS4]. First,
the accounting in the definition of general quasiminimal sets is slightly different (and
makes the notion of quasiminimal sets more general) than the one we used in [DS4]. This
aspect of things is not really important, and was already discussed in [D5]. The second
difference, which really concerns us here, is the additional conditions on the competitors
that come from the sliding boundary conditions; we may have to go all the way to the
boundary, and make sure that all the competitors that we use in the proof satisfy the
sliding condition. This will force us to choose more carefully the cubes where we do
Federer-Fleming constructions, and this is why we shall be more prudent in the choice of
integers N below.

We start our reading of [DS4] with the Federer-Fleming construction of Lipschitz
projections that is described in Chapter *3 (we shall use the convention that * calls a
reference in [DS4]). We need the following slight variant of Proposition *3.1. Here and
below, cubes are systematically assumed to be closed, and the k-dimensional skeleton of a
cube R is the union of all the faces of dimension k of R. Thus the 1-dimensional skeleton
of a cube in R3 is a union of 12 line segments.

Lemma 4.3. Let N > 1 be an integer, and let Q C R"™ be a cube of side length N2*
(for some k € 7), which is the almost-disjoint union of N™ dyadic cubes of side length
2%, Denote by R = R(Q) the set of dyadic cubes of side length 2* that are contained in
Q, and by S; the union of the d-dimensional skeletons of the dyadic cubes R € R. Let
E be a compact subset of Q such that H*(E) < 4+oo. Then there is a Lipschitz mapping
¢ : R™ — R™ such that

(4.4) ¢(x) = x for x € R™ \ Q and for x € Sy,
(4.5) o(FE) C S4U0Q,

(4.6) #»(R) C R for RER,

and

(4.7) HYUHENR) < CHYENR) for R e R.

Here C depends on n and d, but not on N or F.

The only difference with Proposition *3.1 in [DS4] is that @ is not required itself to
be a dyadic cube (and so N is not required to be a power of 2); however, this fact that @
is dyadic (or rather that N is a power of 2) is never used in [DS4], and the proof can be
carried out exactly as before. O
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Another consequence of the proof, which works by successive “radial” projections onto
faces, is that in addition to (4.6),

(4.8) ¢(F) C F when F is a face (of any dimension) of a cube R € R.

This will be used to prove the stability conditions (1.7).

We now turn to Chapter 4 in [DS4], and prove Proposition 4.1. We start with the
easier upper bound. We want to find Cy > 1 (depending also on M) such that

(4.9) HY(EN Qo) < Cold
when @)g is a cube of side length

(4.10) lo <Min(27™, %)
which is dyadic (in the same grid that was used in the description of the L; for the rigid
assumption), and such that 2Qy C By.

Indeed, if we can prove (4.9) for such cubes, and if z € By (we do not need x € E*
for the lower bound) and 0 < r < Min(rg,d) are such that B(x,2r) C By, we can easily
cover B(x,r) with less than C' cubes @ as above, with side lengths less than r, and then
the upper bound in (4.2) follows from (4.9).

So we give ourselves a cube Qg as above, assume that (4.9) fails, and we shall derive a
contradiction if Cy in (4.9) is large enough (depending on n, d and M ). Here we shall only
need to assume that h < 1. We want to construct by induction an increasing sequence of
cubes Qk, k > 1, with the same center as )y, and whose side lengths ;. are such that

(411) lo <l <2y for k> 1.

At the same time, we shall define large integers Ni, k > 1, and for each k£ > 1 cut Qg
into NZ cubes of the same side length N, 11.; we shall call R(Qy) the collection of these
smaller cubes, in accordance with the notation of Lemma 4.3. When we do this, we want
to make sure that for k > 1,

every cube R € R(Qy) is a dyadic (sub)cube of the grid

4.12
( ) that was used to define the L; in the rigid assumption.

The fact that these cubes are of a smaller size than the L; follows from (4.11) and the fact
that [p < 27™, because N > 2, but we typically want any face of R that intersects the
interior of a face of some L; to be entirely contained in that L;. We require this because
we want to apply Lemma 4.3 to Q) to find a competitor for F in Q)y; for similar reasons,
we want Qx—1 to be obtained from Q) by removing from R(Q}) the two exterior layers of
cubes, and then taking the union. In other words, we want to have Qr_1 = N]’§,Z4 Qy, or

equivalently (since the cubes have the same center)

4
(4.13) 1= (1 - M) Ik
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for £ > 1. In fact denote by A(Q%) the union of the cubes R € R(Q) that lie on the
exterior layer (or equivalently that meet 0Qy); we wanted to make sure that

(4.14) Qr-1 C Qr \ A(Qk),

and (4.13) ensures this (we need to remove a extra layer because Qx—1 and A(Qy) are both
closed).

Next let us assume for the moment that we can choose N so that (4.11) and (4.12)
hold, and let us use this to control

(4.15) my = HYE N Q)

in terms of my_1. First apply Lemma 4.3 to @i, the integer N, and the decomposition
coming from R(Q). This gives a Lipschitz mapping ¢ : R™ — R™, which we use to define
a family {y:} as in Definition 1.3, simply by setting

(4.16) or(x) =top(z) + (1 —t)x forx € R" and 0 <t < 1.

The properties (1.4), (1.5), (1.6), and (1.8) are easily checked, relative to any closed ball
that contains @), for instance the ball B with the same center zg as Qr and gy, and with
radius

NA
2

(4.17) r= <nlp <9

by (4.11) and (4.10). We also need to check (1.7). Let € L; be given, and let F' be
a face of L; that contains z. Let F' C F be a dyadic subface of the same dimension as
F, but of side length N, 11k that contains . We know that such a face exists, because
N, 'k < 27™ (see the line below (4.12)) and the ratio is a power of 2. Since the cubes of
R(Qk) are dyadic in the same grid as F (see (4.12)), we get that F” is a face of the grid
defined by the cubes of R(Q). Now either x ¢ i, and then ¢, (x) = ¢(x) = = by (4.4), or
else (4.8) says that ¢(z), and hence also (by (4.16) and the convexity of F’) ¢(z), lies on
F' C F C L;. This proves (1.7); hence ¢(E) is a sliding competitor for E in B = B(zq, ),
with r as in (4.17).

Let us apply Definition 2.3. We get (2.5), with ¢; = ¢. That is,

(4.18) HAUW) < MHU (W) + hrd < MHH(p(W1)) + nd/21d

where W1 = {y € E;¢(y) # y}, if h <1, and by (4.17). Observe that Wi C @, because
¢(x) = x out of Qi by (4.4). In addition, (4.5) and (4.6) imply that

(4.19) d(x) €Sy forx € ENQi \ A(Qr),
(4.20) HAUS(W1 \ A(Qr))) < HU(Sa) < CNP1g.
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For EN A(Qk), we decompose A(Qy) into cubes of R = R(Q%) and use (4.7) to say that

HAGWiNnA@K) < >, HUNENR))

RER;RCA(Qy)

<C > HYENR)<2"CHYENAQw))
ReR;RCA(Qr)

(4.21)

because a given point of E'N A(Qy) lies in at most 2™ cubes R. So

(4.22)  HAWy) < MHYG(WL)) + n21d < CMHYE N A(Qr)) + C(M + 1)N—d

by (4.18), (4.20), and (4.21) (and with a constant C' that does not depend on M). Finally
ENQr\ A(Qr) C SqgUWj because if x € ENQy \ A(Qr) lies out of Sy, then (4.19) says
that x € W7. Then

(4.23) HUENQr\A(Qr)) < HYU(Sa) +HL W) < OCMHYENA(Qy))+C(M+1)N .
We add H4(E N A(Q4)) to both sides, recall that M > 1, and get that

mi, = HYEN QL) < OMHNE N A(Qy)) + C'M Ny~ 41d
(4.24) < CMHYENQk\ Qr-1) + C'MN; g
= COM[my, — mg_1] + C'"M N}~

by (4.15), (4.14), and (4.15) again. That is,
(4.25) [CM —1]my, > CMmy_y — C'M N4
or equivalently (dividing by C'M)

¢ n—djd
(4.26) mk<1 - —> > my_1 — — N4,

We shall choose N, so that

/
(4.27) 6N,:‘—Ulzd <

so that (4.26) implies that

(4.28) my 2> (1 - CLM>_1<1 - 10CM

1
> me (1 )
)m’“ L= Tk 1( METeIYi

and, by induction,

>km0 > Oozg(1+ ! )k

(4.29) my > (1 + eI

10CM
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by (4.15) and because (4.9) is assumed to fail.

Now we want to check that we can choose Cy (large enough) and the Ny (by induction),
so that (4.11), (4.12), and (4.27) hold. The desired contradiction will follow, because the
fact that ms = HUE N Q) < HUE N2Qo) < +oo (by (4.15), (4.11), and the finite
measure condition in Definition 2.3) contradicts (4.29) for k large.

In fact, we shall choose the Ng, £ > 1, so that the following constraints hold. Set

_ lo_dmk
(4.30) Ak = 100°M

for k>0, with C” as in (4.27). Thus (4.27) just demands that N7\ < A, for k > 0, but
we shall pick the N so that

A
(4.31) goma < Vi < for k20,
and also such that for k > 0,
Nyt — 4
(4.32) Ni4+1 > N +4 and “kL 7 s a power of 2,
k

where we set Ny = 1 for k£ = 0.

First we want to check that (4.12) for k + 1 follows from this and (if £ > 1) (4.12) for
k. We do not need to check (4.12) for k = 0, but recall that Qo was assumed to be dyadic
in the usual grid (the one that was used to define the L; in the rigid assumption). When
k > 1, denote by s; the common side length of the cubes of R(Qy); thus s, = N,;llk.
Also set sg = Iy (the side length of Q). Then, for k > 0,

lkt1 _(1_ 4 )71 Ik _ Ik _ Ni, s
Niy1 Nis1? Nig1 N1 —4 Niypr—4

(433) Sk4+1 =

by (4.13). We know (by definition of )y or by induction assumption) that s is a dyadic
number and s < 27 (the size of the dyadic cubes that we used to define the L;), and
now (4.32) says that sx11 < si and is a dyadic number too. So the cubes of R(Q+1) have
the right size; we also need to know that they are dyadic (instead of merely translations
of dyadic cubes), and for this we use the fact that, as was observed above (4.13), Qy is
obtained, from the decomposition of ;41 into cubes of side length siy1, by removing
the two exterior layers of cubes. By induction assumption, the cubes of side length s
that compose @y, are dyadic, hence this is also true for the cubes of side length si1; that
compose Q+1. This proves (4.12) (if we have (4.32)).

Now let k£ > 0 be given, assume that the N;, 1 <[ < k, were chosen so that (4.11),
(4.12), (4.31), and (4.32), hold for 1 < [ < k (no condition if £ = 0), and let us choose
Ni1. We first check that

(4.34) e > (N 4+ 4)" 2
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Observe that (4.29) holds (because if k > 1, (4.27) follows from (4.31) for k — 1), so

l_dmk Co 1 k
4. =0 > 1 )
(4.35) M= 1007M = 1007 M ( + 1OC’M>

By taking Cj large enough, we can thus make sure that A, > 300", for instance, hence
(by (4.31) for £ — 1) Nj > 100 if £ > 1. Note that (4.34) follows trivially from (4.35) (or
directly from (4.30) and the failure of (4.9)) when k = 0. Otherwise, the definition (4.30)
and (4.28) say that

(4.36) Ay = —k

1 1
> (1 ) _ >(1 —)N”‘d
L ( +Tocar) M 2 U Toear) Ve

by (4.31), and (4.34) will follow as soon as we check that 1 + t5t77 = (N]@#)n_d =

(1+ )", or equivalently 1 < (14 )" — L. But (4.31) for k — 1 and (4.35)
say that

Co >—1/(n—d)(1 1 >—(k—1)/(n—d)

ANT! < 12a7 M=) o 12(
(4.37) e = Nl N TITs 0, 100
| < 12( Co )_1/(n_d) (14 L yYed
= “\Toom 100M

if Cy is large enough (depending on M, n, and d), so (4.34) holds.
Because of (4.34), picking Ni4+1 = Nj+4 would already yield the second half of (4.31).
We take for Ny, the largest integer N such that N > Nj + 4, NN—;4 is a power of 2, and

Nm=4 < )\ (the second half of (4.31)). We know from (4.34) that Ny,; > N + 4, and
so (4.32) holds. The second half of (4.31) holds by definition. By maximality of Ny1,

N = 2Ny —4 does not work. Since NN;‘L = 2N’“JJ\}L_4 is also a power of 2, this means that

(2Np 41 — 4)"~% > Xy, which implies that N,?J:ld > :,);\—Ed because Nii1 > Ny is large, and
as needed for (4.31).

We now check that (4.11) holds for k + 1 with our choice of Nji41. By repeated uses
of (4.13),

4\ -1
(4.38) [ =1 1— —
k+1 = o 19’1;[k+1 ( Nj>

so it is enough to show that ), j<k+1 NL < 1072, say, which follows from the first line of
=>J> J

(4.37) and its analogue for j < k, provided that Cy is chosen large enough. This completes
the verification and the definition of the Ni; the expected contradiction follows, and shows
that (4.9) holds. The upper bound in (4.2) follows, as explained below (4.9).

Next we want to establish the lower bound in Proposition 4.1. The main step will be
the following.
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Lemma 4.39. Let a < 1 be given. There are constants €, and C,, that depend on n, a,
and M, but not on h or é, with the following property. Let E be as in Proposition 4.1,
and let () be a cube such that 2Q C By, whose side length [(Q) is such that

(4.40) (Q) < min(2,27m),

n

and for which

(4.41) HUENQ) < el(Q)°.
Then
(4.42) HYEN ﬁ@) < aHYENQ)+ Chl(Q)".

Lemma 4.39 will be proved soon, but let us first check that it yields the lower bound
in Proposition 4.1. Let x € E* N By and r be as in the proposition. We know from general
geometric measure theory that there is a constant ¢ > 0 (depending at most on n) such
that

(4.43) limsup p~“HUE N B(2',p)) > ¢

p—0

for He-almost every point 2’ € E. See for instance [Ma], Theorem 6.2 on page 89. Since
r € E*, (3.2) says that HY(E N B(z,t)) > 0 for all t > 0, so we can choose 2’ € E, very
close to x, such that (4.43) holds.

We choose a = 200~%, and Lemma 4.39 yields constants ¢, and C,. We can safely
assume that ¢, < 400~%c. Next we choose h so small that C,h < 200~ %, in (4.42). The
point is that if () satisfies the assumptions of Lemma 4.39, then

1
(4.44) HYE N WQ) <2007 HYE N Q) + 200 %,1(Q)? < 100~ %,1(Q)?
by (4.42), so ﬁ@ also satisfies the assumptions of Lemma 4.39, and recursively
4.4 YE < 100 %, 1(Q)?
(1.45) HI(E N Q) < 1007,1(Q)

for & > 0, by (repeated uses of) (4.44). If @ is centered at ', this implies that for
1007+71(Q) < 2p < 1007F1(Q),

1
(4.46)  HYENB(',p)) <HUEN WQ) < 10077, 1(Q)? < 200%,p < ¢p?/2,

which is incompatible with (4.43).
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Now we may try this with the largest cube (Q centered at z’, and such that 2QQ C
B(x,r) and (4.40) holds. Notice that [(Q) is then comparable to r, (because r < Min(rg, d) =
Min(27",0)) and since (4.41) fails by the discussion above, we get that

(4.47) HYENB(z,r) > HUENQ) > e,l(Q)4 > C~1r,

as needed for (the lower bound in) (4.2). Since we already established the upper bound,
Proposition 4.1 will follow from Lemma 4.39.

We now prove the lemma. We are given a cube ), and we first reduce to dyadic cubes
of the usual grid (the one that was used to define the L;). Let [y denote the largest dyadic
number such that Iy < 1(Q)/2. Then lp < 27™ by (4.40). Denote by Qj, any dyadic cube
of side length [ in the usual grid, and then let Qg be a translation of @, by an element of
2731yZ". We choose Qg such that, if zo and zg denote the centers of Qo and @Q, the size
of every coordinate of ¢ — z¢ is at most 274]y. Then

1
100
Thus it will be enough to show that

(4.48) QC %Qo C Qo CQ.

1
(4.49) HYE N 5Q0) < aHYE N Q) + C,hll,

because (4.42) will follow at once.
We shall now proceed a little bit as for the upper bound, and define by induction a
decreasing sequence of concentric cubes Qi, k > 0, such that

(4.50) my, = HYE N Qy)

is rapidly decreasing. That is, up until we stop the process, which will in fact happen after
a finite number of steps. We take

(4.51) Q1= (1— i)Qk

Ny,
for £ > 0, where N is a large number that will be chosen later. The main point is that
for £ > 0, Qk41 is obtained from @ by the following manipulation. First we cut Q) into
N} equal cubes R, R € R(Qy), as we did for Lemma 4.3 (with N = N},). Then we remove

the three exterior layers, and (J;1 is the closure of what remains. We want to make sure
that (as in (4.12)),

(4.52) every cube R € R(Qy) is a dyadic cube of the usual grid,

and because of this we require (a little as in (4.32)) that Ny be a (large) power of 2 and,
for k > 0,

N,
(4.53) Niy1 > N —6>1 and N k+16 is a power of 2.
Y —
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As it turns out, we will only need to define a finite sequence of numbers Ny (after which
we shall stop), and we shall even manage to take Ni,1 = Ny — 6 for £ > 0, but let us
pretend we need more generality and deal with (4.53) for the moment. Let us first check
that (4.52) follows if we apply the rule (4.53). Denote by s; the common side length of
the cubes of R(Qy). Thus s, = Nk_llk. First, sg = No_llo is a dyadic number, because Ny
is large dyadic and [y is dyadic. For k£ > 0,

~ B 6 N —6
(4.54) Sk+1 = Nk+11lk+1 - Nk:+11(1 - Fkﬂk - Nii1 ok

by (4.51) and because s, = N,;llk. Thus sg41 is dyadic if s is dyadic, and sx11 < sg by
the first part of (4.53). The verification of (4.52), i.e., the fact that the cubes also match
the dyadic grid (instead of just having the right size) is now easy, and goes as for (4.12)
near (4.33).

We apply Lemma 4.3 to Q. (decomposed as the union of the cubes R € R(Qx)), and
get a Lipschitz mapping ¢ : R™ — R™ which preserves the faces as in (4.8). This time, we
do not use the function ¢ directly to produce a competitor, but instead try to project once
more on (d — 1)-faces when this is possible. Suppose that

(4.55) my, < Ny ¢,

where ¢ > 0 will be chosen soon. Notice that HY(¢(E N R)) < CHYE N R) < Cmy, for
R € R(Qx), by (4.7). Hence

(4.56) HYRNG(E)) < 2"Cmy, for R € R(Qx)

because if y = ¢(z) lies on RN ¢(FE), then (4.4) says that © € Qk, and then, by (4.6), =
lies in R or one of its neighbors of R(Qy). We take ¢ smaller than 10~"C~!, and this way
(4.56) says that ¢(FE) never gets close to filling the central part of a d-dimensional face of
a cube R € R(Qy). In this case, the proof of Lemma 4.3 (where we just do an additional
Federer-Fleming projection on the interior cubes) says that we can obtain a new mapping
¢ such that, in addition to the properties above, ¢(E) N [Qr \ A(Qk)] is contained in a
(d — 1)-skeleton, where A(Qy) still denotes the union of the cubes R € R(Qy) that lie in
the exterior layer. Compare with (4.5), and see the discussion in [DS4], below (%4.22).
Thus

(4.57) HU(S(E) N [Qr \ A(Qr)]) = 0.

We may now use this ¢ to define a family {y;} of mappings, by the same formula (4.16) as
before. The properties (1.4)-(1.8) are verified as before (below (4.16)), using in particular
(4.8), (4.40), and the fact that the cubes R € R(Qy) lie in the usual dyadic grid. So ¢(E)
is a sliding competitor for E in some ball of radius r = lyy/n/2. We can apply (2.5), and
we get that

(4.58) HEWY) < MHY(S(W)) + hrd
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as in the first part of (4.18), and with Wi = {z € E;¢(z) # z}. Since ¢(z) = z out of Qy,
by (4.4), we get that W71 C Qy, and since ¢(Qx) C Qr by (4.6), ¢(W1) C Qy too. Hence

(4.59) HAUS(W7)) = HHQr N (W) = HA(A(Qr) N (W)

by (4.57). Denote by A;(Q) the union of the two exterior layers of cubes R € R(Qx)-
Then

(4.60) A(Qy) No(Wy) C U d(RN W)

ReER(Qr); RCA1(Qr)

by (4.4) and (4.6), hence

H (W) = HU(A(Qr) N ¢(W1)) < > HY (RN Wh))
(4.61) RER(Qr); RCA1(Qr)
<C > HURNE) < CHYAL(Qx) NE)

RER(Qk); RCA1(Qk)

by (4.59) and (4.7). Note that Qx+1 C Qk \ A1(Qr) by construction; also, H?-almost
every point x € EN Qg \ A1(Qy) lies in Wy, by (4.57) (just notice that if x ¢ Wy, then

z = @(z) € (E) N[Qr \ A(Qx)]); hence

(4.62) HUENQpy1) < HUWY) < MHY(p(W1)) + hr? < CMHY(A1(Qr) N E) + hr?
by (4.58) and (4.61). Next,

(4.63) HY(A1(Qk) NE) < HUEN Qi \ Qryr) = my — Mgy

by (4.50), so (4.62) says that

(4.64) mir1 < CM(my — mg41) + hre,
hence

CM hr
4.65 < _—
(4.65) M S T e ™ T T o

Now we want choose the N and check the various constraints. We shall first choose
Ny dyadic and very large, depending on a and M. We also set N = Ny/16 and

(4.66) N, = Ny —6k for1 <k <N.

This is probably far from optimal, but it will work. Observe that (4.53) is then satisfied,
and in fact all the sets R(Qx) that we construct will be composed of dyadic cubes of the
same side. Our last cube is

(4.67) QNt1 = HJ_V[ (1- A%)}Qo

j=0
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by (4.51). Since N% < NLN < ]1\[—?) by definition of N,

al 6 10 1
4.68 1 1—-—)>(N+1)1 1——)>—-——
e ;oog( w,) = (N Dles(l =) = 1

if Ny is large enough, and hence (because e~ /19 > 1/2) Qn,41 contains %QO. Thus

1
(4.69) HYEN 5Q0) Smap.
Now we check (4.55). Observe that for k > 0,

(470) Nimyly ¢ < Nmol® < 2¢Ngmoly @ < 29 NIHY(E N Q)ly?
< 20NJe 1(Q) ¢ < 8¢, N§

because Nj, < No, my, < mg, Ui, > lo/2 (since Qn1 contains $Q), by (4.48) and (4.50),
by (4.41), and because Iy > 1(Q)/4 by definition of Iy (below (4.47)). If €, is chosen small
enough, depending on M and a through Ny (see near (4.72) below for the choice of Ny),
(4.70) implies (4.55), we can proceed as above, and (4.65) holds for 0 < & < N. That

d
CM_ 1 and 7 = -

1+CM Trenre then myy1 < pmy + 7 for k > 0, hence (by

is, if we set p =
induction)

-
(4.71) mi < pPmo+ 11+ p+p*+..) < pPmg + 1T,0 = p*mg + hr¢

for 0 <k < N+ 1. If Ny (and hence also N = Ny/16) is chosen large enough, depending
on a and M, we get that

1
HYEN §Q0) <myi1 < pVrmg 4+ hr? = pN T HYEN Qo) + hrt
< aH'(ENQo) + Chig

(4.72)

by (4.69) and (4.71), and because lo > 1(Q)/4 > C~'r. So (4.49) holds and (4.42) follows
(see below (4.49)). This completes the proof of Lemma 4.39 and also, as was explained
just after the statement of the lemma, of Proposition 4.1. O O

Remark 4.73. The author sees no obvious major obstruction to extending the proof
above to the case where the rigid assumption is defined in terms of a net of polyhedra with
some uniform size rotundity assumption (instead of dyadic cubes of size 27™). Still, one
would need to construct appropriate subnets, or at least adapt the construction of Federer-
Fleming projections to objects that look like thin neighborhoods of a given polyhedron,
but making sure that we preserve the faces of our initial net. The author does not claim
that this would be pleasant.

Let us now state a local Ahlfors regularity result under the Lipschitz assumption,
which will follow easily from Propositions 4.1 and 2.8.

48



Proposition 4.74. For each choice of A > 1 and M > 1, we can find h > 0 and Cp; > 1,
depending on A, M, and the dimensions n and d, so that the following holds. Suppose
that E € GSAQ(U, M, 6,h), and that the Lipschitz assumption is satisfied on U. Then if
r € E*NU and 0 < r < Min(A"1rg, §) are such that B(x,2r) C U, we have that

(4.75) Cifrt <HYEN B(z,r)) < Cyr?.

As before, ro = 27™ € (0, 1] denotes the side length of the dyadic cubes used to define
the rigid assumption, and A and A > 0 are the constants in the Lipschitz assumption (see
Definition 2.7).

It is enough to prove (4.75) for slightly smaller balls, i.e. when

(4.76) 0<r <A ?Min(A"trg,6) and B(z,2A%r) C U,

because if B(x,r) is as in the original statement, a lower bound for H*(E N B(x, A=%r))
implies a lower bound for H¢(E N B(x,r)), and for the upper bound we may cover B(z,r)
by less than C balls (centered on E* if we want) that satisfy the stronger condition (4.76).

So let B(z,r) satisfy the stronger condition. Set F' = ¥(A\E); by Proposition 2.8,
F € GSAQ(B(0,1), A% M, A=\, A%2h), and Proposition 4.1 applies to that set; we shall
just get a larger constant Cy2ap; in (4.2). Set y = p(Az). Of course, y € F* because
r € F*, and

(4.77) dist(y,dB(0,1)) > A~ dist(z, 0U) > 2AAr,

by (4.76) and the bilipschitz property of ¢. Now (AB(x,r)) C B(y, AAr); let us check
that we may apply Proposition 4.1 to B = B(y, AAr). The fact that B(y,2AAr) C B(0,1)
follows from (4.77), and

(4.78) M7 < AMA™2Min(A"rg, §) < Min(rg, A71A)

by (4.76), so we may apply Proposition 4.1 to B (or a smaller ball centered at y € F*).
We get that

HYE N B(z,7)) < X IAHYPNE N B(z,7)))) < A UAHY(F N0 B(y, AAr))

4.79
( ) < )\_dAdCAsz()\AT)d = AdeAsz rd

by (4.2). This is the desired upper bound. For the lower bound, we observe that ¢(AB(x, 1))
contains B(y, \A~1r), so

Hd(E N B(x,r)) > A*dA*de(zp()\(E N B(xz,r))))

(4.80) > A\TIATIHYF N By, \A~ 7))
S )\_dA_dcgzldM<)\A_1T)d — A_2dCX21dMTd

by the lower bound in (4.2), applied to the smaller ball B(y, AA~1r). This completes the
proof of Proposition 4.74. O
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5. Lipschitz mappings with big images, projections, and rectifiability.

In this section we extend two propositions from [DS4] and prove that quasiminimal
sets are rectifiable.

The first proposition, Proposition 5.1 in [DS4] and here, concerns the existence of
Lipschitz functions defined on a quasiminimal set, with values in R? and with big images.
The second one (Proposition 5.7 below) will concern the quasiminimality of a Lipschitz
graph over a quasiminimal set. Both will be used to prove uniform rectifiability estimates
in the next section. But we shall only be able to do this last under additional assumptions,
so it makes sense to prove the plain rectifiability of quasiminimal sets here, because we
can prove it in full generality (and the proof is much easier too). See Theorem 5.16 below.
In the standard case without boundaries, the rectifiability was known from Almgren [A2],
and the proof below is probably quite similar.

We start the section with the existence of Lipschitz functions with big images.

Proposition 5.1. For each choice of M > 1, we can find h > 0 and Cy; > 1, de-
pending on M and the dimensions n and d, so that the following holds. Suppose that
E € GSAQ(By, M, 6,h), where we set By = B(0,1), and that the rigid assumption is sat-
isfied. Let 1o =27™ € (0, 1) denote the side length of the dyadic cubes used to define the
rigid assumption. Then for x € E* N By and 0 < r < Min(rg, d) such that B(z,2r) C By,
we can find a Cyr-Lipschitz mapping F : E N B(x,r) — R? such that

(5.2) HUF(EN B(x,r))) > Cyftr?

By the bilipschitz invariance provided by Proposition 2.8, this result implies the cor-
responding one when the Lipschitz assumption holds; the argument, which goes as in
Proposition 4.74, is left to the reader. Also, we could immediately reduce to the case when
E is coral, by Proposition 3.27 and because any Lipschitz mapping F : E* N B(z,r) — R4
with a big image could easily be extended to E. But this would not help much anyway.

The proof is a minor variation on what we did for the lower bound in Proposition 4.1.
Let Ny be a large power of 2, to be chosen soon, and let [y denote the largest power of 2
such that Iy < r/2n. Let Q" be a dyadic cube of length [y, and choose a translation Qg of
@’ by an integer multiple of N 1o, so that if zy denotes the center of Q, then the size
of each coordinate of |z — x| is at most N; 'ly. Thus Qo C B(x,r), and (if h is small
enough, depending on M and n)

(5.3) HUEN % Qo) > O~ 14,

by Proposition 4.1 and where C' depends only on M and n. Next choose an integer
N € [Ny/2, Ny| such that

Crd
(54) HYEN Qo Vo) < —H%Em Qo) < 7~
the last inequality follows from (4.2), and such an N exists because we have Ny / 2 choices
of N and no point of E lies in more than six annular regions Qo We can
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apply a variant of Lemma 4.3 to the cube Q) = Nio (o, with its natural decomposition into

N™ subcubes R € R(Q), which are dyadic of side length N; 'ly and lie in the usual grid
(recall that Ny and [y are powers of 2, and that [y < r/2n < ro/2n). This gives a first
mapping ¢ : R™ — R", which preserves the faces of all dimensions as in (4.8).

We need a variant because this time we want to say that, in addition to the properties
already mentioned in Lemma 4.3, ¢ is C-Lipschitz, with a constant C' that depends on M,
n, and d, but not on E or the B(z,r). This can be arranged, because Proposition 4.1 says
that FNQy is semi-regular, which allows us to apply Lemma 3.31 in [DS4]. The proof is the
same as in [DS4], and as before we observe that N does not need to be a power of 2. The
point of the argument comes when we need to choose points in various faces of the skeleton
to perform Federer-Fleming projections centered at these points. The semi-regularity of
E N Qg says that it, and its images by the previous Lipschitz mappings that were already
constructed, is sufficiently far from dense in any face of dimension > d + 1, so that we
can find a new center that is far from it; then the Federer-Fleming projection is Lipschitz,
with good bounds, and we can iterate as long as the faces are at least (d + 1)-dimensional.
Of course our bounds get worse and worse with each iteration (when the codimension is
large), but this is all right.

If (E N Q) contains a full d-dimensional face T' of side length N, 'ly, then we can
take for F an extension of 7 o ¢, where 7 : R — R? is the composition of the orthogonal
projection onto the vector space V parallel to T, and a linear isometry from V to R¢. In
this case, (5.2) holds just because

(5.5) HYUF(ENB(z,r)) > HY (o p(ENQ)) > HYT) = Ny g > C~1rd.

So we may assume that ¢(F N Q) contains no full d-dimensional face of a cube R € R(Q),
and Proposition 5.1 will follow as soon as we derive a contradiction. We then proceed as
we did near (4.56): we compose ¢ with an additional Federer-Fleming projection, which is
obtained by selecting a center cr € T'\ ¢(E N Q) in each d-face T', and projecting on 9T
from there. This gives a new mapping, which we shall still call ¢, and which satisfies the
conclusions of Lemma 4.3, plus the fact that ¢(F) N [Q \ A(Q)] is contained in a (d — 1)-
dimensional skeleton, where A(Q) is again the exterior layer of (). The same computations
as in (4.57)-(4.62) yield the analogue of (4.62). Here NT_Oﬁ Qo = % Q plays the role of

Qr+1 = (1— Nik) Qr (see (4.51)). Thus we get that, if A;(Q) denotes the union of the two
exterior layers of @,

N -6
Ny

HYEN Qo) < HIWY) < CMHYEN AL(Q)) + hrt

5.6
(5:6) CMr?

0

< CMHYE N~ QO + hrd

)+ hrt <

as before (i.e., because points of N NN 6 Qo \ W lie in some (d — 1)-dimensional skeleton,
by qua51m1n1mahty (the analogues of (4 58) and (4.61)), and by simple geometry), and
then by (5.4).

But if Ny is large enough and h is small enough (both depending on M, n, and d),
this contradicts (5.3). Proposition 5.1 follows. O
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It would be nicer if the mapping F' provided by Proposition 5.1 were the orthonormal
projection onto a d-space. The second proposition from [DS4] that we generalize here gives
a trick that sometimes allows us to pretend that this is the case.

Proposition 5.7. Let U C R™ be an open set, E € GSAQ(U, M, 6, h) a quasiminimal
set, and F : U — R™ a Lipschitz function. Then E = {(z,F(x)); x € E} € GSAQ(Unb x
R™, CM,d,Ch) for some constant C' that depends on d and the Lipschitz constant for F,
and where on U x R™, GSAQ is defined with respect to the boundaries Ej =L; xR™.

This is a minor generalization of Proposition 6.1 in [DS4]. Explicit values for C' could
easily be derived from the proof below, but we shall not bother to do so. R

The main point of the proof is the following. We are given a competitor for E in
a ball B and want to construct a competitor for F, to which we apply the definition of
GSAQ(U,M,é,h) to get estimates. More specifically, the competitor is ¢1(FE) for some
one-parameter family of mappings @, : E — R™ ™ with the properties (1.4)-(1.8). We
want to define mappings ¢;, and we take

(5-8) () = mo @y(x, F(x)) forz e E,

where 7 : R — R™ denotes the natural projection onto R".

Let us check that the ¢, satisfy (1.4)-(1.8). First, (1.4) and (1.8) are trivial. For (1.5
and (1.6), we take B = 7(B). If z € E\ B, then (z,F(z)) € E\ B, so Pi(a, F(z)) =
(x, F(z)) and ¢(x) = 7w(z, F(xz)) = = by (5.8); similarly, when t = 0, @;(x, F(x))
(x, F(x)) and p¢(z) = m(z, F(x)) = z; thus (1.5) holds.

Next, if 2 € B, then either (z, F(z)) € E \ B, and then ¢,(z) = 7 o &y(x, F(z)) =
m(z, F(z)) = € B by (5.8) and (1.5), or else (z, F(z)) € EN B and (z, F(z)) €
(1.6), so ¢¢(x) € B, as needed for (1.6). Finally, if z € ENL;NB, then (x, F(x)) € E
so pi(x, F(x)) € Ej by (1.7) or (1.5), and ¢¢(z) = mo@(x, F(x)) € L;, as needed for (1.7).
So ¢(F) is a sliding competitor for E in B.

Now we check that

(5.9) W, C 7(W,) and (W) C 7(Gu(W)))

for 0 < ¢t <1, where W, = {y € ENB;¢(y) # y} is as in (2.1), and W, = {z €
ENB;3(z) # z} is its analogue for @;. If x € W, then 7 o @y(z, F(z)) # =, so
in particular @;(z, F(z)) # (x, F(x)); then (z, F(x)) € W, and z € W(Wt) Moreover,
oi(z) =Top(x, F(x)) € W(Q/D\t(Wt)) So (5.9) holds, and the union of the sets W; U (W3)

is contained in the projection of the union of the Wt Ugot(Wt) If this last union is relatively
compact in U x R™ (as in the assumption (2.4)), then the first union is relatively compact
in U, which allows us to apply Definition 2.3 and get (2.5). That is,

(5.10) HEYW,) < MH (1 (W) + hrt.

Set Hy = {(x, F(z)); € Wy }. This is a subset of W1, because oy (x, F(z)) = p1(z) £ x
for x € W7. And

(5.11)  HYH,) < CHI W) < CMHY (1 (W) + Chrt < CMHY(31(Wh)) + Chr?
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because F' is Lipschitz, by (5.9), and because 7 is 1-Lipschitz. Now consider Hy = Wl \ Hi.
First observe that

(5.12) N (Hz) < CH®(w(Hs))

because Hs is contained in E, which lies on the graph of the Lipschitz function F. In
addition,

(5.13) Top1 =n on Hy

because, if (z, F(z)) € Ha, then z € E\W1, so z = ¢1(z) = 703, (2, F(z)) by (5.8). Thus
(5.14)  HY(H,) < CHY(w(Hs)) = CHY w0 §1(Hs)) < CHYUG1(Hs)) < CHY(G1(Wh))
by (5.12) and because Hy C W;. Finally,

(5.15) HYW,) < HYH,) + HYH,) < C(M + 1YHHG1 (W) + Chr

by (5.11) and (5.14), which is (2.5) for 9/51(@) Thus E is a quasiminimal set, and this
proves Proposition 5.7. 0

We end this section with the fact that quasiminimal sets are rectifiable. Recall that
this means that such a set E is contained in a countable union of d-dimensional Lipschitz
graphs (or C! surfaces, or Lipschitz images of R?, if you prefer), plus a set of vanishing
H%measure. Thus F is rectifiable if and only if its core E* is rectifiable.

Theorem 5.16. For each choice of M > 1, we can find h > 0, depending on M,
the dimensions n and d, and the bilipschitz constant A of i in the definition 2.7 of

the Lipschitz assumption, such that if the Lipschitz assumption is satisfied in U and
E € GSAQ(U, M, ,h), then E is rectifiable.

Let E € GSAQ(U, M, 0, h) be as in the statement, and let ¢ be the bilipschitz function
in Definition 2.7. Since we know that any Lipschitz image of a rectifiable set is rectifiable
(see 15.3 and 15.21 in [Ma], to which we shall refer for anything that concerns rectifiability),
it will be enough to show that ¥ (A\FE) is rectifiable (where A > 0 is also as in Definition
2.7). But by Proposition 2.8, /(AE) € GSAQ(B(0,1), A2¢M, A=\, A%?h), with the rigid
assumption. So it is enough to prove Theorem 5.16 when U = B(0,1) and the rigid
assumption holds.

Recall that E, just like any other set of locally finite H?-measure, can be written as
the disjoint union £ = E, U E; of a rectifiable part E, and a totally non rectifiable (or
singular) part E,. We just need to show that H¢(E,) = 0, because the union of a rectifiable
set and an H%null set is rectifiable too. So we shall assume that H?(FE,) > 0 and derive
a contradiction.

Since HY(FE) is locally finite and E, does not meet E, a standard density result (see
for instance [Ma], Theorem 6.2 (2) on page 89) says that

(5.17) lim p~*HY(E, N B(z,p)) =0
p—0
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for He-almost every = € Ey. In addition, H(E, \ E*) < HY(E \ E*) = 0, so we can pick
x € Es N E* such that (5.17) holds.

We shall proceed as in the proof of Proposition 5.1. Let Ny be a large power of 2 (a
constant to be chosen soon), and let [y be a very small power of 2 (it will just need to be
small enough, depending on Ny too). Let Q" be a dyadic cube of length [y, and choose a
translation Qo of " by an integer multiple of NV 115, so that if zy denotes the center of
Qo, then the size of each coordinate of |x — x| is smaller than No_llo and so E N %QO

contains B(z, %) As in (5.3), if h is small enough, depending on M and n,

1
(5.18) HYEN ng) > Hd(EﬂB(x,%)) >Cc g,

by Proposition 4.1 and where C' depends only on M and n. In fact, we do not even
need Proposition 4.1 here; we could have chosen a point € E where the upper density
limsup, _,or 9H*(E N B(x,r)) is larger than a geometric constant, and then taken Iy as
small as we want and such that (5.18) holds. We choose the integer N € [Ny/2, Ny] such
that

N N —6 12 Cld
' d o A < = d <_0
(5.19) H(EmNOQO\ N Qo)_NOH(EOQO)_NO,

as in (5.4) and with the same simple proof by Chebyshev. (And again we could also have
obtained the last inequality because lim sup,._,o r ~*H¢(ENB(z,r)) < C almost everywhere
on F.)

Then we want to apply the proof of Lemma 4.3 to the cube QQ = Nﬁo Qo, with its
natural decomposition into N™ subcubes R € R(Q)), which are all dyadic of side length
Ny 11, and lie in the usual grid if y is small enough. [This time, we shall not need ¢ to
be C-Lipschitz (as for Proposition 5.1), so we do not need the variant that uses the local
Ahlfors-regularity of E*.]

So we want to mimic the construction of ¢ in Lemma 4.3 (or rather Proposition 3.1 in
[DS4]), but with a few changes because we want to project away the unrectifiable part. Our
mapping ¢ will be obtained as the last element of a sequence ¢,4+1, ¢pn, Ppn—1, -+, ¢4, Ob-
tained recursively by composing with mappings ;. That is, we shall start from ¢,,11(z) = =z
and set

(5.20) o =1Yogy1 ford<Il<n.
For R € R(Q) (the set of dyadic cubes R C Q of side length Ny 'lp) and 0 < < n,

denote by S;(R?) the union of all the I-dimensional faces of R. Also set §; = Ugcr(g) Si(R)-
We intend to choose the ; in such a way that

(5.21) gbl(E N Q) CS&_1U0Q
ford <l <n.
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Let us say how we do this. We start with n > [ > d; the case of [ = d is a little
special, and will be treated at the end. Assume that the ¥, k > [, were already defined,
and satisfy (5.21). This is of course true when [ = n. First we decide that

(5.22) Yi(z) =2z for z € 0Q U [R"\ Q],

because we want (4.4) to hold. Since ¢;+1(EF N Q) C S UIQ (by (5.21) for [ + 1), the
main thing to do now, if we want a definition of ¢; = ; o ¢;11 on F, is to define ¢/; on
S; N Q. We shall define 1; simultaneously on all the [-dimensional faces F', in such a way
that ¢;(z) = z on OF. Then there will be no problem about coherence.

So let F' be a I-dimensional face of a cube R € R(Q). If F C 9Q), we keep ¢(z) = z on
F (because of (5.22)). Otherwise, we select an origin xp € F'\ ¢;11(ENQ), near its center.
Other constrains will show up soon, but for the moment let us record that H'-almost every
point xp is like this, because ¢;41(F N Q) is at most d-dimensional (all our mappings are
Lipschitz), and [ > d. Notice that zp € F'\ ¢;+1(E) too, because ¢j+1(E \ Q) lies far from
the center of F' (by iterations of (5.22)).

Pick a small ball By centered at xp and such that

(523) diSt(BF, (}5[.,_1(E)) > 0.

The small size of Br will not matter, it will just make the Lipschitz constant for ¢ enor-
mous, but we don’t care. We decide that

(5.24) for z € F'\ Bp, ¥(2) is the radial projection of z on JF, centered at zp.

This last just means that v¢;(z) € OF and z lies on the segment [zp,;(2)]. With this
choice, observe that if z € E N Q, then by (5.21) for [ + 1, ¢;41(2) either lies on 0Q (and
then ¢;(z) = ¢i111(2) € 9Q by (5.22) and (5.20)), or else lies on some F'\ Bp (by (5.23)),
so ¢1(z) = Yi(di1+1(2)) € OF by (5.24). Thus (5.21) holds for .

Now we extend v; in a Lipschitz way, first to F' (so that ¢;(F) C F'), then (after we
are finished with all the faces F') to faces G of higher dimensions (so that ¢;(G) C G for
every face G) and eventually the whole ). Thus ¢;(Q) C Q. One checks (see the proof in
[DS4]) that these definitions give rise to Lipschitz mappings 1;, which satisfy (4.4)-(4.6),
and also (4.8). For the remaining estimate (4.7) on the H¢(¢(E N R)), we need to be more
careful about the choice of centers xr, and this is also where we shall not proceed exactly
as in [DS4].

We want to treat the rectifiable and singular parts of E separately. We still intend to
use Lemma 3.22 in [DS4], which goes as follows.

Lemma 5.25. Let I is an [-dimensional face of cube, with | > d, and A C F a closed set
such that H?(A) < +oo. For { € 5F, denote by b¢ p : F\ {¢} — OF the radial projection
on OF centered at £. Then

(5.26) HI(F)! /g e HY O p(A))dH (&) < CHYA).
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As the proof will show, the lemma stays true if A is merely Borel-measurable, but its
closure has a finite #%measure. The main point of the proof is that for a given ¢ € %F \A,

(5.27) HY (e p(A)) < C/A |z — ¢4 diam (F)%dH%(x),

which follows from computing the local Lipschitz constant of 6 p near z. See (3.24) and
(3.20) in [DS4]. We integrate this over £ € %F \ A, use Fubini, and get that

| weeryani() < Cdian(Py [ [ ot ©ani (o)
EesF\A zcAJeciF\A

< C diam(F)? / { / |z — gy—ddHl(g)}de(x)
€A E€EFNB(z,2diam(F))

(5.28) < C diam(F)? / diam(F)!~4dH%(z) < C diam(F)HI(A):
€A

(5.26) and the lemma follow. O

In [DS4] and for Proposition 4.1, Lemma 5.25 is used with A = FN¢;41(E) to choose
xp so that, with the definitions (5.20) and (5.24),

(5.29) H(Yu(F N ¢ria(E))) < CHUF N drya(E)).

Such a choice is possible, by Fubini. Let us record here the fact that, by the proof of
Lemma 5.25, we can even get that

(5.30) / |z — zp| % diam(F)YdH(z) < CHYF N ¢111(E)),
Fﬁ¢l+1(E)

which is stronger than (5.29) because of (5.27).
With this choice of z for each F', we can sum over F, compose our mappings, and
get that
(5.31) HY(pas1(ENR)) <CHUYENR) for R € R(Q)
as in (4.7). The proof is the same as in [DS4] and for Proposition 4.1.
As we said earlier, here we want to take advantage of the fact that xr is chosen by

a Fubini argument to apply Lemma 5.25 with A = F'N ¢;41(F,) and get, in addition to
(5.29), that

(5.32) H W (F 0 b (Br))) < CHUF N i (E)),
and finally obtain, after composing, that
(5.33) HY(par1(E-NR)) < CHYE,NR) for R € R(Q).
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We sum this and get that

(5:34)  HYan1(B-NQ) < D, H'bayi (BN R) < CHUENQ)
ReR(Q)

because the cubes R € R(Q) have bounded overlap.
Let € > 0 be very small, to be chosen soon. Because x was chosen so that (5.17) holds,
we deduce from (5.34) that

(5.35) H (¢ar1 (BN Q)) < elf

if Iy was chosen small enough.

For the unrectifiable part FEs; of E, we use the following fact, which is proved in
Lemma 4.3.3 on page 111 of [Fvl] or Lemma 6 on page 26 of [Fv3]. If F'is a face of
dimension [ > d, and if A C F is such that H%(A) < +oco and A is totally non rectifiable
(of dimension d), then for almost every choice of zp, ¥;(A) C OF is also totally non
rectifiable. Of course we choose the various x g so that this happens (we had some latitude
left to do this); then when we compose the 1; we get that

(5.36) da+1(FEs N Q) is totally non rectifiable.

All this information is valid also on the cubes R that meet 0Q); we concentrated on what
happens on faces F' that are not contained in 9@, but on 0@ we simply need to know that
all our mappings are the identity.

Next, if F' is any d-dimensional face of a cube R € R(Q), then

(5.37) HYEF N pas1(ENQ)) = HUF N g1 (B, NQ)) < eld,

because the totally non rectifiable set ¢441(Fs N Q) can only meet the rectifiable set F' on
a H-null set, and by (5.35).

Thus ¢4+1(E N Q) never fills a d-face F' (if € is small enough), and this allows us to
choose, for each d-dimensional face F' in ) which is not contained in 0Q), a point xr near
the center of F' that does not lie on ¢g4+1(E N Q). We then choose Br and define 14 as
we did above, near (5.23). This gives a last mapping ¢4 = 104 0 ¢4+1, which still satisfies
(5.21).

We shall need in a later section to know that if 7 > 0 is small enough (depending
also on our choice of mappings ¢; and their bad Lipschitz constants), and if H C @ is a
compact set such that

(5.38) dist(z, F) <1 for z € H,
then
(5.39) qf)l(HﬂQ) CS&_1U0Q forn+1>1>d.
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We naturally prove this by descending induction. Obviously this is true for [ = n + 1,
because ¢,11(2) = z and S, = Q. Let [ > d be given, and suppose that (5.39) holds for
[+1. Let z € HNQ be given; by induction assumption, ¢;41(z) € S;UIQ. If ¢111(2) € 0Q,
(5.22) and (5.20) say that ¢;(2) = ¢141(2) € 0Q, so we may assume that ¢;41(z) lies in
some [-face F' that is not contained in 0Q). We know, since ¢, is Lipschitz (and 7 is as
small as we want) that ¢;41(z) is arbitrarily close to ¢;+1(E), so (5.23) says that ¢;41(2)
lies out of B, and hence v;(z) is given by (5.24). Then ¢;(2) = ¢141(z) € OF, as before,
and (5.39) holds for I too. This proves (5.39).

Return to E, and set ¢* = ¢4 (we write ¢* instead of ¢ to make sure that the ¢
below will not be confused with the ¢; above). Thus

(5.40) P(ENQ)=0ds(ENQ) C Sq—1UIQ

by (5.21) with [ = d. Now we use the quasiminimality of F to get a contradiction. It
is easy to construct a one-parameter family {¢;}, that satisfies (1.4)-(1.8), and for which
¢ = ¢*; the verification is the same as for Proposition 4.1, for instance near (4.16). Set

(5.41) We={y e R";¢{(y) #y}
for 0 <t <1 and

(5.42) W= J WU (W)

0<t<1

these are well defined here because the mappings ¢; are defined everywhere. We can easily
arrange the interpolation between the identity and ¢* so that ¢;(z) = z for z € R" \ @
and ¢;(Q) C @, and so we get that

(5.43) W CQcC Qo C Bz, 2v/nly)

(see the definition of Qo and @ near (5.18) and (5.19)). If Iy is chosen small enough,
B(x,24/nlp) is arbitrarily small and contained in U, so we can apply Definition 2.3. We
get that

(5.44) HUENW,) < MHY(¢*(E NWY)) + hr.

Denote by R.z: the collection of small cubes R € R(Q) that touch 9Q (that is, the Reyt
is the outer layer of cubes in R(Q)). Then set

(5.45) Q = U =&

RER(Q)\Rezt

Recall from the definition of @ below (5.19) that
N .
(5.46) Q= I Qo for some integer N € [Ny/2, Ny.
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Also, the side length of our cubes R € R(Q) is Ny o, so

N -2 N -2 1
5.47 = = 5=
(5.47) Q Q Ny Qo 3 Qo
because Ny is very large. Let us check that
(5.48) EnN Q/ \ Wiy CSq-1.

Let z € ENQ" \ Wi be given. Then z = ¢*(2) € Sg—1 by (5.41), (5.40), and because
z ¢ 0Q); (5.48) follows. Then

(5.49) HYENW) >HYENQ NWy) =HYENQ') > HY(EN %QO) >C g
by (5.48), (5.47), and (5.18). On the other hand, by (5.40) (and the first half of (4.4)),
(5.50) HY (" (ENWY)) = HUIQ N ¢*(E N WY)).

Let us check that

(5.51) QN (EnWy)c | ¢"(ENR),
RER ezt

where R, still denotes the outer rim of small cubes R € R(Q) that touch 9Q. Let
w € 0Q N¢*(ENWi) be given, and let z € ENWj be such that ¢*(z) = w. Observe that
z lies out of @', because (4.6) says that ¢*(Q') C Q'. So z € EN R for some R € Reyt,
and (5.51) follows. Next we verify that for R € Ry,

(5.52) HY(*(ENR)\ par1(ENR)) =0.

Let w € ¢*(E N R) be given, and choose z € E'N R such that w = ¢*(2). Recall that w =
¢*(2) = Pa(2) = Ya(da+1(2)) by definition of ¢* and (5.20). By (5.21), ¢g41(2) € SaUIQ.
If ¢at1(z) € 0Q, then 1y does not move it (by (5.22)), and so w = Ya(Pa+1(2)) = pat+1(2),
which is fine for (5.52). Otherwise, ¢441(2) lies on some d-dimensional face F' that is not

contained in 0@, and by construction its image by 4 (that is, w) lies on JF, which is
(d — 1)-dimensional. So (5.52) holds. Altogether,

HU " (ENW)) < Y HUQ"(ENR) < Y HY b1 (ENR))

(5 53) RER .y RER et
' <0 Y HUENR) < CHUENQ\int(Q))
RERext

by (5.50), (5.51), (5.52), (5.31), and the fact that the cubes R have bounded overlap. Since

N —2
No

(5.54) O\ int(Q) = Nﬁo Qo \ int( Q0>
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by (5.46) and (5.47), it follows from (5.53), (5.54), and (5.19) that

1 (¢"(ENW)) < CHUENQ \ int(Q"))
(5.55) N _

No

2Qu)) o

< CHd<Em %QMim(

If Ny is large enough and h is small enough (depending on M in particular), we get a
contradiction with (5.44) or (5.49); thus we could not find our initial point of density
x € F, and the rectifiability of F follows. This completes our proof of Theorem 5.16. [J

PART III : UNIFORM RECTIFIABILITY OF QUASIMINIMAL SETS

This part is largely independent from the next ones, which is probably a good thing
because we shall only be able to complete the desired program in some specific cases,
depending on the dimensions of the faces of the L.

The main goal is to prove that sliding quasiminimal sets are locally uniformly rectifi-
able, with big pieces of Lipschitz graphs.

When we wrote the long paper [DS4], and even for later results, the author thought
that the local uniform rectifiability of F was an unavoidable main step for many things,
including the stability of our classes of minimizers under limits (as in Part IV below). As
we shall see later, this is not the case, and the proof of rectifiability is enough for many
purposes.

This is fortunate, because we shall not be able to prove the local uniform rectifiability
of E in all the interesting cases, and also because even when it works, the proof is more
difficult than usual.

We nonetheless include a part on uniform rectifiability here because the author cannot
deny his past, and it is a nice regularity property. It is probably almost the best general
result that we can hope to prove for quasiminimal sets. That is, because quasiminimality
is bilipschitz invariant (or directly), Lipschitz graphs are quasiminimal, and uniformly
rectifiable sets are not so different (in terms of regularity) from Lipschitz graphs. Even
for almost minimal or minimal sets, it is not so clear how to get better general regularity
results (i.e., that would hold without assuming some a priori flatness, for instance), even
though in this case we expect better regularity.

We continue with the same general writing style as in Part II, i.e., giving a rapid
general description of [DS4], except at places where modifications are needed (and then
we need to be more precise).

6. Local uniform rectifiability in some cases.

So we want to prove that sliding quasiminimal sets are locally uniformly rectifiable,
with big pieces of Lipschitz graphs, and we shall only be able to do this under an additional
assumptions on the dimensions of the faces of the L;. The main result of this section and
the next two is the following theorem, and its generalization (Theorem 9.81) under the
Lipschitz assumption.

Theorem 6.1. For each choice of M > 1, we can find h > 0, A > 0, and 6 > 0,
depending on M and the dimensions n and d, so that the following holds. Suppose that
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E € GSAQ(By, M,6,h), where we set By = B(0,1), and that the rigid assumption is
satisfied. Let ro = 27 < 1 denote the side length of the dyadic cubes used to define the
rigid assumption. Let x € E* N By and 0 < r < Min(rg,d) be such that B(z,2r) C By.
Assume in addition that

if j € [0, jmaz] is such that some face of dimension (strictly) more than d

(6.2)
of L; meets B(x,r), then E* N B(x,r) C Lj.

Then we can find a d-dimensional A-Lipschitz graph I' C R™ such that

(6.3) HUENT N B(z,r)) > 6rd,

By d-dimensional A-Lipschitz graph, we mean a set I' which is the image, under an
isometry of R™, of the graph of some Lipschitz function from R¢ to R"~¢ whose Lipschitz
norm is at most A. Notice that we do not have so much of a restriction on dimensions
when d = 2 and n = 3, which will probably be our main interest in the future (but even
so we do not allow L; to be a half space in which E is not contained). Also, Theorem 6.1
does not necessarily apply when d = 2, n = 4, and some L; are 3-dimensional.

The author does not know whether this additional restriction on the dimensions is
really needed.

The restrictions in Theorem 6.1 do not seem too bad, for instance because they allow
boundary constraints given by sets L; of dimensions at most d, and the typical setting for
a Plateau problem is like this. But in terms of proof, Theorem 6.1 is rather disappointing
because it does not contain much more information than what is readily available from
the interior uniform rectifiability (away from the L;). For instance, if all the L; are at
most (d — 1)-dimensional, the local uniform rectifiability of E* near the L; follows from
the inside uniform rectifiability and the local Ahlfors-regularity given by Proposition 4.1
(there is just not enough room near the L; for a bad behavior). We will be able to obtain
more cases (for instance, increase the dimension of the L; by one) by various general tricks,
but the center of the proof is still the result from [DS4]. That is, a simpler special case
will be obtained in Proposition 6.41, with a minor modification of the argument of [DS4],
and then the extension of this result that we do in Sections 7 and 8 will mostly use general
manipulations of uniform rectifiability and Carleson measures, and for instance we shall
only construct competitors once, in Lemma 7.38 or its generalization Lemma 9.14. It
would be nice to have a different, simpler proof of the uniform rectifiability of E* away
from the L;, but for moment we only know one (very complicated) proof.

Here is our plan for the rest of this part. We shall start this section with a rapid
description of the proof of local uniform rectifiability given in [DS4]. We shall then say
(largely for the record) why it does not seem to go through with our sliding conditions.
In the last subsection, we prove a weaker variant of Theorem 6.1, Proposition 6.41, which
is what we can almost directly obtain from the proof of [DS4]. In Section 7, we shall
prove the conclusion of Proposition 6.41 (the existence of a big piece of bilipschitz image
of a subset of R?) under the weaker assumptions of Theorem 6.1; see Proposition 7.85.
Theorem 6.1 itself will only be proved in full in Section 8, with a small additional argument
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on the existence of big projections. Finally, Theorem 6.1 will be generalized to the case of
Lipschitz assumption in Section 9. See Theorem 9.81.

6.a. How we want to proceed, following [DS4]

So we are given a quasiminimal set E and a ball B(z,r), as in the statement of
Theorem 6.1. Because of Proposition 3.3 (which says that E* is quasiminimal too), we can
assume that F is coral (i.e., E = E*); otherwise just prove and apply the theorem for E*.

We first use Proposition 5.1 to find a Cj-Lipschitz mapping F, : E N B(z,r) — R?
such that H4(F,.(EN B(x,r))) > C;y/'r?, as in (5.2). By Whitney’s extension theorem, we
can extend F,. into a C'C)s-Lipschitz mapping defined on R™.

Next we apply Proposition 5.7, which says that FE, the graph of F, over E, is a
quasiminimal set in R”T¢. We shall denote by m, : Rn+‘i—> R"™ and 7 : R4 5 R4
the two natural projections, and consider the smaller set Fy = E N7, (B(z,r)). Then
W(E'O) = F.(EN B(z,r)) and

(6.4) He(w(Ey)) = HYF,(E N B(z,r))) > Cytrd,

Next we want to use a stopping time argument from [D1] to find a large piece of EO where
7 is bilipschitz. More precisely, we want to find a closed set I'g C Ey such that

(6.5) HUTo) > 0'r? and |y — z| < A'|n(y) — 7(2)]| for y, z € Ty,

where ¢’ > 0 and A’ are constants that depend only on n, d, and M.

If we do so, this will not directly give a big piece of Lipschitz graph in E N B(x,r), as
required in the statement of Theorem 6.1, but the following weaker conclusion: there is a
closed set Gy C EN B(x,r) and a mapping ¢ : Gg — RY such that

(6.6) HY(Go) > 0r? and Cily — 2| < |o(y) — ¢(2)| < Ciyly — 2| for y, z € Go,

where 6 and C, depend only on n, d, and M. In other words, instead of a big piece of
Lipschitz graph in EN B(x,r), we only find a big piece of bilipschitz image of a subset of
R¢,

The verification (from (6.5)) is easy: we just try Go = m,(I'o); then (6.6) follows from
(6.5) because 7, : E — E is bilipschitz.

In the terminology of [DS1] or [DS3], (6.6) (for all x and r) says that locally, E has
big pieces of bilipschitz images of R? (BPBI), which amounts to saying that E is locally
uniformly rectifiable, while in the statement of Theorem 6.1 we claim that if also contains
big pieces of Lipschitz graphs (BPLG) locally.

Now we can go from BPBI to BPLG by a general argument on uniformly rectifiable
sets, for which we just need to check that F also has “big projections”. This will be
discussed soon, but anyway the most important part of Theorem 6.1 is the local uniform
rectifiability provided by (6.6).

Return to Ey = ENn; (B(x,7)), our quest of [y C Ey such that (6.5) holds, and the
stopping time argument from [D1]. We would like to use the proof described in Sections 8
and 9 of [DS4], which we try to explain now.
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A first ingredient of the proof is the construction of what we call cubical patchworks on
E which are the analogue on E of the standard dyadic cubes on R", and which will be very
useful because we want to run stopping time arguments on E. ThlS construction is done
in Section 7 of [DS4], and goes through in the present setting because it only uses the local
Ahlfors-regularity of F near x. This last holds as soon as h is small enough (depending
on n an M), by Proposition 4.1 and because we assumed that £ = E*. Naturally, we
shall always assume that this (h small enough) is the case. Let us say what the cubical
patchwork is in the situation of Theorem 6.1. We get a set F' and collections ¥;, j > 0, of
so-called dyadic cubes, with the following properties. First,

(6.7) ENB(z,1/10) c F c ENB(Z,r) C Ey,

where we call Z = (z, F,.(z)) the natural center for Ey, and F also is locally Ahlfors-regular,
in the sense that

(6.8) C 4 <HYFNB(yt) <Ct? foryec Fand 0 <t <.

For each j > 0, ¥; is a collection of measurable subsets @) of F', which we shall abusively
call cubes, such that F'is the disjoint union of the cubes @, @ € X;. The cubes have some
low regularity properties, and particular they have a center cg such that

(6.9) FNB(cg,C™'279r) c Q C FN B(cg,C279r) for Q € %;.

They also have small boundaries (see (7.4) and (7.10) in [DS4]), but we shall not use this
here. Finally, the ¥, have the same structure as for the usual dyadic cubes: if i < j,
QeX;,and Re X;, then RC Q orelse RNQ = 0.

The main property that we need to prove if we want to get (6.5) is a little complicated,
and involves a (given) large constant C1, a (given) small constant «, and constants Cy (very
large) and n (very small), to be chosen (depending on C1, v, M, and n). For y € F' and
7 >0, set

(6.10) Ti(y) = U Q.

QEX; ; QNB(y,C22=37r)#£0

Thus T} (y) is a little bit like F N B(y, C2277r), but we prefer to cut neatly along dyadic
cubes. The stopping time argument from [D1] that we want to use likes the situations
(depending on y € F and j > 0) when our projection 7 : R®*¢ — R has a local surjectivity
property, namely when

(6.11) ©(T;(y)) D RN B(n(y),C12777r).

It also likes it when there is a cube R C T)(y) that does significantly better than average
in terms of projections, i.e., when
(6.12)

there exists R € ¥; such that R C T}(y) and
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The property that makes things work in [DS4] is the following.

Definition 6.13. We say that the main lemma holds if for each choice of Cy and v > 0, we
can find Cy and n > 0, depending on C1, v, M, n, and d (which includes a dependence on
the local Ahlfors-regularity and cubical patchwork constants) such that, whenever y € F
and j > 0 are such that

(6.14) B(y,2C2279r) ¢ B(z,r/10)
and

1 (m(T;(y)))
(6.15) W >,

then we have (6.11) or (6.12).

This property is proved in [DS4], as Main Lemma 8.7. The fact that it allows us to
apply a theorem from [D1] and get a graph Ty as in (6.5) is proved in Section 8 of [DS4],
and the proof goes through without major modification in the present context. [Again, it
only uses the local Ahlfors regularity properties of E, and no construction of competitors.]

Thus we want to know whether the main lemma holds in the context of sliding mini-
mizers, and we study the proof given in Section 9 of [DS4].

We assume that we can find y € F such that (6.14) and (6.15) hold, but not (6.11)
or (6.12), and we want to reach a contradiction (for a correct choice of Cy and 7). That
is, we want to construct an appropriate deformation of E (which is a quasiminimal set
by Proposition 5.7), for which most of the measure near = disappears. A first step in
the verification, which is done in Section 9-2 of [DS4], consists in obtaining the following
description of F' (or equivalently E) near y.

As in (9.62) of [DS4], we apply a dilation to all our sets so that

(6.16) 201279 = 1;

this normalization will allow us to work with (standard!) dyadic cubes of unit side length
in the d-plane P = R?. We can also assume that iy = 0. Still denote by 7 the orthogonal
projection on P = R¢  and by 7, the orthogonal projection on V = R" (in [DS4] it is
called h, but we want to avoid a conflict of notation here).

We shall restrict our attention to the box Py x Vy, where Py = [-N, N ]d C P for some
large integer N, and Vo = V N B(0, pg) for some py € [N,CN]. Here N will be chosen
very large, depending on Cy, v, M, n, and d, and C' is so large (depending on the same
constants), that a Chebyshev argument allows us to choose pg € [N, CN] so that

(6.17) dist(Py x (V N OB(0, po)), F) > N.

[See (9.77) in [DS4], and we won’t need to modify this part of the argument.] Later on,
we shall choose Cy (depending also on N), so large that

(6.18) Py x Vo C B(y,Co2777 ) € B(z,r/11);
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the first part is easy to arrange (because y = 0 and by the normalization (6.16)), and the
second inclusion comes from (6.14). Now set

(6.19) Fo=FnN(PyxVy)=FEnN(PyxVy) C Ey,
where the last part comes from (6.7) and (6.18). Notice that
(6.20) Fo C Tj(y)

by (6.18) and (6.10), so it will be easy to use our assumption that (6.11) and (6.12) fail.
Denote by A;, ¢ € Iy, the collection of cubes in P, contained in Py, that are obtained

from the unit cube [0,1]¢ by an integer translation in Z¢. That is, we cut Py into (2N)?

dyadic unit cubes (and the point of the normalization above is that we can use unit cubes).
We finally come to our description of Fy. First set

(6.21) I, = {z € Iy; there is an x; € int(A;) such that Fy N7 (z;) = @},
and let us check that
(6.22) I; is not empty.

Recall that (6.11) fails, so we can find w € PN B(y,C12797) \ 7(T}(y)). By (6.16) and
because y = 0, w € B(0,1/2); by (6.20), w € P\ w(Fp). By (6.19), Fy is compact, so a
whole neighborhood of w in P lies in P \ 7(Fp). This neighborhood contains an interior
point of some A4;, i € Iy, and by definition this i lies in I;. This proves (6.22).

Next, for each i € Iy there is a finite set Z(i) € FoN7~1(4;), with at most C elements,
and such that

(6.23) dist(z,2(1)) <1 for every z € Fy N7 *(4;).

This is checked in [DS4], and the same proof applies here; see the verification of (%9.3)
(understand, (9.3) in [DS4]) below (%9.89), which relies a lot on Lemma %9.83. Let us just
say here why this is not surprising.

Let R = {R € ¥;; R C Tj(y)} denote the set of cubes that compose T}(y); these

cubes are disjoint by definition of ¥;. Set ay = MU W)) . g ap > v by (6.15). Also

g HUT5(y)) 7
set a(R) = %&g)) for R € R, and

(6.24) a1 =H (Tj(y) ™" Y HUx(R) = HU(T(y) ™" Y a(R)H(R);

ReR ReR

thus a; is a weighted average of the a(R) (with the weights H4(R), R € R), and at the
same time

(6.25) a1 =HU(Ti(y) 7" Y HUw(R)) = HU(Ty(y) " HU(x(T5(y))) = ao
ReER
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because 7(7Tj(y)) is the union of the m(R). Now (6.12) fails, so a(R) < (1 + 2n)ap <
(14+2n)a; for R € R. If n is small, this forces all the a(R) to be very close to their average
ay, and also a; — ag to be very small. A first consequence is that a(R) > «/2, and hence
HU7(R)) > yHY(R)/2 > C~1, for R € R. But also, the various 7(R), R € R, are almost
disjoint, because when Ry, Ry € R are different,

(6:26)  HU(T;(y))(ar — ao) = H(x(T;(y))) — Y H(w(R)) = H(w(R1) N(Rs))
ReR

by the proof of (6.25). Then there are at most C' such cubes R € R such that 7(R) falls
near a given A;, and the existence of Z(7) as in (6.23) follows reasonably easily. The bound
C on the cardinal of the Z(i) depends on « (and the local Ahlfors-regularity constants, as
usual).

Finally set Iy = Iy \ I;. We also prove that for each i € I, there is a point z; € Fy
such that 7(z;) € int(A;) and

(6.27) |z — z;| <1 for all z € Fy such that 7(z) = 7(z;).

This would be obvious if the w(R) were disjoint, because diam(R) < 2C277r < 1 by
(6.9), by the normalization (6.16), and because we can assume that C; > 2C, where C,
the constant from (6.9), depends only on the Ahlfors regularity constant. Here the 7(R)
are merely nearly disjoint, so we have to work a little more, i.e., use Chebyshev. The
verification is done in [DS4], below (x9.89), proof of (x9.5). This completes our description
of F{ 0-

The next stage in our proof is a deformation lemma (Proposition 9.6 in [DS4]) that
sends most of Fj to a (d — 1)-dimensional set. The proposition concerns a more arbitrary
closed set in R"*4, but we apply it to Fp, and the main assumptions are (6.22), (6.23) and
(6.27), that we just obtained. It yields the following.

Lemma 6.28. There exists a family {¢;}, 0 < t < 1, of Lipschitz mappings of R**9, with
the following properties:

(6.29) (t,z) — ¢¢(2) is Lipschitz (from [0,1] x R4 — Rntd);
(6.30) ¢¢(z) = z for t = 0 and when dist(z, Py x Vp) > d + 3;

if ¢4(2) # z for some z € R"*¢ and t € [0, 1], then

(6.31) . )
dist(z, Fy) < C and dist(¢s(z), Fp) < C for 0 < s <1

so our deformation may move some p()illtS a 1()15, but ()HIV close to 1;0 and somehow alon
g
10)7

(6.32) o1 (Fy) C Py x Vp for all t € [0,1];
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(6.33) H¥ Y1 (Fp)) < +o0
(the main point: we essentially make F, disappear);

(6.34) ¢ is C-Lipschitz on R"T\ (Py x Vp).

As usual, the constant C in this statement depends on n, M, C7, and 7 through
the constants that arise in the description of Fyy above. The last property (6.34) is useful
because we do not want to lose what we win by (6.32) by increasing too much the Hausdorff
measure of F' = E near the boundary of Py x V.

Lemma 6.28 still holds in our case, with the same proof, but differences will occur in
the way it is applied.

As the reader may have guessed, the mappings ¢; are used in [DS4] to produce a
deformation of E which contradicts its quasiminimality. The reader should not worry
about the way the Hausdorff measure estimates go, because it will be the same as in
[DS4], but let us just say a few words to explain some of our choices. For instance, (6.34)
goes with some control on the size of the set

(6.35) H=1{z¢eE;0<dist(z, Py x Vo) <d+3},

where the ¢; may differ from the identity, but we cannot use (6.33). And we required
in (6.17) that dist(Py x (V. NOB(0,po)), F) > N to get an easier control on H. Indeed,
let z € H be given. Then z € F by (6.7), the first part of (6.18), and (6.14). Write z =
(m(2),m:(2)) € PxV, then dist(7(z), Py) < d+3 by (6.35), so dist(m,(z), VNIB(0, py))) >
N —d—3 > N/2 by (6.17), and since Vo = V N B(0, pp) and dist(m,(2), Vo) < d + 3 by
(6.35), we get that 7. (z) € VN B(0, pg — N/2). Altogether, H is contained in the simpler
set

(6.36) H' ={z2€ E;m,(2) € B(0,po — N/2) and 0 < dist(r(z), Py) < d + 3},

which is easier to control because we can use the fact that P is d-dimensional to cover H’
by a C N~ balls of radius 1, using something like (6.23). Near the end of the argument,
N is chosen so large that the contribution of H to the H%measure of the image qﬁl(E),
which is less than C N9~ is negligible compared to the mass of E that we save by (6.33),
which larger than C~'N?. So it is important that C, in particular in (6.34), does not
depend on N. But again the reader should not worry too much, the computations are
done in [DS4].

Up to now, we did not need to worry, because all our constructions relied on the
general properties of E (local Ahlfors-regularity, existence of Lipschitz mappings with a
big image), and not on the definition of a quasiminimal set. This changes now.

In [DS4], the ¢; define a competitor for E, which is significantly better than E (by
(6.33) and (6.34), and observations as above) and this leads to the desired contradiction.
The computations are done at the end of Section x9.2, near (x9.90) and below. In the case
of generalized quasiminimal sets, we need to add a small term Chrd (coming from the hr?
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in (2.5)) to the right-hand side of (x9.93). But if h is chosen small enough, this does not
upset the end of the proof: the additional term is small compared to M ’Hd(E' N W) in the
right-hand side, because this last is larger than C~r? by (x9.105) and the line before.

In the present situation, the difficulty will come from the fact that the ¢; may fail
to define a competitor for E, because we don’t know whether they respect the boundaries
L; as in (1.7). Note however that the other constraints (1.4)-(1.6) and (1.8) are satisfied,
with the same verification as in [DS4].

6.b. Some bad news

Let us try to continue, and see whether the ¢; defined in [DS4] satisfy the last con-
straint (1.7), or can be modified so that (1.7) holds. The main point of this short subsection
is to explain why the author thinks there is a serious difficulty for the brutal extension of
the proof of [DS4].

There is a first obvious reason. Suppose n = 3, 2 = L is the half space {x; > 0},
Ly = 09 is the vertical plane {x; = 0}7 and £ = PN{ for some 2-plane P perpendicular
to {z1 = O}. For instance, F = {xl >0 and z3 = O}. In this case, we don’t need the trick

of replacing E with E, because the projection w over P already has a big image, but if we
did it, we would just replace R?® with R® = R3 x P, and £ = PN with the slightly tilted
half plane {(:L'l, x2,0,21,T2); T3 > O}, and the discussion would stay the same as below.

Pick a small ball B(z,r) centered at x = 0, and try to apply the proof above. Also pick
y = 0; we would like to say that the main lemma from Definition 6.13 holds, but we can’t.
Indeed (6.12) never holds, because H¢(w(R)) is just proportional to H4(R), (6.15) holds
for the same reason (the proportionality constant is not small), and (6.11) fails because
m(E) = PN only covers half the desired ball.

In [DS4], this would never happen, because we would be allowed to deform points of
the boundary {xl =23 = O} along F into the domain, thus making a good piece of FE
disappear and contradicting the quasiminimality of E. And indeed the proof of [DS4] does
something like that, which is not allowed here because of (1.7) for L;.

Let us say a little more about how these things happen in the proof of [DS4]; the
reader may also skip the following discussion and turn to the proof of Theorem 6.1 which
starts in in the next subsection.

There are three phases in the construction of the ¢; in [DS4]. In the first one we
we move points horizontally (i.e., with trajectories parallel to P), independently in each
77 1(A;), so as to project on 7~1(9A;) whenever this is possible. That is, let ¢1/3 denote
the endpoint of this first phase, and let z € 771(4;) be given. When i € I}, we manage to
obtain that m(¢1/3(2)) is the radial projection of m(z) on 0A;, centered at the point z; of
(6.21). When i € I, we manage to obtain that m(¢1/3(2)) is the the radial projection of
7(z) on OA;, centered at the point 7(z;) of (6.27), but only when z € 771(9A4;) and when
z lies far from z; (more precisely, when |7, (2) — 7, (2;)| > 2).

We can keep the first phase as it is, because since we only move points horizontally
and the boundaries for E are the sets L; = P x L;, the condition (1.7) is automatically
satisfied. At the end of this first stage, ¢1/3(Fp), seen from far, looks a little like a piece
of graph (over the union of the A;, i € I3), plus some uncontrolled junk above the 0A;.

For the second phase (corresponding to ¢;, 1/3 <t < 2/3), we move points vertically,
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so as to merge the various points of 7! (z) N ¢;,3(Fp) into a single point when this is
possible. The difficulty is to make this in a Lipschitz way with respect to x. Between ¢, /3
and ¢5/3, we move the points linearly, i.e., we take

(6.37) O1(2) = (2 = 3t)g1/3(2) + (3t — 1)¢g/3(2) for 1/3 <t <2/3,

with, in coordinates,

(6.38) P2/3(2) = (m(d1/3(2)), p(P1/3(2)) € P x V

for some ¢ : R"*% — V that describes the vertical motion. Observe that our notation
here is slightly different; what we denote by (7(2), ¢(z)) now was called ¢2 in [DS4]); then
(6.38) here corresponds to (x9.48) there.

It is not so important to describe the precise definition of ¢ and ¢, /3 here. Let us just
say that this is done with partitions of unity, and that the main point is that the resulting
set Iy = ¢3/3(Fp) has the following nicer property.

Recall that for i € Iy, ¢1/5(Fp) N7 (int(A;)) = 0, so

(6.39) Fynn(int(4A;)) =0 for i € I,

just because our second phase moves points vertically. [Also see (¥9.43) in [DS4]]. When
i € I, we only know that |m,(2) — m,(2;)| < 2 for all z € 7! (int(A;)) N ¢y /3(Fp). But by
our our vertical motion, we make sure that

(6.40) Fyna~t(int(A;)) C T for i € I,

where I'; is the graph over int(A;) of some Lipschitz function. See (x9.44) in [DS4]. So
the point of the vertical motion is to merge the various points of 7~ (w), w € int(A;); the
partitions of unity help us do this in a nice Lipschitz way.

Our control on the sets Fy N7~ 1(9A;) is a little less precise, but still (x9.45) in [DS4]
says that each of them is contained in a finite union of Lipschitz graphs over 0A;, so their
total H?-measure is null.

In the present situation, there would be a way to modify the construction of ¢q/3
and F5, so that we also have the preservation (1.7) of the boundary pieces L;. In other
words, the serious problem is not here yet. The idea is to try to favor choices of points
with integer coordinates in V' in the description =Z;, but let us not be more precise, because
more serious problems will arise in the third phase.

In the third and last phase of the construction of [DS4], points move a lot more.
The mappings ¢, 2/3 < t < 1, are obtained by composing successive deformations, each
time occurring on 7 1(A4; U A;) for some pair of adjacent cubes in Py. That is, we set
ty = 2/3+ 2_"7/6 and construct recursively ¢y, t € I = [t,tr+1]. At the start our set
F (k) = ¢4, (Fp) is composed of a certain number of Lipschitz graphs I';, i € I(k) C I over
the corresponding open squares int(A;), plus a set Z(k) of finite H% !-measure. Notice
that we have such a description for F'(0) = F», where I(k) = I and the small set Z(0) lies
above the 0A;.
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If I(k) = (), we stop, and keep ¢y = ¢y, for tp < t < 1. Otherwise, we select an
i€ I(k)and a j € Iy \ I(k) that are contiguous, i.e., shares a face S of dimension d — 1.
Such a pair exists, because I; C Iy \ I(k) is not empty. We first construct our deformation
on T';, so that it moves points inside I'; so that the final image lies in T'; N 7~1(9A4;) (and
even in I'; N7~ 1(9A; \ int(S))) and fixes every point of I'; N 7w~ 1(9A; \ int(S)). We just
use 7 1(int(S)) NT; as a base to push the points in the direction of 7=1(9A;).

Then we extend our Lipschitz deformation into a Lipschitz deformation of R”*¢, which
leaves w1 (P \ A; U A;) alone, and it is easy to see that Fiy1 = ¢, (Fp) satisfies the
induction assumption. At the end of the construction, I(k) = 0, H¥1(Fy) < 400 as in
(6.33), and we are happy.

Unfortunately, we cannot arrange (1.7) for the mappings that we just constructed.
The main difficulty is when m~!(4;) contains some points of some L;, say, for the only
initial index i € I;. In our construction, these points get pushed to 7=(9A4;), and then to
other boxes. Along the way, they have to stay close to E , and this may well be incompatible
with (1.7), for instance if E gets away from L;.

Now we could hope to be lucky, and have a sequence of indices i € I, that can be
removed in the corresponding order, and such that the list of sets L; that touch 7= *(4;)
is a nondecreasing function of time, or some similar condition that seems hard to get in
practice. But in view of the counterexample (a half plane) given at the beginning of the
subsection, this hope looks very optimistic.

6.c. What we can say anyway

There is one special case when the proof of [DS4] can easily be adapted, and which
we record now.

Recall that By is the unit open ball and that ro = 27 is the scale of the dyadic cubes
in the description of the L;.

Proposition 6.41. For each choice of M > 1, we can find h > 0, § > 0, and Cp; > 1,
depending on M and n, so that the following holds. Suppose that E € GSAQ(By, M, 0, h)
and that the rigid assumption is satisfied, and let x € E* N By and 0 < r < Min(rg, d) be
such that B(x,2r) C By. Also assume that

(6.42) ENB(z,r) C L; for every j such that L; meets B(x,r).
Then there is a closed set Gy C E* N B(x,r) and a mapping ¢ : G — R? such that

(6.43) HUGo) > 0r? and Cyltly — 2| < |p(y) — é(2)] < Cnrly — 2| for y, z € Gy.

Thus E* N B(x,2r) contains a big piece of bilipschitz image of a subset of RY. The
case when no L; meets B(x,r) corresponds to the result of [DS4].

We shall find it more convenient to assume (6.42) as it is, but it would be enough
to assume that E* N B(z,r) C L; when L; meets B(xz,r); the stronger corresponding
statement is simply deduced by applying Proposition 6.41 to the set E*, which also lies in
GSAQ(By, M, d,h) by Proposition 3.3.
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We shall see later how to deduce Theorem 6.1 from the proposition, but for the moment
let us prove it. We follow the scheme of [DS4], as explained above, and in particular get
mappings ¢; as in Lemma 6.28; the only thing that we need to do is modify them so that
the satisfy (1.7) in addition.

We are only interested in the L; that meet B(x,r/5). Indeed, for the other ones, the

constraint (1.7) is trivially satisfied because we shall only consider competitors for E in
B(z,r/10). With the ¢, that we have so far, this follows from (6.30) and (6.18), and this
will stay true after we modify the ¢; below.

Let Jo denote the set of indices j such that L; meets B(x,r/5). We may assume that
Jo is not empty, because otherwise there is nothing to check since the ¢; from Lemma 6.28
do the job as in [DS4]. Set

(6.44) L=()L:
J€Jo

observe that

(6.45) ENnB(x,r)C L,

by (6.42), so L is not empty. Apply Lemma 3.4 to L (after a dilation of factor r;*

(3.26), used to return to faces of unit size). This gives a Lipschitz retraction

, as in

(6.46) 7o L" — L, with L" = {y € R"; dist(y, L) < n}.

In Lemma 3.4 we could take n = 1/3, but here, since L is composed of faces of size ry,
we take 1 = 1¢/3 because we conjugate with a dilation. Retraction means that 7z (y) =y
on L, and Lemma 3.4 also says that m; preserves the faces of size ry of any dimension.
Finally define the analogue of 7, on R"*¢ by

(6.47) II(2) = (p, 7 (v)) = (7(2), 7L (7(2))) for z = (p,v) € P x V.

We are ready to define the mappings ¢; that will replace the ¢; from Lemma 6.28.
We want to set

(6.48) ¢;(2) = l(¢y(2)) for z € F,
so let us check that this makes sense. If ¢.(2) = z, then its V-coordinate m,(z) lies in

EnNB(z,r) (by (6.7)), hence also in L by (6.45), so mr, (7, (z)) = m,(z) and II(¢:(2)) is not
only defined, but equal to z. For the record,

(6.49) ¢;(z) =z when z € F and ¢¢(z) = z.

If ¢¢(2) # 2, (6.31) says that dist(¢¢(z), Fy) < C. Now Fy C L by (6.7) and (6.45), and we
claim that C in (6.31) is much smaller than n = r(/3. Indeed, the normalization (6.16) says
that 2C1277r = 1, and (6.18) implies that Co277~1r < r/11 < r9/11 (by an assumption
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of Proposition 6.41). Now C5 is huge, much larger than C, which proves our claim. Thus
¢e(z) € LM, I1(¢pe(2)) is defined, and (6.48) makes sense.

We select a very small number p > 0 (which will even depend on the Lipschitz constant
for the ¢), and keep

(6.50) ¢;(2) = ¢1(2) when dist(z, F)) > p
and
(6.51) @i (2) = ¢¢(2) = 2z when t =0, or dist(z, Py x V) > d + 3, or dist(z, Fy) > C,

where C' is as in (6.31). The fact that ¢;(z) = z comes from (6.30) in the first two cases,
and (6.31) in the last one. Notice that (6.51) and (6.48) are compatible, by (6.49). In
addition, (¢,z) — ¢;(z) is Lipschitz (with a very large constant that depends on p) on the
set where we defined it so far, by (6.29) and because II is Lipschitz. Indeed, we need to
estimate |¢;(z) — ¢%(2')|, and the only case where we do not already know the Lipschitz
estimate is when we use two different definitions, i.e., when z € F' and dist(z’, F') > p, or
the other way around.

Next we extend ¢} to R"T? in a Lipschitz way, using the standard proof with Whit-
ney cubes (here their size is at most p because ¢;(z) was defined when z € F' and when
dist(z, F') > p) and partitions of unity. Our extension ¢; thus satisfies (6.29) (by construc-
tion) and (6.30) (by (6.51)).

Let us now check (6.31), and so let z € R"T? be such that ¢} (z) # z for some t € [0, 1].
Because of (6.51), we know that dist(z, Fy) < C. If dist(z, F') > p, (6.50) says that gbt (2) =
¢+(z), and then (6.31) says that dist(z, Fy) < C and dist(¢%(z), Fp) = dist(¢s(z), Fp) < C
for 0 <s<1.

So we may assume that dist(z, F') < p, and we let zg € F be such that |z — z9| < p. By
construction, every ¢*(z) is a convex combination of various values of ¢s(w) or II(¢ps(w)),
where w € B(zg,10p). Since ¢s and II o ¢s are Lipschitz, |II(¢s(w)) — (¢ps(20))| <
Clos(w) — ¢s(z0)| < Cp, with a very large constant C' but that does not depend on p.

If in addition dist(zg, Fp) > d + 3, then ¢(z9) = zo by (6.30), hence II(¢ps(20)) =
?i(20) = 20 by (6.49) and (6.48). Then |¢%(z) — 20| < Cp, and

(6.52) dist(¢%(2), Fo) < dist(zg, Fy) + Cp < dist(z, Fp) + Cp < C + 1

for 0 < s <1, and if p is small enough (recall that dist(z, Fy) < C because ¢;(z) # z for
some t).

Otherwise, if dist(zg, Fy) < d + 3, then dist(¢s(20), Fo) < C for 0 < s < 1, by (6.31)
or (if ¢s(z0) = 2z0) simply because dist(zp, Fp) < d+ 3. Since II coincides with the identity
on Fp, this implies that |II(¢s(20)) — ¢s(20)| < C' dist(¢s(20), Fo) < C”, where now C” and
C" also depend on the Lipschitz constant for II, which is all right because this Lipschitz
constant depends only on the geometry of L. In this case all the ¢s(w) and II(¢s(w)) lie
within C” + Cp of ¢s(zp), and

(6.53) dist(¢%(2), Fo) < dist(¢s(20), Fo) + C" +Cp < C+C" +1
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if p is small enough. That is, the ¢} satisfy (6.31), even though with a larger geometric
constant.

For the analogue of (6.32) we need to check that ¢;(z) € Py x V when z € Fy. We
already know from (6.32) that ¢.(z) € Py x Vj, and (6.48) says that ¢ (z) = I(¢4(2)).
Write ¢.(2) = (p,v), with p = 7(¢¢(2)) and v = m(¢+(2)). Then ¢f(z) = (p, 7L (v)) by
(6.47). We know that p € Py, so we just need to check that 7z, (v) € Vj.

Recall that dist(¢:(2), Fo) < C, either by (6.31) or else because ¢.(z) = z € Fyp.
Choose w € Fy such that |w— ¢¢(2)| < C. Observe that 7, (w) € ENB(x,r) C L, by (6.7)
and (6.45), and so 7y (7, (w)) = 7, (w) by definition of 77,. Now

(6.54) |mr(v) —v| < |mp(v) =7 (e (W) + |70 (w) —v] < Clmg(w) —v] < Clw=¢1(2)] < C

because 7y, is Lipschitz and v = m,(¢:(2)), and where C' is a geometric constant that

depends on the constant in (6.31) and the Lipschitz constant for m7,. So we still can choose

N in the definition of Py and Vj (see the discussion below (6.16)) much larger than this.
Now w € Fy = F N (Py x V) (by (6.19)), and (6.17) says that

(6.55) dist(w, Py x (V. NOB(0,pg)) > N,

so dist(m, (w), VNIB(0,p9)) > N. Recall that Vo = VN B(0, po), so mx(w) € VN B(0, po),
hence in fact 7, (w) € VN B(0, po — N). Since

7z (v) = o (w)] < |mp(v) = v + v = T (w)] < C + v — 70 (w))]

(6.56) = O+ [ma(91(2)) = o (w)] < C + |gu(2) — w| < 2C

by (6.54), because v = 7, (¢p¢(z)) and by definition of w, we get that 71 (v) € VNB(0, py) =
Vo, as needed. This proves (6.32) for the ¢;.

Observe that (6.33) for ¢7 follows from its analogue for ¢y, by (6.48) and because II
is Lipschitz.

As for (6.34), we just need to know that the ¢; (and in fact ¢7 is enough) are Lipschitz
on F'\ (Py x Vp). Indeed, (6.34) (i.e., (x 9.13) in [DS4]) is only used once, near the end of
Section 9.2 of [DS4], to prove (x9.98), and for this we only need the restriction to F. But
then we can use (6.48), and (6.34) for the ¢} follow from (6.34) for the ¢, because II is
C-Lipschitz.

This completes the verification of (6.29)-(6.34), but recall that in addition we need
to check that (1.7) holds, with respect to the quasiminimal set E and the boundaries
Ej = P x L;. That is, we are given z € EnN z]- and 0 <t <1, and we want to check that
¢;(2) € L.

The conclusion is trivial if ¢} (z) = z, so we may assume that ¢;(z) # z. By (6.51),
dist(z, Py x Vo) < d + 3, and hence z € B(z,r/10), by (6.18). In particular, m,(z) €
B(x,r/10). This excludes the case when L; does not meet ENB(x,r/10), because 7, (2) €
ENLj. In the remaining case, j € Jo and L C L; by (6.44).

Return to our z € E N fj. We know that z € B(Z,r/10), so (6.7) says that z € F,
and ¢} (z) = II(¢¢(2)) by (6.48). Therefore ¢j(2) € Px L C P x L; = Ej by (6.47) and
the fact that 77 maps L" to L by definition, and as needed for (1.7).
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We finally completed our list of verifications; now we can apply the fact that E is
quasiminimal, compute as in [DS4], and get the same conclusion as Proposition *8.15
there, which happen to be the same as in Proposition 6.41, which follows. 0]

7. The local uniform rectifiability of £* and bilateral weak geometric lemmas

Our next goal for this section is to extend Proposition 6.41 to the case when only the
assumptions of Theorem 6.1 are satisfied; see Proposition 7.85 below. Then, in Section 8,
we shall take care of the difference between big pieces of bilipschitz images and big pieces
of Lipschitz graphs, and prove Theorem 6.1.

For our first verification, we shall mostly use Proposition 6.41 itself, the smallness or
regularity of the faces that compose the L;, and general knowledge on uniformly rectifiable
sets; Lemma 7.38 will be the only place where we use the quasiminimality of E in this
argument, to show that a quasiminimal set that stays very close to the interior of a d-face
does not have big holes there.

We shall use a characterization of uniform rectifiability by the so-called bilateral weak
geometric lemma. We are given a locally Ahlfors-regular set F' of dimension d, which we
want to study; our main example will be E*, or a piece of E*. First define the standard
P. Jones numbers 3(z,r) by

(7.1) B(x,r) = Br(x,r) = inf

n {1 sup  dist(y, P)},

T yeFNB(x,r)

where x € F, r > 0, and the infimum is taken over all the affine d-planes P through x.
It is just as convenient here to restrict to planes that contain x, even though the other
option could be used too, and would give equivalent results. We shall also use the bilateral
variant

1 1
(7.2)  bB(z,r) =bBp(x,r) = inf {— sup dist(y,P)+ - sup  dist(y, F)},
P r yeFNB(x,r) r yeEPNB(z,r)

where we also account for big holes in the middle of F'. We shall be interested in the size
of the bad sets

(7.3) B(e) = Br(e) = {(z,r) € F x (0,+00) ; bB(z,7) > €}

when ¢ > 0 is small enough, because the local uniform rectifiability of (Ahlfors regular)
sets turns out to be equivalent to Carleson measure estimates on the B(e).

The following result concerns unbounded Ahlfors-regular sets; it will need to be
adapted to the present situation, but gives an idea of what we want to do. We con-
sider a closed (unbounded) Ahlfors-regular set F' of dimension d. This last means that
there is a constant Cy > 1 such that

(7.4) Citrt <HHF N B(x,r)) < Cor® for x € F and 0 < r < 400.

We shall say that ' € BWGL(e,C(g)) (or that F satisfies a bilateral weak geometric
lemma, with the constants € and C(e)) when

dH(y)dt
(7.5) / | st T < o
yeEFNB(z,r) JO<t<r
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for x € F and 0 < r < +4o00.

We say that F' € BPBI(0,Cy) (for big pieces of bilipschitz images) when for all x € F
and 7 > 0, we can find a closed set Gy C FNB(x,r) and a Lipschitz mapping ¢ : Go — R?
such that

(7.6) HY(Go) > 0r? and Cly — 2| < |b(y) — ¢(2)| < Cily — 2| for y, 2 € Go.

Thus this is the same property as in Proposition 6.41, except that there we restricted to
the pairs (x,r) such that 0 < r < Min(rg,d) and B(z,2r) C By, and there was an extra
assumption to get it.

Theorem 7.7. Let I C R" be a closed Ahlfors-regular set of dimension d. If F' &
BPBI(6,Cy) for some choice of § > 0 and Cy > 1, then for everye > 0, F € BWGL(e,C(g))
for some C(e) that depends only on n, Cy (the regularity constant in (7.4)), 0, Ci,
and . Conversely, there exists € > 0, that depends only on n and Cy, such that if
F € BWGL(e,C(¢)) for some C(e) > 0, then there exist # > 0 and Cy > 1, that depend
only on n, ¢, and C(¢), such that F' € BPBI(6,C").

Notice that BWGL(g,C(g)) is smaller when e is smaller, so that in the converse
statement, assuming that F' € BWGL(¢',C(¢’)) for some &’ < € would be enough too.

Theorem 7.7 follows from Theorems 2.4 and 1.57 in [DS3]; see the remark above
Theorem 2.4 (for the fact that only one small € is needed), Definitions 2.2 and 1.69 (for
the BWGL), and (1.60) and (1.61) (for two of the equivalent conditions in Theorem 1.57,
one clearly stronger and one clearly weaker than our BPBI here).

We shall use both parts of the equivalence here. We start with the direct part.

Lemma 7.8. Let E, x € E*, and r be as in Proposition 6.41. In particular, assume that
(6.42) holds. Then for each € > 0

dM(y)dt
(79) / / ]-BE* (e) (3/7 t) # < C(€>7ad7
yeE*NB(xz,r/8) JO<t<r/8

where C(e) depends only on n, M, and €.

We want to deduce Lemma 7.8 from Proposition 6.41 and Theorem 7.7, but a small
localization argument is needed. To this effect, we apply Proposition 7.6 in [DS4]. This is
the same proposition that we used to get the set F in (6.7), but here we shall need to use
it in a more precise way. We apply it to the set E* and the ball B(z,r/2); the assumptions
follow from the local Ahlfors-regularity of E* that we proved in Proposition 4.1.

What we get from Proposition 7.6 in [DS4] is a (bounded) Ahlfors-regular set F' such
that

(7.10) E*NB(z,r/4) C F C E* N B(x,r/2),

and a cubical patchwork for F, i.e., collections of decompositions of F' into pseudocubes
Q, Q € X, like the one we used near (6.9). But this time we shall find it convenient to use
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the fact that our patchwork is adapted to E, in the sense that for every cube @ € U;j>0%;
and every (small) 7 > 0,

(7.11) He({w € Q; dist(w, F\ Q) < 7diam(Q)}) < C7Y/C diam(Q)*.

This is part of (x7.10) in [DS4], and this is a little more precise than the usual “small
boundary condition” on cubes of F', because it also controls the difference between FE and
F. Here C in (7.11) depends on n and M (through the local Ahlfors-regularity constant),
but not on 7.

We want to apply Theorem 7.7, and since F' is not unbounded, we replace it with
F' = FU P, where P is any affine d-plane such that dist(z, P) = 2r. It is easy to see that
F’ is Ahlfors-regular (as in (7.4)), and now we want to check that F' € BPBI(0,C}), for
some choice of # > 0 and C; > 1 which will be just a little worse than the constants of
Proposition 6.41.

So we pick y € F” and t > 0 and try to find a big bilipschitz piece Go in F' N B(y,t),
as in (7.6). If ¢ > 3r or y € P, F' contains a d-dimensional disk of radius ¢/3 (contained
in P), which is a nice choice of Gy for (7.6). So assume that y € F and ¢t < 3r, and try to
find Gog C F. Let @ be a cube of our patchwork such that

(7.12) y € Q C Fn B(y,t/10),

and which is maximal with these properties. Thus (x7.2) in [DS4] says that diam(Q) >
t/C, where C depends on n and M (through the local Ahlfors-regularity constant in
Proposition 4.1). Also recall from (x7.2) that H%(Q) > C~!diam(Q)?; then choose the
constant 7 € (0,1/10) so small (again depending on n and M only) that the right-hand
side of (7.11) is smaller than H%(Q). This allows us to find w € Q such that

(7.13) dist(w, E* \ F) > dist(w, E* \ Q) > 7 diam(Q).

We want to apply Proposition 6.41 to the pair (w,7diam(Q)), so we check the hy-
potheses. First, w € E* because F' C E* (see (7.10)). Next,

(7.14) Tdiam(Q) < 7t/5 < 37r/5 < 3r/50

by (7.12), because t < 3r, and because we chose 7 < 1/10. In particular 7 diam(Q) < r <
Min(rg, §), and also

B(w, 27 diam(Q)) C B(y, 27 diam(Q) + t/10) C B(z, 27 diam(Q) + t/10 + r/2)

7.15
(7.15) C B(z,6r/50 +3r/10 +r/2) C B(z,r) C By

by (7.12), because y € F, and by (7.10) and (7.14). Finally, (6.42) for B(w, T diam(Q))
follows from (6.42) for B(x,r), simply because B(w,7diam(Q)) C B(z,r) by (7.15). So
Proposition 6.41 applies, and gives a set Gy C E* N B(w, 7 diam(Q)), such that

(7.16) H(Gy) > 678 diam(Q)? and 0;41|y—z| <l|o(y)—o(2)| < Cumly—2z| for y, z € Gy.
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This set works in the definition (7.6), because Gy C F' by (7.13). Note that since diam(Q) >
C~t (see below (7.12)), 67 diam(Q)? > 0't? for some #’ that depends only on n and M.
Thus F' € BPBI(0',C)y), as needed, and now Theorem 7.7 says that for every choice of
e > 0, we can find C(e) so that (7.5) holds for F’ (and any ball centered on F’). We just
apply this to the ball B(x,r/8) (which is centered on F’ by (7.10), and get that

dH(y)dt
(7.17) / | st T <sice
yeEF'NB(x,r/8) JO<t<r/8
But F’ coincides with E* on B(z,r/4) by (7.10), so (7.17) is just the same as (7.9).
Lemma 7.8 follows. 0.

We slowly return to the extension of Proposition 6.41 to the situation of Theorem 6.1.
We fix a small ¢ > 0, and want to control the size of Bg«(e), by cutting it into smaller
pieces that we can control. Denote by

(7.18) A ={(y,t) € E* x Min(r¢,6); B(y,2t) C By}

the set of balls that we like to consider. We first get rid of the balls that lie close to a face
of dimension at most d — 1 in our initial net.

Lemma 7.19. Denote by F; the union of all the faces of dimension at most d— 1 of cubes
from the dyadic net that was used to define the L;, and set

(7.20) By = {(y,t) € A; B(y, 10t) meets F} }.
Then
dH(y)dt
(7.21) / | e T <o
yeE*NB(z,r) JO<t<r 13

for (z,r) € A, with a constant Cy that depends only on n and M.

For 0 <t < r, cover F1 N B(x,20r) with balls B;, i € I(t), of the same radius 10t. We
can do this with less than C(r/t)?~! balls, i.e., so that £I(¢t) < C(r/t)?~!. Then the local
Ahlfors-regularity given by Proposition 4.1 yields

dH (y)dt dt
/ R w)dt _ | wiye BBty <10 T
yeEE*NB(z,r) JO<t<r t o<t<r t
PO dt g dt
< HY{E* N B(z,r)N2B;)) — < C HI(t) 4 =
0 t o<t<r t

<t<r icl(t)

(7.22) < Crd—l/ dt < Cr?,
o<t<r

where the fact that H({E* N B(x,r) N2B;)) < Ct? comes from Proposition 4.1 and the
fact that B(x,2r) C By; this proves (7.21). O
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Next we consider the pairs (y,t) € A\ By such that B(y,2t) meets a d-dimensional
face, without staying too close to it.

Lemma 7.23. Denote by F, the union of all the d-dimensional faces of cubes from the
dyadic net that was used to define the L;, and set

By = {(y,t) € A\ Bi; B(y,2t) meets F> but there exists

(7.24) '
w € E* N B(y,2t) such that dist(w, F») > et}.
Then
dH (y)dt
(7.25) / [ e T < oy
yeE*NB(z,r) J0<t<r/10

for (x,r) € A, with a constant Cs(e) that depends only on n, M, and €.

Let (x,r) € A be given; we want to estimate the left-hand side of (7.25), which we
write as

(7.26) A= / / ()t
(y)€Ba(r) T

where By(z,r) = {(y,t) €By;ye B(x,r)and 0 < t < 7’/10}. For each (y,t) € By(z,7)
we use the definition (7.24) to pick w € E* N B(y, 2t) such that dist(w, Fy) > et, and we
set

(7.27) Z(y,t) = E* N B(w,et/2).
Obviously
(7.28) dist(z, Fp) > et/2 for z € Z(y,1).

Also, |w —y| < 2t since w € B(y, 2t), then |w — z| < 2t 4+ < 12r/10, because y € B(z, 1),
S0

(7.29) B(w,et) C B(x,13r/10) C By;
then we can apply Proposition 4.1 to B(w,et) and get that
(7.30) HYUZ(y, 1)) > C~tedt?

By choosing w out of a fixed countable dense subset of E*, we can make sure that the
relation “z € Z(y,t)” is measurable in all variables. Then

d d
(7.31) A< e / / / (—a dH () A (2)dt
(y,t)eB2(x,r) J 2€Z(y,t) t
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Let us use Fubini. In the domain of integration, z lies in E* N B(z, 13r/10) by (7.29), and
then |y — z| < ly —w| + |w — 2| < 2t +¢et. Soy € E* N B(z,3t), whose H%-measure is
less than Ct?, by Proposition 4.1 and because B(z,6t) C B(z,6r/10) C B(x,2r) C By. In
addition, et/2 < dist(z, F») by (7.28), and dist(z, F») < |z — w| + |w — y| + dist(y, F») <
et/2 + 2t + 2t < 5t by (7.24) in particular. Therefore, setting d(z) = dist(z, F») > 0 to
save space,

A< Ce_d/ / t~HYE* N B(z,3t))
z€E*NB(x,13r/10) J5-1d(z)<t<2e~1d(z)

(7.32) < O / / dH(z)dt

B 2€E*NB(x,13r/10) J5-1d(z)<t<2e—1d(z) t

< Ce™%og(10/e) HY(E* N B(x,13r/10)) < Ce%log(10/¢) ¢,

dH(z)dt

by Proposition 4.1, this time applied to a few balls B; of radius /10 that cover B(z, 13r/10),
to make sure that the 2B; are contained in By. This completes the proof of Lemma 7.23.
O

Lemma 7.33. Suppose that € is small enough, depending on n and M. Let (y,t) €
A\ (By UBs2) be such that t < rq/10 and B(y, 2t) meets Fy. Then bBg-(y,t) < 4e.

Let (y,t) be as in the statement. Since (y,t) ¢ By, we know that
(7.34) dist(w, Fy) < et for every w € E* N B(y, 2t).

In particular, dist(y, F») < et and there is a d-dimensional face F' from our usual net such
that dist(y, ') < et. Let us check that

(7.35) dist(y, F") > 8t for every face I’ of the usual net such that F ¢ F'.

Let OF denote the boundary of F'; this is a union of (d — 1)-dimensional faces, and
dist(y, OF) > dist(y, F1) > 10t by definition of F} and because (y,t) ¢ B;. Also let
f € F be such that |y — f| < et; then (3.8) says that

(7.36) dist(f, F') > dist(f,OF) > dist(y, OF) — et > 10t — et > 9t

(in this lemma, we may assume that € is as small as we want, but anyway ¢ > 1 does
not make sense because all the S-numbers are < 1); (7.35) follows at once. Of course this
would be easy to adapt to polyhedral nets.

Notice that (7.35) applies to every d-dimensional face F’ # F' of our net, so dist(y, F5 \
F) > 8t and (7.34) implies that

(7.37) dist(w, F') < et for every w € E* N B(y, 2t).

Now we we need to use the quasiminimality of E to prove that E has no apparent hole
in B(y,t); the next lemma is just a little more general than what we need; also, we shall
need to return to its proof and generalize it in Lemma 9.14.
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Lemma 7.38. Let Cy > 1 be given. Let E € GSAQ(By, M,d,h), and suppose that the
rigid assumption is satisfied and that h is small enough, depending on n, M, and Cy. Let
y € E* and t > 0 be such that 0 < t < Min(rg,d) and B(y,2t) C By. Let P C R™ be a
d-plane, and assume that

(7.39) dist(w, P) < et for w € E* N B(y, 2t)

for some ¢ > 0 that we assume to be small enough, depending on n, M, and Cy. Also
suppose that

(7.40) PN B(y,2t) C L; for every j such that L; meets B(y, 2t)

and that we have a Lipschitz function h : E* N B(y, 2t) x [0, 1] — R™ such that
(7.41) h(w,0) = w and h(w,1) = w(w) for w € E* N B(y,2t),
where m denotes the orthogonal projection on P,

(7.42) |h(w, s) — h(w, s")| < Coet|s — §'| for we E* N B(y,2t) and 0 < s,s" <1,

(7.43) |h(w, s) — h(w',s)| < Colw —w'| for w,w’ € E* N B(y,2t) and 0 < s <1,

and finally

(7.44) h(w,s) € L; for 0 < s <1 whenever w € E* N L; N B(y,2t).
Then

(7.45) dist(p, E*) < et for p € PN B(y, 3t/2)

and

(7.46) m(E* N B(y,5t/3)) contains P N B(rw(y),3t/2).

Of course the simplest choice of path h is to take h(w,s) = sm(w) 4+ (1 — s)w, but it
does not always work, because it may be more efficient to follow the faces of dyadic cubes
to stay in the L; and get (7.44). We keep this type of issues for the next sections.

Let us first check that Lemma 7.38 implies Lemma 7.33. Let (y,t) and F' be as in
Lemma 7.33, let P be the d-plane that contains F'; then (7.39) follows from (7.37).

Next let j < jmar be such that L, meets B(y,2t). Let F’' be a face of L; that
meets B(y,2t); by (7.35), F' contains F. Also, dist(y, F') < et by definition of F, and
dist(y, 0F') > dist(y, F1) > 10t because (y,t) ¢ By or by the end of (7.36), so PNB(y,2t) C
F C F' C Lj, and (7.40) holds.
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We take h(w, s) = sm(w) + (1 — s)w, then h is Lipschitz, (7.41) holds trivially, (7.42)
and (7.43) are true with Cy = 1 because |r(w) — w| < et for w € E* N B(y, 2t), by (7.39),
and because 7 is 1-Lipschitz.

We finally check (7.44), i.e., that [w, 7(w)] C L; when w € E*NL;NB(y,2t). Observe
that P is defined by some equations w; = n;rg, with n; € Z, and that 7 (w) is obtained from
w by replacing the w; such that w; # n;rg with n;rg. When this happens, |w; —n;ro| < et,
because |7m(w) — w| < et. Then [w,n(w)] is contained in any face of any dimension that
contains w (we just replace some noninteger coordinates of ry Lw with other ones that lie
in the same dyadic intervals). We apply this to any face of L; that contains w and get
that [w,m(w)] C L;, as needed for (7.44).

So Lemma 7.38 applies. If we could use P in the definition of b8g«(y,t), (7.39) and
(7.45) would imply that bSg-(y,t) < 2e. We cannot exactly, because maybe P does not
contain y, but dist(y, P) < et by (7.39), so we can use a small translation of P that goes
through y, and we get that bSg«(y,t) < 4e, as needed. Hence Lemma 7.33 will follow from
Lemma 7.38 as soon as we prove it.

Lemma 7.38 is a variant of Lemma 10.10 in [DS4], but we need to modify some things
because of the boundary constraints (1.7). We define a first family of deformations .
First let ¢ : [0, +00) — [0, 1] be such that

t
P(p)=1for 0 < p< %+(C’0+1)8t,
t
(7.47) Y(p) =0 for p > % + (Co + 2)et, and
. ot ot

1 is affine on [§ + (Co + 1)et, 3 + (Co + 2)et].
Then set
(7.48) ws(w) = h(w, sY(|lw—y|)) forw e E* and 0 < s < 1;

the fact that h(w,s) is only defined for w € E* N B(y,2t) is not a problem, because we
can set

(7.49) vs(w) =w forwe E*\ B(y,11t/6) and 0 < s < 1,

where the two definitions make coincide on B(y,2t) \ B(y,11t/6), if ¢ is so small that
2+ (Co + 2)et < 11t/6, because sy(lw — y|) = 0 there. To see that (s,w) — @g(w)
is Lipschitz, we observe that the two definitions yield Lipschitz functions and coincide in
B(y,2t) \ B(y,11t/6).

We shall not use the ¢; as they are, but let us check that they satisfy the properties
(1.4)-(1.8), with the closed ball

(7.50) B = B(y, 11t/6)

and with respect to the set E*. First observe that we just checked (1.4), and that (1.5)
and (1.8) are very easy consequences of the definition.
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For (1.6), let w € B and 0 < s < 1 be given; we want to check that ¢4(w) € B. This
is trivial if ¢4(w) = w, so we may assume that w € B(y, 2t) and ps(w) is given by (7.48).
Then s¢(|w — y|) # 0, and hence |w — y| < % + (Co + 2)et. Notice that

(7.51) lps(w) —w| = |h(w, sp(Jw —y|)) —w| < Coet for w e E* and 0 < s <1

by (7.41) and (7.42) if w € B(y,2t), and because ps(w) = w otherwise. If ¢ is small
enough, ¢,(w) € B when |w — y| < 2 + (Cy + 2)et, as needed for (1.6).

Finally (1.7) holds because if € E* N L; N B and s € [0, 1], then x € B(y,2t) and
ws(x) € L;j by (7.48) and (7.44).

Now we shall assume that (7.46) fails, use this to construct a deformation that com-
pletes the ¢; and makes E* N B(y,t) essentially vanish, and get a contradiction. So let us
assume that we can find

(7.52) p € PN B(n(y),3t/2) \ 7(E* N B(y, 5t/3)).
Observe that
(7.53) (1 (w)) lies out of B(7(y),3t/2) for w € E* N B(y,2t) \ B(y,5t/3)

just because |7 (01 (w)) =7 (y)| > [w—y|—|m(p1(w))—w|—|r(y)—y| > F—| (1 (w))—w|—et
by (7.39) and |7 (1 (w)) —w] < |7 (@1 (w)) =7 (w)|+[7(w) —w] < [p1(w) —w|+[r(w) —w| <
(Co + 1)et by (7.51) and (7.39). Thus

(7.54) pe PN B(rly),3t/2) \ n(E* N B),

where B = B(y, 11t/6) as before, by (7.52) and (7.53). Since E* N B is compact, we can
find 7 > 0 (possibly extremely small) such that

(7.55) PN B(p,7) does not meet w(E* N B).

Define g : PN B(w(y), %)\ B(p,7) = PN OB(x(y), %) as the radial projection centered
at p, i.e., by the fact that

(7.56) g(w) € OB(x(y), %) and w € [p, g(w)].

Also set g(z) = z for z € dB(n(y), 3%); this gives a Lipschitz mapping defined on the

union, and with values in B((y), 3£). We extend g to B(m(y), 3) in a Lipschitz way, with

values in B(m(y), %) (use the Whitney extension theorem, and compose with the radial

projection on B(w(y), 2) if needed). Finally extend g to R™ by setting

ot

(7.57) g(z) =z for z € R" \ B(n(y), 3 ).

This yields a Lipschitz mapping defined on R™, which we still call g.
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Now we define the ¢4, 1 < s < 2, by
(7.58) ws(w) = (2= 8)p1(w) + (s — 1)g(p1(w)) for w € R™ and 1 < s < 2.

Let us check the analogue of (1.4)-(1.8) for the g, 0 < s < 2, with the same choice of
B = B(y,11t/6) and again with respect to E*.

The mapping (s, w) — ¢s(w) is Lipschitz on [1,2] x E*, so (1.4) and (1.8) hold. We
already know that ¢o(w) = w for w € R".

Next, if w € E* \ B, we know from our earlier verification of (1.5) that ys(w) = w
for 0 < s < 1, and in particular ¢;(w) = w ¢ B, hence ¢1(w) ¢ B(r(y), %) (recall that
|m(y) —y| < et), and g(p1(w)) = p1(w) by (7.57). Then ps(w) = w for 1 < s < 2 by
(7.58), and the analogue of (1.5) holds.

If w e B, we know that ps(w) € B for 0 < s < 1; then g(p1(w)) € B because
9(B(n(y), %)) € B(n(y), %) and g(z) = z out of B(w(y), ). So (1.6) holds because the
¢s(w), s > 1, lie on the segment [p1(w), g(¢1(w))] C B.

We are left with (1.7) to check, and again it is nice to do this relatively to E* (and
not the full E). Let j and w € E* N L; N B be given; we want to show that ¢(w) € L;

for 1 < s <2 (we already know this for s < 1). First assume that
5t
(7.59) w € By, 3 + (Co + 1Det).

Then ¥(|lw — y|) = 1 by (7.47) and ¢;(w) = h(w,1) = 7(w) by (7.48) and (7.41). In
particular, ¢1(w) € P\ B(p,7), by (7.55)). If ¢1(w) € B(n(y), %), then g(¢1(w)) is the
radial projection of o1 (w) on dB(w(y), %) (as in (7.56)); otherwise, g(¢1(w)) = ¢1(w) by
(7.57); in both cases, ¢4(y) € [p1(w), g(p1(w))] C PN B (recall that vs(y) € B by (1.6)).
Now w € L;NB C B(y,2t),so PNB C PNB(y,2t) C L; by (7.40) and ¢s(y) € L; when
(7.59) holds.

If (7.59) fails, w € B\ B(y, 3 + (Co + 1)et). Then 1 (w) lies out of By, 3 + t) by
(7.51), hence also out of B(w(y), ). In this case, g(1(w)) = ¢1(w), hence (7.58) and
(1.7) for 0 < s < 1 yield ps(w) = p1(w) € L;, as needed.

This completes our proof of (1.7) for the ps, 0 < s < 2. Note also that (2.4) holds,
because W C B CC By since we assumed that B(y,2t) C By. We can now apply (2.5),
because Proposition 3.3 says that E* is quasiminimal just like £. This is one instance
where we use Proposition 3.3 for real; of course we could also have assumed that (7.41)-
(7.45) hold with the whole E}, or worked more here to extend our ¢; correctly. Anyway,

we get that
(7.60) HEYW,) < MH (o Wo)) + hr,

where we set Wa = {w € E* N B; p2(w) # w} as in Definition 2.3.
Let us first control 3 on 4y = {w € E*N2B; ¢1(w) € B(n(y), %) }. We claim that

(7.61) wa(A1) C PNAB(n(y),5t/3).

Indeed, let w € Ay be given. Recall that |7(y) — y| < et by (7.39) and |¢1 (w) —w| < Coet
by (7.51), so w C B(y, 3 + (Cy + 1)et) because ¢1(w) € B(m(y), 3). Then ¢(jw —y|) =1
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by (7.47), so p1(w) = h(w,1) = w(w) by (7.48) and (7.41). Also, m(w) € P\ B(p,7) by
(7.55), so altogether ¢1(w) = m(w) € PN B(x(y), %)\ B(p,7). This is the case when
g(p1(w)) = g(m(w)) is the radial projection of m(w) on dB(w(y), ), as in (7.56). But

173
p2(w) = g1 (w)) by (7.58), so pa(w) € PNIB(w(y), 3L), as needed for (7.61).
We like (7.61) because it immediately implies that
(7.62) H(pa(A1)) = 0.
Also,
. 5t
(7.63) E* N B(y, 3~ (Co+ 1et) C Ay NWo

3
and because |7(y) — y| < et), hence w € Ay; in addition w € B(n(y), 2) and @s(w) €

because if w € E* N B(y, % — (Co + 1)et), then ¢1(w) € B(n(y), %) (again by (7.51)
'3 )

OB(m(y), 3) by (7.61), so pa(w) # w and w C Wa.
Next consider

5t
(7.64) Ao = E" N B(y, 5 + (Co+2)et) \ Av,

Notice that Aj is fairly small, because it is contained in E*NB(y, 3 +(Co+2)et)\ B(y, 3 —
(Co + 1)et) (by (7.63)), and in an et-neighborhood of P by (7.39). So we can cover A,
by less than Ce~*! balls B; of radius (Co + 10)et, centered on the (d — 1)-dimensional
sphere P N OB(y, 3). Proposition 4.1 says that HY(E N B;) < C(Coet)? for each I (recall
that Cy > 1), so

(7.65) H(Ay) < CClet?,
But we mostly need to control s(As), so let us prove that
(7.66) g is 2Cy-Lipschitz on As.
First we check that
(7.67) w2(w) = p1(w) = h(w,Y(Jw —y|)) for w € A,.
Indeed ¢1(w) ¢ B(m(y), %) since w ¢ Ay, then g(¢1(w)) = ¢1(w) by (7.57), and so
w2 (w) = g(p1(w)) = ¢1(w) by (7.58). The last identity comes from (7.48).
Now let w,w’ C As, be given, and set a = ¥(|w — y|) and o’ = P (Jw’ — y|), where ¥

is still as in (7.47) and (7.48). Thus |a’ — a| < (et) 7w’ — w|. Now

|p2(w) — @2(w')] = [h(w, a) — h(w',a’)|
(7.68) < |h(w,a) — h(w,d’)| + |h(w,a") — h(w',a")|
< Cpet|a’ — a| + Co|w’ — w| < 2CH|w" — w)
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by (7.67), (7.42), and (7.43). This proves (7.66).
Next we check that

(7.69) p2(w) =w for w= E*\ B(y, % + (Co + 2)et)

Indeed ¥(|lw — y|) = 0 by (7.47), hence ¢1(w) = w by (7.48) or (7.49), and so ¢a(w) =
g(¢1(w)) = g(w) by (7.58). But w C R™\ B(y, %), so g(w) = w by (7.57) and as needed
for (7.69).

By (7.69) and (7.64), W = {w € E* N B; pa(w) #w} C A; U Ay, and

(7.70) H (2 (W) < H(p2(As)) < 2°CHH(Az)) < CCFlet?

by (7.62), (7.66), and (7.65). On the other hand,

(7.71) HI(W,) > HYE* N B(y, % —(Coy+1)et)) > C 14

by (7.63) and Proposition 4.1, and so (7.70) and (7.71) contradict (7.60) if h and ¢ are
chosen small enough, depending on M, n, and Cy. So we were wrong to assume that there
exists p so that (7.52) holds, and this proves (7.46).

Now (7.45) follows from (7.46), because for p € P N B(y,3t/2), we can find w €
E*NB(y,5t/3) such that 7(w) = p, and |p—w| = |r(w)—w| < et because dist(w, P) < et by
(7.39). Lemma 7.38 follows, and also Lemma 7.33 (see the comments below the statement
of Lemma 7.38). OO

We are finally in position to gather the estimates on the various bad sets and resume
our proof of Theorem 6.1. We start with a control on the bad sets Bg-(¢) of (7.3).

Lemma 7.72. Let E, x € E*, and r be as in Theorem 6.1. Then for each € > 0

(7.73) / / 18,. () (Y1)
yeE*NB(z,r/4) J0<t<r/10

where C(e) depends only on n, M, and ¢.

d
dH*(y)dt < (),

Obviously it will be enough to prove (7.73) for Bg«(4¢) instead of B« (g). Also, we
may as well suppose that ¢ is small (depending on n and M), because Bg-«(4¢) is larger
when ¢ is smaller (see the definition (7.3)).

Let z, r, and € be as in the statement, and set

(7.74)  B=B(4e,z,r) = {(y,t) € Bg~(4e); y € E*N B(z,r/4) and 0 < ¢t < r/10};

then (7.73) is the same as

d
(7.75) //( s w < C(e)r.
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Clearly B C A, with A as in (7.18), because t < r < Min(r¢,d) and B(y,2t) C B(z,2r) C
By. The set BN By is taken care of by Lemma 7.19, and similarly B N B; is controlled by
Lemma 7.23. So we just need to show that

d
(7.76) / /( e w < C(e)r,

with B/ = B\ (By U Bs). Notice that if (y,t) € B’, then bSg«(y,t) > 4e because (y,t) €
Bg-(4e) (see the definition (7.3)), and then Lemma 7.33 says that B(y,2t) does not meet
F5. That is,

(7.77) B C {(y,t) € A; y € E* N B(z,r/4), t <r/10, and B(y,2t) does not meet F5}.
At this point, we want to cut B’ into smaller sets for which we can apply Lemma 7.8,

and for this a covering of E* N B(x,r/4) \ Fa will be useful. For z € E* N B(xz,r/4) \ Fy,
set

(7.78) d(z) = Min(r,dist(z, F3)) > 0

and B, = B(y, Ci(ozo))' Then select a maximal set Z C E* N B(x,r/4) \ F3 such that

(7.79) the B,, z € Z, are disjoint.

For each y € E* N B(x,r/4) \ Fa, we select z = 2(y) € Z so that B, meets B,; such a z
exists by maximality of Z, and it is easy to select z(y) in a measurable way, because Z is
at most countable. Then cut B’ as

(7.80) B =] B),
zeZ
where
(7.81) B'(z) ={(y,t) € B'; 2(y) = z}.

Fix z € Z for the moment. We want to apply Lemma 7.8 to the quasiminimal set E*
and the pair (z,d(z)/2), so let us check the hypotheses. We know from Proposition 3.3
that E* € GSAQ(By, M, 6, h), just like E, but with E* (6.42) will be easier to check. First
recall that z € E* N B(z,r/4) and d(z) < r; hence the first assumptions that z € E* N By,
0 < d(2)/2 < Min(rg,9d), and B(z,d(z)) C By follow from the similar assumptions for
(x,7). Now we check the main assumption (6.42). Let j be such that L; meets B(z, d(z)/2);
we want to show that £* N B(z,d(z)/2) C Lj.

Recall from (7.78) that dist(z, F») > d(z), where F, denotes the union of all the
d-dimensional faces of cubes from our dyadic grid (see Lemma 7.23). This means that
the faces of L; that meet B(z,d(z)/2) are at least (d + 1)-dimensional. We know that
there is at least one face like this, because we assume that L; meets B(z,d(z)/2). But
B(z,d(z)/2) C B(z,r) (because d(z) < r); then the main assumption (6.2) says that
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E* N B(x,r) C Lj, which is enough for (6.42). So we may apply Lemma 7.8, and we get
that

dH (y)dt

(7.82) 15,. (4c) (¥, 1) < C(4e)d(2)".

/yEE*ﬂB(z,d(z)/w) /O<t<d(z)/16

Return to B'(z). If (y,t) € B'(z), then 100|z — y| < d(z) + d(y) because B, meets B,
when z = z(y); since d(y) < d(z)+|z—y| by (7.78), we get that 100z —y| < 2d(z)+|z —y|,
and hence |z — y| < d(z)/49 and also d(y) < d(z) + |z — y| < 533 d(=).

If in addition ¢ < d(z)/16, (y,t) lies in the domain of integration of (7.82) (see (7.74)
and the definition of B’ below (7.76)) and it will be taken care of by (7.82). Otherwise,
observe that B(y,2t) does not meet Fy (by (7.77)). If d(y) = dist(y, F»), this shows that

t < d(y)/2 < d(z)/3. Otherwise d(y) = r, so d(z) > 49§(y) > 4¢ In this case too

t < d(z)/3, because t < r/10 when (y,t) € B'. Altogether

d d
// dH (y)dt < C(45)d(z)d+/ / dH(y)dt
(y,t)EB!(2) 13 yEE*NB(z,d(2)/49) Jd(2)/16<t<d(z)/3 t
(7.83) < C(4e)d(2)? 4 In(16/3) HU(E* N B(z,d(2)/49)) < C'(e)d(2)?

by Proposition 4.1 (recall that B(z,d(z)) C B(x,2r), so B(z,d(z)/49) is not too large).

We now use (1 80) and sum over z:
// B d
(y,t)EB’(2) t

/ / dH (y
woes b zeZ

< CC'(e) Y HYUE*NB.) < CC'(e)r"

z€Z

(7.84) 2€2

by Proposition 4.1, and because the B, are disjoint (by (7.79)) and contained in B(x,r).
This is (7.76), and Lemma 7.72 follows. O

Next we use Theorem 7.7 to prove the analogue of Proposition 6.41 under the (weaker)
assumptions of Theorem 6.1. A more direct approach to Theorem 6.1 is also possible, using
the weak geometric lemma and big projections now, but the next proposition is really a
logical consequence of Lemma 7.72.

Proposition 7.85. Let F, © € E*, and r be as in Theorem 6.1 (again with h small
enough, depending on M and n). Then there is a closed set Gy C E* N B(x,r) and a
mapping ¢ : Go — R such that

(7.86) HYGo) > 0r® and Oy |y — 2| < |o(y) — ¢(2)| < Curly — 2| for y, z € Gy,
where 8 > 0 and C); depend only on M and n.

In other words, we can find, in E*NB(x,r), a big piece of bilipschitz image of a subset
of R?. Proposition 7.85 really follows from Lemma 7.72 and the proof of Theorem 7.7, but
we need a localization argument so that we can use the statement of Theorem 7.7 as it is.
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Let E, x € E*, and r be as in Proposition 7.85 or Theorem 6.1; let use again Propo-
sition 7.6 in [DS4], as we did for the proof of Lemma 7.8 but applied to a slightly smaller
radius, to find a bounded Ahlfors-regular set F' such that

(7.87) E*N B(z,r/16) C F C E* N B(x,r/8).

Since we want an unbounded Ahlfors-regular set, we consider the set I/ = F U H, where
H is a d-plane such that dist(z, H) = r. We want to use Theorem 7.7, so let us prove that
for every small ¢ > 0, there is a constant C(e), that depends only on n, M, and &, such
that F' € BWGL(e,C(e)).

So we let (x1,71) C F’ x (0,400) be given; we want to prove that

d
(7.88) / /( e M < C(e)ré,

where B = {(y,t) € (F'NB(z1,71)) x (0,71); bBr: (y,t) > £}. We shall need to cut B into
many pieces, to control various interfaces, but let us start with the most interesting case
when x; € B(z,7/8) and 1 < r/40. Then the main piece is

(7.89) By = {(y,1) € B; dist(w, F) < %t for w € E* N B(y,21)).

We claim that b8g«(y,2t) > /4 for (y,t) € By. Notice that y € E* because F' C E*, so
at least bfg~(y,2t) was officially defined in (7.2). If bSg-(y,2t) < /4, there is a d-plane
P through y such that

(7.90) sup dist(w, P) + sup  dist(y, E¥) < et/2;
weE*NB(y,2t) wePNB(y,2t)
but
(7.91) sup  dist(w, P) < sup dist(w, P)
weF'NB(y,t) weE*NB(y,2t)

because F' N B(y,t) = FN B(y,t) C E* N B(y,t), and

t
(7.92) sup dist(y,F') < sup dist(y,F) < sup  dist(y, E¥) + =
wePNB(y,t) wePNB(y,t) wePNB(y,t) 2

because F' C F' and by definition of By, which contradicts the fact that (y,t) € B. Now
(7.93)

dH (y)dt dH(y)dt
// (y) < / / 1BE*(E/4) (y,2t) & < C(é)rf,
(y:t)EB1 t yeFNB(z1,r1) JO<r<ry t

where the last inequality comes from Lemma 7.72, applied to the pair (z1,20r;).
Then we need to control B\B;. To (y,t) € B\B; we associate z = z(y,t) € E*NB(y, 2t)
such that dist(z, F) > &, and the set A(y,t) = E* N B(z, % ). We can choose z(y,t) and
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A(y,t) in such a way that (y,t,w) — 14+ (w) is measurable, for instance by choosing the
first available z from a sufficiently dense countable set in E*. Notice that if w € A(y,t),
then |w — y| < 3t and t < 6~ dist(w, F). In addition, t > |w — y|/3 > dist(w, F)/3
because y € F', so that

(7.94) t € T(w) = (0,71] N [dist(w, F)/3,6c ™ dist(w, F)]

(recall that 0 < t < ry for (y,t) € B). Finally w € B(z1,4r1) because y € B(z1,71). Now
multiple uses of Proposition 4.1 yield

d d AH(y)dHY dt
// B <C// [ (e )
(y,t)EB\ B, (y,0)EB\B1 JweA(y,t) t
() dH (w)dt
<ce [ O (y)dH (w)
. td+1
weE*NB(z1,4r1) Jte€T (w) Jye FNB(w,3t)

dH (w)dt
< 0(6)/ / dH (w)dt
weEE*NB(x1,4r1) Jt€T (w) t

< C(e) In(18/¢) / M (w) < C(e)rd,

weE*NB(x1,471)

(7.95)

as needed for (7.88).

This proves (7.88) when z1 € B(x,r/8) and r; < r/40. When z; € H and r; < r/40,
F’ coincides with H on B(x1,2r1), and B = (). This settles the case when r; < r/40
because F' C B(x,r/8) by (7.87). So assume now that ry > r/40.

Note that bBg: (y,t) < e for y € F’ and t > 10~ !r, simply because we can use H in
the definition of b3r(y,t), and by (7.87). Thus B = By U Bz, where By = {(y,t) € B; 0 <
t <r/40} and Bz = {(y,t) € B; r/40 < ¢t < 10e~'r}. Since bBp:(y,t) = 0 when y € H
and 0 < t < r/40,

dH (y)dt dH (y)dt
// ( ) S/ / 1BF(E)<y7t)#
(7.96) (y,t)€B2 t yeF Jo<t<r/40 t

< C(e)r? < C(e)40™,

where the main inequality comes from the case of z; = x and r; = r/40, which was treated
before. And

/ / dH(y)dt / / dH (y)dt
(797) (y,t)eB3 t yeEF'NB(x1,r1) Jr/40<t<10e~1r t

< C(e)HUF' N B(xy,1m)) < Ce)rd

This completes our proof of (7.88), from which we deduce that F' C BWGL(e,C(¢))
and, by Theorem 7.7, that F' € BPBI(0,C)y) for some choice of § > 0 and Cj; > 1 that
depend only on n and M. The reader should not be surprised not to see € any more; recall
that only one value of ¢ is needed, that depends on M and n through the Ahlfors-regularity
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constants for F’. We apply the definition (7.6) of BPBI(0, Cyy) to the pair (z,r) and get a
set Go C FNB(x,r) C E*NB(x,r) (by (7.87)); then G satisfies (7.86), and this completes
our proof of Proposition 7.85. O

8. Big projections and big pieces of Lipschitz graphs

We shall complete the proof of Theorem 6.1 in this section, with the help of yet another
theorem of uniform rectifiability that we state now, in its initial context of unbounded
Ahlfors-regular sets. First we need to define the weak geometric lemma, big projections,
and big pieces of Lipschitz graphs for such sets.

Let FF C R™ be an (unbounded) Ahlfors-regular set of dimension d; this means that
F is closed and (7.4) holds. Let Bp(x,r) be the P. Jones number defined in (7.1), and set

(8.1) Mp(e) = {(z,r) € F x (0,400); B(z,7) > ¢}

for 0 < ¢ < 1. We say that F € WGL(e,C(e)) (or that F' satisfies a weak geometric
lemma, with the constants € and C(¢)) when

(8.2) / / Lotoio (9:1)
yeEFNB(z,r) JO<t<r

for z € F and 0 < r < +o00. This is the same thing as the bilateral weak geometric lemma,
but with the smaller functions g (z,r) that only check whether every point of F'N B(z, )
lies near a plane.

We say that F' € BP(«) (for big projections) if for every choice of x € F and 0 < r <
400, we can find a d-plane P such that

W < C(g)rd

(8.3) HY(n(F N B(x,r))) > ar?,

where 7 denotes the orthogonal projection on P.

Finally, we say that F' € BPLG(0, A) (for big pieces Lipschitz graphs) when for all
x € F and r > 0, we can find a d-dimensional A-Lipschitz graph I' C R™ (which means,
the graph of some Lipschitz function which is defined on a d-plane P, with values in P+,
and with a Lipschitz constant at most A) such that

(8.4) HYFNT N B(x,7r))) > ord.

This property is slightly, but in general strictly stronger than uniform rectifiability (or
equivalently BPBI). The following is Theorem 1.14 on page 857 of [DS2].

Theorem 8.5. Let ' C R" be a closed unbounded Ahlfors-regular set of dimension d. If
F € BP(«) for some o > 0 and F € WGL(e,C(¢g)) for some small enough ¢ (depending
only on n, «, and the constant Cy in (7.4)), then F' € BPLG(6, A), where § > 0 and A > 0
depend only on n, «, €, and C(g).

Proof of Theorem 6.1. Let E, x, and r be as in Theorem 6.1, and let F' and F’' =
F U H be the Ahlfors-regular sets that we already used for Proposition 7.85. Thus E* N
B(z,r/16) C F C E*NB(x,r/8) as in (7.87), and H is a d-plane such that dist(x, H) = r.
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We want to say that F' € BPLG(0, A) for some choice of § and A, so let us check
that F/ € WGL(e,C(e)) N BP(«). In fact, we already know that F' € WGL(e,C(¢))
with ¢ as small as we want, because we even checked in (7.88) that F' € BWGL(e,C(e)),
which is obviously stronger. So we just need to check that F’ € BP(«) for some o > 0,
that depends only on n and M.

So let 1 C F’ and r; > 0 be given; we want to find P = P(x1,r1) such that, as in
(8.3),

(8.6) HY(w(F' N B(z1,7m1))) > arf,

where 7 denotes the orthogonal projection on P. The case when x1 € H or x1 € F but
r1 > 4r is trivial, because we can take P = H, so let us assume that

(8.7) x1 € F and 0 < ry < 4r.

The idea is to find a pair (z2,72) to which we can apply Lemma 7.38, and deduce (8.6)
from (7.46). Let us state what we need.

Lemma 8.8. Theorem 6.1 will follow as soon as we prove the following. For each € > 0,
there is a small constant c., which depend only on M, n, and ¢, such that if x € E*, r, F,
x1 € F, and ry < 4r are as above, then we can find x5 € FNB(x1,r1/10), ro € [cer1,71/10],
and a d-plane P such that the assumptions of Lemma 7.38 (relative to the pair (za,r2))
are satisfied, and

(8.9) HYE* N B(xy,2r3) \ F) < erd.

To prove the lemma, we assume the existence of (z2,72) and check (8.6). Since
Lemma 7.38 applies (if A is small enough, depending on M and n), we get a plane P such
that (7.46) holds, and then

Hd(ﬂ(F’ N B(xzy,7r1))) > Hd(ﬂ(F N B(xy,2r3))) > ’Hd(W(E* N B(x,2r3))) — érg

8.10
(8.10) > HYP N B(xa,3r2/2))) —erd > C74rd > C(e)r

by (8.9), if ¢ is small enough, and because ro > c.r;. Then (8.6) holds, F’ has big
projections, and Theorem 8.5 says that it contains big pieces of Lipschitz graphs too. We
apply the definition (8.4) to the ball B(z,r/16), and the Lipschitz graph I' such that
HYF' NT N B(x,r/16))) > 16-90r? also works for Theorem 6.1, except that we need to
divide 4 by 16<. O

So we are left with the assumption of Lemma 8.8 to check. That is, we are given
x1 € F and 1 < 4r as above, and we want to find a pair (z2,72). We shall produce first an
intermediate pair (yo, to), with better regularity properties than (x1,r;). These properties
will be stated in terms of a very small ¢y < ¢, which will be chosen later, depending on n,
M, and €.

Recall that I} denotes the union of all the faces of dimension at most d — 1 of cubes
from our usual dyadic net (see Lemma 7.19), and F3 is the union of all the d-dimensional
faces of cubes from that net, as in Lemma 7.23.
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Lemma 8.11. There exists a constant c(eg) > 0, that depends on n, M, and €y, such
that for (x1,r1) as above, we can find (yo,to) with the following properties:

(8.12) Yo € F'N B(x1,71/200) and c(eg)r1 < to < 11/100,

(813) diSt(yo,Fl) > 10t0,

(8.14) if B(yo,2ty) meets Fy, then dist(w, Fy) < eotg for w € E* N B(yo, 2tp),
(8.15) bBE=(yo,to) < o,

and

(8.16) HY(E* N B(yo, 2to) \ F) < eotd.

The lemma will follow from more Carleson packing estimates. Let
(8.17) Ao ={(y,t); y € FN B(z1,71/200) and 0 < ¢ < r/200}
be a little smaller than the set of pairs that we want to pick from; notice that it is contained

in the set A of (7.18). Let B; and Bs be as in (7.20) and (7.24), except that we replace €
with €¢ in (7.24); we know from Lemmas 7.19 and 7.23 that

d
(8.18) // dH(y)dt < C(go)rd.
(y,t)€A0\B1UB> t
Next set
(819) Bs = {(y,t) e Ay ; bBE« (y,t) > 60}.

Since 1 € F C E* N B(x,r/8) and 0 < r1 < 4r by (8.7), the pair (x1,r1/8) satisfies the
assumptions of Lemma 7.72 (in particular because (6.2) is hereditary), so we get from that
lemma that

dH (y)dt
(8.20) // AW _ oy
(y,t)EBs t
Next we want to check that
dH(y)dt
(8.21) // AW oy
(y7t)684 t
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for the set

(8.22) By = {(y,t) € Ag; HY(E* N B(y,2t) \ F) > ot}
Let us first find, for each pair (y,t) € By, a point z(y,t) such that
(8.23) 2(y,t) € E*N B(y,2t) and dist(z(y,t), F) > 24t,

where the very small constant v > 0 will chosen soon, depending on ¢y as well.

For this we need to know that E* \ F' is not too dispersed, and we are going to use
again the dyadic patchwork that is provided for us by Proposition 7.6 of [DS4], and that
we rapidly described near (6.7) and (7.10). This time, we shall need the other part of the
small relative boundary condition (x7.10) (that is, (7.10) in [DS4]), namely the fact that
for every cube @) of our cubical patchwork for F

(8.24) H({w € B*\ Q; dist(z, Q) < 7diam(Q)}) < C7Y/¢ diam(Q)?

for every (small) 7 > 0, with a constant C' that depend only on M and n.

Return to the pair (y,t) € By, and denote by @Q;, i € I, the collection of maximal
cubes of the patchwork such that Q; N B(y,3t) # 0 and diam(Q;) < t. These sets are
disjoint (by (%7.3) and maximality), and since diam(Q;) > t/C (by maximality and the
size property (¥7.2)), we get that H4(Q;) > C~1t? (by the second part of (x7.2)) for i € I.
But HY(U;erQ;) < HYF N B(y,4t)) < Ct? by Proposition 4.1, and hence I has at most
C elements.

Suppose we cannot find z(y, t) such that (8.23) holds. Then each z € E*NB(y,2t)\ F
lies within 2+t of F'N B(y, 3t), so dist(z,Q;) < 2+t for some i € I. Recall that diam(Q;) >
C~, so z lies in the set of (8.24), with 7 = 2C~yt. We get that

(8.25) HYE* N B(y,2t) \ F) <> C7"/% diam(Q)? < C'rV/“t4 < ot

iel
by (8.24), and if 7 is chosen small enough, depending on €. [And this is how we choose
~.] This contradiction with the definition (8.22) shows that we can find z(y, t) as in (8.23).

We may now prove the Carleson measure estimate (8.21) in the usual way. Denote by A
the right-hand side of (8.21); then

(8.26) A<C// (")/t)_d/ dH (y)dH (w)dt
N (y,t)EBs wEE*NB(2(y,t),7t) 13

because HA(E* N B(z(y,t),vt) > C~1(yt)? by Proposition 4.1. Then apply Fubini. Notice
that w € E*NB(x1,71/10) because z(y,t) € B(y,2t),y € FNB(x1,71/200), and t < r1/200
by (8.17). Next 2yt < dist(z(y,t), F) < dist(z(y,t),y) < 2t by (8.23) and because y € F,
so vt < dist(w, F) < 3t and t € T'(w) = (0,71,/200] N [dist(w, F')/3, dist(w, F) /7]. Finally,
ly —w| < |y —2(y,t)| + vt < 3t, and (8.26) yields

d d
A< Cv—d/ / t—d/ dH (w)dtdH(y)
weEE*NB(x1,r1/10) JteT (w) yEFNB(w,3t) t
d
< Cv_d/ / dH* (w)dt
wEE*NB(x1,r1/10) JteT(w) t

< Cy 4 1n(3/7) HYE* N B(x1,7r1/10)) < C(g0) ¢

(8.27)
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by Proposition 4.1 again. This proves (8.21).
Let us finally use our Carleson estimates to find a pair (yg, tp) such that

(828) (y07t0) C .Ao \ [Bl U BQ U Bg U 84] and to Z 0(60)7’1
where as usual ¢(gg) > 0 depends on M, n, and 3. Observe that

dH(y)dt dt
// A (y)dt _Hd(FﬂB(xbﬁ/QOO))/
(8.29) (y,t)€Ao ; to>c(e0)r1 t c(eo)ri<t<ry/200 1

> C1r91n(200/¢(ep))

by (8.17) and Proposition 4.1. If we choose ¢(g) small enough, the right-hand side of (8.23)
is larger than the sum of the right-hand sides of (8.18), (8.20), and (8.21), and then the
domain of integration in (8.29) is not contained in By U By U B3 U B4, which means that we
can choose (Yo, %) as in (8.28). The pair (yo, o) satisfies (8.12) by (8.17) and (8.28), and
(8.13)-(8.16) by definition of the B;; Lemma 8.11 follows. O

We now use the new pair (yo, tp) to find the pair (z2,72) demanded by Lemma 8.8.

A first possibility is that B(yg,2tg) meets F. Then dist(w, F5) < 4egty for w €
E* N B(yo,2ty) (almost as in (7.34)), and the proof of Lemma 7.33 (both before and just
after the statement of Lemma 7.38) applies, and says that we can apply Lemma 7.38 to
the pair (y,t) = (yo,to) itself, with Cy = 1 and if we took 4ey < . In this case we may
take (z2,72) = (yo,t0) in the statement of Lemma 8.8, and (8.9) holds by (8.16).

So we may assume that

(830) B(yo, 2t0) N F2 = @
Set
(8.31) J={j €10, jmaz); Lj N B(yo,2ty) # 0} and L = NjecsL;.

Notice that J # () because E C Ly = Q. Let j € J, and let A be any face of our grid
that is contained in L; and meets B(yo, 2tp). Such a face exists by definition of J, and by
(8.30) A is more than d-dimensional. Since L; N B(x,r) D AN B(yo,2ty) # 0, (6.2) says
that E* N B(yo,2ty) C E* N B(x,r) C L. Hence E* N B(yo, 2tg) C L; for j € J. That is,
(8.32) E* N B(yg,2ty) C L.

Since there are at most C faces contained in L and that meet B(y, 2tg), we can find such
a face A C L, so that

(8.33) HY(E* N B(yo, to/2) N A) > CT'HY(E* N B(yo, to/2)) > C~ 't
by Proposition 4.1. We claim that we can find d + 1 points
(834) wo,...,wdGE*HB(yo,t0/2)ﬂA,
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so that for 1 <1 <d,
(8.35) dist(w;, P(wo, ..., w;—1)) > cto,

where P(wy, ..., w;—1) denotes the affine subspace of dimension {—1 spanned by wy, ..., w;_1
and ¢ > 0 is a constant that depends only on M and n. Indeed, if we cannot find some
wy, the whole E* N B(yo,t0/2) N A lies within cty of P(wy,...,w;—1) N B(yo,to) and can
be covered by less than Cc™!*! balls of radius 2¢ty. Then HI(E* N B(yo,to/2) N A) <
Ce= " (etg)? < Cetd by Proposition 4.1, and this contradicts (8.33) if ¢ is small enough;
this proves the claim.

Set P = P(wy,...,wq), and denote by W the convex hull of the w;; thus

(8.36) W C PNA,

because A is convex and contains the wy.
Recall that bBg-(yo,t0) < €0 by (8.15); so there is a d-plane P’ through gy such that

sup { dist(w, P'); w € E* N B(yo, to) }

+ sup { dist(p, E*); w € P'N B(yo,to)} < goto.
In particular, we can find d + 1 points p; € P’, 0 <1 < d, such that |p; — w;| < eoto.

By a simple but slightly unpleasant verification using the affine independence estimate
(8.35), we get that P is Cegto-close to P in B(yo, 10ry), i.e., that

dist(p, P") < Ceptg for p € P N B(yo, 10rp)

(8:38) and dist(p’, P) < Ceptg for p' € P’ N B(yg, 107¢).

The idea is simply that we can compute P and P’ from the position of the w; and the
pi, in a stable way. If we were to do the computation, we would take coordinates where
P = {de ==z, = O}, observe that the p; — pg, 1 <1 < d, form a basis of Vect(P’),
write any unit vector v € Vect(P') as v =), a;(p; — po), with bounded coefficients a;, get
that the coordinates v;, [ > d + 1 are all less than Ceq, and then conclude. From (8.38)
and (8.36) we deduce that

(839) dist(w, P) < Céoto for w € E'Nn B(y07t0).
1

Also set w = i1 lz:; wy ; obviously

(840) we PN B(yo,to/Q)

by (8.34), (8.36), and convexity, but another easy consequence of (8.35) that we leave to
the reader is that

(8.41) B(w, Coto) NP CW,
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where ¢g € (0, 1) is another small constant that depends on M and n, but not on ¢ or .
We want to choose

(8.42) o € FN B(w, Coto/lOO)

so we pick p € P’ such that |p — w| < Cegtg, (which exists because w € P N B(yog, to/2)
and by (8.38)), and then £ € E* such that |£ — p| < goto (by (8.37)). By Proposition 4.1
and (8.16),

(8.43) HYE* N B(&, cotg/200)) > O edtd > eotd > HAU(E* N B(yo, 2to) \ F)

if £ is small enough, so we can find zo C F N B(&, cotp/200); then (8.42) holds because
|§ — w| < Cepty < Cot0/200.

We choose x5 as in (8.42), and ry = ¢oto/10, and now we need to check that it satisfies
the conditions mentioned in Lemma 8.8. First notice that

(844) 000(60)7‘1/10 S C()to/lo =T § to/lo S 7'1/1000
by (8.12), so the size of 7o is correct. Next,

2t 2
(845) |372 - y0| < ‘332 - w| + ’w - y0| < Coto/lOO —|—t0/2 < ?O < %
by (8.42), (8.40), and (8.12), and since in addition |y — 1| < r1/200 by (8.12), we easily
get that x5 C B(z1,71/10) (as needed).
Next we prove (8.9). Notice that

9o

ot
(8.46) B(xa,2r2) C Blyo,2r2 + =) C B(yo, 0

) )

by the beginning of (8.45) and because 12 = coto/10, so
(8.47)  HYE* N B(x,2r:) \ F) < HY(E* N B(yo, to) \ F) < eotd = g010%; s < ergd
by (8.16) and if €y is chosen small enough; so (8.9) holds.

We still need to check that (zo,72) satisfies the hypotheses of Lemma 7.38, with the
same P as above. First, (7.39) follows from (8.39) if g < ¢pe/10, because ro = coto/10

and B(z2,2r2) C B(yo,to) by (8.46).
Next, suppose that L; meets B(xz2,2r2). Then j € J (see (8.46) and (8.31)), and

(8.48) PN B(xg,3ry) C PN B(w,cotg) CW CACLCL;
by (8.42) and because ry = cotp/10, then by (8.41), (8.36), the definition of A, and (8.31).
This proves (7.40).

Now we construct h : E* N B(x2,2r2) x [0,1] — R™, with the properties (7.41)-(7.44).
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Let w € E* N B(x2,2r2) be given. By (8.39) and (8.46), |m(w) — w| < Ceptg. Then
(8.49) m(w) € PN B(xg,2ry + Cegty) C A

by (8.48), so dist(w, A) < |m(w) — w| < Cepty. With the notation of (3.5), w € A" with
n = Céoto.
Let us apply Lemma 3.17 to L = r; ' A (we need to normalize as in Remark 3.25).

We get a mapping Il 4, obtained from the one we get from Lemma 3.17 by a formula like
(3.26). For w € E* N B(zg,2rs), set

(8.50) h(w,s) = a(w,2s) for 0 <s<1/2

and

h(w,s) = (2s — 1)w(w) + (2 — 2s)h(w, 1/2)

(8.51) = (25— D)m(w) + (2 = 25)TLa(w, 1) for 1/2<s <1,

The fact that h(w,0) = w follows from (3.18), and h(w,1) = 7(w) from (8.51), so
(7.41) holds. Next (3.20) says that for 0 < s,s" < 1/2,

(8.52) |h(w,s)—h(w,s")| = |Ta(w,2s)—a(w,2s")| < Cdist(w, A)|s—s'| < Cepto|s— 5|
(the two renormalizations cancel). For 1/2 <'s,s" <1,

|h(w, s) — h(w, ') = 2|s — §'[|m(w) — h(w, 1/2)]
< 2[s — s'|(|m(w) — h(w, 0)| + |h(w,0) — h(w,1/2)])
= 2|s — §'|(|7(w) — w)| + |h(w,0) — h(w,1/2)])
< Cls — §'|eoto

(8.53)

because h(w,0) = w and |7(w) — w| < Cepty, and by (8.52). Altogether
(8.54) |h(w,s) — h(w, s')| < Ceotgls — s'| = 10Ccy *egrals — s'| < erals — &

for 0 < s,s" <1, and if gy is small enough. So we get (7.42) with Cy = 1.

Next each h(-, s) is C-Lipschitz because the I14(+,2s) are C-Lipschitz, so (7.43) holds
for some C(y that depends only on n.

Finally we need to check that h(w, s) € L; when w € E*NL;NB(x2,2r3). For 0 < s <
1/2, we use the fact that I14 preserves the faces (as in (3.22)), so that hA(w, s) = 114 (w, 2s)
lies in any of the faces of L; that contains w. For s > 1/2, we use the convexity of A, the
fact that 14 (w,1) = m4(w) € A by (3.19) and Lemma 3.4, and the fact that 7(w) € A by
(8.49), to get that h(w,s) € AC L C L;.

Thus (7.44) holds too, the pair (z2, 2) satisfies the hypotheses of Lemma 7.38, and this
completes the verification of the hypothesis of Lemma 8.8. Finally Theorem 6.1 follows,
by Lemma 8.8. O
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It is now very easy to prove that, still under the rigid assumption, our quasiminimal
sets have the property of concentration, as in the following corollary. Incidentally, this
corollary will be improved in Corollary 9.103 and Proposition 10.82. We include it here
because it is easy to get now, but the proof of Section 10 is both globally simpler and more
general. The property of concentration, introduced in [DMS], is a very nice tool to get
the lower semicontinuity of H?, restricted to sequences of quasiminimal sets; this will be
discussed again in Section 10, and even generalized slightly in Section 25.

Corollary 8.55. For each choice of n, M > 1, and € > 0, we can find h > 0 and ¢ > 0
such that the following holds. Suppose that E € GSAQ(By, M, d,h), with By = B(0,1),
and that the rigid assumption is satisfied. Let ro = 27™ < 1 denote the side length of
the dyadic cubes of the usual grid. Let x € E* N By and 0 < r < Min(rg, d) be such that
B(z,2r) C By. Assume in addition that (6.2) holds. Then we can find a pair (y,t), such
that y C E* N B(z,r/100), ccr <t <r/100, and

(8.56) HYE* N B(y,t)) > (1 — )wat?,
where wy denotes the d-dimensional Hausdorff measure of the unit ball in R<.

Indeed, let (z,7) be as in the statement; we want to follow the end of the proof
of Theorem 6.1. We do not need to define F' and F’, as we did after the statement of
Theorem 8.5; instead, we start with 1 = x and r; = r, and check that we can find (z2,72)
as in Lemma 8.8. That is, the proof of Lemma 8.11 gives a pair (yo, to), with the properties
(8.12)-(8.15), where we do not need (8.16) and we can replace F' with E* in (8.12), and
then we use the pair (yo,%0), as we did after Lemma 8.11, to find a pair (z2,72) that
satisfies the assumptions of Lemma 7.38. We take y = x5 and t = r5. Thus there is a
d-plane P such that

(8.57) dist(w, P) < et for w € E* N B(y, 2t)

because (7.39) holds, and

(8.58) m(E* N B(y,5t/3)) contains P N B(rw(y),3t/2),

by (7.46) and where 7 still denotes the orthogonal projection on P. For each p € PN
B(m(y), (1 — 2¢)t), (8.58) gives a point w € E* N B(y,5t/3) such that m(w) = p. But
Ip — w| = |r(w) — w| = dist(w, P) < et by (8.57) and similarly |7(y) — y| < et, so
jw—y| < |p=a(y)| +|p - w|+|7(y) —y| < [p=7(y)| +2et <t and w € B(y,t). So
PN B(n(y), (1 —2¢e)t) C m(E* N B(y,t)), hence

HUE" N B(y,t)) = H(n(E* N B(y,1)))

(8.59) > HUP N B(r(y), (1 - 260)t)) > wa(l — 2)%7,

which implies (8.56), even though only for the slightly larger ¢’ such that 1—¢’ = (1—2¢)%;
but &’ is as small as we want and Corollary 8.55 follows. O
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9. Extension to the Lipschitz assumption.

In this section we intend to generalize Theorem 6.1 and Corollary 8.55 to the case
when we only have the Lipschitz assumption. So we shall assume, throughout this section,
that

(9.1) E € GSAQ(U, M, 0, h)
for an open set U C R", and that
(9.2) the Lipschitz assumption is satisfied in U.

Recall from Definition 2.7 that this means that there is a constant A > 0 and a bilipschitz
mapping ¢ : A\U — B(0,1) such that the sets Y(AL; NU), 0 < j < jpmas satisfy the rigid
assumption described near (2.6).

Recall also that this last comes with the rigid scale ro = 27", which is the side length
of the cubes in the usual dyadic grid.

We shall denote by A > 1 the bilipschitz constant for i; thus

(9:3) Ao =yl < (@) — )| < Az —y| forz,y e U

and we expect our main constants to depend on M, n, and now A.

We shall also systematically assume that A in (9.1) is sufficiently small, depending on
the various constants at hand (such as M, n, A) for the proofs to work.

We start with an extension of Proposition 7.85, which will be easy because the con-
clusion of Proposition 7.85 (in essence, uniform rectifiability) is essentially invariant under
bilipschitz mappings.

Proposition 9.4. We can find constants 8 > 0 and C(M,A) > 1, that depend only on n,
M and A, such that if h is small enough, depending on n, M and A,

(9.5) r€ E*NU, 0<r<Min(A1trg,é), B(z,2r)CcU
and

(9.6) if j € [0, jmaz] is such that some face of dimension (strictly) more than d
' of L; meets B(z,r), then E* N B(z,r) C L;,
then there is a closed set Gy C E* N B(z,r) and a mapping ¢ : Go — R® such that

(9.7) HYGo) > 0r? and C(M,N) " y—z| < |o(y)—o(2)] < C(M,A)|y—=z| for y, z € Go.

By definition, the faces of the L; are the images by A™19~! of the faces of the bound-
aries

(9.8) Lj = ¥(ALy).
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Of course we want to use Proposition 2.8, which says that
(9.9) Y(AE) € GSAQ(B(0,1), A2 M, A= X6, A%*h).

Let (x,r) be as in the statement; we want to apply Proposition 7.85 to the set E = PY(AE)

and the pair (z,7), where T = w(éx) and 7 = A~!\r. First observe that (E)* = Y(AEY)

(see the definition (3.2)), so 7 € (E)* N B(0,1); it is clear that 0 < 7 < Min(rg, A=*\J) by
(9.5) and also

(9.10) B(Z,27) = B(¢y(\x),2A7 1 \r) € ¢(B(A\x,2Mr)) C (A\U) = B(0,1).

Next we check (6.2). Let j be such that B(z,7) meets some face of dimension larger than
d of L; = (AL;). Since B(z,7) C ¥(B(Ax, Ar)) by the proof of (9.10), B(Az, Ar) meets
ALj, so B(z,r) meets L; and (9.6) says that E* N B(z,r) C L; and then
o1 (B)* 0 B@,7) = (\E") 1 B@E,7) C 9(\E*) N (B, W)

' = (AE* N B(Az, \r)) C ¥(AL;) = L;,

as needed for (6.2).
Now Proposition 7.85 gives a closed set Gy C (E)* N B(z,7) and a mapping ¢ : Gy —
R? such that

(9.12) HUGo) > 07 and C 'y — 2| < |d(y) — ¢(2)| < Cly — 2| for y, z € Go,

where the constants f and C depend only on M and n. We set Gy = A_lw_l(éo) and
d(y) = A to(v(Ax)) for y € Go. Then Gy C E* N B(x,r) (because A~1¢~1(B(Z,7)) C
A 1B(y~1(Z), A7) C B(x,7)), and ¢ is AC-bilipschitz. Finally,

(9.13)  HUGo) = A MUY HGo)) = AINTIHY(G) > AN = A2

So (9.6) holds with C(M, A) = AC and § = A=296; Proposition 9.4 follows. O

For the extension of Theorem 6.1 itself, we need to work a bit more, because the
existence of big projections, or of big pieces of Lipschitz graphs, is not bilipschitz invariant.
We need the following extension of Lemma 7.38.

Lemma 9.14. There exist Cy > 1, that depends only on n and A, and small constants
n € (0,1) and € > 0, that depend only on n, M, and A, such that the following holds if h
is small enough, depending only on n, M, and A. Let y € E* and t > 0 be such that

(9.15) 0 <t < CytMin(Atrg,d) and B(y, (Co + 1)t) C U.

Set

(9.16) J = {j €10, jmaz]; L;j meets B(y,2t)} and L= ()L;
jeJ
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and suppose that

(9.17) dist(w, L) < nt for w € E* N B(y, 2t).
Finally let P be a d-plane, and suppose that

(9.18) dist(w, P) < et for w € E* N B(y, 2t)
for some ¢ < Z. Then

(9.19) dist(p, E*) < et for p € PN B(y, 3t/2)
and, if we denote by 7 the orthogonal projection onto P,

(9.20) 7(E* N B(y,5t/3)) contains P N B(w(y),3t/2).

We could have taken L = R™ when J = (), but the simplest is to observe that this does
not happen, as Ly = Q meets B(y,2t) because it contains E. We still want to proceed
as in Lemma 7.38, but we shall need to be more careful about the way we move points
around. Set

(9.21) L= ﬂ L= and L=r;'L.

Notice that L is composed of faces of dyadic cubes of unit size. Denote by I1 the deformation
that we get when we apply Lemma 3.17, with = 1/3, to L. Thus II(@, s) is defined when

@€ LY/3 and 0 < s < 1. Next use Remark 2.25 to define a similar deformation onto L by

(9.22) II(w, s) = Toﬁ(ralﬁ, s) forw C L™/3 and 0 < s < 1.

Observe that 7 = II(-,1) is a Lipschitz retraction from LY/3 to L, and @ = II(-,1) is a
Lipschitz retraction from Lm/3 to L.

We conjugate once more to get a deformation onto L. Set 79 = A~ A71rq/3, to make
sure that

(9.23) Y(Aw) € L™/3 when w € L™ N T,

and then define 7y and II by

(9.24) m(w) =AY (FW(\w))) forwe L™ NU
and
(9.25) O(w,s) = A1y~ ( (W(Aw),s)) forwe L™ NU and 0 < s < 1.
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Notice also that
(9.26) B(y,3t) C L™ NU;

the first inclusion holds because L meets B(y,2t) (by (9.16)) and t < Cy *A~1ry < 19/10
by (9.15) and if Cj is large enough; the second one holds because B(y, (Co + 1)t) C U by
(9.15).

We shall now assume that (9.20) fails, combine IT and a variant of the deformation used
in Lemma 7.38 to build mappings ¢, 0 < s < 3, apply the definition of a quasiminimizer,
and get a contradiction.

We start with a first stage, where we try to go from w € E* to 7p(w), but a first
cut-off function v, will be required. Set

(9.27) a = C1A*(e +n)t,

where the geometric constant C; > 1, which depends only on n (through the constants of
Lemma 3.17), will be chosen soon. Then define &; : [0, +00) — [0, 1] by

ot
ﬁl(p):1f0r0§p§§+5a,

(9.28) &1(p) =0 for p > % + 6a, and
&1 is affine on [% + 5a, % + 6al,
and set
(9.29) vs(w) = (w, s&1(Jw —y|)) for we E*NB(y,2t) and 0 < s < 1.

We also set
(9.30) ¢s(w) =w for we E*\ B(y, % +6a) and 0 < s < 1.
We shall take £ and 7 so small that when e < &, B(y, % + 10a) C B(y, 2t). Notice then

that the two definitions above coincide when w € E* N B(y,2t) \ B(y, 3 + 6a), and hence
ws(w) is a Lipschitz function of w and s. In addition,

(9.31) wo(w) =w for we E*
and
ot
(9.32) o1(w) =(w, 1) =7 (w) € L for w € E* N B(y, 3 + ba),

by (3.19), Lemma 3.4, and the conjugations.
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We want to estimate |5 (w)— s (w)| when w € E*NB(y, 2t), and it will be convenient
to set

(9.33) w = (M) and @ = ry'w for w € E* N B(y,2t).

Notice that w € L™ N U by (9.26), so @ C L™/3 and @ C L/3 by (9.23) and (9.21). Also
set a = s&1(|lw —y|) and o = & (|lw — y|). With these notations,

|ps(w) — s (w)] = [I(w, s&1 (Jw — y|)) — T(w, s&(lw y)I = M(w, ) — I(w, ')
= Ao ([ (M), ) — v~ I (w), )|
(9.34) < AATI(Y (w), o) — H(( w),a’)|
= A A (@, o) — H(@, o) = A Aro[TL(@, o) — T(@, o)),

by (9.32), (9.25), and (9.22). We now apply (3.20), with

~

(9.35) =: dist(@, L) = r5 * dist(@, L) < Arg ! dist(w, L)
and also 1’ < 1/3 because @ C LY/3. We get that for w € E* N B(y,2t) and 0 < s < 1,

lps(w) — g (w)| < C’)\_lAron’\a —a'| < CA? dist(w, L)|a — /|

9.36
(9.36) < OA*ntja— o | < CAnt|s — &'

by (9.35) and (9.17).
Next, let 0 < s <1 and w,w’ € E* N B(y, 2t) be given; we want to estimate

|os(w) = ps(w')] = M(w, s& (jw = y)) = (w', s& (Ju’ = yl))]
(9-37) < [M(w, s&(Jw = y))) = M(w, s& (Jw’ = y]))]
+ M (w, s&1 (Jw' = y)) = W(w', s& (Jw” = y))-

If we set a = s&1 (Jw — y|) and o = s&1(Jw” — y|), the proof of (9.36) yields

M (w, &1 (Jw = y])) = M(w, s&1 (Jw' = y]))| = [I(w, &) — (w, )]
(9.38) < ONptfa — o | < Ot (Jw — y]) — & (Jw’ = y))|

t
< C’AQn—lw—w'| <CyClw —w'| < Clw — |
a

by (9.28) and (9.27). The last term in (9.37) is less than CA2|w — w'| because the II(-, s)
are C-Lipschitz and we conjugate with ¢ and two dilations. So

(9.39) |ps(w) — ps(w')| < CA|w — w'|
for 0 < s <1 and w,w € E*N B(y,2t). Let us finally record that
(9.40) lps(w) —w| < CA*nt < a forw € E* and 0 < s < 1,
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either by (9.36) (if w € E* N B(y,2t)) or trivially by (9.30), and (for the second part) by
(9.27) and because we choose C is large enough now.

We are ready to start the second stage of the deformation. We do not want to change
anything outside of B(y, % + 4a), so let immediately set

(9.41) ¢s(w) = ¢1(w) for we E*\ B(y, 3 +4a) and 1 < 5 < 2.

Define a second cut-off function & : [0, +00) — [0, 1] by

t
52(0):1f0r0§p§%+3a,

ot
(9.42) &(p) =0 for p > 0 +4a, and
ot ot
&2 is affine on [5 + 3a, 3 + 4al.

This time, we try to go from 7 (w) to mp (7 (w)). Set

(9.43) Ps(w) = (s = D&(lw —y)r(w) + [1 = (s = D& (|w — y)]w,
and then
(9.44) ps(w) = 7L(P,(w))

foerE*ﬁB(y,%—l—Sa) and 1 < s < 2.

First observe that when w € E* N B(y, 3 + 5a) \ B(y, % + 4a), &(|lw —y|) = 0 by
(9.42), so P (w) = w and ps(w) = 7r(w) = @1(w) by (9.32). So the two definitions of
¢s(w) coincide on E* N B(y, 3 + 5a) \ By, 3 + 4a).

Similarly, when w € E* N B(y, % + 5a), (9.32) says that ¢1(w) = 1 (w), and (9.44)
gives the same result because @, (w) = w. Altogether ys(w) is a Lipschitz function of s
and w. But more precisely, if 1 < s <2 and w,w’ € E* N B(y, % + ba),

(9.45) |05 (W) = s (W) = |72(Fs(w)) = 72 (Fs(w))] < CA®[F,(w) — B (w')]

and, if we set a = (s — 1)&(Jw — y|) and o = (s — 1)&(Jw" — y)),

@ (w) = B, (w')] = lam(w) + (1 - a)w — /7 (w) — (1 - a’)u'|
= |(a = o) (m(w) — w) + o/ (m(w) — 7(w')) + (1 = ') (w - w)]
< Ja = of||m(w) — w| + o |w(w) — 7 (w)| + (1 = o) jw — w'|
<la—d|et + Jw— |
— (5= Dfeaw — yD) — &l — yh]et + fw — |

t
§€—|w—w’|+|w—w’|§2|w—w’|
a

(9.46)
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by (9.18), (9.42), and (9.27). Therefore
(9.47)  |ps(w) — @s(w')| < CA*|w — w'| for w,w’ € E* N B(y, % +5a) and 1 < s < 2.

The variations in s are easier, since for 1 < s, <2 and w € E* N B(y, % + ba),

|05 (w) — pr(w)] < CA* B (w) — By (w)] = CA%E(Jw — y])|s — &'[|m(w) — w]|

9.48
(5-48) < CA%s — §||m(w) —w| < CA?|s — §|et

by (9.44), because 77, is CA%-Lipschitz, and by (9.43) and (9.18). The case when w €
E*\ B(y, 3 + 5a) is even more trivial, because ¢ (w) = ¢g (w) = ¢1(w) by (9.41), so
(9.49) lps(w) — @1 (w)] < CA3et|s — 8’| < als —s'| for 1 <s,8' <2and w € E*,

where the last inequality comes from (9.27) (if C is large enough).
Let us also record the fact that

(9.50) Bo(w) = m(w) and o (w) = 71 (r(w)) for w e E* N B(y, ¥ + 3a),

because & (|w — y|) = 1 by (9.42), and by the definitions (9.43) and (9.44).

We are now ready for the third stage where we try to move points along P to a
lower-dimensional sphere. Let us first decide that

(9.51) ps(w) = po(w) forw e E*\ B(y, 3 +3a) and 2 < 5 < 3.

We now assume that (9.20) fails. This means that we can find
(9.52) p € PN B(n(y),3t/2) \ 7(E* N B(y, 5t/3)).

Observe that for w € E* N B(y,2t) \ B(y, 5t/3), m(w) lies outside of B(w(y), 3t/2) anyway,

because |m(w) — w| < et by (9.18). So in fact p lies out of w(E* N B(y, 2t)).

The slightly smaller compact set m(E* N B(y, %&t)) does not contain p either, so we

can find a very small 7 > 0 such that

(9.53) PN B(p, ) does not meet m(E* N B(y, 1&)).
We intend to move points inside

(9.54) By = B(r(y), 5t/3).

First define g : PN By \ B(p,7) — P N 0By, to be the radial projection on 9By, centered
at p. Thus g(z) is characterized by the fact that

(9.55) g(z) € PNOB; and z € [p,g(2)] for z€ PN By \ B(p,7).
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We also set
(9.56) g(z) =z for z € R"\ By,

observe that this defines a Lipschitz mapping on [P N By \ B(p,7)] U [R™\ By], and extend
it to R™ in a Lipschitz way, so that g(B;) C Bj. The Lipschitz constant is very large,
because we do not control 7, but we don’t care. Now set

(9.57) ?s(w) = (s = 2)g(r(w)) + (3 — s)m(w)
and
(9.58) ps(w) = 7L (P, (w))

for w € E* N B(y, 3 4 3a) and 2 < ¢ < 3. Notice that w7 (@,(w)) is well defined, because
P,(w) € B(y,2t) € L™ NU by (9.26) (also see the line below (9.30). For such w, (9.50)
yields @y (w) = 7(w) and po(w) = 7 (w(w)), so the two definitions of ¢o(w) coincide.

If we E*NB(y, % +3a) \ B(y, % + a), then in addition

ot ot
(9.59) IT(w) —7(y)| > |w—y| — 2t > §+a—25t2 §+a/2,

by (9.18), (9.27), and if C; > 4; then 7w(w) € P\ By and (9.56) says that g(7w(w)) = 7(w).
In this case @, (w) = m(w) and p4(w) = 7 (7(w)) = @2(w). We claim that because of this,

(9.60) ¢s(w) = a(w) forw e E*\ B(y, % +a) and 2 < s < 3.

We just checked this when w € E* N B(y, + 3a), but otherwise this is just (9.51).

We have two Lipschitz deﬁnltlons of the w5 (by the formulas (9.51) and (9.57)) that
overlap on the annulus B(y, 3 + 3a) \ B(y, % + a), hence (w, s) = ¢s(w) is Lipschitz on
E* x [2,3)].

We just constructed Lipschitz mappings ¢, : E* x [0,3] — R", and we want to check
the properties (1.4)-(1.8), for the longer interval [0, 3], and with respect to the ball

(9.61) B = B(y, Cot),

where the value of Cy > 2 will be decided soon. We already know that (w,s) — ¢s(w) is
Lipschitz, so (1.8) holds. Also, ¢o(w) = w by (9.31). Next,

(9.62) ¢s(w) =w for we E*\ B(y, % + 6a) and 0 < s < 3;
by (9.30), (9.41), and (9.51). This takes care of (1.5) because B(y, 3 +6a) C B(y,2t) C B
if ¢ and 7 are small enough (see (9.27)).
For (1.6), we just need to check that
(9.63) ¢s(w) € B forw € E*NB(y, % +6a) and 0 < s < 3
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because ¢s(w) = w € B when w € B\ B(y, % + 6a). For 0 < s <2, (9.40) and (9.49) say
that |¢s(w) — w| < 2a, and then ¢4 (w) € By, 3 +8a) C B.

So we may assume that s > 2, and that pg(w) # @o(w). This implies that w €
B(y, 3t +a), by (9.60), and that g(m(w)) # m(w) (because (9.57) and (9.58) apply). Then
m(w) € By by (9.56), and also w(w) € P\ B(p,7) by (9.53). Hence (9.55) applies and

g(m(w)) € PNOB;. By (9.57), §,(w) € [r(w),g(r(w))] C PN By and
(9.64)  Jgs(w) = p2(w)] = |7L(Ps(w)) — 72(Fa(w))] < CA®[F,(w)) — Pa(w)| < 4CA%

because diam(B;) < 4. Since p2(w) € B(y, 3 + 8a) C B(y,2t), we simply choose Cp >
2+ 4CA?%, and (9.63) follows from (9.64).

Finally we check (1.7). Let j < jiae and w € E*NL; be given; we want to check that
¢s(w) € Lj for 0 < s < 3. We may assume that w € E*\ B(y, % + 6a), because otherwise
(9.62) says that ps(w) = w.

We first consider s < 1. Then pg(w) = II(w,s&(Jlw — y|)) by (9.29). Set s’ =
s&1(Jlw — y|), and recall that the mapping II(-, s') of Lemma 3.17 preserve all the faces of
unit dyadic cubes. This is also true for II(-, s") and the faces of the L;. Then ¢,(w) lies is
in any of the faces of L; that contains x.

Next consider s € (1,2]. If w € E*\ B(y, 3 +4a), then ¢4(w) = ¢1(w) € L; by (9.41)
and the previous case. Otherwise, ¢s(w) = 7L (@,(w)) € L by (9.44) and the definition of
7r. Since w € E* N L; N B(y, 3 +4a), (9.16) says that j € J and L C Lj, so ps(w) € L;.

We are left with the case when s > 2. If w € E*\ B(y, % + 3a), (9.51) says that
ps(w) = a(w) € Lj. Otherwise, ¢s(w) = mr(@4(w)) € L C L; by (9.58) and the same
argument as above.

This completes the verification of (1.4)-(1.8), relative to the set E* and the ball B =
B(y,Cot). The condition (2.4) is also satisfied, since the set W of (2.2) is contained
in B CcC U by (9.61) and (9.15). In addition Cpt < § by (9.15). Finally recall that
E* € GSAQ(U, M, 0, h), by (9.1) and Proposition 3.3. By Definition 2.3, (2.5) holds, i.e.,

(9.65) HEW) < MH p3(W)) + hr,
where
(9.66) W ={we E" NB;psy) #y}.

First we consider

ot

(9.67) Ay = E* N B(y, 3~ a)
and
. 5t
(9.68) Ay={wekE ﬂB(y,§+3a); ps(w) # pa(w)}.
Let us check that
(9.69) p3(w) € mp(PNOBy) for w e Ay U As.
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First let w € Ay be given. Notice that |7(y) — 7(w)| < |y — w| + |7 (y) — y| + |7 (w) — w| <
ly — w| + 2et < Z by (9.18), so m(w) € B(n(y), %) C Bi. But 7(w) € P by definition of
m, and 7(w) ¢ Pﬂ B(p,7) C By by (9.53), so (9.55) says that g(w(w)) € PN 0B;y. Then

(9.70) p3(w) = 71 (P3(w)) = 7 (g(r(w))) € 7L (PN OBy)
by (9.58) and (9.57). Similarly, let w € Ay be given. Since ps(w) and @3(w) are still given
by (9.58) and (9.57) in this case, the fact that they are different implies that g(m(w)) #
m(w). Then w(w) € By by (9.56). Again, m(w) ¢ P N B(p,7) by (9.53), so g(m(w)) €
PN 9By by (9.55), and (9.70) holds as above. This proves (9.69).

Recall that H%(P N OB;) = 0 (this is a (d — 1)-dimensional set), so
(9.71) H(p3(A1 U Ag)) < HY(m (PN OBy)) =0,
by (9.69) and because 7y, is Lipschitz. Since by (9.66) A; \ W C p3(A1), we get that
(9.72) HUAL\W) =0

by (9.71). Next set
. 5t
(973) Ag =FE"N B(y, 3 + 6&) \ [Al U AQ],

and let w € Az be given. If w € E* N B(y, 3 + 3a), then p3(w) = p2(w) because w ¢ As.
Otherwise, p3(w) = @2(w) by (9.60). Thus

(9.74) p3(w) = pa(w) for w € As.

We cut Az into two pieces. On Ay = Az \ B(y, 3 + 4a), (9.41) says that @o(w) = ¢1(w),
and (9.39) says that ; is CA2-Lipschitz. On A32 = A3 N B(y, 3 + 4a), (9.47) says that
o is C'A%-Lipschitz. Altogether,

(9.75)  H(p3(A3)) = Hp2(A3)) = H(p1(As1)) + H(p2(As2)) < CA*HY(A3).

Notice that A3 C E*NB(y, % —|—6a)\B(y, 5 —a) (by (9.67)), which by (9.18) is contained in

a (6a + et)-neighborhood of PNIB(y, 3t). Also recall that et < a, by (9.27). Thus we can
cover Az by less than C(£)?~! balls B; of radius 10a. By Proposition 4.1, H¥(A3 N B;) <
HUE* N B;) < Cal because As C E*. Altogether,

(9.76) HA(As) <Z”H,d AN B) < O(= Lyt g C%td:C’C’lAQ(5+n)td
by (9.27), and (9.75) yields
(9.77) H(p3(As3)) < CA%IHA(As) < CA%ACLA% (e + 1) t2.
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Notice that if w € W, (9.62) says that w € E* N B(y, % + 6a). Thus W C A; U Ay U As,
by (9.73).
We may now return to (9.65). First observe that

H(p3(W)) < H(03(A1 U Az)) + H(p3(W N Ag))

9.78
(5-78) = H(p3(W N A3)) < CCLA* 2 (e 4 1) t¢

by (9.71) and (9.77). On the other hand, Proposition 4.1 yields

(9.79) C™ 1 < HYA)) = HU A NW) < HEW)

by (9.67) and (9.72). We now apply (9.65) and get that

(9.80) C~1 <HIW) < MHY(p3(W)) + hr? < COLMA?*TT2(e + 1) t? + hr?.

If n, e, and h are small enough, depending on M, n, and A (recall that C; depends only
on n), we get the desired contradiction that proves (9.20).

We still need to prove (9.19), but it follows from (9.20) and (9.18), with the same
short proof as in Lemma 7.38, a little below (7.71).

This completes our proof of Lemma 9.14. U

Let us now state and prove the generalization of Theorem 6.1.

Theorem 9.81. For each choice of constants n, M > 1 and A > 1, we can find h > 0,
A >0, and 6 > 0, depending only on n, M, and A, such that if E € GSAQ(U, M, 6, h) is
a quasiminimal set in U C R™ (as in (9.1)), and if the pair (z,r) is such that

(9.82) r € E*NU, 0<r<Min(\ 'rg,6), B(x,2r)cCU,
and

(0.83) E*N B(x,r) C L; for every j € [0, jmaz) such that some face
' of L;, of dimension (strictly) more than d, meets B(x,r),

then we can find a d-dimensional A-Lipschitz graph I' C R™ such that

(9.84) HYENT N B(x,r)) > 6re.

By d-dimensional A-Lipschitz graph, we still mean the image, under an isometry of
R™, of the graph of some A-Lipschitz function from R? to R"~¢.

We want to copy the proof that we did for Theorem 6.1 (see below Theorem 8.5).
We localize as usual: we define an unbounded Ahlfors-regular set F’ = F U H such that
E* N B(x,r/16) C F C E* N B(z,r/8), as we did near (7.87). This, and most of our
Carleson estimates, depend only on the local Ahlfors-regularity of E* (Proposition 4.1 in
the rigid case, Proposition 4.74 in the Lipschitz case).
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Next we check that F” is uniformly rectifiable, and more precisely that F' € BPBI(6,C)
(see (7.6) for the definition), for some constants # and C' that are a little worse than those
of Proposition 9.4, but still depend only on n, M, and A. For this we shall reduce to
Proposition 9.4, as in the proof of Lemma 7.8; we sketch the argument, but the reader
may return to that proof for additional detail.

We are given a ball B(y,t) centered on F’, and we look for a bilipschitz image of a
piece of R? inside F'N B(y,t). When y € H or y € F and t > 3r, we can easily find this
bilipschitz image inside H, so we may assume that y € F and ¢ < 3r. Then we find a
reasonably large cube @, of the cubical patchwork for F', such that y € Q C F'N B(y,t/10)
(as in (7.12)). And inside @, we find a point w € F' such that dist(w, E*\ F') > 7 diam(Q)
(for some constant 7 > 0 that depends on the local Ahlfors regularity constant), as in
(7.13). This part uses the fact that our cubical patchwork for F' is adapted to the set
E*, as in (7.11). Then we apply Proposition 9.4 to the ball B(w, 7 diam(Q®)), and find
a set G C E* N B(w,7diam(Q)) which is the bilipschitz image of a piece of R?; this
set is contained in F' N B(y,t), in particular because dist(w, E* \ F') > 7diam(Q), and
it is large enough because diam(Q) > C~1t; see (7.14)-(7.16) for the verification. Thus
F' € BPBI(0,C), as announced.

By Theorem 7.7, F' € BWGL(e,C(e)) for every e, where as usual C(g) depends also
on n, M, and A. As in the rigid case, it is enough to show that F’ has big projections,
because then Theorem 8.5 will say that F’ contains big pieces of Lipschitz graphs, and
we can use one of these pieces (contained in F' C E* N B(x,r/8)) in the statement of
Theorem 9.81.

Again we are given a ball B(x1,r1) centered on F’, and now we want to find a d-plane
P such that

(9.85) HY(w(F' N B(z1,7m1))) > ard,

where 7 denotes the orthogonal projection on P. When 1 € H or 1 € F and r; > 3r, we
easily get this with P = H, because H(m(F' N B(xy,71))) > HYH N B(z1,71)) > C~1rd.
So we may assume that x; € F and r; < 3r.

Let g9 > 0 be very small, to be chosen later. We proceed as in Lemma 8.11 to
find a pair (yo,to), with the properties (8.12)-(8.16), except that in (8.12) we replace
r1/100 with the smaller (100Cy)~trq, with Cp as in (9.15), that in (8.13) we require that
dist(yo, F1) > 10A%t, and that in (8.15) and (8.19) we replace b3+ with bB3r. The reader
recalls that in Lemma 8.11, the pair (x1,r1) was also such that x; € F and r1 < 3r. Most
of the proof of Lemma 8.11 can be repeated here, because it relies on Carleson measure
computations based on the local Ahlfors regularity of £* and F', and simple distance
estimates with faces of our dyadic grid on U. There is just one exception, which is the
Carleson measure estimate (8.20) on the bad set Bs where E* is not flat. Here we replace
bBE~ with b in (8.15) and (8.19), and we get the analogue of (8.20) because F' is uniformly
rectifiable, hence satisfies a bilateral weak geometric lemma (i.e, F/ € BWGL(e,C(¢)) as
above).

So we get the pair (yo,tp), and we now check that Lemma 9.14 applies to the pair
(yo,t0/3). The first part of (9.15) holds because

to < (&) 4r

4
9.86 — < <
( ) 3 ~ 100C,; — 100Cy, 100C,

Min(A"trg, §)
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by the modified (8.12), (8.7), and (9.82). For the second part, observe that

1 T
9.87 —x| < — —r < =4+ =<
(9.87) o — 2| <lgo — o]+l — 2 < o+ <
by (8.12) and because x; € F C B(z,7/8) and r1 < 3r; then (9.86) and (9.82) yield

(Co+ 1)to
3

(Co+ 1)tg

(9.88) B(yo, 5

) C B(x, 2 + ) C B(z,r/2) C U.

Recall that J in (9.16) is not empty (because y € 2 = L), and let us check (9.17). A
first possibility is that for each j € J, L; has a face of dimension larger than d that
meets B(yo, 2to/3). Since B(yo,2to/3) C B(x,r), (9.83) says that E* N B(yo,2ty/3) C
E*N B(x,r) C L; for each j, hence E* N B(yo,2ty/3) C L and (9.17) holds with n = 0.

So let us assume that for some j € J, no face of L; of dimension larger than d meets
B(yo,2to/3). Since j € J, L; meets B(yo,2tp/3), which means that some face H of L;
meets B(yo, 2to/3). Then H is of dimension at most d.

It will be easier to make our metric computations with standard dyadic cubes, so we
set h(y) = ry 'p(\y) for y € R, and observe that h(H) is a standard unit dyadic face by
construction. Notice that

1
9.89 dist(h(yo), h(H)) < ry ']AA dist(yo, H) < rg "Mty < —,
0 0 10

where the last inequality comes from (9.86) if we took Cy > A. But by (8.13) with the
new constant 10A2,

(9.90) dist(h(yo), h(F1)) > rg 'AA " dist(yo, F1) > 107y ' AAto,
so (by (9.89)) H is not contained in Fy, and it is d-dimensional. By (8.14),
(9.91) dist(h(w), h(Fy)) < rg *AA dist(w, Fy) < 75 ' Aot

for w € E* N B(yo, 2tg). We use (9.89) to find & € h(H) such that |h(yo) — &| < 75 " AAto;
then if H is any other d-dimensional face of the dyadic net (i.e., H # h(H)),

(9.92) dist(h(yo), H) > dist(&, H) — ry ' Aty > dist(€, d(h(H)) — ry " AAtg
> dist(h(yo), d(h(H)) — 2rg ' AAty > 8ry ' AAty,

where the main inequalities come from (3.8) and (9.90). If w € E* N B(yo, 2t0), this yields

(9.93) dist(h(w), H) > dist(h(yo), H) — 2r5 *Ate > 6ry *AAt,.

In other words, all the other faces that compose h(F3) are too far, and (9.91) implies that

(9.94)  dist(h(w), h(H)) < rg *AA dist(w, Fy) < 75 'AAeoty for w € E* N B(yo, 2to).
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In fact, (9.93) also implies that dist(w, H') > 6ty for every d-dimensional face H' =

A~yp=1(rgH) of dimension d of our (distorted) dyadic grid on U, other than H, and
(8.14) (or the second half of (9.91)) now says that

(995) dist(w, H) = dist(w7 Fg) < €0t0 for w € E'N B(yo, 2t0)
Let us now check that
(9.96) L; contains H for i € J.

Let G be a be a face of L; that meets B(yo, 2to/3); such a face exists by definition of J.
Also let € € h(H) be, as above, such that |h(yo) — &| < rg ' AAtg. If (9.96) fails, G does
not contain H, h(G) does not contain h(H), h(H) is not reduced to one point because it
is d-dimensional, and so (3.8) says that

(9.97) dist(h(yo), h(G)) > dist(&, M(G)) — ry " At > dist(&,0(h(H)) — ry ' Aty
' > dist(h(yo), O(h(H)) — 2rg *AAty > 8ry ' AAto,

by (9.92) or directly (9.90). This is impossible, because

(9.98) dist(h(yo), h(G)) < rg 'AA dist(yo, G) < ry Ao

since G meets B(yo,tp). So (9.95) holds.

By (9.95) and the definition (9.16), L contains H. Then dist(w, L) < dist(w, H) < eotg
for w € E* N B(yo, 2ty), by (9.95). This proves (9.17), with n = 3¢y.

Finally we need to check (9.18) for some P; we know from the modified (8.15) that
bBr(yo,to) < €o, so there is a plane P through yo such that in particular

(9.99) dist(w, P) < ggtg for w € F N B(yo, to)-

If (9.18) fails for this P (and the pair (yo,t0/3)), we can find w € E* N B(yo, 2ty/3) such
that dist(w, P) > eto/3. If g < /6, (9.99) implies that dist(w, F') > €ty/3. But then

(9.100) HYE* N B(yo, 2to) \ F) > HYE* N B(w,ety/3)) > C~teltd

by Proposition 4.74. This contradicts (8.16) if £g is small enough (depending on €, M, and
A); thus (9.18) holds.

This completes the verification of the hypotheses of Lemma 9.14 for the pair (yo,t0/3).
We apply Lemma 9.14 and get that

(9.101) m(E* N B(yo, 5to/9) contains P N B(w(y),t0/2),
as in (9.20). Then we use the modified (8.16) to get that

M (w(F N B(yo, 5t0/9)) = H(w(E* N B(yo, 5t0/9))) — HY(E* N B(yo, 5t0/9) \ F)
(9.102) > HYP N B(n(y),to/2)) — eotd > C~1td
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if e¢ is small enough. But B(yg,5t/9) C B(z,r1) by (8.12), so (9.102) implies that
HA(7(F N B(xy,71)) > C71td, and (9.85) follows because to > c(eg)r1 by (8.12).

Thus F’ has big projections, hence contains big pieces of Lipschitz graphs, and we
know that Theorem 9.81 follows. U

Let us also state the property of concentration under the Lipschitz assumption. The
following is a generalization of Corollary 8.55; it will be further generalized in Section 10,
where we shall (simplify the proof and) remove the unnatural assumption (9.105). See
Proposition 10.82.

Corollary 9.103. For each choice of n, M > 1, A > 1 and € > 0, we can find h > 0 and
ce > 0 such that the following holds. Suppose that E € GSAQ(U, M, d, h) for some open
set U C R™, and that the Lipschitz assumption is satisfied, with the constants \ and A (as
in (9.3)). Also denote by ro = 2~™ < 1 the side length of the dyadic cubes of the usual
grid. Then let (x,r) be such that

(9.104) r€ E*NU, 0<r<Min\ 1trg,6), B(z,2r)CU,
and

(9.105) E* N B(z,r) C Lj for every j € [0, jmaz| such that some face
. of L;, of dimension (strictly) more than d, meets B(x,r).

Then we can find a pair (y,t), such that y C E* N B(x,r/100), c.r <t <r/100, and
(9.106) HYE* N B(y,t) > (1 — )wqt?,
where wy denotes the d-dimensional Hausdorff measure of the unit ball in R<.

The proof is the same as for Corollary 8.55, except that we use Lemma 9.14 instead
of Lemma 7.38; the point is that given a small constant € > 0 and a pair (z,r) as in the
statement, we can find a new pair (y,t), with y € E* N B(x,7/2) and ¢(e) < t < r/10,
which satisfies the assumptions of Proposition 9.14. For instance, we can proceed as in
the final part of the proof of Theorem 9.81 above and pick the pair (yo,t0/3) associated
toxy =z and ry =1.

Then we just need to use the properties (9.18)-(9.20) to prove (9.106) for this pair
(unfortunately with a slightly larger constant €', but this does not matter), exactly as we

did in (8.57)-(8.59). O

PART IV : LIMITS OF QUASIMINIMAL SETS

In this part, we want to generalize results that come mainly from [D2], that concern
limiting properties of quasiminimal (or almost minimal, or minimal) sets. The main result
of this part (Theorem 10.8) is that our various classes of quasiminimal sets are stable under
limits, and the main reason why it holds is the lower semicontinuity of H¢, restricted to a
sequence of quasiminimal sets with uniform quasiminimality constants; cf. Theorem 10.97.
See the general introduction for a discuss of the interest of these results.
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In turn the main ingredient in the proof of Theorems 10.97 and 10.8 is the fact that
our quasiminimal sets satisfy a concentration property that was introduced by Dal Maso,
Morel, and Solimini [DMS] in the different, but related context of minimizers for the
Mumford-Shah functional in image processing (see Proposition 10.82 below). They used
this property to prove lower semicontinuity results for H¢ (on some minimizing sequences)
and get an existence result for minimal segmentations of the functional. At the same time,
E. De Giorgi, M. Carriero, and A. Leaci [DeCL] obtained the same existence result, using
the weak form of the functional and a compactness result of Ambrosio in the class SBV
of special bounded variation functions.

For minimal sets and surfaces, it seems that the idea of using the concentration prop-
erty to obtain existence results was not considered before [D2], probably because people
were very happy with the quite strong compactness properties of integral currents and
varifolds. Most often, when a limiting property for minimal sets was needed, people would
revert to currents or varifolds, take a limit there, and return to sets. Nonetheless, it is
good to have limiting theorems like Theorems 10.97 and 10.8, both because this looks more
direct and, for instance, because some minimal sets are hard to describe as supports of
currents, typically for orientation reasons or because multiplicities could become too large.

Recall that we already proved the concentration property in some cases, as a conse-
quence of the uniform rectifiability of the quasiminimal sets; see Corollaries 8.55 and 9.103.
But the very surprising thing, at least for the author, is that there is a more direct route to
this, through the fact that limits of quasiminimal sets (with uniform quasiminimality con-
stants) are rectifiable (Proposition 10.15 below), which gives a simpler and general proof.
Also, we shall give a slightly more direct proof of Theorem 10.97 (still based on the same
ideas but improved by Y. Fang) in Section 25, that also works when H? is multiplied by
some elliptic integrands.

We prove Theorem 10.97 in the next section, but the proof of Theorem 10.8 (the
quasiminimality of limits) will be quite long, and we split in into smaller pieces (Sections
11-19). The difficulty is that given a sequence {E}} of quasiminimal sets that converge to
the set E, and a competitor F' = 1 (F) for E, the obvious competitor 1 (FE}) may be very
bad, and we have to spend some energy to make it better, typically by pinching parallel
leaves of 1 (FEy) to diminish their total mass. Unfortunately, unlike what happens with
uniform rectifiability, we essentially have to redo most of the proof of [D2]. Note that it
is far from impossible (since the author worked by himself for all of this) that a better
proof exists. But in the mean time we seem to be stuck with a long, technical, but not so
inventive proof.

10. Limits of quasiminimal sets: the main statement, rectifiability, and l.s.c.

In this section and the next ones, we take a sequence of sets Ey, which are quasiminimal
in a same domain, with sliding conditions with respect to the same boundary pieces L;, and
with uniform quasiminimality constants, and we try to prove that if the cores E; converge
(in local Hausdorff distance) to E, then E is quasiminimal with the same constants. It is
also natural to make the L; vary as well, but it will be simpler for us not to do this until
Section 23.

In this section we shall take care of the (plain) rectifiability of E, the uniform concen-
tration property for the Ej,, and the lower semicontinuity of H? along our sequence.
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Let us describe our assumptions for the next few sections. We fix an open set U C R",
and boundary pieces L;, 0 < j < jpqq, and we assume that

(10.1) the Lipschitz assumption is satisfied in U.

Recall from Definition 2.7 that this assumption comes with a positive dilation constant
A > 0, and a bilipschitz mapping ¢ : AU — B(0, 1); we shall denote by A (a bound for)
the bilipschitz constant of 1, as in (9.3).

Next we are given a sequence {E}} of closed sets in U. By this we mean that Ej
is contained in U and relatively closed in U, but it would make no difference if we just
assumed that Ej C R™ and that its intersection with U is closed in U, because anyway
we shall never look at points that lie outside of U. We assume that there are constants
M >1,46 € (0,400, and h > 0 (systematically assumed to be small enough, depending
on n, M, and A) such that for all k&,

(10.2) Er € GSAQ(U, M, 6, h),
and
(10.3) E}, is coral, i.e., B} = Ej

(see Definitions 2.3 and 3.1). This time there is no point in trying to avoid the assumption
(10.3): if the Ej are not coral, the sets E} \ Ej, may converge to anything, even though they
have a vanishing measure. This means that in concrete problems where the sets E}; \ Ej
have some meaning, one may need to do something special about them, probably after
taking care of the F; .

We also assume that there is a closed set E in U, such that

(10.4) lim FE, =F locally in U,

k—4o00
where the limit is defined as follows. For each choice of x+ € U and r» > 0 such that
B(z,r) C U, and of two sets E, F', which we can assume to be closed in U, we set

1
difﬂ”(E7F) = Sup{diSt(y7F>; y e EﬂB<va)}
(10.5) " )
+ - sup{dist(y,E); y € FﬂB(:c,r)},
,

where by convention sup { dist(y, F);y € EN B(x,r)} = 0 when E N B(z,r) is empty,
and similarly sup { dist(y, E); y € F'nN B(x, 7“)} = 0 when F'N B(x,r) is empty. But when
ENB(z,r) is nonempty but F is empty, for instance, we set d, ,(E, F') = 4+00; we include
these cases to be able to say that sets that go away to the boundary tend to the empty
set, but in fact this situation does not interest us (because we know that ) is minimal, for
instance). Now (10.4) means that

(10.6) lim dy (B, E) =0

k—+o00
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for all choices of # € U and r > 0 such that B(x,r) C U. This is easily seen to be
equivalent to other ways of defining (10.4), for instance where we would replace our family
of balls B(x,r) with an exhaustion of U by compact subsets. The main point of using
this definition is that given any sequence {E})} of closed sets in U, we can always find a
subsequence that converges to some closed set.

There is a small technical assumption that we want to make when the Lipschitz
assumption holds:

for each 0 < j < jnqr and each face FF C U of our net such that
dimension(F') > d and F' C Lj, but the interior of F' (as a face)
(10.7) is not contained in the interior of L; (as a subset of R"), we have
that for H%almost every interior point y of F, we can find ¢ > 0
such that the restriction of 1 to AF' N B(\y, t) is of class C*.

This condition is a little strange so let us explain a little. Notice that we require the
exceptional set to be small for H¢, regardless of the dimension of the face F. The interior
of L; is really taken with the topology of R", not with respect to the dimension of some
faces: we add this constraint on F' because we don’t want to put regularity conditions on
the faces F' that lie in the middle of out initial domain € = Lg, for instance. But we
require some control on the boundary of €.

Let us state (10.7) in a slightly different way. For each y € U, denote by F(y)
the smallest face of our grid that contains y; thus y is an interior point of F(y) (when
F(y) = {y}, we may say that int(F(y)) = {y}, but this case will be rapidly dismissed
anyway). We require that for 0 < j < jnae and for H%-almost every point of L;, if
dimension(F(y)) > d and y does not lie in the n-dimensional interior of L;, we can find
t > 0 such that the restriction of 1 to AF'(y) N B(\y,t) is of class C1.

In this second condition also, we only really exclude the case when dimension(F'(y)) =
d, because the lower dimensional skeletons have vanishing H%measure anyway.

Let us check that the two conditions are equivalent. If (10.7) holds and y lies in none
of the exceptional sets associated to faces F', and if y € U does not lie in the n-dimensional
interior of L; and is such that dimension(F(y)) > d, we can apply (10.7) to F' = F(y)
(which is contained in L; because y € L; and because L, is composed of faces), and we
get the desired ¢t > 0 because y does not lie in the exceptional set of F.

If our second condition holds and the face F is such that /' C L, dimension(F) > d,
and F' is not contained in the n-dimensional interior of L;, observe that for every interior
point y of F', we have that F'(y) = F. Thus, for all the points y € int(F") that do not lie
in the exceptional set of the second condition, we can find £ > 0 as needed.

We shall state later a weaker (but a little more complicated to state) condition that
works as well (see Remark 19.52), but we did not find any obvious way to get rid of it
entirely. Notice that (10.7) does not require anything in faces F' of dimension d, and that is
trivially satisfied under the rigid assumption, or if the bilipschitz mapping ¢ : \U — B(0,1)
is of class C*.

Here is our main result about limits.
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Theorem 10.8. Let U, {E}}, and E satisfy the hypotheses above (including (10.7) if the
Lipschitz assumption holds). Also suppose that h is small enough, depending only on n,
M, and A. Then E is coral, and

(10.9) E e GSAQ(U, M, ,h),
with the same constants M, 0, and h.

See Remark 19.52 for a statement where (10.7) is slightly weakened.

The smallness of h and the additional assumption (10.7) will only be used in the
various limiting arguments, but will have no impact on the constants in the conclusion.

In addition, the smallness of h is only used to show that the E} have, uniformly in
k, some good regularity properties (that imply, in particular, the lower semicontinuity
estimate (10.98)), and then we don’t need it any more. So, if we have (10.2) for some
combination of M, ¢, and h for which h is small enough (as required), and (10.2) also
holds for some other combination of M, §, and h (this time, with no constraint), then our
conclusion (10.9) holds for both combinations.

Theorem 10.8 generalizes Theorem 4.1 on page 126 of [D2]; we shall try to follow the
proof, but since many modifications will be needed in the middle of the construction, we
shall need to explain things with more detail than in the previous part.

The main goal of the rest of this section is to prove the lower semicontinuity of
H¢, when we restrict our attention to sequences of quasiminimal sets that satisfy the
assumptions (10.1)-(10.4) of Theorem 10.8 (we shall not need (10.7) for quite some time).
This is Theorem 10.97 below, which in a way is the main tool for our proof of Theorem 10.8.

We intend to deduce Theorem 10.97 from a result of Dal Maso, Morel, and Solimini
[DMS] which says that ¢ is lower semicontinuous along uniformly concentrated sequences,
but we shall follow a different route to the concentration property.

In [D2] we deduced it from the local uniform rectifiability of the Ej, but here we were
only able to get this under additional (and not too natural) assumptions on the dimensions
of the faces of the L;. That is, Corollaries 8.55 and 9.103 have some unnatural assumptions
that we want to avoid.

So we shall prove a weaker regularity condition, the existence of reasonably large
balls where a given quasiminimal set is approximated by a d-plane, and then show that
we can use it to prove the desired concentration property. See Lemma 10.21 for the
approximation property, and Proposition 10.82 for the concentration property. Also see
the later Section 25 for a more direct proof of Theorem 10.97 that works with some elliptic
integrands.

Before we get to Lemma 10.21, we shall consider a sequence of quasiminimal sets that
satisfy the assumptions (10.1)-(10.4) (again, we do not need (10.7) in this section), and
prove various simple properties.

The first ones are the local Ahlfors regularity of the limit (see (10.11)), very rough
lower and upper semicontinuity properties of H? along the sequence ((10.12) and (10.14)),
and the rectifiability of the limit (Proposition 10.15).
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This last, which is not a direct consequence of the rectifiability of the Ej, but es-
sentially follows from its proof, is useful because we use it to prove the approximation
Lemma 10.21 (through a compactness argument), and because we shall use the rectifiabil-
ity of F to construct the competitors in the next sections.

The construction of a competitor for the main part of the argument will only start in
the next section, and estimates will continue up until Section 19.

So let {E%} and its limit E satisfy our assumptions (10.1)-(10.4); we want to derive a
few simple properties.

Let us first observe that the E} are locally Ahlfors-regular, with uniform estimates.
This means that there exists a constant C';, that depends only on n, M and A, such that

(10.10) Cifrt <HYELN B(x,r)) < Cpr?

for every pair (z,r) such that x € Ei, 0 < r < Min(A"'rg, ), and B(z,2r) C U. This is
an easy consequence of Propositions 4.1 and 4.74, that we already used a lot in the last
sections. We deduce from this that

(10.11) Cyfrt <HYEN B(x,r)) < Cyr?

when z € E and 0 < r < Min(A"1rg, d) are such that B(z,2r) C U, with a possibly larger
constant Cjy, but that still depends only on n, M and A. This is easy to check, because the
(local) Ahlfors regularity of E follows from the existence of a locally finite Borel measure p
on E that satisfies (10.11) (where we would replace H¢(E N B(x,r)) with u(E N B(x,7))),
and such a measure is easy to obtain as a weak limit of the restriction of H? to Ej,, or for
a subsequence of {E)}. More detail can be found in the proof of Lemma 4.2 in [D2]. Also
notice that F is clearly coral because of (10.11).

Let us deduce from (10.10) and (10.11) that

(10.12) HYENV) <Oy lim inf HYE,NV) for every open set V C U,
—+00

where again Cj; depends only on n, M and A. To do this, cover ENV by balls B(x;,r;)
such that z; € E, 0 < r; < 107 Min(A~'r, ), and B(xj,10r;) C V C U. Then use the
usual 5-covering lemma to cover H4(E NV) with a family B(z;,57;), j € J, such that the
B(zj,rj) are disjoint.

For each finite subset Jy of J, we deduce from (10.4) that for k large enough, every
B(zj,r;/2) contains a point y; € Ej. Then

ST HUENB(a;,5r) <C Y rd <Y HUEN By, r;/2))

J€Jo j€Jo j€Jdo
(10.13)
<C Y HYE,NB(zj,r;) < CHYE,NV)
Jj€Jo

by (10.11) and (10.10). Thus ° ., HY(EN B(x;,57;)) < Climinfy, 1o H(E, N V) for
each finite set Jy C J. We take the supremum, observe that H}(ENV) < diey HUEN
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B(xj,5r;)) because the B(x;,5r;) cover ENV, and get (10.12). A similar argument shows
that

(10.14) limsup H(E, N H) < CoyyHYE N H)

k—+4o00

whenever H is a compact subset of U, and where C)j; depends only on n, M, and A. We
skip the details, because this is the same as (3.11) in [D2], and the proof applies here.

In the present context, we cannot really hope for (10.14) to hold with Cj; = 1: H4(E)
could be smaller than the limit of the H%(E}) (even if it exists). For instance, with our
assumptions, Ej could be the graph of fi(x) = 27% cos(2¥z), which is somewhat longer
than its limit (a straight line). Nonetheless, we shall see in Lemma 22.3 that (10.14) holds
with the more precise constant Cp; = (1 + Ch)M.

And in the more restricted context of almost-minimal sets, we will have a much better
control on the upper semicontinuity defect, and show that (10.14) holds holds with the
optimal constant Cj; = 1. See Theorem 22.1.

Surprisingly, both result only use very little information: the rectifiability of E*, a
covering argument, and an application of the definition of quasiminimality.

Fortunately, the situation is different for (10.12), for which C'y; can be removed, even
for quasiminimal sets. See Theorem 10.97 below, which is the main goal of this section.

We shall use the fact that F is rectifiable. Notice that in general, limits of rectifiable
sets are not always rectifiable, but in the present situation the proof of rectifiability given
in Section 5 will kindly pass to the limit.

Proposition 10.15. Let U, {Ey}, and E satisfy the hypotheses (10.1), (10.2), (10.3),
and (10.4). Also suppose that h is small enough, depending only on n, M, and A. Then
FE is rectifiable.

Of course the rectifiability of E is compatible with Theorem 10.8 and the fact that
quasiminimal sets are rectifiable, but we need to prove it first. If we are in a position to
apply Theorem 6.1 or Theorem 9.81 to the Ej, we can deduce the rectifiability of E from
its uniform rectifiability (because unlike plain rectifiability, uniform rectifiability (with
uniform estimates) goes to the limit). But this gives a much longer proof, and that does
not even always works.

We start the proof like we did for Theorem 5.16. Let A > 0 and ¢ : A\U —
B(0,1) be as in Definition 2.7. Since the bilipschitz mapping 1) preserves rectifiable
sets, it is enough to show that E' = ¢(\FE) is rectifiable. But E’ is the limit (locally
in B(0,1) = ¢(AU)) of the sets E; = ¢(AE)), and by Proposition 2.8 each Ej lies in
GSAQ(B(0,1), A% M, A=\, A%9h). So it is enough to prove the proposition under the
rigid assumption.

As before, we assume that E is not rectifiable to get a contradiction. Let Ny > 0 be
a large integer. We first find an origin = € F; (the singular part of F) such that (5.17)
holds, pick a cube Qy and an integer N € [Ny/2, Ny] such that (5.18) and (5.19) hold, and
construct a mapping ¢* = ¢4 as in (5.20)-(5.40).

Now we cannot use the fact that E is quasiminimal, but instead we shall apply the
definition of quasiminimality to Ej for k large, with the same family {¢;}, 0 <t <1, as
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before. The {¢;} satisfy (1.4)-(1.8) with respect to Ej as well as F; the main point is
that (1.7) only uses the fact that the various mappings v; that we composed to get ¢* all
preserve every face of every cube R € R(Q)), as in (4.8), and the verification is still the
same as below (4.16).

We still can apply Definition 2.3, because of (5.43) (which is the same for E} as for
E), and we get that

(10.16) HYE, N W) < MH(¢* (B N W1)) + hrd

(compare with (5.44)). Next observe that for k large enough, (5.38) holds for H = E; N Q,
so we get (5.39). That is,

(10.17) ¢Z(Ek N Q) CS§_1U0Q

for n 4+ 1 > 1 > d, which will be a good replacement for (5.21) and (5.40).
We may now continue as in Section 5, and get that

1
(10.18) HYE, NWy) > HYE, N ng) > g

as in (5.49), and where the last inequality now follows from the first half of (5.18), and the
facts that Fj is locally Ahlfors-regular with uniform bounds and limy_, 4  dist(z, Ej) = 0.
The proof of (5.53) also goes through (it just uses (5.21) and (5.40)), and yields

(10.19) HY (¢ (B N W) < CHYUE, N Q \ int(Q")),

where the slightly smaller @)’ is defined in (5.47) (we removed from @ the exterior layer of
small cubes). Let us now apply (10.14) to H = @ \ int(Q’); we get that for each € > 0,

d

(10.20) HUEL,NQ\int(Q) < CHYENQ\ int(Q")) +¢ < C]lv—o +e
0

for k large, and by the last part of (5.55). We choose £ small and Ny large, as we did in
Section 5, and get a contradiction with (10.16) or (10.18). Proposition 10.15 follows. [J

The following lemma is a slightly more uniform version of our rectifiability result for
quasiminimal sets; we shall deduce it from Proposition 10.15.

Lemma 10.21. For each choice of n, M > 1, A, and € > 0, we can find h > 0 and c. > 0
such that if U C R™ is open, E € GSAQ(U, M, 6, h) is a sliding quasiminimal set, and if
the pair (x,r) is such that

(10.22) r € E* 0<r<Min(\ try,d), and B(z,2r) C U,

then we can find y € E* N B(x,r/2), t € [c.r,7/2], and a d-plane P through y, such that
(10.23) dist(z, P) < et for z € E* N B(y,t).
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Here A, A, and ry are as in the definition of the rigid and Lipschitz assumptions.
Observe that we say that the constant c. does not depend on 7o, §, A\, or the precise
list of boundary pieces L;, which is natural but will cost us a slightly more complicated
compactness argument.

The conclusion of Lemma 10.21 is a little more quantitative than rectifiability, and
could easily be deduced from the local uniform rectifiability of E* if we could prove it (we
would use Lemma 7.8 and a small Chebyshev argument to find the pair (y,t)). But it
is not as strong as local uniform rectifiability, for which we would need to know that for
most pairs (y,t) € E* N B(x,r/2) x (0,7/2] (in the sense that the complement satisfies a
Carleson packing condition), we can find P such that (10.23) holds.

The gap could possibly be filled, for instance if we could prove a regularity result
that says that if e is small enough and (10.23) holds for the pair (y,t), then it also holds
for all pairs (w,s) € E* N B(y,t/2) x (0,t/2] (with a possibly different, but arbitrarily
small &', and where the plane P may depend on (w, s)). Such a regularity result exists
in the standard case without boundaries, and could for instance be deduced from Allard’s
theorem [All], but the proof is not easy.

Note also that because our proof will use a compactness argument, we shall not get
any computable lower bound for c..

Since Proposition 3.3 says that E* € GSAQ(U, M, 6, h), it will be enough to prove
Lemma 10.21 when F is coral, i.e., when E* = F.

We shall assume that Lemma 10.21 is false and derive a contradiction. Let n, d, M,
A, and ¢ > 0 be such that the statement fails, and for each £ > 0, choose a domain Uy, a
coral set By € GSAQ (U, M, k., hy), and a pair (x, i) that satisfy the hypotheses of the
lemma, with h;, = 2%, but for which but we cannot find yy, t;, and P, such that

(10.24) i € B, N By, 11/2), ti, € 271y, r1/2],
and
(10.25) dist(z, Px) < ety for z € Ex, N B(yg, tk).

The general scheme is quite simple: we want to take a limit, obtain a limiting set which
is rectifiable (by Proposition 10.15), find a tangent plane to the limit at some point, and
use it to get a contradiction. But our quasiminimality assumption involves a A-bilipschitz
mapping ¢ : A\ Ur — B(0,1), a scale dj, a choice of basic size r¢j for our dyadic grid,
and a collection of boundary pieces L; j, that may all depend on k; our argument will be a
little complicated by the fact that we shall need to make two or three changes of variables
so as to be able to apply Proposition 10.15 to a fixed ball and with fixed boundaries.

Here is the first change of variables. Set

(10.26) By = ¥r(MeEr) and T = v (Mezk) € E
(because x) € E}), and observe that
(10.27) dist(Zy, 0B(0,1)) > A~ dist( Ay, O(A\eU)) > 2A7 N1
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because vy is A-bilipschitz and by (10.22). Let a,, denote the integer power of 2 such that

(10.28) vn < a, < 2vn
(we prefer to use dyadic numbers here), and let my, be the integer such that
(10.29) g=mi < Mk gomit1,

~ 8a, A

Then choose a new origin o, € (27"*Z)™ such that

~ A
(10.30) |og — Tg| <27/ <27k, < gz;k
Also set
(10.31) Y =272, and B = B(ox, ).

Observe that

(10.32) B(Z,2 ™ ay) C Blog, 2 ™ a,) = B(ok, 1/2) C B
and
(10.33) B C B(@,2 ™ 3a,) C B(Zp, A~ A\pri) € B(0,1)

(by (10.29) and (10.27)). Our second change of variable is the dilation Ay given by
(10.34) Ar(2) =7, (2 — o) = (27™2a,) "t (2 — op) for z € R"

which is of course chosen so that

(10.35) Ax(B) = B(0,1).

We set

(10.36) E! = Ap(ER) N B(0,1) = Ar(Ex N B) = Ar(¥x(A\rEx) N B)
and

(10.37) 7= Ap(Tr) = Ar(e(Mnar)) € B

(because T, € Ey N B, and by (10.26)).
Let us check that E* is quasiminimal. Recall that By € GSAQ(Uy, M, 6k, hy); then
Proposition 2.8 says that

(10.38) Ep = e(A\uEp) € GSAQ(B(0,1), M, 85, hx,),
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with M = A24M, &, = A~ N\idy, and hi = A24hy,. For Ej, we have the rigid assumption,
and the boundary sets are the L;; = 1y (A\gL; %), which by assumption are composed of
faces of dyadic cubes of side length rg ;.

We claim that Eg is also quasiminimal, and more precisely that
(10.39) E! € GSAQ(B(0,1), M, 5%, hy), with 6% =~ 10

This comes directly from the definitions, using the fact that by (10.38) E,N B is quasi-
minimal in B C B (0,1). We just need to multiply gk, with the dilation factor v, L. the
other constants stay the same when we dilate everything. Also, the boundary constraints
are now given by the sets

(10.40) Lk = Ak(Ljx) 0 B(0,1) = Ag(v(MLjx)) N B(0,1).

Let us verify that the Ak(f/jyk) lie in an acceptable grid. As was said above, the Zj’k are
composed of faces of dyadic cubes of side length r¢ ;. Our center o, lies in (27"*Z)", and

_ ALTE 0k
10.41 27 Mk L < <
( ) - 8a,A ~ 8a,A — "ok

by (10.29) and (10.22), so the sets f/j,k — oy, are composed of faces of dyadic cubes of size
2-mk . By (10.34), Ax, maps our cubes into dyadic cubes of side length (27"+%2q,,)~127™ =
(4a,,)~! That is, for E,ﬁ we have the rigid assumption, with a scale ?‘Jg = (4a,)~! that does
not depend on k. _

This is good, because there is only a finite number of possibilities for the Lg., i» and

modulo replacing {Ey} with a subsequence we may assume that the Eg . are always the

same. The scale constant g,ﬁc will not create trouble either, because

gi = ’}/k_lgk = ’Vk_lA_l)\kék = (2‘mk+2an)_1A_1)\k5k

10.42 A 9
e > (dag) 3 A1y, = 20k 5
ETE Tk

by (10.31), (10.29), and our assumption (10.22). Altogether (10.39) simplifies into
(10.43) E! € GSAQ(B(0,1), M, 2, hy,), with M = A24M, hy = A2y,

with the rigid assumption at the fixed scale (4a,)~! and with a fixed set of boundaries.
Let us replace {Ey} with a new subsequence, so that

(10.44) Eg converges to a limit E’go

(locally in B(0,1), as in (10.4)-(10.6)). Recall that in (10.43), hy, = A2%h; tends to 0,
because we assumed that h;, = 27%. Thus we can apply Proposition 10.15 and get that

(10.45) E’go is rectifiable.
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Then extract again a subsequence, so that fﬁ tends to some limit z¥_. Recall that

:z;k = Ai(zy) € Eﬁ is defined in (10.37), and let us check that

(10.46) = lim 7 e Ef_NB(0,1/4).

k—+o00

First of all,

Z4| = |AR(@0)| = [Ak(@x) — Ak(on)| = (27 2a,) " Tk — o
(10.47) 1
< (27™+2,) 7 2 e, =
4
by (10.34) and (10.30). So i e B(O 1/4), hence 4, = limy_, o 7. € B(0,1/4) too.
Finally, z%_ € Eti because :c?c € Ek, E converges to Eji locally in B(0,1), and our points
stay in B(O 1/4) This proves (10.46).

We need a last change of coordinates. Recall that A, '(B(0,1)) = B c B(0,1) by
(10.35) and (10.33), so we can define 6, on B(0,1) by

(10.48) Ok(2) = v 'y (A1 ()

Observe that 6 is a A-bilipschitz mapping (we conjugate wk_l by a dilation, and
translate). We can extend 6, to the closed ball B(0, 1), either because it is Lipschitz on
B(0,1), or simply using (10.48) and the fact that A; '(B(0,1)) C B(0,1). By Arzela-
Ascoli, the collection of mappings 0 (-) — 6x(0) : B(0, 1) — R” is totally bounded, so we
can extract another subsequence so that

(10.49) the functions 0y (-) — 65(0) converge, uniformly on B(0, 1), to a limit 6.,

We need to remove the constant 05(0) because the domains Uy could go away to infinity
very fast; we could also avoid this minor problem by translating Uy, Ey, and zj by a same
vector vg, with the effect of precomposing v, with a translation, adding Agvi to w,;l,
keeping Ej, and A as they are, adding v " Aok to Oy, and making 05 (0) = 0 (if vy is
chosen correctly).

Note that 0., is A-bilipschitz on B(0, 1), because the 0; are. Next set

(10.50) E! = 0,(EY), Ef = 0..(EF), and 2t = 0.,(F%) € Ef,

(because Tt € Ef_ by (10.46)). We expect correct translations of Eg to converge to E¥_,
but in fact we shall find it more convenient to work directly on Eg and E%_. Obviously,

(10.51) E?_ is rectifiable,

by (10.45) and because 0, is bilipschitz. We need the last change of variable because we
want Fj to be close to a plane, not Fj, and for this (10.51) will be more useful.
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Let &' be very small (to be chosen near the end); we shall use €* to measure various
small quantities that are not necessarily connected to each other. We claim that we can
choose

(10.52) v} € B! N B(af &)
so that
(10.53) E?_ has a tangent plane P* at 3 .

Indeed, EY_ is rectifiable by (10.51) so it has an approximate tangent plane at H%almost
every point. In addition, recall from (10.44) that EY is the local limit in B(0,1) of a
sequence of reduced quasiminimal sets E’i, with uniform constants (see (10.43)). When
k is large, ﬁk = A%?ph;, = A?127F is as small as we want; then the assumptions (10.1)-
(10.4) are satisfied, and so EY_ is locally Ahlfors-regular in B(0,1), as in (10.11). Its

bilipschitz image Ef = 0. (Ego) is also locally Ahlfors-regular. Then the approximate
tangent planes are automatically tangent planes (see for instance Exercise 41.21 on page 277
of [D4]), and so Ef_ admits a (true) tangent plane at H?-almost every point y%_. Finally,
HA(EE N B(xf,, %)) > 0 (again by local Ahlfors-regularity, and because % € Ef ), so we

can choose yf_ in B(x%_, &), as needed.

By (10.53), we can find p € (0, 1) such that
(10.54) dist(z, P¥) < e*p for z € Ef_n B(y*_,p).

We want to use y¥_ and P* to find, for k large enough, a pair (yx, ) that satisfies (10.24)
and (10.25); the desired contradiction will ensue.

Since yf_ € Ef =0 (Ego) (by (10.52) and (10.50)), there exists g € Ego such that
05 (7t.) =yt . Notice that

(10.55) ot — F | < Alyf, —af | < Aet

because 6, is A-bilipschitz, zf = 0. (z% ) by (10.50), and by (10.52). Then 3% €

Ego N B(0,1/2) by (10.46), and by (10.44) we can find points gj,i S E,ﬁ so that

10. 7 = lim b,
(10.56) Yoo = Hm T

Set y! = 0,(7%) € EL (by (10.50)), r = A1 (FL) € E N B (by (10.36) and (10.35)), and
yr = A, 01 (k) € By (by (10.33) and (10.26)). By (10.48),

(1057) Ui = On () = i 0 (A (R) = e Mo
For (10.24) we first need to check that for k large,
(10.58) yr € Ex N B(l‘k,T‘k/Q).
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But yx = A ¢r H(A7L(5h)), and similarly x, = A7t (A H(EL)) by (10.37), so

lye — ax] = [N (AL @) — At (AT @)
(10.59) < NAACNEE) - Ay 1(97?9\—A A2 R, g — 7
AkTk _
<ANCA S 0l - ] = S5 -

because 1, is A-bilipschitz, and by (10.34) and (10.29). Now @),i tends to g% by (10.56),
5,{ tends to 7% by (10.46), and so

(10.60) |7} — T4l < (7 — Thol + 1 — Bl + [T} - Thol < [7h — Tho| + 6 < (A + 1)EF
for k large, and by (10.55). By (10.59),

(A + 1)efry,

(10.61) lye — xk| < 5

for k large, and of course (10.58) follows. We choose

T T
pk<k

10. _ Tk
(10.62) =302 = 0A2°

with p € (0,1) as in (10.54). Obviously the pair (yx,tr) satisfies (10.24) for k large, so we
just need to find a d-plane P}, through y; such that (10.25) holds.

So let z € E, N B(y, tr) be given. We first want to define
(1063) zZ= wk()\kz) S Ek, = Ak<g) € Eg and zf = Qk(gﬁ) S Eg,

because (10.54) gives us some control on Ef_ and hence probably on Eli

We start with zZ = 95 (Arz), which is defined because z € B(yg,t;) C Uy (recall that
B(yk,tr) C B(a:k,rk) by (10.61) and (10.62), and use (10.22)). Next, 2 € E; by (10.26).
Before we switch to z#, observe that

2 = Zi| = [r(Aez) = Ye(Azr)| < AAez — Awai] < AXe([2 = yi| + |yk — @)

(1064') (A‘I' 1)&’5’j Tk) < )\]J‘k

< AXg(t 9=k,
< Ad(te + 2 = Tgp S @

by (10.26), (10.61), if % is small enough, and by (10.62) and (10.29). Thus
(10.65) 3 € B(Fr,2 ™ ay) C Blog,/2) = %E

by (10.32) and (10.31). By (10.34) or (10.35), Ax(B(ok,vx/2)) = B(0,1/2), so
(10.66) 7 = Ax(3) € EE N B(0,1/2),
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because (10.36) says that Ef = Ay (E, N B). Now 2! = 6,(3!) is defined and lies in E,ﬁ by

the definition (10.50) and because z* € E,ﬂ This completes our verification of (10.63).
Notice that

(10.67) 2 =0,Z") = v o (AL ED) = v eyt (E) = g e
by (10.63) and (10.48). Set

(10.68) £ = sup dist(w, EL);
weE!NB(0,1/2)

then &5 tends to 0 because B(0,1/2) is a compact subset of B(0,1), and by the local
convergence of Ei to E%_ (see (10.44)). Similarly,

(10.69) e, = sup |Og(w) — 0(0) — 0o (w)]
weB(0,1)

tends to 0, by the uniform convergence in (10.49).
Return to z*, and choose &# € E¥_ such that

(10.70) € — 2| < dist (3, EE) < e
(compare (10.68) with (10.66)). Set & = 6.0 (€%); then
(10.71) ¢ € B = 0.(E~,)
(see (10.50)). Also,

€8 = yhol = 1000 (") — oo (T2)| < 10k(€F) — On(Fhe)| + 225,

(10.72) < 100(ZF) = @) + A(IE" = 2| + 7 — TEI) + 22}
< 10x(Z*) — 0k (UL)| + Aex + AT, — TE| + 22,
< 104(Z*) — 0n(T})| + %

because yf, = 0. (7%,) (see above (10.55)) and 6 is A-Lipschitz, by (10.70), then by
(10.56), because €, and € tend to 0, and if k is large enough. Next

(10.73) 0k(F) — 0 (T}) = 7 "M (= — )
by (10.67) and (10.57); since

Pk

10.74 — <t =
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because z € E, N B(yk, tx) and by (10.62), we deduce from (10.73) that

=t _ ~ < —1 prk — —mpg+2 —1 prk
10k (2%) = (W)l < 2 Ak 5z = (2 an) " M 50

(10.75) _18ah . en _ p

=9 A 0 R 90A2 T BA

by (10.31) and (10.29). Therefore

b < 193 — g, (f N T S
(10.76) 1€ = ool <10k (Z) — ()| +€%p < o +ep < %

by (10.72) and (10.75), and if €* is small enough. Since &* € Ef_ by (10.71), we get that
¢ e B N B(yf,, p), and (10.54) says that dist(¢F, P¥) < e¥p. Set

(10.77) P = kX [P+ 0,(0);

then

dist(z, P}) = v\t dist(y, " Akz, P* 4 05,(0)) = ey, dist (2%, P* + 0,(0))
< Ay [ dist(EF + 04(0), PP + 05(0)) + |€° + 05(0) — 2°]]
= A" [dist(é’ﬁ, P*) + €% + 6,(0) — zﬁ|]
< Ay P + [€8 + 6,(0) — 2]

(10.78)

by (10.67). Recall that & = 6 (£) (see above (10.71)) and 2f = 6;,(2%) (see (10.63)), so

€8+ 0),(0) — 28| = 0o (E1) + 05(0) — 0,(1)]
(10.79) < 10o0 (E%) + 01 (0) — 01(EF)] + |01 (€%) — 01 (Z9))
<el +AJEF -3 < el + Aey,

by (10.69) and (10.70). We combine this with (10.78) and get that

dist(z, Pp) < vedg '[efp + e, + Aey] = 27 ™ 2a, A ehp + €, + Aey]

AgT _ r
(10.80) <4 8; Z%Ak Help+ef, + Aey] = ﬁ [e%p + &}, + Ak
 10At

[e%p + &), + Aey]

by (10.31), (10.29), and (10.62). Recall that ¢ and ¢}, tend to 0; then, for k large enough
(depending also on p, but this is all right), we deduce from (10.80) that

t
(10.81) dist(z, P{) < 20Aefty, < %’“

if e is chosen small enough.
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Now all this is true for all k& large (not depending on z), and all z € Ey, N B(yg, tk)-
In particular, z = yj, yields dist(yx, P;) < . We choose for P, a translation of P}
that contains yy; this is required for (10.23) and (10.25), but fortunately we just need to
translate by at most EtT’“ Then dist(yg, Px) < ety, for z € Ey, N B(yk, tx), by (10.81) and as
needed for (10.25).

We finally found a plane Py through y, that satisfies (10.25); as announced earlier,
its existence contradicts the definition of our sequence { Ey}; this completes our proof of

Lemma 10.21 by contradiction. U

Our next preparatory result is a (simplified) generalization of Corollaries 9.103 and
8.55; it says that if E is a quasiminimal set, its core E* is concentrated, with uniform
bounds. The terminology comes from [DMS] (and is justified by that fact that (10.84)
below says that E* is almost as concentrated in B(y,t) as a d-plane through y), and the
result is interesting because it will soon allow us to prove the lower semicontinuity of H¢
along convergent sequences of uniformly quasiminimal sets.

Proposition 10.82. For each choice of constantsn, M > 1, A > 1 and € > 0, we can find
h > 0 and d. > 0 such that the following holds. Suppose that E € GSAQ(U, M, d, h) for
some open set U C R", and that the Lipschitz assumption are satisfied, with the constants
A and A (as in (9.3)). Also denote by ro = 2™ < 1 the side length of the dyadic cubes of
the usual grid. Then let (x,r) be such that

(10.83) r € E*, 0<r<Min(\'ry,d), B(z,2r)CU.

Then we can find a pair (y,t), such that y C E* N B(x,r/2), der <t <r/4, and
(10.84) HYE* N B(y,t)) > (1 — )wqt?,

where wy denotes the d-dimensional Hausdorff measure of the unit ball in R<.

The proof will be similar to the proof of Corollaries 9.103 and 8.55, but we shall rely on
Lemma 10.21 rather than the uniform rectifiability of our quasiminimal sets, which we do
not know how to prove with enough generality. This slightly different approach is new, and
even in the case of standard quasiminimal sets without boundaries, it has the advantage
of not using our complicated proof of uniform rectifiability (with the tough stopping time
argument on the projections). But one more compactness argument is used, and we loose
an “explicit” control on d..

Compared with Corollary 9.103, we just get rid of the unpleasant additional assump-
tion (9.105) on the dimensions of some faces. Recall that Corollary 8.55 works under the
rigid assumption, and also has the unpleasant dimensionality assumption (6.2).

For the proof, first notice that by Proposition 3.3, E* € GSAQ(U, M, 6, h), so it is
enough to prove Proposition 10.82 when F is coral, i.e., when £* = F.

Let E, z, and r be as in the statement. Our goal is to apply Lemma 9.14 to some pair
(y,t), because surjective projections will help us find lower bounds on H¢(E N B(y,t)).
Let Cy > 1, 7 > 0, and € > 0 be as in the statement of that lemma, and recall that they
depend only on n, M, and A.
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Let €9 be very small, to be chosen near the end, and apply Lemma 10.21, with the
constant g¢, to the pair (x, (2Cy)~!7); the hypotheses for Lemma 10.21 are the same as for
the present proposition, so the pair (z, (200)*17”) satisfies them. We get (yo,to) such that

(10.85) o € EN Bz,

—-) an Ceol
400 2Cy —
and a plane P through g such that
(10.86) dist(z, P) < eoty for z € EN B(yo, to).

We would be happy to apply Lemma 9.14 directly to (yo, to), but the unpleasant assumption
(9.17) on the proximity to some boundaries L; may not be satisfied. As in (9.16), set

(10.87) J(y, {j € [0, jmaz); L;j meets B(y,2t) } and L(y,t ﬂ L;
JEJ(y:t)

for y € F and t > 0. Recall that J(y,t) # () because y € E C Lo = Q. We want to find
pairs (y,t) such that

(10.88) dist(w, L(y,t)) < nt for w € EN B(y,2t),

as in (9.17). We shall restrict to pairs (y,t) such that B(y,2t) C B(yo,to), near which
(10.86) says that E stays very close to P.

We shall define a (finite) sequence of pairs (yx,tx). Naturally, we start with (yo,tg).

Suppose we already defined (yg, tx). If the pair (y, tr/2) satisfies (10.88), we stop the
construction. Otherwise, we define (yx41,tx+1) as follows.

If J(yk,tx/4) # J(yk,tx) (which by (10.87) means that it is strictly smaller), set
(Yka1,tkr1) = (yx,tr/4). We are happy, because J(yri1,tr+1) is strictly contained in
J(yk, tx) and this cannot happen too often.

If J(yk,tr/4) = J(yk,tr) and the pair (yx,tr/4) satisfies (10.88), set (yx+1,tk+1) =
(yk,tr/2). This time we are happy too because we know that we will stop next time.

In the remaining case, the failure of (10.88) for (yx,tr/4) gives a point w € E N
B(yk,tr/2) such that

(10.89) dist(w, L(yg, tx)) = dist(w, L(yg, tr/4)) > nt/4,

where the first identity comes from the fact that J(yg,tx/4) = J(yk, tx). In this last case,
we set (Yg+1,tk+1) = (w,aty), for some small constant a € (0,1/2) that will be chosen
soon. Notice that B(yk+1,tk+1) C B(yk, tr) in all cases, so that we know that

(10.90) B(yk,tr) C B(yo,to) for all k > 1.

This completes our definition of the pairs (yg,tr). Now we want to show that the
construction stops after at most j,q. + 2 steps (where jq. + 1 still denotes the number
of boundary sets L;), and for this it will be enough to show that in our last case,

(10.91) J(w, aty) is strictly contained in J(yg, tr).
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Notice that J(w, aty) C J(yk, tx) by (10.87) and because B(w, 2at) C B(w,tr) C B(yk, 2tk),
so (10.91) just means that J(w,aty) # J(yk,tx). Let us suppose that (10.91) fails, and
derive a contradiction.

Then J(w,aty) = J(yk, tr), and for each j € J(yg, tx), the definition (10.87) says that
L; meets B = B(w, 2aty). Choose a face F; C L; that meets B, and set

(10.92) F= (] FCL(yt),

JE€J (Y tr)

where the inclusion comes from (10.87). We want to show that F' is nonempty and meets
a larger ball. We return to the standard grid because this will make the computations
easier.

Set w' = P(Aw), 1’ = 2A\Aaty, and B’ = B(w',r"). Then ¢ (AB) = ¢(B(Aw, 2Aaty)) C
B(w',2AAaty) = B’, just because 1 is A-lipschitz. Now B’ is not very large, because
r’ =2 Aat, < 2X\Aaty < Aar < Aarg by construction, (10.85), and (10.83).

Also set I} = ¢(AFy) for j € J(yk,tx). The F; are now real dyadic faces of side length
o, and they all meet B’ because the F; meet B.

We need to know the following geometrical fact about our net. We have a collection
of faces, that all meet a small ball B/, and we want to know that their intersection meets
CB’. This is probably true with general polyhedral networks, but here again let us cheat
and use the fact that we have a cubical network.

Write things in coordinates. Each Fj’ is given by the equations z; € I; j, 1 <17 < n,
where each I; ; is either a point or a dyadic interval of size 9. Let w] denote the i-th
coordinate of w’. Since B’ meets F, we get that dist(wj, I; ;) < 7’ for all i. If a < (3A)~",
then 1’ < ro/3; then for each i, either all the I, ; are equal, or else they all have a common
endpoint & which in addition is such that |w] — &;| < r’ (easy proof by induction on j).

In all cases, we get &; € ijJ(yk,tk) I; j such that |w] —&;| < r’. Now the point £ with

!, and |€ —w'| < /nr'. Set ¢ = AT1(€); then ¢ € F,

coordinates & lies in (V¢ 7y, 00) £

and
(10.93) [¢ —w| = |21 &) = A7 w')| < ATHAIE — W] < ATEAV R = 2A%/naty,

Choose a = m; then | — w| < nty /4. We also know that ( € F', so ¢ € L(yk, tx), by
(10.92). This contradicts (10.89).

So (10.91) holds, and our construction stops after at most j,q. + 2 steps. Let (yg, tr)
be the last pair, where we stop. Set y = yi and t = t;/2. By definition of stopping, (y,t)
satisfies (10.88).

Let us try to apply Lemma 9.14 to the pair (y,t). First we need to check (for (9.15))
that 0 < t < C5 ' Min(A~'rg,d), but this is true because t < t; <ty < 1c; (by (10.85)),
and by (10.83). Also, B(y, (Co + 1)t) C 2CyB(y,t) C 2CyB(yo,t0) = B(yo,2Coty) C
B(yo,r/2) C B(z,r) C U because B(yi,tr) C B(yo,to) by (10.90), and by (10.85) and
(10.83); this proves (9.15).

The ugly condition (9.17) is now satisfied, precisely because (y, t) satisfies (10.88). For
the last condition (9.18), let us take the same plane P as in (10.86), and show that

(10.94) dist(z, P) < Aegt for z € EN B(y,2t),
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where A = 2a=7me==2 is just another geometric constant, that only depends on n and A.
Let z € EN B(y,2t) = E N B(yg,tx) be given. Then z € E N B(yp,to) (again by
(10.90)), and dist(z, P) < eoto by (10.86). So we just need to check that to < At.
But during our construction, we always took t;+1 > at;. Therefore, t =
1 admesT2tg = A7, and (10.94) follows.
We just proved that (9.17) is satisfied, with the constant Aey. We shall of course
choose ¢¢ so small that Aey < &, where Z is the threshold in Lemma 9.14; then the lemma
applies, and we get that (9.20) holds, i.e., that

by >

N

(10.95) m(E N B(y,5t/3)) contains PN B(w(y), 3t/2),

where we denote by 7 the orthogonal projection onto P.

We shall now conclude as in the other corollaries. We want to check that our pair
(y,t) satisfies the conclusions of Proposition 10.82. We know that y C E* N B(z,7/2)
because y = yx € B(yo,to) (by (10.90)) and by (10.85). Similarly, ¢t <ty < r/4 by (10.85),
and t > A7 1tg > ;j‘(’cro (by (10.85) again). So we will be able to take d. = 225—(‘}0, and we
just need to check (10.84).

For each p € PN B(y, (1 — Aeo)t), (10.95) gives a point z € E'N B(y, 3t/2) such that
m(w) = p. Since |p — w| = |r(w) — w| = dist(w, P) < Aept by (10.94), w € B(y,t). So
PN B(y, (1 — Aeg)t) C m(E N B(y,t)), and

HUENB(y,t)) > H(n(E N B(y,1)))

(10.96) d dyd

> H (P N B(y, (1 - Ago)t)) > wd(l — A60> t s

where wy is the same as in (10.84). We choose g¢ so small, depending on €, that (1—Agg)¢ <
1—¢, and then deduce (10.84) from (10.96). This completes our proof of Proposition 10.82.
O

We finally come to the lower semicontinuity of H¢ along convergent sequences of
uniformly quasiminimal sets, which we will deduce from Proposition 10.82 and the lower
semicontinuity result of Dal Maso, Morel, and Solimini [DMS] for the uniformly concen-
trated set.

Theorem 10.97. Let U, {Ey}, and E satisfy the hypotheses (10.1), (10.2), (10.3), and
(10.4). Also suppose that h is small enough, depending only on n, M, and A. Then

(10.98) HYENV) < liminf HY(E, NV) for every open set V C U.

k—+oo

See Theorem 25.7 for an extension of Theorem 10.97 where we also prove the lower
semicontinuity of [ B S (x)dH%(x) for some continuous functions f or even elliptic inte-
grands (where f may also depend on the tangent plane to Ej at x). The proof of Theorem
25.7, which is based on a recent result of Y. Fang [Fa|, can thus be used as an alternative
to [DMS] by readers that would not already be familiar with it.

Here again, we do not need (10.7). Of course the major difference with (10.12) is that
we removed the ugly constant C'y,.
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The (fairly short) proof of Theorem 10.97 is the same as for Theorem 3.4 in [D2]:
the conclusion of Proposition 10.82 is stronger than what we prove in Lemma 3.6 of [D2],
which was already more than enough to apply the results of [DMS]. 0

Theorem 10.97 will lie at the center of our proof of Theorem 10.8, even though many
complications will occur, both in the definition of the competitors (in particular because
we have to follow the sliding boundary rules) and in the accounting (because Almgren’s
definition of quasiminimal sets does not cooperate too well with deformation mappings
that are not injective).

11. Construction of a stabler deformation: the initial preparation

In this section and the next ones, we continue with the notation and assumptions of
Theorem 10.8, except that we don’t yet need to assume (10.7), which will only be needed
for the final Hausdorff measure computations.

Also, the construction of our main deformation will be a little more unpleasant when
we work under the Lipschitz assumption, so in most section we shall first describe the
construction under the simpler rigid assumption, and explain the necessary modifications
for the general case (in the best cases, this is just a conjugation of some mappings with
our bilipschitz mapping v, but in some cases more work is needed) to the end of sections
or subsections, so that the reader may easily skip them. We even put the corresponding
text between daggers (f) to make the skipping easier (but it would be a shame).

Most of the next sections consists in describing the construction of a deformation that
was done in [D2], and adapting it to the sliding boundary conditions. After the construction
itself, we shall complete the argument with some Hausdorff measure estimates. The proof
will finally be competed in Sections 18 (under the rigid assumption) and 19 (in the Lipschitz
case). We return to an almost self-contained mode, because so many modifications are
needed from the original proof in [D2] (after all, most of that paper is the construction of
a competitor).

So let {E%} be a sequence of quasiminimal sets, such that (10.1)-10.4) hold for some
relatively closed set E C U. Since we want to show that E is quasiminimal, we give
ourselves a one-parameter family of functions ¢;, 0 < ¢ < 1, such that (1.4)-(1.8) hold for
some closed ball B and relative to E; we assume that

(11.1) B = B(Xy, Ro), 0< Ry <6, and WccUu

(as in (2.4), and where W is as in (2.2)). Very often, we shall replace our Lipschitz
assumption (10.1) with the rigid assumption, so U will be the unit ball, but this does not
matter yet.

We want to prove (2.5), and naturally we would like to use the ¢; to construct a
competitor for Ey for k large, apply (2.5) to Ej, get some information, and take a limit.
Our first task will be to extend the ¢; to R™, because they are not defined on Fj yet.
We know that we shall probably need to modify the extension slightly, because we want
to have (1.7) for Ej and not just E. But even in the standard case when we have no
L;, we cannot use the ¢y, or their extension, directly, because of complications with the
multiplicities that will be explained soon and will be our main source of trouble.
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Anyway, let us first define extensions, that we shall also call ¢;. We shall find it better
to use a specific extension algorithm, because this way it will be easier to derive estimates.
We first set o (x) = = near OU. That is, set

(11.2) So = dist(W,R*\U) > 0 and Uy = {z e R™; dist(z, R" \ U) < 60/2}
(we know that dy > 0 because of (11.1)). We set
(11.3) pi(zr) =z for x € Ugyr and 0 <t < 1.

At this point, we have a definition of ¢; on F U Uy, and it satisfies the properties (1.4),
(1.5), (1.6) and (1.8), with E replaced by EUU,,;. For instance, ¢; is Lipschitz on EUU,y¢
because ¢1(x) = x on E\W, dist(Ueyt, W) > §p > 0, and ;1 (x) — x is bounded on ENW.

Now we extend all these mappings to R™. We shall use the Whitney algorithm, as it is
described in Chapter IV.2 of [St], for instance, and we refer to this book for details on the
construction that follows. We cover U \ (EUU,y+) by Whitney cubes Q; C R™\ (EUUc¢q),
7 € J, with disjoint interiors, and such that

(11.4) 10diam(Q;) < dist(Q;, E U Ungy) < 21 diam(Q;).

This easy to do (use maximal dyadic cubes with the first inequality), and the point is that
then the cubes 3Q); have bounded overlap.

Also choose, for each j, a point §; € EUU,. such that dist(&, Q;) = dist(Q;, EUUest),
and construct a partition of unity subordinate to the ();, which means a collection of
smooth functions x; > 0 such that

(11.5) ij = 1R\ (BUU,41)>
J
(11.6) 0 < x; <1aq; foreach j,
and
(11.7) IV X ]|0o < C diam(Q;)~".

We use the Whitney extension formula to extend the function ¢;(x) — = from E U Ugy to
R"™. That is, we set

(11.8) i) =2+ 3 X @)lei(§) &) for o € R\ (B U Uear).

Naturally we keep ¢, as it was on the set E'U Ugyy.
It will be useful to know that if x;(x) # 0, for some j such that &; € E, then x € 2Q);
and hence

(11.9) dist(z, F) < |§; — | = dist(Q;, E) < dist(z, F) + diam(Q);)
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and hence, since (11.4) says that 10 diam(Q;) < dist(Q;, E),
(11.10) dist(z, F) > dist(Q;, F) — diam(Q;) > 9diam(Q),),

which we can plug back in (11.9) to get that

11.11 & — x| < dist(z, E) + diam(Q); Sgdis‘c x, F).
J J 9

The advantage of extending ¢.(x) — = is that we more easily spot places where it
vanishes. Let us check that

(11.12) wi(z) = when dist(z, F) < %dist(x, W),

where as before

(11.13) Wi ={y e E; oi(y) #y}

This is clear when x € F (because then dist(z, W;) > 0), and when x € Uy (by (11.3)),
so let us consider x € R™ \ (E'U Ugyt). If pr(x) # x, (11.8) says that we can find j such
that x;(z) # 0 and ¢;(§;) # &. Then & € E by (11.3), and |¢; — z| < 12 dist(z, E) by
(11.11); but we assumed that dist(z, W) > 12 dist(z, E), so & ¢ Wy, hence ¢4(§;) = &;, a
contradiction which proves (11.12).

We also have that

(11.14) wo(z) = for x € R",

just because all the (&) — &, vanish, that

(11.15) (t,z) = @¢(x) is continuous on [0, 1] x R"

(in particular because each fixed ¢.(§;) is a continuous function of ¢), and similarly
(11.16) 1 : R™ — R™ is Lipschitz,

because we used the standard formula for the Whitney extension theorem.

Our extensions ¢; will be better when we stay close to E, for instance because oth-
erwise (11.12) does not give much of a control, but this is all right because we only need
them on sets Ej that tend to E. But also, the ¢; have some defects that we’ll need to
fix. The main one, which will be explained soon, is that ¢; may be one-to-one on the Ej,
while it is many-to-one on E, which possibly makes the ¢ (FE)) much worse competitors
than o1 (F).

The truth is that we mostly care about ¢1. We need to keep the ¢, 0 <t < 1, because
eventually we shall need to check (1.7) on the Ej, but the main point of the argument
concerns estimates like (2.5), where only ¢ counts.
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Except for the fact that we have to worry about (1.7) and have a slightly more com-
plicated way to define competitors (we now have a ball B and the open set U), we will
mostly follow the construction of [D2]. Even though we will change many little things, it
will some times be convenient to refer to [D2] for small independent things.

So we are interested in the values of f = ¢; near E. Even in the standard case with
no L;, if by bad luck there is a region where F and Ej, are composed of many pieces, f
maps all the pieces of E to a same small disk, say, but maps all the F; to parallel, but
disjoint little disks, f(E) may be a quite reasonable competitor (because the measure of
the single disk is small), but not f(E})). Then, when we apply (2.5) to Ex and f(E})), we
won’t get much information, not enough to control f(F). What we intend to do in this
case, when f sends many pieces to parallel and nearby disks, is to modify f (typically, by
composing it with a projection) so that it sends all these pieces to a single disk. This will
make f(FEj) a much better competitor, and then we have a good chance to run the usual
lower semicontinuity arguments and get the desired inequality (2.5).

A good part of the construction below consists in doing such grouping, but obviously
this will require some nontrivial amount of cutting and pasting. As the reader may have
guessed, we shall use the fact that F is rectifiable (to show that it has a tangent at most
points), the fact that ¢ is Lipschitz on E (to show that it is often close to its differential),
and lots of covering arguments (to reduce to situations where ¢, is almost affine and F is
almost flat). The word stability in the title of the section refers to the fact that after this
grouping, the total measure of f(E})) will be much less dependent on k.

11.17. Remark about the many constants. Since there will be lots of constants in
this argument, let us announce here in which order we intend to choose them, so that
the reader may more easily check that we do not cheat. We shall systematically denote
by C constants that depend only on n M, and A (when we work under the Lipschitz
assumption). This includes the local Ahlfors-regularity constants for F.

Next observe that from now on, U, B, the ¢;, and in particular f = ¢; are fixed, so
we shall not mind if our constants depend on rg, A, of ¥ in the Lipschitz assumption, or
on f, typically through its Lipschitz constant |f|;;,. Similarly, we can let our constants
depend on the number H¢({z € E; f(z) # x}). In both cases, we shall often indicate this
dependence, mostly to comfort the reader, but will not be a real issue.

A first string of constants is

v > 0 (small), a <1 (close to 1), &« > 0 (small), N (large),

(11.18)
n > 0 (small), and € > 0 (small)
to be chosen in this order. Our small constants §;, 1 < §; < 9, will be allowed to depend
on these constants (even though the first ones don’t), and are thus chosen after n and e.
Typically, they are chosen smaller and smaller. They act as scale parameters, and force us
to work with balls that are small enough for some properties to hold, but they should not
have an incidence on the estimates.

Finally, we will choose two last small constant €y and e,. They also determine the
distance that we allow between E and the E}, and so they could also have been called d1¢
and 011, but we decided to revert to the name ¢ to show that they are even smaller.
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Let us also mention that our estimates will only be valid for k large, depending on
the various constants, and in particular the §; and &q.

We cut the construction into a few smaller steps; only the first one will be completed
in this section. As explained above, we shall first carry the construction under the rigid
assumption, and then we shall explain how to modify things under the Lipschitz assump-
tion.

Step 1. We remove a few small bad sets. Before we define balls B; and modify f on
them, we remove some small bad sets from E, where E or f is not regular enough. Set

(11.19) Wi={zeR"; f(z) #z} ={z e R"; ¢1(z) # z};
our star starting set is
(11.20) Xo=EnNW;={zeE; f(x) #2} cW ccCU,

(by (2.2) and (11.1)) and we immediately replace it with a compact subset X; C Xy, such
that

(11.21) H(Xo \ X1) <,

where 7 is some very small positive number, that will tend to 0 at the end of the argument.
Set

(11.22) 01 = dist(Xq,R™" \ Wy) > 0;

the fact that 6; > 0 (because X; is compact and Wy is open) will make it easier to stay
inside Wy when we cover X; by small balls.

Some manipulations will be easier if we force f(x) to stay far from the boundaries
of faces, because it will make the smallest face that contains f(z) locally constant. For
0 <1 < n, and under the rigid assumption, denote by &; the union of all the faces of
dimension [ of the dyadic cubes of side length ry of our usual grid. When we work under
the Lipschitz assumption, we shall just call “cubes” the images of standard dyadic cubes
by A1y~ and similarly for faces, and we shall define the S; in terms of these distorted
faces. Set

(11.23) Xi5() ={z e Xy; f(z) €S\ S-1 and dist(f(z),S-1) > 6}

for 6 >0 and 1 <1 <n; for [ =0, simply put

(11.24) X1,5(0) = {z € X1; f(z) € So}.

Then set

(11.25) Xis= |J X1s(0).
0<I<n
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Since X is the monotone union of the X; 5 (when § decreases to 0), we can choose d; > 0
so small that H%(X; \ X1.5,) < 7. Then we set

(11.26) =X145, = |J X1.5() andso HY(X;\ Xa) <

0<i<n

For each z € X5, denote by F(f(x)) the smallest face of our dyadic grid that contains
f(z). We claim that (under the rigid assumption)

(11.27) F(f(z)) = F(f(y)) for z,y € X5 such that |f(z) — f(y)| < Ja.

Indeed, let | = I(z) be such that z € X; 5,(l), and define [(y) similarly. By symmetry, we
may assume that [ > [(y). By definition, f(x) € & and (if | > 0) dist(f(z),S;—1) > d2. In
particular, f(y) cannot lie on S;_1, so [(y) > [ and, by our symmetry assumption, I(y) = I.
Now F(f(x)) and F(f(y)) are two faces of the same dimension [. Suppose for a moment
that they are different. If [ = 0, this is impossible because |f(x) — f(y)| < d2 and so (if we
chose d2 < 19) f(z) and f(y) cannot both lie on Sy. Otherwise, (3.8) says that

(11.28) dist(f(x), 0F (f(x))) < dist(f(x), F(f(y))) < [f(z) = f(y)] < 62,

which contradicts the fact that dist(f(x),S;—1) > d2. This proves (11.27) in the rigid case.
1 We can do the same argument under the Lipschitz assumption, where faces are only

bilipschitz images of faces of a true rigid grid; we just need to require that |f(z) — f(y)| <

A7265 in (11.27), because we may lose a constant A? in the first inequality of (11.28). {

Next we want to use the rectifiability of E, which we deduce from Proposition 10.15.
By Theorem 15.21 on page 214 of [Ma], we can find a countable collection of C'* embedded
submanifolds I'y (or, if you prefer, images by rotations of C'! graphs) of dimension d, such
that

(11.29) HUE\ (T, =

To be fair, we don’t really need C' submanifolds, and Lipschitz graphs would not have
required much more work, but on the other hand, we should not pretend that we do not
use strong results, when in the proof of Proposition 10.15 we used the much stronger fact
that unrectifiable d-sets have negligible projections in almost all directions.

Select a finite set S of indices, so that if we set X3 = Xo N [Uses FS], then
(11.30) HAUX, \ X3) < 7.
Put a total order on S, and set

(11.31) Xs3(s) = XsnT,\ [ J T

s'<s

138



for s € S. Thus the X3(s) are disjoint and cover X3. We know that

(11.32) lim r~ e HYTy N B(z,r)\ X3(s)) =0

for H%-almost every x € X3(s), just because H(I') is locally finite and T', \ X3(s) does
not meet X3(s); see for instance Theorem 6.2 on page 89 of [Ma]. Similarly,

(11.33) lim 7~ *HYE N B(z,r) \ X3(s)) =0

r—0

for H?-almost every x € X3(s), this time because X3(s) has a neighborhood where H%(E)
is finite (recall that X3(s) C X; and X; is a compact subset of W cc U, by (11.20)).

Let us check that if z € X3(s) is such that (11.33) holds, and if P, denotes the tangent
plane to I'y at z, then P, is also a tangent plane to E at x, which means that

(11.34) lim |y — x|t dist(y, P,) = 0.
y—x;yel

Indeed, if d(y) = dist(y, X3(s)), then d(y) < |y — z| trivially, and

CHd(y)? < HUEN B(y,d(y)) = HY(EN B(y,d(y)) \ Xs(s))

(11.35) ; )
< HY(ENB(x,2ly —z|) \ X3(s)) = o(ly — x[%)

because F is locally Ahlfors-regular and B(y,d(y)) C B(z,2|y — z|), and by (11.33). But
then dist(y,I's) < d(y) = o(|]z — y|) because X3(s) C I's, and now (11.34) holds because
I's is tangent to P, at x. Notice that without surprise, £ and I'y share the same tangent
plane at = (regardless of the rest of E, which anyway does not matter because of (11.33));
the uniqueness of the tangent plane to E follows from the local Ahlfors-regularity of F,
but we could also deduce it from the fact that by (11.32), most points of I'y lie in X3(s),
and hence in E.

We also want to throw out the points of X3(s) where f is not differentiable in the
direction of P,. That is, denote by X4(s) the set of points z € X3(s) such that (11.32)
and (11.33) hold, and there exists an affine function A4, : R™ — R", of rank at most d and
with Lipschitz norm

(11.36) |DAz| < [fliips

and such that

= 0.
y—x;yels \y - 517]

Let us check that if z € X3(s) satisfies (11.32) and (11.33), and if the restriction of f to
['; is differentiable at x, then x € X4(s); clearly this will imply that

(11.38) HY(X3(s) \ X4(s)) = 0.
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Let = € X3(s) be like this. There is a small neighborhood of = where I'y is the graph
of some C*! function F, defined on P, and with values in P;-, the (n — d)-vector space
perpendicular to P,. That is, I's is locally equal to the set of points z + F(z), z € P,, and
with these conventions F'(z) =0 and D f(x) = 0.

Set g(z) = f(z + F(z)) for z € P, near x. By assumption, g is differentiable at
z = z. Denote by P, the vector space parallel to P, and by A : P, — R"™ the differential
in question. Obviously, the rank of A is at most d, and the norm of A is at most |f|;p,
because for each A > |f|;;p, there is a neighborhood of x in P, where g is A-Lipschitz.

Set A,(y) = f(x) + A(n(y — z)) for y € R™, and where 7 denotes the orthogonal
projection on P.. Then A, is affine, with rank at most d, and (11.36) holds. For y € T',
close enough to x, write y = z + F(z), where z = x + 7(y — x) is the projection of y on
P,; then

[F(y) = Az(y)| = l9(2) = Az (v)] = l9(2) = f(2) = Alx(y — 2))|
= l9(2) = f(z) = A(z — 2)| = o(|z — 2|) = o(ly — z])
by definition of A, and A (and because f(z) = g(x) since F'(x) = 0). So (11.37) holds and

x € X4(s), as needed for (11.38).
Let us also check that

(11.39)

(11.40) im W)~ A ()l

=0 when z € X,(s).
y—z;ycEUP, |y — $|

For y € E U P, near x, choose w € I'y such that |w — y| < 2dist(y,I's); we know from
(11.34) or the fact that P, is tangent to I' that |w — y| = o(Jy — z|), and then

|f(y) = Az(y)| < [f(w) — Ax(w)] + [f(w) = f(y)| + [Az(w) — Ax(y)]
(11.41) < [f(w) — Az (w)] + 2w — y|[ f1ip
= o(|lw —z|) + o(ly — =) = o(|ly — zI),

by (11.37); (11.40) follows.

We want to have all the properties above with some uniformity. So we let € > 0 be
small, and denote by X5(s) the set of points x € X4(s) such that the following properties
hold. First, there is a C'' mapping F, : P, — P;-, such that

x

(11.42) F.(z)=0, DF,(x) =0, and ||[DF,||cc <€
and
(11.43) z+ Fy(z) €Ty for z € P, N B(x,d3),

where J3 is another small constant, that will be chosen soon, depending on . This is just
a quantified version of the description of I'y near z that we used below (11.38). Next,

(11.44) HYB(x,r) N [T, UE]\ X3(s)) <erd for 0 <r <63
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(compare with (11.32) and (11.33)), and also

(11.45) dist(y, Py) <ely —z| for y € EN B(x,ds3)

as in (11.34). Finally,

(11.46) 1f(y) = Au(y)| < ely — x| fory € [EUP, US| N B(x,d3),

as in (11.37) and (11.40).
Each set X4(s) is the monotone union, when d3 goes to 0, of the corresponding sets
X5(s) that we just defined. So we can choose d3 > 0 so small that if we set

(11.47) X, = U X4(s) and X5 = U X5(s) C Xy,

seS sesS
then H4(X, \ X5) <7, and hence
(11.48) HY X0\ X5) < 4n

by (11.21), (11.26), (11.30), (11.31), and (11.38).

T Remark 11.49. In this first step that we just finished, the flatness of the faces does not
show up. Under the Lipschitz assumption, we can proceed exactly as we did, except that
cubes and faces are more complicated. Things will become more unpleasant when we try
to use the existence of the tangent planes P, to derive information on the closeness of
to the (no longer flat) faces of cubes, and in fact we shall need to require the equivalent of

(11.36), (11.37), and (11.40) also for the mapping f defined by
(11.50) f(z) = v(\f(z)) € B(0,1) forz € E

(which makes sense because we know that f = o1 : E — U and ¢ : \U — B(0,1)); see
near (12.36). T

12. Step 2 of the construction: the places where f is many-to-one

In this section we continue the construction of Section 11, and modify the function
f in some balls Bj, j € J;, where we can make f highly non injective. Let N be a large
number, and set

(12.1) Yn ={y € f(X5); X5 N f~"(y) contains at least N distinct points}.
As before, it will be easier to (demand some uniformity and) control the set

Yn(61) ={y € f(X5); X5 N f~'(y) contains at least

(12.2) - . .
N distinct points at mutual distances > (54}
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for some small 6, > 0. Since f~!(Yy) is the monotone union of the f~1(Yy(d4)), we can
choose 04 > 0 so small, depending on 1 and other constants, that if we set

(12.3) Xn(8s) = X5 N0 fH (YN (04)),
then
(12,0 H(1X5 0147 (V)] \ X (60)) < 1

We shall need a covering of X (d4).
Step 2.a. We cover Xy (d4) by balls B; = B(x;,t), j € Jp.

We want to cover Xy (d4) with small balls of the same very small radius /2, but let
us first say how small we want ¢ to be. Set

(12.5) 05 = inf {|f(z) — z[; = € X1 };

notice that d5 > 0 because X; is compact and f(z) # x for z € X7 C Xo (by (11.20)).
Recall that we set

(12.6) 8o = dist(W,R" \ U) > 0
in (11.2). Pick

1

12.7 0g <
(12.7) 5 < TORZ(L+ [Flig)

Min (A~"r0, 8,80, 01,02, 05,04, 05 )

(where A = A =1 in the rigid case) and any t such that
(12.8) 0 <t < dg.

Then pick a maximal collection {x;}, j € Ji, of points in Xy (d4), that lie at mutual
distances at least ¢/3. Thus

(12.9) Xn(84) € | Blaj,t/2)

JjeN1
by maximality, and we claim that
(12.10) Ji has at most Ct~9H%(X,) elements.

Indeed, z; € X5 C X; for j € Ji, so

1 1. n .. n
(12.11) t<dg < 1—051 = 1—0 dlSt(Xl,R \Wf) < E dlSt($j,R \Wf),
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which implies that £ N B(z;,t/6) C EN W = X (see the definition (11.20)). Let us also
show that

(12.12) HYE N B(zj,t/6)) > C~1t4.

We want to apply Proposition 4.1 or Proposition 4.74, so we just need to check that
t/6 < Min(A~'rp,d) and B(z;,t/3) C U. The first one follows from (12.7) and (12.8), and

the second one holds because x € Xy C W and t < 06 < dp. So Proposition 4.1 or 4.74
applies and gives (12.12).

The E N B(z;,t/6), j € J; are disjoint (by definition of .J;), and contained in Xy, so
(12.10) follows from (12.11).

We agree that (12.10) is not a very good bound, but a large choice of N, depending
on H(Xy) and 7, will compensate. At least, notice that H%(Xy) < +oo (because X, C

WccU ), and will be taken as a constant (it only depends on E and f).
Step 2.b. We cover Yy(d4) by balls D;, | € L.

We also want a covering of Yy (d4). So we take a maximal set of points y;, [ € L, in
YN (d4), at mutual distances at least ¢/2. Then

(12.13) the balls D; = B(y,t), l € L, cover Yn(04).
Let us prove that the cardinality of L is
(12.14) L] < ON" 1+ [ fluip)®t “HY(Xo).

For each [ € L, select N points x; ; € X5, 1 < j < NN, at mutual distances at least d4, such
that f(z;;) = y. Such points exist, by the definition (12.2), and they lie in Xn(d4), by

(12.3).
Set s = 4(1+|t—f|zm and B; ; = B(x; j,s); we claim that
(12.15) B ; is disjoint from By ;» when (I, j) # (I', 7).

When | = 1" and j # j/, this is because s < t/4 < 64/4 < |z7; — x7,57]/4 (by (12.8), (12.7),
and our choice of points z; ;); when [ # I’, this is because if © € B; ; and 2’ € By j/, then

(12.16) |f(2) = f(@")] = [f(x05) = f (v )] =28 flup = [92 = yo| = 28] fluip > t/2—1/4 > 0.

With the same verification as for (12.12), H4(E N By ;) > C~ s > C71(1 + | fliip) ~9t%.
Also, EN B;; C Xp because s < t/4 < dist(z; ;,R™ \ Wy) (because z;; € X5 and by
(11.20) and the proof of (12.11)). Since there are N|L| balls B; ;, which are disjoint by
(12.15) and have a total mass at most H%(Xy), we get (12.14).

Step 2.c. The collection of disks @, Q) € F;.

For each [ € £, we want to select a reasonably large collection of affine subspaces P,
and then disks ) C P. The general idea is that when we modify f on the B;, j € J;, we
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want to send points preferably to these disks ), which will make f more stably many-to-
one.

This is a stage of the construction where we need to be careful about the boundary
pieces L;, so we shall diverge slightly from [D2]) and also we shall need to modify some
things when we work under the Lipschitz assumption, but let us first describe what we do
when the rigid assumption hold.

Let us fix I € L. Denote by F; the smallest face of our usual grid that contains y;;
this makes sense, because if y; lies on two faces F' and F’, then F N F' is also a face that
contains y;. Denote by d(I) the dimension of Fj, and by W (y;) the d(I)-dimensional affine
subspace that contains Fj.

If d(I) < d, we just choose one affine subspace, namely P = W(y;), and one disk @,
namely

(12.17) Q=PnN B(yl, 3(1 + ’f‘lip)t).

If d(I) > d, we choose a whole collection of affine d-planes P through D;, all of them
contained in W (y;), with a density property that we shall explain soon. For each P that
we choose, we still define @ by (12.17); this gives a collection F; of disks @, @ € F;, (which
is just composed of one disk when d(l) < d).

The density property is the following. Let v > 0 be a very small constant (to be
chosen later); we demand that if d(I) > d, then for each affine d-plane P’ through D
which is contained in W (y;), we can find @) € F; such that

(12.18) dist(z,Q) < at for z € P'N B(y1, 3(1 + | fliip)t)-
So we choose the set F; like this, but with not too many elements, so that
(12.19) |71l < C(e f)

for some constant C(«, f) that depends on « and |f|;,. Now we set F = UjesF; and
observe that

(12.20) |F| < Cla, f)IL] < Cla, fNT1HIHY (X))

by (12.14), and with new constants C'(«, f) that depend on « and |f|;;. Let us record the
fact that by construction,

(12.21) Q C W(y) N By, 3(1 + | fliip)t) forl e L and Q € F.

We shall see why this is important when we check the boundary condition (1.7).

1 When we work under the Lipschitz assumption, we proceed almost the same way.
Recall that the dyadic cubes and faces are now obtained from the standard ones in the
unit ball, using (the inverse of) the bilipschitz mapping ¢ : AU — B(0,1); thus Fj, the

smallest face that contains y;, is the image I} = A1y~ 1(F}) of some true dyadic face F
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(the smallest one that contains y; = ¥(Ay;)). When d(I) < d, we just choose one affine
space P, namely the d(l)-dimensional affine subspace W (y;) that contains Fj, and set

(12.22) Q = PN B, 2002 (1 + | fluip)t) and Q = A"~ H(Q).

When d(l) > d, we still define Q and Q by (12.22), but we let P run through a fairly large
collection of d-planes P, such that

(12.23) P C W(y) and P meets B(g, 2AA(1 + | fliip)t)-

We choose this collection so dense that, if P is any other affine d-plane such that
(12.24) P' CW(§) and P’ meets B(7, 2AA(1 + | fluip)t)),

then there is a d-plane P in the collection such that

(12.25) dist(z, P) < AA~"'at for z € P' 0 B(f, LOAN?(1 + | f]1ip)t)-

We get a collection of plates ), Q € F;, and again we can manage so that each plane P we

choose satisfies (12.23), and |F;| < C(«, f), where here C(a, f) also depends on A. This
way we still get (12.19) and (12.20), and the analogue of (12.21), namely the fact that

(12.26) Q = v(AQ) C W (%) N B(@i1, 20AA2(1 + | f|15p)t) forl € £ and Q € F.

Incidentally, notice that none of our main constants will depend on A, and in fact we could
easily get rid of A with a simple dilation of E and the E}; we shall not do this and keep
mentioning A in our estimates, but the reader could also decide not to bother and make
A =1 everywhere.

Step 2.d. Where do the tangent planes go?

The following lemma will help us soon in our choice of approximate tangent planes in
the image, but we state it independently. As usual, we start under the rigid assumption.

Lemma 12.27. Forx € X5, let P, and A, be asin (11.34) and (11.40), denote by F(f(z))
the smallest face of our usual grid that contains f(x) and by W (f(x)) the smallest affine
subspace that contains F(f(x)). Then

(12.28) Ay (Pr) C W(f(2)).

Fix x as in the statement, and denote by P and W the vector spaces parallel to P,
and W (f(z)) respectively. Since we already know that A, (z) = f(x) € W(f(z)), we just
need to check that A(P) C W, where A denotes the linear part of A,.

First we want to find, for each small p > 0, a collection of affinely independent points
wh € X3 N B(z,p), 1 <k < d, and more precisely such that if we set wg = x, then for
1<k<d,

(12.29) dist(wg, P(wg, ..., wj,_y)) > cp,
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where P(wf, ..., w?_,) denotes the affine subspace of dimension k—1 spanned by wf, ..., wh_,

and ¢ > 0 is a constant that depends only on M and n.
The proof of existence is the same as for (8.35); we just need to know that F is locally
Ahlfors-regular and that for p > 0 small enough,

(12.30) HY(X3N B(z,p)) > C~Lp?

This last follows from Proposition 4.1 (the local Ahlfors-regularity of E), (11.33), and the

fact that X3(s) C X3 by (11.31). Alternatively (if you don’t like (8.35)), we could take d

affinely independent points in P, (with a property like (12.29), even with ¢ = 1/2), recall

that P, was initially defined as the tangent plane to the I'y that contains x, and use (11.32)

to find points of X3 that lie close enough to these points. Either way we can find the wy,.
Take a sequence of radii p that tends to 0, and for which

(12.31) each p~!(w} — x), 0 < k < d, has a limit wy.
Then wy = 0 and (12.29) yields
(12.32) dist(wg, P(0, ..., wx—1)) > ¢

for 1 < k < d, and so the wg, 1 < k < d, are linearly independent. In addition, wy € P,
because

dist(p~H(wf — ), P) = p~ tdist(wf — x, P) = p~ ! dist(wf, Py)

2.33
(1233) — ool — af) = o(1)

by (11.34) (which holds because x € X3) and because w; € X3 C E. So the wy, 1 <k <d,
are a basis of P, and it is enough to check that A(wg) € W for 1 < k < d. But

dist(A(wf — z), W) = dist (A, (wh) — Az (z), W)

f

(12.34) = dist(A, (wf), W + Ag(x)) = dist(Ag (wf), W(f(z)))
(@) + | f(wy) — Ag(wy)]
)

W(f
because A, is affine and A,(z) = f(z) € W(f(x)), and by definition of W (the vector
space parallel to W(f(x))). But |f(wf) — f(z)| < p|fliip < 02 if p is small enough, so
F(f(w})) = F(f(x)) by (11.27) (recall that z € X5 and w!, € X3, so they both lie in X5),
and then f(w}) € F(f(w})) = F(f(xz)) C W(f(x)), by definitions. Hence (12.34) yields

(12.35) dist(A(wy — 2), W) < [f(wg) — Ax(wp)| = 0wy, — x[) = o(p)

by (11.40). We divide by p, take the limit, use (12.31), and get that A(wy) € W, as needed;
Lemma 12.27 follows. Il

< dist(f(wp),

T Under the Lipschitz assumption, we shall use an analogue of Lemma 12.27 where f
is replaced with the mapping f defined by

(12.36) f(z) =v(\f(z)) € B(0,1) forz € E
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(which is the same as (11.50)). Recall that f: E'— U (because f = ¢; on E, and because
W cc U), and then ¢ : AU — B(0,1) by definition of the Lipschitz assumption. In fact,

fis even defined in a neighborhood of E in U.

In the definition of X4(s), and in addition to the differentiability at x of the restriction
of f to Ty (see below (11.37)), let us also require that the restriction of f to I'y be differ-
entiable at x. This is also true for H? almost every x € X3(s), and the proof of (11.36)
and (11.37) shows that there is an affine function A, : R" — R", of rank at most d, such

that

(12.37) IDAL| < AA|fluip,
and
y—aw;yels \y — ZC’

where ]?is defined, near x, by the same formula (12.36) as above. Then the proof of (11.40)
yields

1f(y) — Au(y)]

=0
y—z;yEEUP, ly — x|

(12.39)

when = € Xy(s), if we add this requirement to the definition of X4(s). Then we get the
following variant of Lemma 12.27.

Lemma 12.40. For x € X5, let P, and A, be as in (11.34) and (12.39), denote by
F(f(x)) the smallest face of our usual rigid dyadic grid that contains f(x) = ¢(Af(x)) and

by W(f(x)) the smallest affine subspace that contains F'(f(x)). Then

(12.41) Ay (Py) C W (f(a)).

The proof is the same as for Lemma 12.27; we just replace f with fand (11.40) with
(12.39) in (12.35). Ot

Step 2.e. We choose disks Q;, j € J;.

For each j € Jy, we set B; = B(zj,t) (see Step 2.a). We want to choose a @), in our
large collection F, and not so far from f(ENB;) so that composing f with a projection on
@; will not move points too much. As before, we start with the easier rigid assumption.

So fix j € Ji. Recall that z; € Xn(64) = X5N f~1(Yn(d4)) (see the line below (12.8),
and (12.3)). Then f(z;) € Yn(d4) and by (12.13) we can find [ = [(j) € L such that
f(z;) € Dy = B(y;,t). Since y; € Yn(d4) C f(X5) by (12.1), we can find z(l) € X5 such
that y, = f(z(0)).

Still denote by F; the smallest face that contains y; and by W(y;) the affine space
spanned by Fj;. With the notation of (11.27), F; = F(y;) = F(f(z(l))), and (11.27) says
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that F; = F(f(z;)) as well, since x; and z(l) both lie in X5 C X5 and |f(z,) — f(z(1))| =
|f(z;) — il <t <6 < Iz (see (12.8) and (12.7)). Then W(y;) = W(f(z,)) (the affine
space spanned by F'(f(z;)) as well.

Set P; = P,; then Lemma 12.27 says that

(12.42) Ag, (Pj) € W(f(x;)) = W)
We claim that that we can find a disk @); € F; such that
(12.43) dist(z,Q;) < at for z € Ay, (P;) N By, 3(1 + | fliip)1)-

Indeed, if W (y;) is of dimension at most d, F; is composed of a single element Q = W (y;)N

B(3(1+|f1ip)t), which satisfies (12.43) by (12.42) and (12.17). Otherwise, (12.42) (and the

fact that A, (P;) is at most d-dimensional) allows us to pick an affine d-plane P’ such that

A, (P;) C P' C W(y,). Observe that P’ goes through D; because A, (z;) = f(z;) € Dy,

so we can choose QQ; € F; so that (12.18) holds; (12.43) follows because A,,(P;) C P'.
Let us check that

(12.44) dist(f(2), Q;) < (2e + 2¢| flup + ) t for z € EN2B; = EN B(xj,2t).
Indeed, x; € X5, so (11.46) holds for x = x;. We get that
(12.45) |f(2) — Az, (2)] < elz — x| < 2et for z € EN 2By,

because |z — zj| < 2t < 2§s < 03 by (12.8) and (12.7). Denote by m(z) the projection of
z on Pj; then |7(z) — 2| < 2et by (11.45) (again applied with = z; and valid because
|z — x| < d3). By (11.36),

(12.46) Az, (2) = Ag,; (m(2))| < |m(2) = 2] | fliip < 2et[fuip-
In addition,

Az (7(2)) = wi| < Az (7(2)) = f(2)| + |f(25) — il
(12.47) = [Ag; (1(2)) = Az, ()| + [ f(25) — wil
< [fliplm(2) = 2j] + ¢ < (2] flup + 1)t

because A, (z;) = f(z;), f(z;) € Dy = B(y,t), and |n(2) — x| < |z — 25| < 2t
Since A, (m(z)) € Ay, (P;) trivially, (12.47) allows us to apply (12.43) to it; this yields
dist(Ag, (7(2)), Q;) < at, and now (12.44) follows from (12.45) and (12.46).

T Under the Lipschitz assumption, we still can define | = [(j) € £ such that f(z;) € Dy,
and z(l) € X5 such that y; = f(z(l)). The smallest face F; that contains y; is still the same
as for f(z;); equivalently, the smallest face F} of the rigid grid that contains g, = v(Ay)
is the same as for f(x]) = 1(Af(z;)). Then the smallest affine space W (y;) that contains
F} is the same as for f(x]) This time, we use Lemma 12.40, which says that

(12'48) Aw(Pac> C W(f(xJ» = W(gl)v

J J
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and we want to use this to find a close enough @; € F;. If F(y;) is of dimension at most
d, we pick the only element Q defined by (12.22) with P = W (7;). Otherwise, we want
to use the rule (12.25) to select a P. First use (12.48) to choose P', of dimension d, such
that /L,j (Pz,) C P’ € W (), and observe that P’ meets B(J;, AA(1 + | f|1ip)t)) because

fv(%) = Az, (z5) € ,ZLCJ_ (P,) and

(12.49) [f(25) = wil = [0(Af(25)) — o) < AA[f () — wi] < AAE

because f(z;) € D;. Thus (12.24) holds, and we can find a d-plane P in our collection, so
that (12.25) holds. We call that plane P;. Hence

(12.50) dist(z, Pj) < Mat for z € A, (Py,) N B3, 10A>(1 + | fluip)t),

J

since jzj (P,) C P'. Then let Q; € F; be the set @ defined by (12.22) with this choice of

. J

P = P;; we want to check that
(12.51) dist(f(2), Q;) < 10A®(1 + |fluip)et + at for z € E N B(z;, 10At),

as in (12.44). For this, we assume that in the definition of X5(s) (near (11.42)), we added
to the requirement (11.46) its analogue for f That is, we first take d3 so small that
f(y) € U for x € X7 and y € B(z,d3) (this is easy, because f is Lipschitz, X; is compact,
and f(X;) C U); this way, we can define f(y) = ¥(\f(y)) for z € X; and y € B(z, d3), as
in (12.36). But more importantly, we take d3 so small that with this definition,

(12.52) 1f(y) — Au(y)| < Xely — x| for y € [EU P, UT,| N B(,d3).

This is possible, for the same reason as for (11.46).
Now let z € EN B(x;,10At) be given; then

(12.53) 1£(2) — Ay, (2)] < Aelz — x| < 10AAet

by (12.52) and because |z — x;| < 10At < 10Ads < 03 by (12.8) and (12.7). Again the
projection m(z) of z on P; is such that |7(z) — z| < 10Aet, by (11.45), so

(12.54) |Au, (2) = Ag, (1(2))] < M| Fluip|m(2) — 2| < TOAA?| flripet
by (12.37), and also
Ay, (1(2) = il < |As, (7(2)) = Fla)| + | f(25) = il
(12.55) = |4, (m(2)) = Ay, ()| + [$ (7)) = )|

< M fliip|m(2) — 5] + AA|f(z5) — i
< A Flipl = 2] + AAE < TOMZ(1+ | Flip )t
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because ij () = f(xj), by (12.37) again, because x; = m(x;) since P; goes through z;,
and because f(z;) € D; = B(y;,t) and z € B(x;,10At).

Now ng (m(2)) € ﬁwj (Pj), so by (12.55) we may apply (12.50) to it; we get that
dist(gmj (77(,2)),]33-) < M~ lat. Since

(12.56) [F(2) = Ag, (m(2))] < 10AP (1 + | flip)et
by (12.53) and (12.54), we get that
(12.57) dist(f(2), 153) < 10AA?(1 4+ | flup)et + M tat for z € EN B(xj, 10At).

In addition, |f(2) — 1| < 11IAA2(1 + | fliip)t by (12.55) and (12.56), so the point of ﬁj that
minimizes the distance to f(z) automatically lies in @ = ¥ (AQ;) by (12.22). Finally,

dist(f(2), Q;) = dist(f(2), A\ H(Q)) < AT Adist(f(2), Q)

(12.58) v @
= AT Adist(f(2), P;) < 10A®(1 + | f|uip)et + at

by (12.22) again and (12.57); (12.51) follows.
Step 2.f. We construct mappings g;, j € Ji.

Return to the rigid assumption. For each j € J;, we now define a Lipschitz mapping
g; : U = R™. We use a new constant a € (0, 1) quite close to 1. Set

(12.59) g;(x) = f(z) foraz e U\ B(z;, HT“t)
and
(12.60) gi(x) =7;(f(x)) for z € aB; = B(zj,at),

where 7; denotes the orthogonal projection onto the affine plane spanned by @;. In the
middle, interpolate linearly as usual, by setting

2|z — x| — 2at

(1+a)t =2z — ]
(12.61) gij(z) = 1= a) T

(1—a)t !

fx) + (f(z))

for x € B(zj, H'T“t) \ B(z;,at). This gives a Lipschitz function g;, with a quite large
Lipschitz norm that we don’t want to compute, and such that

19j = flleo < sup |m;(f(2)) — f(x)] < sup dist(f(x), @)

mEBJ I'GBJ‘

(12.62) < dist(f(w5), Q;) + sup |f(x) — f(z;)| < dist(f(z;), Qy) + [ flupt

< (26 + 2¢fluip + @) t 4+ [ flupt < (1+ | Fluip)t
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by (12.44) and if ¢ and « are small enough. Fortunately, the estimates get better near E.
Set

(12.63) Bt ={z € U; dist(z, E) < et};
we claim that
(12.64) l9;(z) — f(z)] < (2 + 3| fliipe + )t for x € E°.

Indeed, by (12.59) we can assume that € B(z;, 15 t); choose z € E such that [z—z| < et;
then z € 2Bj, and

19 (@) — f(2)] < | (f(2)) — f2)] < dist(f(2), Q;)
(12.65) < dist(f(2),Q;) + | f(x) — f(2)]
< (26 4 2e|flup + @) t + | flupet = (26 + 3e| fliip + ) t

as above, and by (12.44); the claim follows. Similarly, let us check that

(12.66) g; is (1 + | f|up)-Lipschitz on E<".

Let 2,y € E<', and use (12.59)-(12.61) to write

(12.67) 9j(x) = B(x)f(x) + (1 = B(z))m;(f(x))

for some §(z) € [0,1], and similarly g;(y) = 8(y)f(y) + (1 — B(y))m;(f(y)). Write
(12.68)  g;(y) = B(x)f(y) + (1 = B(x)m;(f(y) — [B(z) = BW)If(y) — = (f ()],

and then subtract (12.68) from (12.67) to get that

9i(x) = g5 (y) = B@)[f(2) = F()] + (1 = B(x))[m; (f(x)) — 75 (f(¥))]

(12.69) + [8(z) = BWIF() — 75 (FW))]-

The first part is at most

B@)f (@) = fy)l+ A = B@)|m;(f (@) — 7 (F)] < [f(@) = FW)] < |fliple -yl

because 7; is 1-Lipschitz. If y € B(x;, H'Ta t), the proof of (12.65) shows that

(12.70) () — F@)] < (22 + 3¢l flgy + )t
and since |B(z) — B(y)| < H by (12.59)-(12.61), we get that
(271) 18 - S = m (W) < @2+ 3elfluy 4 ) B <oy
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if ¢ and « are small enough, depending on |f|;;p, but also on a. (This is all right, see
Remark 11.17.) Altogether |g;(x) — g;(y)| < (1 + |f|iip)|x — yl, as needed for (12.66) in
this first case.

If + € B(zj, 1t t), the same argument, with = and y exchanged from the start (i.e.,

2
also in (12.68) and (12.69)) gives the desired result. Finally, if both = and y lie out of

B(xz;, 2 t), then B(z) = B(y) = 1 by (12.59), and |g;(z) — g;(y)| < |f|up|z — y| directly
by (12.70). This completes our proof of (12.66).

TStep 2.g. The mappings g;, under the Lipschitz assumption.f

T Now we do the same thing under the Lipschitz assumption. We shall try to do
the linear algebra and convex combinations on B(0,1), because we want to preserve the
faces when we can, but (later on, when we interpolate between the g;) we shall still use
partitions of unity defined on U. B

Before we define mappings g; we need to extend our definition of the f of (12.36). We
are particularly interested in the set

do
12.72 Uing = yx € U dist(z, Xo) < ——F— 1,
12.12) = (0 0) < 55 )

because we shall see that it is so small that (12.36) makes sense on it, and sufficiently large
to contain the 2B;, j € J;. Let us first check that

—~. 9
(12.73) dist(f(z), W) < 30 for & € Uspy.
For x € Ujpt, pick y € X such that |y — z| < 3(1+3¢|“M; then f(y) € W by (11.20), (2.1),
and (2.2), so
: == J
(12.74) ist(f(2), ) < £(2) ~ FW)] < |lugly — ] < 2

as needed. For such z, f(z) € U because §y = dist(/W,R" \ U) by (12.6). Hence we can
define ¥ (Af(x)). So we can extend the definition (12.36), and set

(12.75) f(@) = (\f(x)) for z € Uiy UE.

Note that f(z) € B(0,1) automatically, because ¢»(AU) = B(0,1). It will also be good to
know that

(12.76) 2B; = B(z;,2t) C Uiy for j € Jy,

which is true because x; € X5 C Xg and t < dg < m by (12.8) and (12.7).

Next we define intermediate mappings g;. Recall that @); is defined by (12.22) for
some affine plane P = P;; we denote by 7; the orthogonal projection onto P;, and then
set

(12.77) gi(x) = f(x) for x € Ujnt \ B(z;, 1—{—_@

2t)
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(a little as in (12.59)),

(12.78) gi(x) =7;(f(x)) for z € aB; = B(zj,at),
(as in (12.60)), and

2l — x;| — 2at ~ (1+a)t =2z —z;] .  ~
T Flay + R (o)

(12.79) Gy(z) =

for z € B(z;, % t)\ B(z;,at) (as in (12.61)). The simplest for us will be not to define g;
n U \ Uint-

Let us concentrate on what happens in 2B; = B(x;,2t). Recall that 2B; C Ut by
(12.76), so g; is defined on 2B;. Then, for x € 2B;,

1f(x) = ol = WA f(2) — ()| < AA[f(2) — ui]
(12.80) SAA(|f(x) = flay) + 1 f(z5) —ml)
<A luplz = x5 + 1) < AN(2[fliip +1) ¢

by (12.75), the definition of y; above (12.48), and the fact that f(z;) € D;. Hence

() = F(@)] < |7, (F@) = Flw)| = dist(F(a). P,) < dist (i, Py) + | F(a) ~ i

(12.81) S 2+ | fliip) t 4 [f (@) — 3] < AN+ [flip) t

by (12.77)-(12.79), because ﬁj was chosen (near (12.49)) so that (12.23) holds, and by
(12.80). Let us also check that

(12.82) gj(z) € B(0,1) for z € 2B;.
By (12.80) and (12.81), |g;(z) — yi| < 6AA(1 + |fluip)t. But y; € Xo C Wy, so

dist (g1, 0B(0,1)) = dist(y (Ayr), »(AQU)) > AN~ dist(y1, OU)
(12.83) > M dist(W,R™ \ U) = AL 15,
> 10(1 + | fliip) AMO6 > 10(1 + | fliip) AAE

because y; = ¥(Ay;) (see above (12.22)), because ¢ has a bilipschitz extension from the
closure of AU to B(0,1), and by (12.6)-(12.8). Then

(12.84) dist(g; (x), R"\B(0,1)) = dist(y1, 0B(0, 1)) —[g; () = f ()| = 4(1+[fuip) AAL > 0,

and (12.82) holds.
We may now define g; on 2B; by

(12.85) g;(z) = X1 1(g;(x)) for x € 2B;,
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because gj(x) € B(0,1) and hence ¥ ~!(g;(z)) is defined. We also get that g;(z) € U,
because 1 : \U — B(0,1).
Observe that when z € 2B; \ B(z;, 33% 1), (12.85), (12.77) and (12.75) yield g;(z) =

A= (g(x)) = AL~ f(x)) = f(z). So we can safely set

(12.86) gj(z) = f(z) for x € U\ B(xj, lta

t
2)’

the two definitions coincide on 2B; \ B(z;, 112 t), and g; is Lipschitz on U.
Return to € 2B;. Since f(z) = A1~ 1(f(x)) by (12.75), we see that

(12.87) g7 — fllr(emy) < AN TANG — Flle@p,) < 4021+ | Flup) t,

by (12.85) and (12.81). This will be a good enough analogue for (12.62).
We also need better estimates when z € E°! (the small neighborhood of E defined in
(12.63)). Let x € E°' N B(x;, 1£%t) be given, and pick z € E such that |z — z| < &t; then

13;(x) — f(2)] < |7;(f(2) — f2)] < dist(f(z), P;)
< dist(f(z), P )+|f( ) — f(2)| < dist(f(2), Pj) + [z — 2| | fliip
< T0MAP (L + | fluip)et + A" ot + et AA[ f |uip
< VIAA2(1 + | fliip)et + A tat

(12.88)
(1
(1

by (12.77)-(12.79), because 7; denotes the projection on the plane ]3 that was used to

construct Q); (see near (12.22) and (12.77)), by (12.57), and because |f|lzp < M| fliip by
(12.75). Then (12.85) yields

(12.89) 195 () = f(@)] < ATHA[Gi (@) — f(@)] < VAL + | flup)et + at,

which is a good replacement for (12.65). But g;(z) = f(z) for € E*\ NB(z;, 11 t) (by
(12.86), so

(12.90) lgi () — f(x)] < TIAP(1 + | f|ip)et + at for x € E<,

which is an acceptable analogue of (12.64).
Next we copy the proof of (12.66). Let us estimate |g;(z)—g,(y)| when z,y € E'N2B;.

Then we can use (12.77)-(12.79); as before, we write g;(z) as a linear combination of f(z)

and 7; (f(x)), and similarly for g;(y), and then we compute as in (12.67)-(12.71).
As in (12.69), we get that g;(z) — g;(y) = A+ B, with

(12.91) A=B@)[f(x) — F)]+ (1= B)[F;(f() — 7 (F(y))]
and
(12.92) B = [B(z) — BW)ILf(y) — 7;(F(w))].



As before, |A| < |f(z) — f(y)| < AA|f1ip|z — y| because 7, is 1-Lipschitz and fis A fliip
-Lipschitz.

In the first case when y € E<' N B(x;, 2% t), the proof of the second part of (12.88)
yields

(12.93) F) =7 (Fw)) = dist(F(y), By) < LLANX(L+ [ flup)et + Mt
since |B(z) — B(y)| < H as before, we get that
(12.94) |B| < {1IAA*(L + | fluip)et + ANt at} ﬂx——_a:)yl, <Mz — g

if € and « are small enough. In this case
(12.95) 3(2) = 5 (9)] < |A] + [B] < M| fluplz — yl + A"z — ]
The other two cases are treated as before, and we get that

I+ A2|f|lip

A |z —y| for z,y € E°* N2B;.

(12.96) 19 (x) = g; ()| < A
By this and (12.85), we get that
(12.97) g; is (1 + A?|f|1ip)-Lipschitz on E<' N 2B;.

This is a good enough analogue of (12.66), which was the last estimate of Step 2.f. {

13. Step 2.h. We glue the mappings g;, j € Ji, and get a first mapping g.

We start a new section, but continue to take care of the places where f is very many-
to-one. Now we want to use the functions g; that we just built to modify f on a subset
of

(13.1) V=] B.t)= | B;.

JjeJ1 Jje€J1

Part of the difficulty will be that the balls B(z;,t) are not disjoint (but fortunately they
have the same radius). We shall apply the same trick as in [D2], based on adapted partitions
of unity. Set

(13.2) R;=Bj\aB; ={z€R"; at < |z —z;| <t}
for j € J1, and

(13.3) R= ] R;.
JjE€J1
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Then let ¢; be a smooth function such that

(13.4) 0<pj(z) <1 and |Vy,(x)| < A—art for z € R",
—a

(13.5) @j(x) =1for z € aBj, and ¢;(z) =0 for x € R"\ B;.

Next put an arbitrary order on the set J;, and set

(13.6) Yi(xr) = sup @i(r)— sup @;(x)

1€J1;1<j i€Jy;1<g

for j € J; and x € R™ (and where the empty sup is zero). Clearly

(13.7) Z Yi(z) = sup  pi(z).

i€ dr;i<j i€J1515]
Finally set
(13.8) ¥(x) = ) vi(z) = sup @i(x);
= i€
then
(13.9) 0<y(x)<1 forx € R,

¢ is C[(1 — a)t]~'-Lipschitz (because the B; have bounded overlap), and iy = 1 on
U e aBj. Because of our particular choice of functions, we get that

(13.10) Y(x)=0forz e R"\ [ | J B;] =R"\V
Jj€J1

and

(13.11) if x € aB; \ R for some j € Ji, then one of the v;(z) is equal to 1
. and the other ones are equal to 0

(where in fact 7 is the first index in J; such that = € aB;, or equivalently x € B;).

We now use the 1; to construct a mapping g : U — R". As usual, we first do the
description under the rigid assumption. We set

(13.12) g9(@) = f(@) + Y ¥(@)]g;(2) = f(@)],



which we write like this because > ;. ; 1;(z) may be smaller than 1 at some points. Notice
that

(13.13) g = flloo < (14 [Fluip) t

by (12.62) and (13.9), and

(1314)  Jg(a) - F@)] £ 3 i(@)lgs @) — F(@)] < (22 + 32\ flup + )t for z € B,
Jj€J1

by (12.64). We also claim that because of (12.66),
(13.15) g is (2 + 3| f|up)-Lipschitz on E°".

Indeed, since f is Lipschitz, it is enough to show that g — f is (2 + 2| f]sip)-Lipschitz on
E*t and estimate

(13.16) Alw,y) = (9= N(@)~(g-Ny) = 3 {es@)g;@)— 1 @)] 5 (0)lg; (0~ Fw)]}

JjE€J1

for z,y € E°'. Since A(z,y) < 2(2¢ + 3¢|f|up + ) t by the L bound in (13.14), we may
assume that |z — y| < ¢/10.

Let j € Ji be such that gj(z) — f(z) # 0; then x € B(z;, 1£2¢) by (12.59), and
y € 2B; because |z — y[ < ¢/10. Similarly, if g;(y) — f(y) # 0, then y € B(z;, 1% ¢)
and a: € 3B So x,y € B for every j € J; that has a contribution to the right- hand
of (13. 16) There are at most C indices j like this (recall that B; = B(x;,t) and that
|z; —xj| > t/3 when i # j; see above (12.9)), and each contribution is estimated as follows.
We write

|0 (2)]g; () — f(2)] — 5 ()g;(y) — fFW)]]
< (x)lgj(x) — f(x) = g;(y) + FW)] + [¥i(x) — ;W) g5 (w) — F(y)
(13.17) < j(a)]gs(x) — f(x) — g5 () + FW)| + 401 —a) 't o —yllg;(y) — f(v)]
< i () (1 + 2| flup) | =yl + 41 — @)™z — y|(2e + 3e| fluip + @)

because 1; is 4[(1 — a)¢]~!-Lipschitz (by (13.6) and (13.4)), and by (12.66), (12.64), and
(13.14).

When we sum (13.17) over j, the first term gives a total contribution of at most
(14 2| fliip)|x — y|, by (13.8) and (13.9), and the second one of at most |z —y|, if € and «
are chosen small enough, depending on n, |f|;, and a. So |A(z,y)| < (2 + 2|f|iip) |z — y
by (13.16), and our claim (13.15) follows.

Let us record the fact that, by (13.12) and (12.59),

(13.18) 9(x) = f(z) o R"\ | J Bz, 2

JjE€J1

157



Also, we claim that

(13.19) s(Us\rR)cUUe=Ue

Jjeh1 leL QeF, QEF

Let j € J; and z € B; \ R be given. Then = € aB; (see (13.2) and (13.3)), and by (13.11)
exactly one 1;(z) is equal to 1, and the other ones are equal to 0. For this i, z € aB; (see
below (13.11)) and g;(x) = m;(f(x)) by (12.60), so g(x) = g;(z) = m;(f(z)) by (13.12), and
hence (13.19) will follow as soon as we prove that m;(f(x)) € Q;.

Obviously m;(f(x)) lies on the affine subspace P spanned by @; (by definition of =;
below (12.60)), so by (12.17) it is enough to show that

(13.20) mi(f(2)) € By, 3(L+ | fliip)t),

where | = [(7) is the index that we used in the definition of @;, above (12.42). But

(13.21) |f(x) —u| <|f(x) = fl@)| + | f(z:) — ] < | flipt + 1

because z € B; and f(x;) € D;. In addition, if 7} denotes the orthogonal projection onto
the affine plane through y; parallel to P, then ||7] — m;||cc < t because P goes through
D; = B(y,t) (by definition of F;; see below (12.17)). Then

(13.22) imi(f (@) —ui| < |mi(f(2) —wil +t < |f(@) —wl +¢ < 2+ | flup)t

by (13.21), and now (13.20) and (13.19) follow.
Since by definition (12.17), H4(Q) < C(1+|f|1ip)%t? for all Q € F, (13.19) and (12.20)
imply that

(13.23) H'(g((U B \R)) < 3 HUQ) < Cla HINTHI(Xo),
jeJ1 QeF

where C'(a, f) depends on « and |f;;p. This is still good, because N will be chosen very
large, depending on f, H%(Xy), o, and 7 in particular.

Because of (13.23), we shall not need to worry too much about what happens in
U ien Bi \ R. The set R will not disturb much either, because £ N R is small. Indeed, we
claim that

(13.24) HYENR)=HY(EN |J[B;\aB)]) <C(1 - a)H"(Xo),
Jje€J1

where C' depends only on M and n. First fix j € J;, and observe that
(13.25) dist(z, P,,) < €|z — x| < et for z € EN By,

because |z — x;| <t < d3 by (12.7) and (12.8), because x; € X5, and by (11.45). By
elementary geometry, we can cover P, N [B; \ aB;] by less than C(1 — a)~%*! balls of
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radius (1 — a)t. Then the double balls cover EN B, \ aB; (if € is small enough compared
to 1 —a), and the local Ahlfors-regularity of F' (with the same justification as for (12.12))
yields

(13.26) HYENDB; \ aB;) < C(1 —a) (1 - a)t] = C(1 — a)t*.
Next R C UgeJ =Ujes [B; \ aB;] by (13.2) and (13.3). Also recall from (12.10) that
Jy has at most Ct~ d’]—ld(Xo) elements; then (13.24) follows from (13.26).
1 We now switch to the Lipschitz assumption. Set
(13.27) V' = 2B; C Uint,
JjE€J1

where Uyt is defined in (12.72) and the inclusion follows from (12.76). We keep the same
functions 1; as above (not to be confused with our bilipschitz mapping ), and use the

definition of f in (12.75) to set
(13.28) @) = f@) + Y ¢(@)[gs (@) - f(a)] forz eV’
j€J1
(compare with (13.12); we still want to do the linear algebra on B(0,1) and the partitions
of unity on U). We intend to set
(13.29) g(x) = A" (G(z)) for xz € V’,
so we need to check that g(z) € B(0,1). Notice that

(13.30) §(x) = F(z) whenz e V/\ | J B(z;, =2

t
. 2 )
Jje€J1

because (12.77) says that g;(z) = f(x) for all j, and by (13.28). For such an z, j(z) =
f(z) = Y(Af(x)) by (12.75), g(z) € B(0,1) because 1) maps to B(0,1), and so (13.29)
makes sense and we get that

1
(13.31) g(z) = f(x) whenz e V'\ U B(z;, % t).
JjeJ1
Next suppose that z lies in some B(x], 132 1). Obviously f(z) and §(z) are defined because

z € V'. Also observe that in fact, (12.77) says that x € B(z;, 1% t) for all the indices j
such that g;(z) — f(x) # 0, so

G(z 7)< ¥i(@)g(@) — flo)]
(13.32) eh
SAML+ [ flip)t Y (@) < AL+ |flup) t
jer
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by (13.28), (12.81), (13.8) and (13.9). In addition,

dist(g(z),R™ \ B(0,1)) > dist(y;,0B(0,1)) — |[g(x) — 7]
> 10(1 + | flup) AL — [G(z) — f(x)| — |F(z) — T
(13.33) > 10(1 + | fliip) AAt — 4(1 + | fl1ip) AAE — 2(1 + | fliip) AAL
> A1+ | fliip) AAL

because y; = ¥(Ay;) € B(0,1), by (12.83), (13.32), and (12.80). In this case too, g(z) €
B(0,1) and we can define g(z) as in (13.29). This completes the legitimation of (13.29).
We decide to set directly

(13.34) g(z) = f(x) whenz e U\ V'

since 2B; C V' for all j, we see that dist(U \ V/, B(x;, 2% t)) > ¢t and (13.31) gives us a
large enough transition region where the two definitions of g give the same result. But in
fact we shall never use that definition outside of V.

By (13.31) and (13.32), |[g — f||zec(vr) < 4AA(1 + | fl1ip) t, and then (by (13.29) and
(13.34))

(13.35) lg = flloo < 4A* (1 + [ fluip) t.

Next we restrict to E°? and check that

(13.36) lg(z) — f(2)] < 1IA3(1 + | flup)et + at for x € B,
By (13.31) and (13.34), we can assume that « € ;5 B(z;, =3 1fa 1)) c V', As for (13.32),
(13.37) G(x) = f(@)] < Y ¥(@)|g; (@) — ()],

Jjeh1

and the only indices j € J; that contribute are such that x € E' N B(z;, 1+T“t) (use

(13.28) and (12.77)). For these j, (12.88) applies and says that |g;(z) — fl@)] < 1IAA2(1+
| fliip)et + AA"tat. We sum in j, use the fact that Y ieq, Yi(z) <1 by (13.8) and (13.9),

and get that |g(x) — flz)| < 11MA2(1 + |fliip)et + MM~ 1at. Now (13.36) follows from
(13.29).
We also want to check that

2+ 3A2|f |
(13.38) g is A %mlp—hpschitz on Bt NV’

We follow the proof of (13.15); given x,y € ES*NV’, we set

A(z,y) = (G- =) = (G- )
(13.39) = > {v@ 5@ - F@) - 60)50) - Fo)l} = 3 Ay

j€J1 JEJ1
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as in (13.16); since fis AA-Lipschitz, we just need to show that

~ 2 + 2A2| fli
(13.40) By <222,y

When |z — y| > ¢/10, (13.40) holds because |A(z,y)| < 22AA*(1 + |f|iip)et + 2M\Aat by
(13.36) and (13.9) (and because we can choose ¢ and « very small), so we may assume
that |z — y| < t/10. By the same argument as above, z,y € %Bj for every j € J; such
that Aj(z,y) # 0 in (13.39), and there are at most C' indices j for which this happens.
For such j, we proceed as in (13.17) and get that

18, )| < 5(@)15 (@) = F@) =5 (0) + F)| + s (@) = 0,0 50) ~ Tl
<0y (@)5@) ~ F@) = ) + Tl + 40— )7 e = 91 550) — F)

1+ 2A2|f;;
+ 207 lp Pi()|z —y| +4(1 — a) 2 — y|(LIAA2 (L + | flip)e + AN @)

. <
(13.41) <A X

because 1; is still 4[(1 — a)t]~!-Lipschitz, f is AMA-Lipschitz, gj is A 1+A2#—”I:ipschitz on
E°*N2B; (by (12.96)), and by (12.88) (if y € B(x;, 15%t); otherwise g;(y) = f(y) directly
by (12.77)).

When we sum this over j, the first term gives a total contribution which is bounded

by A % |z — y|, and the second one contributes at most AA~!|x —y|, if € and « are
small enough (depending on a); (13.40) and (13.38) follow.
We deduce from (13.38) and (13.29) that

(13.42) g is (2 4+ 3A®|f|1ip)-Lipschitz on ES' N V.

Return to what we did in the rigid case. We still have (13.18) in the present Lipschitz
case (see (13.31) and (13.34)). Let us check now that (13.19) also holds now, i.e., that

(13.43) g( U Bj\R)CU Ue=Ue

JET lEL QEF, QeF

As before, any = € (J;c 5, Bj \ R lies in some aB; (the first one), for which g(z) = g;(z) =
Tj (f(z)) (by (13.11) and (13.28)), and it is enough to check that g(z) € @, or equivalently

that 7;(f(z)) € Q;, since Q; = A '~1(Q,) by (12.22) and g(z) = A\~ 1(j(z)) by
(13.29).
Recall from the definition above (12.77) that 7; is the orthogonal projection onto the

plane ]3j that was defined below (12.49), subject to the constraint (12.23) for some y; such
that f(x;) € D; (see above (12.48)). That is,

(13.44) P; meets B(Jr, 2AA(1 + | fuip)t)).
Since @j = ﬁj N By, 20AA%(1 + | fl1ip)t) by (12.22), it is enough to check that
(13.45) 175 (F(2)) = Tl < 20AM>(1+ | luip)t.
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But

[f (@) — ol = [V (Af(2) = Q)| < AM[f(z) — w1l
(13.46) <A (@) = fag)] + 1 f(2:) = wil)
< AM(alfluipt +1) < AA+ | flip) t

by (12.75) and the definition of y; = 1(Ay;) above (12.22), and because z € aB;.

Let m denote the orthogonal projection onto the plane parallel to P;, but through y;;
then ||m — 7 ||oc < 2AA(1 4 |f|1ip)t) by (13.44), and

75 (F(2)) = 5l < |7 = Fslloo + [7(F(2) = Gl < 17 = Fjlloo + | f(2) — Tl

(13.47)
< 2AA (1 + [ fliip)t) + AL+ | fliip) t

by (13.46). This is better than (13.45), and (13.43) follows.

Clearly (13.23) still holds, even though with a larger constant C'(«, f), now by (13.43),
(12.22), and (as before) (12.20).

The last estimates (13.24)-(13.26) stay the same; they do not even involve . T

14. Step 3. Places where f has a very contracting direction, and the B;, j € Js.

At the beginning of Section 12, we were left with a set X5 C Xj, such that H%(Xq \
X5) <4n by (11.48). Set (as in (13.1))

(14.1) v=1J B = B0,

VIS JeN

which contains X5 N Xy (d4) by (12.9). In principle, we already took good care of V' in
Sections 12 and 13, by (13.23) and (13.26). We also know from (12.3) and (12.4) that

(14.2)  AHY([XN YV X (00)) = H([Xs 0 f7H YN £ (Vv (64))) <,
where Yy is as in (12.1). Next consider
(14.3) Xo= X5\ [f‘l(YN) U V].

If z € X5\ [V U Xg|, then it lies in f~1(Yy) (V is not allowed) and, since it does not lie
in X5 N Xn(d4) (which is contained in V' too), it lies in the set of (14.2). So

(14.4) HYXo\ [V UXg]) <HYUX\ X5) +HUX5\ [V U X)) < 5m,

and we may now turn to Xg.

Our next target is the set of points z € Xg where A, has a very contracting direction
along P,. That is, we want to control the set

(14.5) X7 = {x € Xg; there is a unit vector v € P, such that |[DA,(v)| < 7},
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where P, denotes the vector space parallel to P,, DA, is the differential of A,, and v < 1
is another very small positive constant, to be chosen later.

The following is very similar to Lemma 4.60 in [D2], whose fairly standard proof
applies here too (so we skip it).

Lemma 14.6. We can find a finite collection of balls B; = B(xzj,r;), j € Ja, with the
following properties:

(147) WS X7 and 0 < T < Jg fOIj € Jo,

where ¢ is as in (12.7),

_ 1 t
(14.8) the Bj, j € Jo are disjoint, and do not meet U B(xj, (1+a) ),
YISO
and
(14.9) 1Y (X7\ | B)) <.
Jj€J2

This time, since the B; are disjoint, we shall not need a subtle partition of unity as
before, and we can define functions g; independently. Also, what we intend to do here in

the Bj, j € Ja, will be independent of what we did in the B(xj, @) Again we start
with the rigid assumption.

We set P; = P, Q; = Az, (F;), denote by 7; the orthogonal projection on @, and
define g; by the same formulae (12.59)-(12.61) as before (with ¢ replaced by r;).

Notice that g;(z) € [f(z), 7;(f(z))]; then

(14.10) |95 () = f(@)| < |m;(f (@) = f(@)] < [fliiple — ]

because mo f — f = (m — I) o f is | f|;ip-Lipschitz and vanishes at x; (recall that Q; goes
through f(z;) because the definition (11.37) says that A, (x;) = f(z;)). When z € Bj,
we get that |g;(x) — f(x)| < |flipr;. When z € U \ By, the analogue of (12.59) says that
gj(z) = f(x). Altogether,

(14.11) g5 — flloo < | fliip7i < | fliip 96

by (14.7) and as in (12.62). Also, the the proof of (12.66) (which could also be simplified
here) says that

(14.12) gj is (1 + | fliip)-Lipschitz on E°"7.

For k large enough (k is the index in our initial sequence of quasiminimal sets FEy,
which converges to E),

(14.13) dist(z, P; NaBj) < 2er; for z € Ey, Nabj,
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by (11.45). Set £ = A,,(P;NaBj) C Qj, let z € E, NabB; be given, and let w € P; N aB;
be such that |z — w| < 3er;; then

dist(f(2), &) < [f(2) = f(w)[ + [f(w) = Az, (w)] + dist(Az; (w), €)
(14.14) = [f(z) = flw)[ + [f(w) = Az, (w)]
< Berj| Fluip + elw — 2] < (1 + 3| flup)er;
because Az, (w) € Az;(P; NaB;) = &, by (11.46), and again because w € P; NaB;. By
(12.60), gj(2) = m;(f(2)), soit lies in Q;, and (by (14.14)) in a (1+3| f|iip)er;-neighborhood

& of £in Q. Now x; € X7, so £ is an ellipsoid, with a shortest axis of length at most
2var; (by (14.5)), and other axes of length at most 2|f|;;par;. Then

H(g;(Bx NaBy)) < HUE) < CL+ | Flup)™™ (v + (1 + 3| flup)e)r§

< C(L+ | flip) ™ yr

(14.15)

again for k large enough and if ¢ is small enough, depending on ~.
Set R; = Bj \ aBj, as before. Then

(14.16) HYENR;)=HYENB;\aB;) < C(1—a)r?

by the same proof as for (13.26). Since

1 1
(14.17) r; < 56 < E(Sl = 1—0 diSt(Xl,Rn \ Wf)) < dist(xj,]R" \ Wf))

by (14.7), (12.7), and (11.22) (and as in (12.11)), we also get that
(14.18) r$ < CHYENBy) for j € J,

by the local Ahlfors-regularity of E, and where the use of Proposition 4.1 is justified as for
(12.12). Then

(14.19) dori<cd HYENB) <CHYEN ] B)) < CHUENWY)
jEeJ2 JjE€J2 j€J2

by (14.19), (14.8), and (14.17), and now (14.16) implies that
HYEN | R) <> HUENB;\aB;)) <C(1—a) ) rf

(14.20) j€Ts j€J2 JET2
<C(1—-a)HUENW;) =C1 — a)yHY(Xo)

(because EN Wy = X by (11.20)).
So we should not worry too much about the R;, and since we have some control on
the aB; by (14.15) and (14.19), we shall now concentrate on

(14.21) Xs =X\ [X-U | Bj].

JjE€J2
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Let Xy be a compact subset of Xg such that H%(Xg \ Xg) < 7. Since

(14.22) XGCX8U<UBj)UX7CX8U<UB>U<X7\UEJ')
J€J2 JE€J2 Jj€J2

we get that

(14.23) 1 (X6 \ [XoU (| By)]) < HU(Xs\ Xo) + HY (X7 \ | B)) <20
JE€J2 JjEJ2

by (14.9). Let us deduce from this and (14.4) that

(14.24) H' (Xo\ [Xou( | By)]) <

jEJ:[UJQ

Let Z,7',Z" the sets in the left-hand sides of (14.24), (14.23) and (14.4) respectively; we
want to check that Z € Z’UZ". Let x € Z\ Z" be given. Then x € Xj, and so x € VU Xg.
But x € V = {J;c,, Bj is impossible because z € Z (also see the definition (14.1)), hence
x € X¢. Then z € Z’, as needed. So (14.24) holds.

1 Under the Lipschitz assumptlon we need to m0d1fy the definition of g;. We still set
P; = P, but we consider QJ = A, ;(Pj) (where Aac is the affine approx1mat10n of f as

n (12.37)-(12.39)). We denote by 7; the orthogonal projection onto Q], and will define
§j as we did near (12.77). Again we first work in the set U, defined by (12.72), because

this is where we extended f (see (12.75)). Notice that Uy contains all the 2B;, j € Js,
by proof of (12.76) (just use (14.7) instead of (12.7)).

We define g; on Uiy, with the same formulas (12.77)-(12.79) as before, with the choice
of 7; that we just made, and ¢ replaced with r;.

We continue, as in Section 12, with estimates for x € 2B; C Uj,;. First observe that

(14.25) 195 () = (@) < |75 (f(@)) = f(@)| < M| fluipla — ;]

because g,(x) € [f(x),%](f(x))] by (12.77)-(12.79), and because (7; — I) o fis A fliip-
Lipschitz and vanishes at x; by definition of A, and 7;. Next

(14.26) 195 () = Fla))| < [3;(x) = F(2)| + | f(x) = [la)]
S QAA‘f’llp’l' — .Cl?j‘ S 2)\A|f’lip Tj S 2)\A‘f’lip 56

by (14.25), because fis AA|f|1ip-Lipschitz, and by (14.7). But
(14.27) dist(f(z;), R™ \ U) > dist(W,R" \ U) = 6o > 10A%(1 + | f]1ip)d6

because x; € Eg = EN Wy (see (11.20) and (11.19)), so f(z;) € W (see (2.1) and (2.2)),
and by (12.6) and (12.7). Hence

dist(g; (), R™ \ B(0,1)) > dist(f(z;),R™ \ B(0,1)) — 2AA| f1:p 06
(14.28) > AT dist(f(z;), R"\ U) — 2)\A|f1ip 06
> 10AA( + [ fliip)d6 — 2AA[ fl1ip 06 = 8AA(L + | fl1ip)d6
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by (14.26), (12.75), and (14.27). Thus g;(x) € B(0,1) when z € 2B;.
When z E~Umt \ 2B;, and even when = € Uj,,; \ B(z;, HTarj), (12.77) and (12.75) say
that g;(z) = f(z) = ¢¥(Af(z)); then of course g;(z) € Y(AU) = B(0,1). Thus in both

cases g;(z) € B(0,1), and we can define g; on U;p; by
(14.29) g;(x) = X" 1 (g;(x)) for z € Uiny,

(compare with (12.85)). This formula yields g;(z) = f(z) for € Un \ B(z;, £%r;), and
we may even extend it by deciding that

(14.30) 0i(x) = f(z) forw € U\ Blaj, -2 %r))

(now compare with (12.86)). But in fact the values of g; on U \ Ujy¢, or even U \ 2B;, will
never matter.
Return to the modifications concerning this section. The analogue of (14.11) is now

(14.31) gj = flloo < A2|fliiprs < A?| flupds,

which follows from (14.30), (14.25), and (14.29). Then we worry about the Lipschitz
estimate (14.12). The fact that

1 + A2|f|lip

(14.32) Gy is A ——

-Lipschitz on E°* N 2B;

is proved as (12.96) or (12.66) (with some simplifications), and implies that
(14.33) g; is (1 + A?| f|1ip)-Lipschitz on E<' N 2B;;

will be good enough to take replace (14.12).

Observe that (14.13) still holds with the same proof. Next we generalize (14.14) and
(14.15). Set € = ij (P;NaBj) C ij (recall that we set @j = ij (Pj)). Let z € Ex NaB,
be given, and use (14.13) to find w € P; NaB; such that |z — w| < 3er;; then

dist(f(2),€) < [f(2) = f(w)] + [ f(w) = A, (w)] + dist(Ag, (w), €)
(14.34) = F(z) = Fw)| + | f(w) = Ay, (w)]

< 357’jmlip + Xelw — x| < (14 3A|fliip)Aer;

because mej (w) € Emj (PjNaBj) = £, by (12.52), by (12.75), and because w € P;NaB;.
By the analogue of (12.78), g,(z) = 7, (f(2)), so it lies in @j (by definition of 7;), and
(by (14.34)) in a (1 + 3A|f|sip) Aerj-neighborhood € of € in Q;. So we just checked that
gi(Ex, NaBj) C &' for k large.
Now & is an ellipsoid in @j, its axes all have lengths smaller than 2AA|f|;pr; by
(12.37), and one of them is much shorter. Indeed, let v be a unit vector in P such that
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|DA.,(v)] < v; such a vector exists because x; € X7 (see (14.5) and (14.7)); notice that

both f and fare differentiable at x; in the direction of v, and recall that f(az) = YA f(x))
near x;. Then

DAy, ()] = [lim ¢~ (A, (a5 + ) — Ao ()] = | Yim £ [ + ) — F(a)]|

(14.35) < A [timsup ¢4 f (2 + tv) = f(z;)]]
= M |limsupt™'[A(z; + tv) — Ay(z;)]| = MDA, (V)| < Ay
t—0

by (12.39), because ﬁmj (xj) = N(xj), and by (11.40); hence the smallest axis of € has
length at most 2AA~r;. Thus

(14.36) HY(G;(Ex NaBj)) < HAU(E) < CAIAY(L + A Fliip)yrd

for k large, and hence also

(14.37) MY g; (B NaBy)) < ANHUG;(Ex N aB;)) < CA* (14 Al fluip)*yr§

by (14.29), and as in (14.15).
Finally the estimates (14.16)-(14.24) go through with only minor modifications. f

15. Step 4. The remaining main part of X,

Return to the rigid assumption. We care about Xg¢ now (see near (14.22)). Set
Yy = f(Xg) and, for Yy €Yo,

(15.1) Z(y) = Xo N [ (y) = {z € Xo; f(z) = y}.

Notice that Z(y) has at most N points, because X9 C Xg C X5\ f~H(Yn) (see (14.21),
the definition of Xg just below (14.21), (14.3), and (12.1)). We claim that for each y € Yy,
there is a positive radius r(y) such that

(15.2) XoN f~H(B(y,r)) C U B(z,2y7'r) for 0 <r <r(y).
z€Z(y)

Here « is the same as in the definition (14.5) of X7. The proof uses a small compactness
argument (to make sure that it is enough to control f near the x € Z(y), (11.46) (to show
that A, controls f near x € Z(y)), and the fact that we excluded X7 in (14.21) (to exclude
points near z € Z(y) that don’t lie in B(x,2y~1r)). We don’t repeat it here because it is
the same as in Lemma 4.69 in [D2].

Since Xy is compact and disjoint from the finite collection of Bj, j € J; U J (see
(14.21), (14.3), and (14.1)), the number

1+a

(15.3) o7 = dist (Xo, | J :

JjEJ1UJ2

B;)
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is positive. Just by making r(y) smaller if needed, we may assume that for each y € Yy,

(15.4) 0<r(y) < % Min (86, 07, Min{|z — 2’| ; 2,2’ € Z(y),x # 2'}).
Then
1 1+4+a .
(15.5) B(z,2v 'r(y)) N B; =0 fory €Yy, x € Z(y),and j € Jy U.Jy,

and (for each y € Yy)
(15.6) the balls B(z,2v r(y)), € Z(y), are disjoint.

We'll need some uniformity (i.e., to know that r(y) is not too small), so let us choose a
new small constant dg € (0, d7] > 0 such that if we set

(157) Yio = {y €Yy T(y) > 58} and X0 =XgN f_l(Ylo),
then

As usual, such a dg exists, because the monotone union of the sets X9, when dg tends to
0, is Xg. Next set

(15.9) Y11 = {y € Yio; all the affine planes Q, = A, (F.), z € Z(y), coincide}.

Notice that the @), are d-planes, because we excluded the case when A, has a very con-
tracting direction in P,. Also set

(15.10) X1 = Xion fH(Y).
As we check in (4.77) of [D2],
(15.11) HYX 10\ X11) = 0.

The same proof is valid here; we sketch it to prevent the reader from worrying. We use
the fact that f(F) is rectifiable, and prove that it does not have any approximate tangent
plane at points of 3o \ Y11 (too many tangent directions exist), so H?(Y1p \ Y11) = 0. For
this last, we use again the fact that we excluded contracting directions. For the accounting,
we also use the fact that f is at most N-to-1 on X1, to return from Yio to X719 and prove
(15.11). Incidentally, (4.77) of in [D2] is wrongly referred to as (4.78) at the end of the
proof in [D2] (sorry!).

We want to cover X1, but it will be more efficient to cover Y7 first. We choose a
finite collection of balls D; = B(y;,r;), j € J3, so that

(15.12) y; € Y11 and 0<r; <dg for j € Js,
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(15.13) the D;, j € Js, are disjoint
and

(15.14) 1 (Xu\ (U Dy)) <n.

JEJ3

See Lemma 4.79 in [D2], where (15.14) is deduced form a similar estimate on Yy, using
again the fact that we excluded contracting directions and f is at most N-to-1 on X7;.
Observe that for j € Js3,

(15.15) r; <ds <r(y;) < % Min (86, 07, Min{|z — 2’| ; z,2" € Z(y;),x # z'})

by (15.12), because y; € Y19, and by (15.7) and (15.4).

We want to modify f on the sets f~!(D,), as we did in the balls B;, j € J1 U Js.
We shall be able to proceed independently on each f *1(Dj), because the D; are disjoint
by (15.13). In fact, for each j we shall only modify f on the f~'(D;) N B(z, 2y 'rj),
z € Z(y;), which are disjoint by (15.15) and contain the interesting part of f~'(D;) by
(15.2).

Fix j € J3. By definition, the d-planes A, (P,), = € Z(y;), are all equal; let us call Q;
this common d-plane that we get. For each x € Z(y;), set

(15.16) E(z) = P, N A;1(Q; N D).

This is a d-dimensional ellipsoid in P;, whose axes have lengths between 2|f |l_i;Tj and

2v~!r;, by (11.36) and the definition (14.5) of X7 (which we excluded in (14.21)). The
analogues of aB;, HT“Bj, and B; in the previous sections will be

(15.17) B, ={z € R"; dist(z,aE(z)) < 20~ (1 + | fliip) ' (1 — a)r;}
and

(15.18) B, = {z € R"; dist(z,aB(z)) <107 (1 + [ flup) (1 —a)r;},
and

(15.19) Bj. = {z € R"; dist(z, (2 — a)E(z)) < (1 — a)r;}.

Observe that

. 3 _
(15.20) B;, C Bf, C B;, C B(x, 37 rj)

if (1 — a) is small enough, depending on |f|;;, and 7. Recall from Remark 11.17 that a is
allowed to depend on v. By (15.20) and (15.15),

(15.21) for each j € J3, the B, ,, x € Z(y;), are disjoint.
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Let us also check that

+ 1+a

(15.22) f(Bf,) € —

D;.

Let z € B]me be given, and let w be a point of aF(z) such that
(15.23) |z —w| <1071+ | flup) (1 — a)ry.
Observe that

_ _ 3
w—af < Jw— 2|+ ]z — 2] 1071+ [flup) (1 —a)ry + 57y

(15.24) 2

< 2’)/_17’3' < g < 53/10

by (15.23), (15.20), if a is small enough, and by (15.15) and (12.7). In addition, w € P,
so (11.46) applies and says that

(15.25) |f(w) — Az (w)] < elw — x| < 2ey7r;.
Now

1f(2) —y;l < 1f(2) = f(w)] + [f(w) = Ax(w)| + [As(w) — y;]

15.26 < |Z w||J |lip + 267_17”3' ’Aa:(w) yj|
( )
1+a

<107'(1 —a)r; + 2y rj 4+ arj < T;

by (15.25), (15.23), because A, (w) € aD; by definition of E(xz) (see (15.16)), and if € is
small enough; (15.22) follows.
Because of (15.22), (15.21), and (15.13),
(15.27) the B;-fx, j € Jsz and x € Z(y;), are all disjoint,
even for different values of j, because the D; are disjoint. Set

(15.28) R;. =B, \ B,

by analogy with the previous constructions. Denote by m; the orthogonal projection onto
Q;, and define g; , as follows: set

(15.29) 9j2(z) = m;(f(2)) when z € B},

(15.30) 9i2(2) = f(z) when z € R" \ BI,
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and interpolate in the usual linear way in the remaining intermediate region R;,. That
is, set

(15.31) 9j.2(2) = (1= B(2))m;(f(2)) + B(2) f(2) for z € R4,
with
(15.32) B(z) 20(1 + [ fluip) dist(z, aB(z)) L

(1—a)ry

We also define a function g;: we set g; = g, on each Bj - T € Z(y;), and g,(z) = f(z)
on the rest of R™; the definition is coherent, by (15.30) and (15.21), and we even get a
lipschitz mapping (possibly with very bad constants). Let us check that

(15.33) llg; — flloo <15 < d6.

The second inequality comes from (15.15). By (15.31), it is enough to check that |7, (f(2))—
f(2)] <r; for z € Bf, and this is clear because f(z) € D; by (15.22), and D, is centered

x>
on Q. "

When z € B“L NE = {z € R"; dist(z, E) < 51"]} the estimate improves: we can
choose w € £ such that |lw—z| < erj, and, by (11.45), p € P, such that [p—w| < elw—z| <
2er; (with the same sort of justification as (15.24) for (15.25)). Thus |p — z| < 3er; and
lp—z| <|p—z|+ |z — x| <3er; + 3y 1r; <2y~ !ry, by (15.20) and if € is small enough.
Then

9;(2) — f(2)] < |mi(f(2)) — f(2)] < dist(f(2), Q;)
< dist(Az(p), Q;) + |Az(p) — f(p)| + |f(p) — f(2)]

= |Az(p) — f(p)| + |f(p) — f(2)]
<elp—zx|+|p—2||flip < 2y '+ 3| fluip)er;

(15.34)

because A, (p) € Q; by definition of ; and by (11.46). Then

(15.35) g; is C(1+|flup)-Lipschitz on B, N E"7.
by the same proof as for (12.66); here again, the small € wins against the large v~ 1, | fliip,
and (1 —a)~t

We shall also need to know that

(15.36) Xnf " (UD)clJ U B

Jj€J3 JjE€J3 z€Z(y; )

Indeed let z € X9 N f‘l(UJEJBﬁ) be given, and let j € J3 be such that f(z) € D;.
Notice that |f(z) — y;| < rj < ds < r(y;) by (15.12), because y; € Y11 C Yiq (see (15. 12)

and (15.9)), and by (15.7), so (15.2) says that z € B(z,2y"1r;) for some = € Z(y;). Now
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|z — x| < 2y~ 1r; < 63/10 by the last part of (15.24), so dist(z, P;) < e|z — z| by (11.45).
Let w € P, be such that |z — w| < €|z — z|; then

Az (w) = 5] < [Ae(w) = fF(w)| + [f(w) = f(2)] + |F(2) = y;]

(15.37) B
<elw—x|+ |fliplz —w|+r; <r;+3ey (L4 |flip) rj

by (11.46) and because |w —z| < 3y~!r; < d3/5. Recall that D; is centered at y; = f(z) =
Ay (z) € Az (Pr) = Qj, so (15.37) says that A, (w) € Q; N (1+3ey (14 |fliip))D;. Then
(15.38) w € (1+3ey (14 |flip)E(z) C (2 —a)E(x)

by (15.16), because a < 1, and if € is small enough. Now

(15.39) dist(z, (2 — a)E(z)) < |z —w| < e|z — 2| < 277 1r; < (1 —a)ry

if € is small enough, and hence z € B, ; (see (15.19)). This proves (15.36).

T When we work under the Lipschitz assumption, we need a few modifications to the
definitions above. Surprisingly, we do not modify anything before (15.28). One could argue

that it would be more natural to cover Y11 = 1)(AY71) instead of Y11, but we prefer to keep
the same definitions, and we will be able to handle the differences. In particular, we shall
prove that

(15.40) for each y € Y11, all the affine planes Q, = A, (P,), z € Z(y), coincide.

But let us first check that if y € Y10, x € Z(y), and Q, = A,(P,), then the restriction of
1 to AQ, is differentiable at Ay, with a derivative D,, such that

(15.41) ADy (DA, (v)) = DA, (v) forve P.,

where P, denotes the vector space parallel to P, (and as we would expect from the chain
rule). And indeed,

DA, (v) = lir% Ay (z 4 tv) — Ay (x)] = lim ¢t [f(z + tv) — f(z)]

(15.42) e o
= lim t~ (A f(z + t)) — p(Af(2))],

by (12.39), and where the last line comes from the convention that we used for (12.38) and
(12.39), that f is defined by the formula (12.36) near z. But

fle+t) —y = fle+tv) - f(z) = Ae(z + tv) — f(x) + o)
(15.43) = A, (x+tv) — Ag(x) + o(t) = tDAL(v) + oft)
because x € Z(y), by (11.40), and because A,(z) = f(x) by (11.40) and A, is affine, so
(15.44) YA f(x+tv)) = YAy +tDAL(v) +o(t))] = Y[Ay + AtDA,(v)] + o(t)
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because v is Lipschitz. So (15.42) says that
DA, (v) = lim ¢ (Y[Ay + MDA, (v)] = o(Af(2))

(15.45) o0
= lim ¢~ (Y[ Ay + MDA (v)] = ¥ (Ay)).

Now let w be any vector in the vector space Q! parallel to Q,, write w = DA, (v) for
some v € P/, and observe that (15.45) says that 1 is differentiable at Ay in the direction
Aw, with a derivative equal to DA, (v) (and hence that satisfies (15.41)). We could easily
get the differentiability (instead of the differentiability in each direction), because v is
Lipschitz, but let us not even bother, because we just need the formula (15.41) for the
directional derivatives. Notice however that since DA, : P, — Q' is a bijection (because
DA, has no contracting direction because = € Xy; see (14.5), (14.21) and the line below
it, and (15.1)), (15.41) allows us to compute Dy, from DA, and DA,.

We are now ready to prove (15.40). Let y € Y71 be given; by (15.9), all the affine
planes A, (P,), x € Z(y), are equal to some affine space Q),; in addition, we just checked
that 1) has directional derivatives at ty along @, given by a mapping D, that we can
compute from the values of DA, and DA, at some z € Z(y). Now (15.41) says that for
each = € Z(y), the vector space @; parallel to Avx(Px) is given by

(15.46) Q) = DA,(P,) = Dy(DA,(P))) = Dy(Q,,),

where @, is the vector plane parallel to Q. In particular, @; does not depend on z € Z(y).

Since all the A,(P;) go through f(z) = ¥ (Af(z)) = ¥(\y) by construction, they are all
equal, and (15.40) follows.

Return to the definition of the g;, near (15.29). As before, we first define auxiliary

functions g; . on the set U;,; defined by (12.72), and on which we extended fvin (12.75).
Notice that for j € J3 and = € Z(y;),

3
(15.47) B;-;C C Bj, C B(x, 57*17“3') C B(z,3v7'rj) C Uins

by (15.20), because x € X9 C X (by (15.1)), since 7; < Fdg <
(12.7), and by the definition (12.72).

For j € J3, we denote by @j the common value of the affine planes A, (Py), x € Z(y;),
and by 7; the orthogonal projection onto 7;. Then we set

1
40(+|?¢|”p) by (1515) and

(15.48) Gje(2) = 7(f(2)) when z € B,

(15.49) Gj2(2) = f(2) when z € Uy \ B,

and

(15.50) Gie(2) = (1= B(2)7;(F(2) + B(2)f(2) for z € Ry,
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with (z) as in (15.32). Also set §; = g;. on each B , x € Z(y;), and g;(z) = f(2) on

J7w,
the rest of E2U Ujy,; the definition is still coherent, for the same reasons as before, and g;

is Lipschitz. The analogue of (15.33) is
(15.51) 195 = Fllpoewine < Mrj < AAG,

which we prove as before: the second inequality follows from (15.15), and for the first one
it is enough to observe that for z € B

J,x?

a552) (a2 = TR SR () - f<z|>\ = dist(f(2), Q) < F(2) = F(a)]

because @j goes through f(x) and by (15.22).
Next we want to define g;. We want to set

(15.53) g;(2) = A" H(G(2)) for z € Uiy

so let us check that g;(z) € B(0,1). When z € Bj-:m for some j € Js and x € Z(y;),

dist(g;.0(2), R™ \ B(0,1)) > dist(f(z),R™ \ B(0,1)) — AAr;

(15.54) L
> AT dist(f(2), R"\U) — AAr;

by (15.52) and because f(z) = ¥(Af(2)) and ¥ : \U — B(0, 1) is bilipschitz; then

dist(f(2), R" \ U) = dist(f(z),R"\ U) — [f(2) — f(2)]
(15.55) = dist(f(x),R"\ U) — | f(2) — v
> dist(f(z), R"\U) —r,

because f(z) € D; by (15.22), and
(15.56) dist(f(x),R"\U) > dist(W,R” \U) = 8o > 10A*(1 + | f|1ip)06

because = € Xy, hence f(z) € W by (11.20), (2.1), and (2.2), and by (12.6) and (12.7).
Altogether,

dist(g;..(2), R™ \ B(0,1)) > M~ dist(f(2), R" \ U) — MAr;
(15.57) > M THI0A2 (1 + | fliip)ds — 7] — AAr;
= 8AN(L + [fliip)ds

by (15.54), (15.55), (15.56), and because r; < dg by (15.15). So g;..(2) € B(0,1) and g;(2)
is correctly defined in (15.53).
When z € Uspt \ B;{I for all j € J3 and € Z(y;), we defined g;(2) = f(z) below

(15.50), and f(z) = ¢¥(Af(z)) by (12.75), so (15.53) makes sense, and even yields g;(z) =
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f(#2). We can thus extend the definition of g;, and set g;(2) = f(z) for z € U \ Ujnt, but
in fact we won’t even need that. Anyway, we get that

(15.58) 9i(2) = f(z) forze U\ |J |J Bj.

j€Ts 2eZ(y;)

Notice that

(15.59) 195 = Fll o) < ATHAN[G; = flloo < A%rj < A6,

by (15.58), (15.53) and (15.51). Let us also check that

(15.60) 19;(2) — f(2)| < A2(2y~ 1 + 3| f|up) erj for z € B;m NE.

We prove this as in (15.34). We can again choose w € E such that |w — z| < er;, and
(by (11.45)) p € P, such that |p — w| < ¢lw — z| < 2erj; thus |p — 2| < 3er; and
lp—z| <|p—z|+]|z — x| <3er; + 2y~ < 2971 by (15.20), and

35(2) — f(2)| < |7;(F(2)) — F(2)] < dist(f(2), Q;)
(15.61) < dist(ﬁx(pk Q;) + I:Iw(p) - F®)| +1fp) - F(2)|
= |Az(p) — f)| + |f(p) — f(2)]

< Xelp — x|+ [p — 2| flup < 277"+ 3A| flup) et

because Ay (p) € @j = A,(P,), and by (12.52) (with the same justification as for (15.25));
(15.60) follows.
We claim that now

(15.62) gj is CA?(1 + | f]uip)-Lipschitz on B}, N E*",

with the same proof as for (12.96). Finally, (15.36) still holds in the Lipschitz context; its
proof only involves f and arguments anterior to (15.29) and the definition of the g, ,, so
we can keep it. |

16. The modified function g, and a deformation for F.

We are now ready to define a (new) function U : R™ — R™, which is a first competitor
for the replacement of f. We already defined a function g in Step 2.f, by (13.12) or (13.29)
and (13.31), and we intend to keep it like this on

1+a (1+a)t
(16.1) vi=J 5B = U B(wj, ).
jeS1 Jje1

That is, we set

(16.2) 9(z) = f(z) + Y i (2)lg;(2) = f(2)] for z € Vi
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in the rigid case, and

(16.3) g(z) = 2" G(z)) for z € Vi,

with

(16.4) 9(2) = F(2) + Y ¢(2)[5;(2) — f(2)]
j€J1

under the Lipschitz assumption. We also set

(16.5) o) = g;() for z e 2B, = B(a,, L)

when j € J,, and

(16.6) 9(2) = gj(2) = gj.(2) for z € B},

when j € J3 and € Z(y;). Finally, set

167 w=[ U Smlu] U B
jE€JIUT: JEJT3; xE€Z(y;)

we just defined g on V', and we keep

(16.8) g(2) = f(2) for ze R™\ V;*.

t Under the Lipschitz assumption, we also have a function g, defined on V;", and such
that g(z) = ¥ (Ag(2)). On Vi, we wrote this explicitly in (16.3) and (16.4); on the balls
Ita B, j € Jo, this comes from the fact that g; was defined by (14.29) (also recall that
2B C Ui, for j € Jo); on the B;-"m, this comes from (15.47) and (15.53) (also see the line
below (15.50)).

Let us check that all these definitions are independent because the corresponding sets
are disjoint. First, the B;, j € Ja, are disjoint from each other and from UjeJ1 HTQBJ-, by

(14.8). The B;{m are disjoint from each other by (15.27). Finally, if j € Js3 and = € Z(y,),

3 _ o7
(16.9) B}, C B(x, 37 'r;) C B, 5)

. an . . 1s last ball does not meet any =5=5,, 7 € J1 U Jo the definition
(15.20) and (15.15). This last ball d y 11¢B;, j € J1 U Jo, by the definiti
(15.3) of 07 and because z € Xo (by (15.1)).

Next we check that
(16.10) g is Lipschitz on U
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(but possibly with a very bad norm). Recall that (16.2) or (16.3) would also yield g(z) =
f(z) for z € 9Vq, by (13.18) or (13.31) (recall that our initial g was Lipschitz). Similarly,
9j(2) = f(z) for j € Jy and z € 0B(x;, %), in the rigid case, this is because we still use
(12.59) (see above (14.10)), and in the Lipschitz case this comes from (12.77) and (14.29),
or directly from (14.30). Finally, g;.(2) = f(z) for j € J3, x € Z(y;), and z € OBII,
by (15.30) or (15.49) and (15.53). Thus (16.8) does not introduce any discontinuity, and
(16.10) follows easily, because g is Lipschitz on the closure of each piece.

Let us finally record that

(16.11) lg = flloo < 4A* (1 + [ fliip)ds

in the rigid case by (13.13) and (12.8), (14.11), and (15.33), and in the Lipschitz case by
(13.35) and (12.8), (14.31), and (15.59).

We would like to use g to define new competitors, and a natural first step is to check
that g is the endpoint of a one-parameter family of functions g;, that satisfies the conditions
(1.4)-(1.8), and in particular the boundary conditions (1.7), relative to E.

This will not be entirely satisfactory, because we would like (1.7) to hold with respect
to the Ej, but we shall take care about that in the next section.

Recall that f itself is defined as f(x) = ¢1(z), for some one-parameter family of
functions ¢¢, which we extended from F to R™ at the beginning of Section 11, and for
which (1.4)-(1.8) hold by assumption. We start under the rigid assumption and set

(16.12) gt() = @ar(z) for 0 <t <1/2
and
(16.13) ge(x) = (2—-2t)f(z) + (2t — 1)g(x) for 1/2 <t < 1.

Recall that (1.4)-(1.8) for the ¢; holds with respect to the ball B = B(Xy, Rg) of
(11.1); here we shall find it convenient to use a slightly larger ball B’.

Lemma 16.14. The functions g¢, 0 <t <1, satisty (1.4)-(1.8), relative to E and the ball
B’ = B(Xo, Ro + 4A?(1 + | fl1ip)J6)-

We shall need to know that
(16.15) dist(z, X1) < d¢ and dist(z,R™\ W) > §;/2 for z € V;T,

where we defined Vi in (16.7) and &; = dist(X;,R™ \ W;) in (11.22). The second part
follows from the first part, because dg < d1/2 by (12.7). For the first part there are three
similar cases. When = € B; for some j € Ji, this is true because x; € Xn(d4) C X; and
|z — xj] <t < d; see the line below (12.8), the various definitions of the X;, and (12.8).
When x € B; for some j € Jy, we use (14.7) instead. When z € B;.'Z for some j € J3 and

)

z € Z(y;), we use the fact that z € Xy C X; by (15.1), and B;fm C B(z,3v7r;) C B(x, )
by (15.20) and (15.15). So (16.15) holds.
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The properties (1.4) and (1.8) hold by construction. For (1.5), since we know that
go(x) = @o(z) = x for € R™, it is enough to check that

(16.16) gi(z) =2 forxe E\ Band 0 <t <1.

Let x € E '\ B be given. By (1.5) for the ¢, p¢(z) = = for 0 < ¢t < 1, hence by (16.12)

gi(x) =z for 0 <t < 1/2. If x € V;*, (16.15) says that x € W, and, since z € E, this

forces © € B (because ¢1(z) # x by the definition (11.19), and by (1.5)); this is impossible.

So x € R*"\ V;, and g;(z) = f(x) = = by (16.13) and (16.8); this proves (16.16) and (1.5).
For (1.6), we need to check that

(16.17) gi(r) € B whenx € ENB and 0 <t <1.

This is trivial when x € EN B’ \ B, because ¢g;(z) =x € B. f z € Band 0 <t <1/2,
gi(z) = @or(x) € B by (16.12) and (1.6) for the ¢;. Finally, if x € B and t > 1/2,
g+(x) lies on the segment [f(x),g(z)], which is contained in B’ because f(z) € B and
9(2) — f(2)] < 402(1+ |flip)ds by (16.11).

We still need to check (1.7), i.e., that for 0 < k < jnaq,

(16.18) gi(r) € Ly whenz e ENLyNB and 0 <t < 1.

[We just used the letter k to avoid a conflict with the notation for the B;, but of course k is
not the index for the sequence { E)} here.] We may assume that x € B, because otherwise
g+(z) =z € Ly, and that t > 1/2, because otherwise g;(x) = poi(z) € Ly by (1.7) for the
¢t By (16.13), g;(x) lies on the segment [f(x), g(x)], so we just need to check that

(16.19) [f(x),g(x)] C Ly for z € EN LN B.

Since this is trivial when g(x) = f(z), we may assume that = € V|".

First suppose that x € Vi, and let j € J; be such that x € B;.

Return to the definition of Q; (Step 2.e, starting above (12.42)). Still denote by x;
the the center of Bj; we chose | € £ such that f(z;) € D;, and observed that we can find
x(l) € X5 such that y; = f(x(1)).

But X5 C X5, so by (11.26) there is an m € [0, n] such that z(I) € X; 5,(m). That is,
by (11.23)-(11.24) 1 = f(z(1)) € Sm \ Sm_1, and (if m > 1)

(16.20) dist(y;, Sm—1) > da.

Still denote by Fj the smallest face of our grid that contains y;, and by W (y;) the affine
plane spanned by Fj; obviously F; and W(y;) are m-dimensional. Also notice that

(16.21) [f (@) = wel < [f(2) = )]+ [f(25) =yl <t Flip + 8 < 06(1 + [ Fluip)
because f(z;) € D; and by (12.8). Let us check that
(16.22) any face F' of our grid that contains f(x) contains Fj too.
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We use coordinates and the dyadic structure to prove this, but probably polyhedra would
work as well. Also recall that we work under the rigid assumption for the moment. For
1 <i < n, denote by a; and b; the i-th coordinate of f(z) and y; respectively. Thus

1
(16.23) |b; — a;| < 10 min(dz, 70)

by (16.21) and (12.7). Set Iy = {i € [1,n]; b; ¢ roZ} (recall that rq is the scale of our
dyadic grid). For i € Iy, (16.20) says that dist(b;, r0Z) > d2, so [a;, b;] does not meet roZ
(by (16.23)).

Denote by w the point obtained from f(x) by replacing each a;, i € Iy, with b;. We
get that w € F too. And if we want to go from w to z, we just need to replace each
coordinate a;, i ¢ Iy, with b;, which by (16.23) and the definition of I is the closest point
of rqZ. Then y; lies in any face that may contain w, including F'. Altogether, y; € F', and
since Fj is the smallest face that contains y;, we get that F; C F, as needed for (16.22).

Recall that g;(z) € [f(z),m;(f(x))] (by (12.59)-(12.61)), where 7; is the orthogonal
projection on the affine plane @j spanned by @;, that @; lies in F; (see above (12.43)),
and hence goes through D; and is contained in W (y;) (see above (12.18)). Let 7 denote
the orthogonal projection onto the affine plane through y; parallel to @;; then

i (f(2) = wl < |7 (f(2)) = wl + |I7 = milloo <1F(2) =yl + ¢ < t|fluip + 21

16.24
( ) S 256(1 + |f|11p) S (52/5 < dist(yl,8Fl)

by various parts of (16.21), (12.7), and (16.20). Also, 7;(f(x)) € @j C Wi(y), the
affine space spanned by Fj; then (16.24) implies that 7T]( (z)) € F; because the segment
(75 (f(x)),y1] € W(y;) does not meet 0F;. Thus

(16.25) 7 (f(z)) € F; C F for any face F' of our grid that contains f(z),

by (16.22) for the second part.

By (1.7) for the ¢y, f(z) = ¢1(z) € Li. Let F be a face of Ly that contains f(z).
The proof of (16.25) shows that m;(f(x)) € F for each i € J; such that z € B; (that is,
not only for i = j), and then g;(z) € [f(z),m;(f(z))] lies in F too (because every face is
convex).

By (16.2), (13.8), and (13.9), g(x) lies in the convex hull of f(z) and the g;(z), where
i € Jp is such that v;(x) # 0. For such 4, (13.5) and (13.6) imply that = € B;, so g;(z) € F.
Altogether, g(x) € F and [f(x),g(z)] C F C Ly, as needed for (16.19).

Our second case for the proof of (16.19) is when z € £2B; for some j € Jo. Set
y; = f(z;), denote by F(y;) the smallest face that contains y;, by W(y;) the affine
subspace spanned by F'(y;), and by m their dimension. This time z; € X7 C X5 by (14.7)
and various definitions, so y; = f(z;) € Sy, \ Sm—1 and

(16.26) dist(yl,Sm_l) Z 52
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if m > 1, by the proof of (16.20). Since

(16.27) |f(x) =y = () = f(@)] <7l flip < 6l fliip < 62/10

by (14.7), and (12.7), the same proof as for (16.22) shows that any face F' of our grid that
contains f(z) contains F(y,) too.

Here g(z) = gj(z) € [f(z),m;(f(x))] by (16.5) and because g;(z) is given by (12.59)-
(12.61), and where 7; now denotes the orthogonal projection on Q; = A, (P;) (see below
(14.9)). But Lemma 12.27 says that Q; = Az, (P;) C W(f(y;)), and since |7;(f(z))—y;| <
|f(z) —y;| < 62/10 because Q; goes through y; and by (16.27), the proof of (16.25) shows
that 7, (£(z)) € F(yj).

As before, the ¢ (z) and f(z) = p1(x) lie in Ly. Let F be a face of Ly that contains
f(x); then 7;(f(x)) € F(y;) C F, and g(z) € [f(x),7;(f(z))] lies in F too (by convexity).
So [f(z),g(x)] C F C Lg, and (16.19) holds in this case too.

Our last case is when z lies in B;fz for some j € J3 and z € Z(y;) (recall that x € V;"
and see the definition (16.7)). We proceed as in the second case, notice that z; € Xo by
(15.1), replace (16.27) with the fact that f(x) € D; = B(y;,r;) C B(y;,d6) by (15.22) and
(15.15) (see the definition of D; above (15.12)). Then g(z) = g, .(x) € [f(z),7;(f(x))] by
(16.6) and (15.29)-(15.32), and where 7; denotes the orthogonal projection on Q; = A, (P,)
(see above (15.29) and (15.16)), which is again contained in W (y;) by Lemma 12.27. The
rest of the argument is the same. This completes our proof of (16.19) and, by the same
token, of (16.18); this was our last verification; Lemma 16.14 follows. O

T Under the Lipschitz assumption, we keep gi(z) = @2 (z) for 0 < ¢t < 1/2, as in
(16.12), but for ¢ > 1/2, we want to preserve the faces when this is possible, and this is
easier to do after the usual change of variable, so we want to set

(16.28) g91(2) = A7 (Gu(2)) for z € Uipe,
where
(16.29) 3i(2) = (2—20)f(2) + (2t — 1)§(2),

and g(z) is as in (16.4) when z € Vi, g(2) = gj(z) when z € 42B; for some j € Ja,
g(2) = gj(2) = gj2(2) when z € B;.fl, for some j € J3 and = € Z(y;), and g(z) = f(z)
when z € R™\ V,;". On V|, this definition is the same as in the remark below (16.8), which
was also based on (16.3)-(16.4) (also see (13.28) and (13.29)), (14.29), and (15.53).

We need to check that

(16.30) gi(z) € B(0,1) for t > 1/2,

so that (16.28) makes sense. This is clear when z € R™ \ V;", because §;(z) = f(z) =
PY(Af(2) by (12.75); otherwise, we already checked that g(z) € B(0,1) (typically, when we
wanted to define g by g(2) = A1 71(g(2))); see (12.82), above (14.29), and below (15.53).
Then §;(z), which lies on the segment between §(z) and f(z) = ¥(Af(z), lies in B(0,1)
too. Thus (16.28) makes sense and g;(z) € U for z € Uj,,; and 1/2 <t < 1.
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When t = 1/2, (16.28) and (16.29) yield §; = f and g, = f = 1, so g is continuous
across t = 1/2. When ¢ = 1, we retrieve g = g and g1 = g.

We only defined g;(z) and g¢:(z) when z € Ujps; when z € U \ Ujpt, we do not define
g+(2z) and directly set gi(2) = f(2), as in (16.8). This does not create a discontinuity,
because V' lies well inside U,,; (recall the definition (12.72) and the inclusions in (12.76),
the lines above (14.25), and (15.47)), and because the definition above also gives g:(z) =
f(2) when z € Uj, \ Vi

Now we check that Lemma 16.14 is still valid in the present case. We do not need to
change anything before the last line of the proof of (16.17), where we just need to observe

that (again for t > 1/2 and z € B) |g;(2) — fi(x)] < A7 MA[Ge(2) — f(2)] < 4A2(1+ | fliip) 06
by (16.28) and the proof of (16.11) (more precisely, the line above (13.35), (12.8), (14.25),
and (15.51), but if you are ready to loose an extra A%, just use (16.11)); so g;(z) € B’ as
before.

Thus we may turn to (1.7), or equivalently (16.18) or, after a change of variable, the
fact that

(16.31) Gi(z) € L, =¢(A\Ly) whenz € ENLyNB and 0 <t < 1.

The verification for 0 < t < 1/2 is the same as before, so we may assume that ¢ > 1/2,
and by (16.29) we just need to check that

(16.32) [f(2),§(z)] C Ly forx € ENLyN B

(compare with (16.19)).

We continue the argument as below (16.19), starting with the case when x € V; and
so x € B; for some j € J;. Let | € L be as before; thus f(z;) € D; and y; = f(z(1))
for some x(l) € X5. We shall also use y; = ¥(A\y;) € B(0,1), and m € [0,n]| such that
Y1 € S \ Sm—1 (Just y; € Sy, if m = 0); then (16.20) holds as before. Still denote by F;

the smallest face of the twisted grid that contains y;, set F = W(AF}) (the smallest rigid

face that contains 7;), and call W(yl) the affine space spanned by F;. Next we check that
(16.22) holds, or equivalently that

(16.33) any face F of the true grid that contains f(x) contains F} too.

The proof needs to be modified slightly. From (16.20) we deduce that
(16.34) dist (71, Sm—1) = dist(¥(Ay1), Y(ASm_1)) = A~ Ay

We still have (16.21), with the same proof, which yields

(16.35) [f(@) =3l = [o(Af(2) = D) | < AM[f(2) = yu| < AAG6 (1 + [ fiip)-

Denote by a; and b; the coordinates of f(x) and y;; now

1
(1636) |bz — ai| S )\A56(1 -+ |f|l7,p) S min(ég, )\71?"0) S E min(Ail)\ég,To).

A
10A
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still by (12.7). From this and (16.34) we deduce the analogue of (16.22) as before, when
we had (16.23) and (16.20).

Now we use the fact that g;(z) € [F(z), %](f(a:))L by (12.77)-(12.79), where 7; is the
orthogonal projection onto the affine plane P; that contains );; see the description above
(12.77), and recall that P; satisfies (12.23).

Let 7 be the projection onto the affine plane through y; parallel to f’j; the analogue
of (16.24) is

7 (f(2) — ol < |[7(f(x) = Gl + 1T — Tjlloo
< [F(@) = il + 2AN 1+ | Flup )t
(16.37) S A[f(z) =yl + 2AA (1 + | flup)t
< BAA(L A+ | fliip)t < 3AA(L + | fliip)d6
_ 3\

< J0A <diSt(§l,8ﬁl)

by (12.23), (16.21), (12.7), and (16.34).

As before, 7;(f f(z)) lies on the affine plane P that contains Q], which is contained in
W(yl) by (12 23); since W(yl) is the affine space spanned by Fj, and 3 € Fl, we get that
T (f(z)) € F; C F for any (straight) face F that contains f(z) (by (16.37)). The rest of
the proof of (16.33) (by convexity) goes as before.

The other cases are easier (see near (16.26)); we replace Lemma 12.27 with Lemma 12.40
when needed, and otherwise proceed as above. This completes our proof of Lemma 16.14
under the Lipschitz assumption.

17. Magnetic projections onto skeletons, and a deformation for the Fj.

We just checked that g and the g; define (a hopefully stabler) acceptable deformation
for E/, but we still want to modify them so that they work for the E}, at least for k large.
For this we will need some way to push points back to the L; (when they are close to the
L;). The name magnetic for the projections below was used in [Fv1] in a similar context;
it is nice because it conveys the idea of a strong attraction, but with a very short range.

17.a. Magnetic projections onto the faces.

We start with a projection on nearby faces of a given dimension, and then we shall
see how to work in all dimensions at the same time. In what follows, m € [0,n) is an
integer, and s is a small number that plays the role of an attraction range, which will later
depend on various parameters. Also recall that S,,, denotes the m-dimensional skeleton of
our usual dyadic grid.

Lemma 17.1. Let a dimension m € [0,n[ and s € (0, {5) be given. There is a mapping
IT =11, s : R® — R"™, with the following properties:

(17.2) II,, s(x) =z when z € S,, and when dist(x,S,,) > 2s,
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(17.3) II,, s(x) € S,y when dist(z,S,,) < s,

(17.4) IL,,,s () is a C-Lipschitz function of s € (0, 13) and x € R",
where C' depends only on n, and

(17.5) I1,, s preserves all the faces of our usual grid,

which means that if F' is a face of any dimension, then Il,, s(x) € F for x € F.

We start with the (rigid) case when 7y = 1. Naturally we shall use Lemma 3.17,
with L = S,,, and n = 1/3; we get a mapping II;, : L" x [0,1] — R™, with the properties
(3.18)-(3.22). Recall that L7 is, as in (3.5), an n-neighborhood of L. For convenience, we
extend I, by setting I1; (x,0) = x for x € R™; this is compatible with (3.18).

Let 0 : [0, +00) — [0,1] be a smooth cut-off function such that

(17.6) Ot) =1for 0<t<1,0<0(t)<1lforl1<t<2 6(t)=0fort>2,
and |0'(t)| < 2 everywhere. Set d(z) = dist(x, S,,) for x € R™, and then
(17.7) M, s(z) =z (x,0(s d(z))) for x € R" and 0 < s < 1071

First observe that if z € R™"\ L", then d(z) > n = 1/3, s~ 1d(z) > 10/3, hence 0(s~'d(x)) =
0 and Iy (z,0(s~'d(x))) is well defined (and is equal to z). So I, s is well defined on R™.

The second part of (17.2) holds for the same reason: if dist(z,S,,) > 2s, then
0(s~td(z)) = 0 and II,, s(z) = Hy(z,0) = x by (3.18). Similarly, if dist(z,S,,) < s
then 0(s~td(z)) = 1 and 11, s(x) = I (x,1) € L = S, by (3.19) and the definition of
7, in Lemma 3.4, so (17.3) holds. Finally, if x € S,,,, I (z,t) = x for all ¢, by (3.18), so
II,, s(z) = = and the first part of (17.2) holds too.

Let us check that II,, s(x) is Lipschitz in x. First consider x,y € L"; then

s (2) = Tins(y)] = Mz (2, 0(s™ d(2))) — Ly, 0(s~"d(y)))]
< (2, 0(s™ d(x))) — (2, 0(s™ d(y)))]
+ M (2, 0(s™ d(y))) — Mo (y, 0(s™ d(y)))|
< Cd(@)|0(s ™ d(x)) — 0(s™ ' d(y))| + Cla — y|

(17.8)

by (3.20) and (3.21). Let us check that
(17.9) d(2)|0(s~"d(x)) — (s~ d(y))| < 6]z — .
If d(z) < 3s, simply say that [6(s~"d(z)) — 0(s~"d(y))| < 25~ l\d(»;f) d(y)| < 2s “Ha—yl,

<2
and (17.9) follows. If d(x) > 3s and d(y) > 2s, then (s~ d(x) O(s~ d_( )) = 0 and
(17.9) is trivial. In the last case when d(x) > 3s and d(y) < 2s,
(17.10) d(2)|0(s~"d(2))—0(s™"d(y))| = d(x)0(s~"d(y)) < d(x) < 3|d(z)—d(y)| < 3[a—yl,
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and (17.9) holds too. Then |IL,, s(z) — I s(y)| < Clx —yl|, by (17.8) and (17.9), and this
takes care of our first case when z,y € L".

Suppose z € L" and y € R™\ L", and let z € [z, y] lie on the boundary of L7; then
II,, s(2) = z and I, s(y) = y by (17.2), and

’Hm,S(x) - Hm,S(y)‘ < ’Hm,S(x> - Hm,S(z)‘ + |Hm,8(z) - Hm,S(?/)‘
(17.11) = |IL,, s(z) — W s(2)| + |2 — y|
<Clz -z +]z—y| < Clr —y|

by the previous case. The case when x € R™ \ L"” and y € L" is similar, and when
xz,y € R™\ L" we simply get that |IL,, s(z) — I, s(y)| = |z — y| by (17.2). So I, , is
C-Lipschitz.

For the Lipschitz dependence on s, first let € L” and 0 < s <t < 10~! be given.
Then

M, () = Mt ()] = [T (2, 0(s™ d(2))) — Mg, 0t d(x)))]

(17.12) < Cd(x)|0(s~d(x)) — O(td())]

by (3.20). If d(z) < 3s < 3t, then

(17.13) d(@)]6(s~ d(@)) — 0 a(w))] < 2d()| "2 — DD | _ gz B < ygye

and we are happy. If d(z) > 2t > 2s, then 0(s~1d(x))

= 0(t"d(x)) = 0 by (17.6), and we
are happier. We are left with the case when 3s < d(z) <2

t; then
(17.14) d(x)|0(s~ d(x)) — 0t~ d(y))| = d(x)0(t™"d(y)) < d(x) < 2t < 6(t — )

by (17.6) and because 3s < 2t. This takes care of the case when z € L". The other case is
trivial, since I, s(x) = I, +(z) = « when € R™ \ L". So I, s(x) is Lipschitz in s too,
and (17.4) holds.

Finally, (17.5) is a direct consequence of the fact that II; preserves the faces too, by
(3.22).

We still need to prove the lemma when ry < 1; denote by H;ms the mapping that we
just obtained for the unit grid; naturally, we set

(17.15) M s () = 7ol T,ls(ro_lx) for z € R" and 0 < 5 < 10 17g;
o

the properties (17.2), (17.3), and (17.5) follow at once by conjugation, and for (17.4) a
rapid inspection shows that the two Lipschitz constants for I, s(x) do not even depend
on rg. (We don’t really need to know this, but it feels better.) Lemma 17.1 follows. O

We shall need to know that
(17.16) 1L,,s(z) — 2| < C Min (s, dist(z,S,,)) for z € R™ and 0 < s < 107 r,.
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And indeed, by (17.2) we may assume that d(x) = dist(z,S,,) < 2s, because otherwise
II,, s(z) = z. Then pick z € S,, such that |z — z| = d(z), and observe that

[T, (2) = 2] < [T s (2) = T, 5 (2)] 4 [T 5 (2) — 2]

17.17
( ) = |IL, s(z) = s(2)| + |z — 2| < C|z — x| = Cd(x)

because II,,, s(2) = z by (17.2); (17.16) follows.

Next we want a version of Lemma Lemma 17.1 that works for all the dimensions m
at the same time; naturally we shall obtain it by composing mappings II,, s(z) provided
by Lemma 17.1. We keep our usual dyadic grid of mesh rg.

Lemma 17.18. There is a mapping II : R™ x [0,1071r¢] — R™, with the following prop-
erties:

(17.19) 1(z,s) — x| < Cs forx € R" and 0 < s < 10~ 1rg,

(17.20) I(z,s) € F when F is any face of the grid, x € R", and dist(z, F) < C™'s,

(17.21) IT is C-Lipschitz on R™ x [0, 107 'r]
and
(17.22) every I1(-, s) preserves all the faces of our usual grid.

For s € [0,1071rg], set
(17.23) Sm = (6C)"™"s for 0 <m <n-—1,
where C' is the constant of (17.16) (chosen so that C' > 1) and then
(17'24) H(:L‘, 8) =1Ilosg 0 iysy --- 0115, (I)
for x € R"™. Notice that II,, s, is well defined, because 0 < s,,, < 107 r(, and that (17.19)
holds (with a larger constant C') by successive applications of (17.16). Also, (17.21) follows
from (17.4) and the chain rule, and (17.22) is a consequence of (17.5).
We are left with (17.20) to check. Let F' be a face and € R™ be such that
(17.25) dist(z, F) < 5,1 = (6C)' ™ "s;

we want to check that II(z,s) € F. Set 41 = x, = x, then z,_; =1II,,_1 5, ,(z), and
by induction

(17.26) xp =g s, (Th41) for 0 <k <n-—1
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Thus II(z, s) = xg. Notice that
(17.27) |z — x| < C(sp—1+---Sk)

by successive applications of (17.16), and where for the few next lines C will stay the same
as in (17.16) and (17.23).
Let m denote the dimension of F'; observe that

(17.28) dist(2m 41, F) < dist(, F) + [2ms1 — 2 < spo1 +C D sk
k>m

Next denote by [ the smallest nonnegative integer such that

(17.29) dist(zi11, F') < spo1 +4C D s
k>l

for some face F’ C F of dimension [. Thus [ < m, by (17.28). Let us check that

(17.30) Sno1 40D sp < 81
k>1

If Il =n—1, (17.30) holds because the left-hand side is s;. If I <n — 1,

58[

(17.31) Sp—1 + 402 sp < 502 s < 5Cs; 2(60)_7 < - 26_3 =5
k>l k>1 Jz1 J=20

because we assumed that C' > 1; so (17.30) holds. Now

(17.32) dist(2141,8)) < dist(zi41, F') < $pm1 +4C Y s, < 5

k>1

by (17.29) and (17.30), so (17.3) says that x; = II; 5, (z;41) lies in ;.

If z; € F, we are happy because all the later Il , preserve the faces, so II(z, s) = x¢
lies in F' too. So assume that x; ¢ F. Let F” denote a face of dimension [ that contains
x1, and notice that F” # F’ because z; ¢ F' since F' C F. Use (17.29) to choose z € F’
such that

(17.33) |z — zi1] < sp—1 + 4CZS;€.
k>1

If [ > 0, (3.8) says that

(17.34) dist(z,0F") < dist(z, F") < |z — x| < |z — x131]| + Cs; < 8pp_1 + 402% +C'sy
k>1
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by (17.26), (17.16), and (17.33), and so

(17.35) dist(z;, OF") < dist(z,0F") + |z — x| <2851 + SCZ s +2C's;.
k>l

Since 25,1 +8C ), ., sk < 25; by (17.30), we get that

(17.36) dist(x1, OF') <4Cs; <4C Y sy,
k>1—1

which contradicts the minimality of [, because OF' € F/ C F. So in fact [ = 0, and F”’
and F" are just points of the grid. Then F” = {z;} and F’ = {z}, and these points are
distinct. But the last part of (17.34) is still valid, and says that |z — ;| is very small. This
contradiction shows that x; € F' was the only option, and completes our proof of (17.20);
Lemma 17.18 follow. ]

17.b. A stable deformation for the FE.

Recall from Section 16 that we have defined a family of mappings g;, 0 <t < 1, that
satisfy the constraints (1.4)-(1.8) with respect to our limit set £. We want to use the
magnetic projection given by Lemma 17.18 to modify the g; and make them work for the
Ej. as well. As usual, we start in the rigid case.

Let g be small, to be chosen below, and set

(17.37) hi(x) = II(gi(x), s¢(x)) forz e U and 0 <t <1,
where we set
(17.38) st(x) = C' Min(ey, |g:(z) — z|),

where C is the constant of (17.20). We shall choose £y much smaller than (10C)~1rg, so
hi(x) is well defined. Observe that since 0 < s;(z) < Ceg, (17.19) yields

(17.39) |he () = gi(x)| = [T(g:(x), 5:(2)) = ge(2)] < Csi(x) < Ceg

for x € U and 0 <t <1 (and with a new constant C'). We are interested in the following.

Lemma 17.40. For k large enough, the mappings h;, 0 < t < 1, satisfy the conditions

(1.4)-(1.8), relative to Ej, and the ball B” = B(Xy, R"), where

(17.41) R’ = Ry + 4A*(1 + | fl1ip)d6 + CAso.

We give the statement with A because it will be valid in the Lipschitz case, but for
the moment we may take A = 1.

There is still no difficulty with (1.4) and (1.8), since we merely composed g;(z) with
continuous functions of x and ¢, which happen to be Lipschitz when ¢t = 1. Notice that by
(17.19),

(17.42) hi(z) = gi(x) = = when g;(z) = =z,
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because then s;(x) = 0. Because of this,

(17.43) ho(x) =z for xz € U,

by (16.12) and because ¢o(z) = x for z € U, by (11.14). Let us also check that
(17.44) hi(x) =x for v € Ueyy and 0 <t <1,

where Ueyy = {# € R™; dist(z, R™ \ U) < §o/2} as in (11.2). Let € Uy be given. By
(11.3), p¢(x) = z for 0 <t < 1, and in particular f(z) = x. We will be finished as soon as
we check that g(z) = f(z), because then ¢;(z) = x for all ¢, by (16.12) and (16.13), and
we can apply (17.42).

But dist(z, W) > 60/2 because dy = dist(W,R™ \ U) by (11.2), so dist(z, X1) > 6o/2
because X1 C Xo C W (by (11.20)). Finally, dp/2 > d¢ by (12.7), so the first part of
(16.15) says that = € U \ V;", and then g(x) = f(z) by (16.8); (17.44) follows.

For the next verifications, we shall often need to restrict to Ej (we shall not have
enough information on the values of the ¢, far from E'), and we shall find it more convenient
to work on the set

(17.45) H={zeU;dist(z,R*"\U) > dp/2} DR\ Uea.

because H is a compact subset of U and it will be easier to use our assumption (10.4) (i.e.,
the convergence of the E} to E) on that set. Indeed, set

(17.46) dip = sup dist(z, E);
xeE,NH

it is easy to deduce from (10.4)-(10.6) that limy_, oo dx = 0 (cover H with a finite set of
balls).
We claim that for k£ large,

(17.47) hi(x) =z for 0 <t <1 when x € Ey \ B(Xo, Ro + €o).

Because of (17.44), it is enough to prove this when x € Ex N H \ B(Xo, Ro + €0). Then
1
(17.48) dist(z, E) < dj, < 5 Min(eo, 31)

for k large.

For each t € [0,1], the set W; of (11.13) is contained in B = B(Xy, Ry), by (1.5) and
(11.1), so dist(z, E) < e0/2 < 1 dist(z, W;) by (17.48) and because z ¢ B(Xo, Ro + €0).
This is good, because (11.12) says that then ¢;(z) = . [This is not a surprise; recall that
we computed ¢;(x) — z by Whitney-extending the values of ¢;(§) — & on E U E.,y, which
happen to vanish near z.]

If we also prove that g(z) = f(z), (16.12) and (16.13) will say that g;(z) = x for all
t, and the result will follow by (17.42). For this, it is enough to prove that = ¢ V", by
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(16.8). By (17.48), we can find z € E such that |z—z| < 3 Min(g, ;). In particular, z ¢ B
(because =z ¢ B(Xo, Ro + €0)), so (1.5) says that f(z) = ¢1(2) = 2. Thus z € R" \ W,
(see (11.19)), and so dist(x, R™ \ W;) < |z — x| < 61/2, and indeed this makes x € V;"
impossible, by the second part of (16.15). This proves our claim (17.47), and (1.5) (for E
and the h;, and with a slightly larger ball) follows.

Before we prove (1.6), let us check that for z € U and 0 < ¢ < 1, we can find s € [0, 1]
such that

(17.49) [9¢(x) — s (@)] < 4A*(1 + | fl1ip) s

When ¢t < 1/2, we just take s = t/2 and observe that ¢;(z) = ¢s(z) by (16.12). When
t > 1, we take s = 1 and observe that |g:(z) — p1(z)| < |g(z) — f(z)| < 4A%(1 + | f|iip)6,
by (16.13) and (16.11). So (17.49) holds. Notice also that it implies that

(17.50) [he(2) = @s(2)] < 40 (1 + | fliip) 06 + Ceo,

by (17.39).
We are ready to prove (1.6). In fact, we just need to prove that for k large,

(17.51) hi(z) € B" when x € E;, N B(Xo, Ry + €9),

where B” is as in the statement of Lemma 17.40, since (17.47) says that hy(z) =z € B”
when x € E, N B"\ B(Xg, Ry + €). Pick z € E such that |z — z| < %dist(x,E) < %dk.
For k large enough, z € B(Xy, Ry + 2¢¢), and by (1.5) and (1.6) for E and the ¢y,
g0t<Z) S B(X07R0 + 260) for 0 <t <1.

Also let H' denote a compact neighborhood of H in U. The function (y,t) € H' x
[0,1] — ¢¢(x) is uniformly continuous; if k is large enough, z € H’ because x € H, and
|z — x| is so small that |p¢(2) — @i(z)| < 9. Then pi(z) € B(Xo, Ro + 3¢p) for 0 <t < 1.
We then use (17.50) and get that hy(z) € B”, if the constant C' in (17.41) is large enough).
This proves (1.6) for the h;.

Finally we need to prove that (1.7) holds, relative to Fj, and for k large. As before,
we shall restrict our attention to H first. Set, for 0 < j < j4e and k > 0,

(17.52) djr = sup  dist(z, ENL,);
c€L;NEyNH

we claim that for each 7,

(17.53) lim d; ), = 0.

k—+o0

Otherwise, we can find j < j,q. and a sequence of points z, € Eyp N L; N H, for which
ty = dist(xg, £ N L;) does not tend to 0. Passing to a subsequence, we may even assume
that ¢, > a for some a > 0, and that xj tends to a limit . Then o, € L; N H because
L;NH is closed, and zo € E because E is closed and dist(xy, E) tends to 0 by (10.4) (see
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near (17.46)). Now the fact that xo, € L; N E contradicts the fact that t; > a; our claim
(17.53) follows. Next set

(17.54) nie =sup {|g:(x) — g:(y)|; x € H, |z —y| < 2djp, and 0 < ¢ < 1};

then limy_ 400 1;,x = 0, by (17.53) and because (z,t) = ¢:(z) is uniformly continuous on
H' x [0,1], where H" a compact neighborhood of H in U.

Let us check that (1.7) holds when k is large enough. Let j < jps and z € Ex, N L;
be given; we want to check that hi(x) € L; for 0 < ¢ < 1. We may assume that z € H,
because otherwise hi(x) = « by (17.44). Pick y € EN L; such that |y — x| < 2d; j; then

(17.55) dist(g¢(x), Lj) < |g¢(x) — g¢(y)| < mjk < €0

because ¢:(y) € L; by (1.7) for the g; relative to E, and if k is so large that 7, < eo.
Also, dist(g¢(x), L;) < |g¢(x) — x| because = € L;; altogether,

(17.56) dist(g; (), L;) < O 1sy(x),

by (17.38) and where C' is as in (17.38) and (17.20). Let F' be a face of L; such that
dist(g¢(x), L) = dist(g¢(x), F'); then

(17.57) hi(x) = T(g¢(x), () € F

by (17.37), (17.20), and (17.56). Thus h(x) € F C Lj; this completes our proof of (1.7),
and Lemma 17.40 follows. O

We shall also need to know about the analogue, for the mappings h; and the set E,
of the sets W; and W. We claim that for k large and x € Fj,

(17.58) hi(z) =z for 0 <t <1 when dist (z, (] W;) > 2dy

0<t<1

(where W; is as in (11.13) and dj, as in and (17.46)) and

dist (i (), W) < 4A2(1 + | fluip)d6 + CAeg for 0 < ¢ < 1

(17.59) when dist (z U W) < 2dy.
0<t<1

The proof will be almost the same as for (17.47) and (17.51). First let € Ej be such
that dist (x, Uo<i<1 Wt) > 2dy. If © € Ueyt, (17.44) says hi(x) = z, as needed. So we
may assume that © € R" \ Uy C H (by (17.45)). Then dist(z, E) < 1 dist(z, W;) for all
t, by (17.46). Hence, by (11.12) ¢(x) = = for 0 < ¢ < 1. In particular, f(z) = z. Next
let us check that ¢ V;". Let y € E be such that |y — z| < 2 dist(z, E) < 3dj. Then
dist(y, W1) > di/2, so f(y) = v1(y) = y. That is, y € R™ \ W} (see the definition (11.19))
and dist(z,R™ \ W}) < |y — z| < 2dj,. For k large this forces = ¢ Vi, by the second part
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of (16.15). Hence g(z) = f(x) = =z, by (16.8), and then g,(x) = = for all ¢, by (16.12) and
(16.13). Finally, h¢(x) = = by (17.42), as needed for (17.58).
Now suppose that dist (.r, Uogtgl Wt) < 2dy, and choose y € Wy be such that |[y—x| <

3 dist(x, E) < 3dg. By (2.1) and (2.2), ¢¢(y) € Wy for 0 <t < 1. If & € Upay, he(2) = 2 by

(17.44), hence dist(ht(w),W) < |z —y| < 3di < eg (for k large). Otherwise, (17.45) says
that x € H, and we use the uniform continuity of (y,t) — ¢¢(y) on H' x [0, 1] to show that

—

for k large enough, dist(p¢(z), W) < eg for 0 <t < 1. Then we apply (17.50) and get that
dist(g¢(z), W) < 4A2(1 + | fl1ip)d6 + CAep for all ¢, as needed for (17.59).

1 Let us now say how we modify all this when we work with the Lipschitz assumption.
We don’t need to change Lemmas 17.1 and 17.18, but we need to modify the definition of
the h;. We first set

(17.60) hi(x) =2 when x € Ugyy and 0 <t < 1;

this is not too shocking, because of (17.44). Let us also define the hy on E; N Hy, where
(17.61) Hy = {z € U; dist(z,R"\ U) > do/3}

We shall see soon that although the two sets overlap, our two definitions coincide on their
intersection Ey, N Hy N Ueye. We modify our original definition by (17.37) and (17.38) and
set, for x € F N Hy,

(17.62) S¢(x) = C' Min(\eg, |ge(x) — v (Az)]),

where C' is still as in (17.20) and g was defined near (16.29), and then

(17.63) he(z) = (G (), 54 (x)) for 0 <t < 1.

We naturally intend to set

(17.64) he(z) = A"~ (hy(x)) for z € By NHy and 0 <t <1,

but as usual we first need to check that hi(z) € B(0,1), and this will be casier after

some estimates on hy(z). Let us first describe some situations where hy(z) = ¢(Az). The
analogue of (17.42) is now that

(17.65) he(x) = Gi(z) = ¥(Ax) when z € By N Hy and g,(z) = a

(or equivalently when g;(x) = ¥(\x), see (16.28) and recall that x € H; C R™ \ Ugyt by
(17.61) and (11.2)). The proof stays the same: just observe that s;(x) = 0 and apply
(17.19). Because of this, we shall easily get that hy(z) = :(z) = 1(A\z) in the situations
where we proved that hi(z) = g:(z) = .

First observe that we still get that hy(z) = g¢+(z) = = when © € E; N Hy N Ueyy, by
the proof of (17.44) (and where we replace (16.13) with (16.29)). Because of this, our two
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definitions on that set coincide, which is good because we also get that h:(x) is continuous
in both variables and Lipschitz in .
We also get that

he(z) = §i(z) = ¥(Az) when t = 0, when z € E}, \ B(Xo, Ry + c0),

(17.66) and when dist (z, U W) > 2dy,
0<t<1

as in (17.43), in (17.47), and in (17.58). In all these cases, we need k to be large enough
(so that we can define h;(x), but not only), and then we follow the proofs above (except
that we replace (6.13) with (16.29) and (17.42) with (17.65)). Of course in all these cases,
the formula in (17.64) makes sense because lNzt (x) € B(0,1), and yields h¢(z) = gi(x) = x.

Next we generalize the formulas (17.49) and (17.50). We shall restrict to xz € Ex N Hy,
because for x € Ey \ Hy, (17.60) will be enough.

Let us first check that for € U, (the set defined in (12.72) and where fis nicely
defined) and 0 < ¢t < 1, we can find s € [0, 1] such that

(17.67) 19:(2) — P (Aps ()] < AAA(L + | frip)ds-

When ¢t < 1/2, we take s = 2¢, and (17.67) holds trivially because g¢(z) = ¥ (Aps(z)) by

(16.12) and (12.75). When t > 1/2, we take s = 1 (and hence ¥ (Aps(x)) = f(x)) and use
(16.29) to get that

(17.68) Ge(x) — f@)] < 13(x) — F(@)] < 4NN+ | fliip) e,

by the line above (13.35), (12.8), (14.26), and (15.51) (or faster, if you are willing to lose
a factor A%, by (16.11) and (16.3)). This proves (17.67); since

(17.69) he(z) — Gi(z)| < C5(z) < CAeg
by (17.63), (17.19), and (17.62), we deduce from (17.67) that (still for z € E} N Hy)

(17.70) [Be(x) — P (Aps ()] < ANA(L + | fliip)d6 + CAco.

When x € E, N Hy \ Ui, we can even say a bit more. For ¢ < 1/2; we still have
that g¢(z) = Y (Aps(x)) with s = 2t by (16.12). For t > 1/2, we did not want to define
g+(z) directly in Section 16, and instead we set g:(z) = f(x) directly; see the definition
about nine lines below (16.30). This is because if x is any point of U \ Uj,:, we cannot
be sure that f(z) € U, and the we cannot define f(z) = (Af(z)) or gi(x). But here
we only care about points x € Ex N Hy. Let H] be a compact neighborhood of H;, with
H! C U. Notice that for z € ENH] and 0 < t < 1, p,(z) € W U HY, either by (2.2) or
because p¢(z) = x € H{. Then there is a compact neighborhood H” of E N Hi, such that
wi(H") C U for 0 <t < 1. Since for k large, ExNH, C H”, we get that oy (ExNH;) CC W
for k large. That is, for k large we can define ¥(Ap(x)) for x € Ex N Hy. Then we can set
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gt(x) = v(Ap1(z)) = (A f(z)) for t > 2, because gi(x) = f(x) = ¢1(x). This is of course
better than (17.68). And we still have (17.69) (with the same proof) and hence (17.70) in
this case. So we get a good definition of g; and h; on Ep N Hj.

Recall that we shall not worry about = € E)\ Hy, because we have the simpler formula
(17.60).

Now we want to generalize (17.59) (on the set Ej N Hy). Let us first prove that

(17.71) dist (b (), p(AW)) < 4AAA(L + | fuip)d6 + CAeo for 0 < ¢ < 1

when x € E, N H; is such that dist (1‘, Uogtgl Wt) < 2dy,. For such x and k, we can find
t € [0,1] and y € W; such that |y — x| < 3dy; then y € W by (2.2), and also @4(y) € W for

0 < s < 1, either because y € W and by (2.2), or because y € E\ Wy and ¢, (y) =y € W.
Thus

(17.72) W A5 (y)) € YAW) for 0< s < 1.

If x € Ex, N Hy N Ueyt, we checked that (17.60) is still valid; it says that h:(z) = z, so
hi(x) = ¥ (Ax), and (17.71) holds because

(17.73) dist(e (), YOAV)) < [w(Aa) — ¥(My)| < Az — y| < 3AAdy

(since y € W) and for k large. By (17.45) we are left with the case when x € H, and
(17.70) says that |hy(z) — (Aps(z))| < ANA(1 + | fliip)ds + CAeq for some s. In addition,
[h(Aps () = (Aps(y))| < Aeo if k is large enough, because |y — x| < 3dy and by the usual
uniform continuity argument near H (see below (17.51) for instance). We deduce (17.71)
from this and (17.72).

Notice that

(17.74) dist((AW),R™\ B(0,1)) > A~ dist(W,R™\U) = AA""6¢ > 10AA(1+ | f]15) 6

by (12.6) and (12.7); thus (17.71) implies that h¢(z) C B(0,1) when k is large and z €
E. N Hy is such that dist (x, Uogtgl Wt) < 2dy,.

If instead = € Ej N Hy but dist (z,Uyc;ec; Wi) > 2di, (17.66) says that hy(z) =
Y(A\x) € B(0,1) (as in 17.58). So we proved that for k large,

(17.75) hy(z) € B(0,1) for z € E, N Hy and t € [0, 1].
This is good to know, because now we may define h; on Ey N H; by (17.64), and complete
our verifications with a free mind.
Notice for instance that (17.70) implies that for z € Eyx N Hy
(17.76) [he(z) — s (@) < 4A*(1 + | fluip)d6 + CAeo
(for the same s that we found for (17.67)); this is almost as good as (17.50).

193



We already checked that (1.4) and (1.8) hold (see above (17.66), when we checked
that our two definitions coincide on Ey N Hy N Eey ), and (1.5) follows from (17.66). We
still need to check (1.6), but we may now repeat the proof given near (17.51), except that
when we consider points of Ej \ Hy, we just use the simpler (16.60). A similar argument
applies to the final comment (17.59). We even added the constant A in advance, to take
care of the extra A in (17.76).

We are left with the proof of (1.7), which we only need to modify slightly. We keep the
same definition for the d; j in (17.52), but define the modulus of continuity n; 5 of (17.54)
as before, only with respect to the g;; they both tend to 0 for the same reasons as before.

Then suppose that 7, < Aeg, and let z € L; N E}, be given. If x € Ecyy, (16.60) says
that hi(x) = x € L; (as needed), so we may assume that x € Hy, and then we shall use
(17.62) and (17.63). Choose y € L; N E such that |y — z| < dj, and observe that

(17.77) dist(g¢ (), (AL;)) < Min <|§t(33) =gty [ge(x) — ¢(Ax)|)
< Min (Aeo, [Gi(z) — w(Az)|) < C7'5(2)
since g¢(y) and x both lie in L;, because [g:(x) — g:(v)| < njx < Aeo, and by (17.62).
This allows us to use (17.20), get that h(x) = I(g:(x), s¢(z)) € F, where F' is a face of
Y(AL;) that lies close to g:(z), and conclude as before. So Lemma 17.40 also holds under
the Lipschitz assumption.

Notice finally that our final estimates (17.58) and (17.59) still hold in the present

context. For (17.58), this follows from (17.66) and (17.64), or directly (17.60); for (17.59)
we use (17.71) and (17.64) if x € E, N H, and (17.60) and the fact that dist(h:(z), W) =

—~

dist(z, W) < 2dj, otherwise. {
17.c. A last minute modification of our deformation.

The family {h;} that we just constructed is almost perfect, but we would also like to
make the set where hy(x) # z a little smaller, so that it stays away from the boundary of

(17.78) Wi={zeU; f(z) #x}.
The point is that the sets Ej, could have a large piece in Wy very near 0Wy, while the
corresponding piece of E lies in 0W; and is not accounted for in some estimates; this could
be bad.

So we want to replace g; and h; by mappings that coincide with the identity very near

OWy. We want to continue the g;, and then the h;, with a deformation that only moves
points near OW;. First recall from (16.13) (or (16.28) and (16.29)) and (16.8) that

(17.79) g1(x) = g(x) = f(z) for x € R™\ V.

(17.80) g1(x) = g(x) = f(z) when dist(z, R" \ Wy) < 6;/2.
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As usual, we start with the rigid case. Let us define g; for 1 <t < 2. Let ¢, be (much)
smaller than d; /4, to be chosen below. First set

(17.81) gt(x) = gi(x) for 1 <t <2 when dist(z, R" \ Wy) > 2e,.
When ¢, < dist(z, R™ \ Wy) < 2e,, first define

_ dist(z, R™" \ Wy) — e, 2e, — dist(xz, R™ \ Wy)

g2(x) gi(x) + x
(17.82) © o
_ dist(z, R™ \ Wy) — &, flz) + 2e, — dist(x, R™ \ Wy) ..
Ex Ex
where the identity comes from (17.80); just set
(17.83) g2(x) =« when dist(z,R" \ Wy) < e,.

Notice that g, is continuous across the two obvious boundaries. Now set

(17.84) gi(x) = 2 —1)g1(z) + (t = 1)ga(z) = (2 — 1) f(z) + (¢ — 1)g2(x)

when dist(z, R™ \ W) < 2¢, (i.e., in the two last cases) and for 1 <t < 2.

Now we have a complete definition of the g¢, 0 < ¢t < 2. Again, g;(x) is a continuous
function of ¢t and z, by construction. We still define the h;, 1 < ¢t < 2, by the formulas
(17.37) and (17.38); observe that

(17.85) hi(z) = hq(z) for 1 <t < 2 when dist(z,R" \ Wy) > 2¢,,

by (17.81) and because s;(x), and then h(x) depend only on the values g;(x). We are
happier because

(17.86) ha(z) = g2(z) = x when dist(z, R" \ Wy) < e,
because sy(z) = 0 by (17.83) and (17.38). Now we want to check that
(17.87) Lemma 17.40 also holds for the hg, 0 < ¢ < 1.

Since hi(x), 1 <t < 2 is continuous in both variables and Lipschitz in z, (1.4) and
(1.8) still hold as before; (17.42) still holds for ¢t > 1, for the same reasons. Then

(17.88) hi(z) = gi1(z) = f(x) =x for 1 <t <2and x € R"\ Wy,

because f(z) = x by definition of Wy, go(x) = « by (17.83), hence ¢;(z) = x by (17.84),
and finally hi(z) = = by the extended (17.42).

For (1.5), it is enough to check that for k large, h(z) = x for x € Ey \ B(Xo, Ro +¢€o).
By (17.47), this is true for ¢ < 1. Also, f(z) = x (if k is large enough): this was one
of the intermediate steps in the proof of (17.47) (we proved that dist(z, W;) > 0 when
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dist(x, E) < dj; otherwise use (17.44) and its proof). Then x € R™\ Wy, and we can apply
(17.88). So (1.5) holds.
For (1.6) we also need to check that h:(x) does not escape too far when =z € E; N
B(Xo, Ro+¢0). We may restrict to ¢ > 1, since Lemma 17.40 itself takes care of 0 < ¢ < 1.
If dist(z, R™ \ Wy) < 2¢,,

nrsy 19 =o€ Max(lan(a) = ol loaa) = a]) = Max(| () — . [ (o) 2]
< 1£() — 2l < (1+ | Flup) dist(e, R\ Wy) < 21+ | Flip)e

by the various definitions (17.80)-(17.84), and because f(x) — x is a (1 + | f|1ip)-Lipschitz
mapping that vanishes on R™ \ Wy. Then |h(z) — x| < C(1 4+ |fl|iip)e« too, by (17.37),
(17.38), and (17.19). We get that hy(z) € B” if x € B(Xg, Ro + ¢9) (and if €, is small
enough compared to gy or dg; see Remark 11.17 to check that we do not cheat).

In the remaining case when dist(z,R™ \ Wy) > 2¢,, (17.81) says that g.(z) = g1(x)
for t > 1, so h(x) = h1(x) € B” because we use the same formula (17.37), and by (17.51).
This proves (1.6).

The verification of (1.7) is a little easier than before. The only case when we do not
already know that h.(z) € L, is when dist(z,R"™ \ Wy) < 2¢,, and then (17.89) implies
that

(17.90) dist (g4 (), L;) < |gr(@) — @] < 201+ |flup)es < <o

if €, is small enough compared to €g. Then (17.55) holds and we can conclude as before
(that is, g¢(x) is so close to L; that the magnetic projection sends it back to L;). This
completes our proof of (17.87).

Let us record the fact that

(17.91) hi(x) =x for x € Ugyy and 0 <t < 2;
for t < 1, this comes from (17.44), and the proof of (17.44), which uses (17.42), also gives
that g(x) = f(z) = x. Then (17.81)-(17.83) yield g:(x) = ¢1(x) = x for ¢t > 1, and hence

hi(z) =z by (17.37) and (17.38) (because s;(z) = 0).
Let us also say a few words about the analogue of W for the hy, 0 <t < 2. Set

(17.92) Wi, = {x € By ; he(x) # a:} for 0 <t <2 and Wk = U Wit Uhy (Wi t).

0<t<2
We claim that
(17.93) W, CC U for k large.

Because of (17.91), we know that the W} ; do not meet Ugy. Also, (17.58) and (17.59)
give the desired control on the Wy, 0 < ¢ < 1 (recall that 4A%(1 + |f|up)de < 00/2 =

dist(W,]R” \ U)/2 by (12.6) and (12.7)). So it is enough to consider ¢t > 1.
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Let © € Wy be given. If dist(z, R™ \ W¢) > 2¢,, (17.81) and the fact that we still
use (17.37) say that hi(z) = hi(x), so x € Wi and the desired control comes from
(17.58) and (17.59). Otherwise, observe that |g.(z) — x| < 2(1 + |f|iip)e« by (17.89),
and |hi(x) — g¢(z)| < Ceg because we use the formulas (17.37) and (17.38) and by the
proof of (17.39). On the other hand, dist(z,R™ \ U) > dp/2 because © € U \ Ueyt; SO
dist(h¢(z), R\ U) > dp/4 if €p and e, are small enough, and (17.93) follows.

1 Let us do a similar construction under the Lipschitz assumption. We still have
(17.79) (by (16.8), (16.28), and (16.29); also see eight lines below (16.30) for the definition
on U\ Ujnt) and (17.80) (for the same reason). As we did in (17.60), we first set

(17.94) hi(x) =2 when x € Ugyy and 1 <t < 2.

This way, it will be enough to define h; on the set EMNH;, where we shall find it convenient
to first define mappings g;, 1 <t < 2. We shall also check that the two formulas coincide
on Fr N Hy NUgy:t.

Recall that when x € Ej, N Hy, the he(z), 0 <t < 1, were defined by (17.64), in terms
of functions f(x), themselves defined by (17.62) and (17.63). In particular, we had first

observed that the g;(x), and in particular f(x) = g1 (x) were well defined (in terms of g;(z)
and f(x)). Here we proceed similarly. First we set

(17.95) g2(x) = g1(x) = g(x) when dist(z,R™\ W) > 2¢,

where the fact that g;(z) = g(z) comes from (16.29), or (when x € R"™\ V;") from the
definition above (16.30). When ¢, < dist(z,R" \ Wy) < 2¢, (and x € E, N Hy), set

dist(z, R™ \ W) — s 2e, — dist(xz, R™ \ Wy)

wreey T - file) + = v
17.96 : "y st(, B
_ dist(z, R 8\ Wy) — ey Flo)+ 26, — dlst(:,R \ Wy) (A,

where the identity comes from (17.80) through the usual change of variable. Finally set
(17.97) g2(z) = Y(Az) when dist(z,R"\ Wy) < ..

This defines the mapping g» on Ey N Hy, and now we define the g;(z), 1 <t <2, by

(17.98) Gul@) = (2= OF (@) + (¢ — DGale) = 2 — (@) + (¢ — Da(a).
We proceed as near (17.62), define

(17.99) s¢(x) = C'Min(Aeg, [g:(z) — Y(Az)|)

also for 1 < ¢ <2, and where C is still as in (17.20), and then

(17.100) hi(z) = (G(2), 5, (z)) forx € ExNHy and 1 <t <2,
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as in (17.63). As usual, we want to set

(17.101) gi(z) = XN G (x)) and hy(z) = A" (hy(x))

for x € By, N Hy and 1 <t < 2, but we shall first need to check that this makes sense.

When dist(z, R™ \ W¢) > 2e,, (17.95) implies that g2(z) € B(0,1), so gi(z) =
A1~ H(G;(z)) is well defined, and g;(z) = g(z). Since we used the same formula (17.63)
to define hy(x), we also get that h(z) = hy(z), so he(z) = A= L (hy(z)) is well defined,
and we also get that

(17.102) hi(x) = hi(z) for 1 <t <2

when x € Ej, N Hy is such that dist(x, R™ \ Wy) > 2e,.
So suppose now that dist(x, R™ \ Wy) < 2¢,. Let check that then

(17.103) e (z) — p(Az)| < CAN(L + | Fliip)en
for ¢ > 1. Notice that

19¢(x) — (M) < Max([g1(z) — ¥(Az)l, [g2(x) — P (Az)])

= Max(|f(z) — ¥(Az)], [92(z) — ¥ (Ax)])

=|f(z) — ¥(\z)| < M|f(2) — ]
S AN+ [fluip) dist(z, R™ \ W) < 2AA (1 + | fliip)es

(17.104)

by (17.98), (17.96) or (17.97), and the fact that f(x) — x is (1 + |f|ip)-Lipschitz and
vanishes on R™ \ Wy. Also,

(17.105) 5¢(z) < Clge(z) — ()]
by (17.99), so
(17.106) 7 (x) — Gu(z)| < Ci(z) < Clge(x) — Y (Ax)] < CAAL + | Fluip)ex

by (17.100), (17.19), and (17.104). Now (17.103) follows from (17.104) and (17.106).

We are now ready to prove that §;(z) and hy(z) lie in B(0,1) when z € E, N H.
We already treated the case when dist(z, R™\ W) < 2e, (see (17.102)); in the other case,
notice that dist(¢(Ax); R™\ B(0,1)) > A=A\ dist(x, R*\ U) > A=1\§y/3 by (17.61), hence
}L/t(l’) lie in B(0,1), by (17.103), and similarly for g;(x), by (17.104). So the definitions in
(17.101) make sense.

When = € Ex, N Hy N Ueyt, (17.101) yields the same result as (17.94), because (17.94)
says that h(x) = z, while hy(z) = g1(z) = f(x) = = by (17.44) and its proof by (17.42),
then go(x) = ¥(Azx) by (17.95)-(17.97), then g (x) = ¥ (Azx) by (17.98), and finally ¢;(z) = =
by (17.101).
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We continue with the verifications that follow the definition of the h;. We still have
(17.85), by (17.94) or (17.102). Instead of (17.86), let us just check that

(17.107) ho(z) = when z € Ej, and dist(x, R" \ Wy) < e,.

When = € Uy, ha(x) = x by (17.94). When = € Ey, N Hy, (17.97) yields ga2(z) = ¥ (A\x);
then (17.98) yields gi(x) = ¢ (A\z) for t = 2 (yes, there is a double definition of gs(z),
but the notation is acceptable because they give the same result), and finally s3(z) = 0
because gz (z) — 1(Az) = 0 and hence ho(z) = §2(z) = ¥(Az) by (17.100); (17.107) follows.

Our next verification is (17.87), the fact that Lemma 17.40 still holds for our extended
family. As before, only (1.5)-(1.7) need to be checked, because (1.4) and (1.8) can be seen
from the definition (this is why we made sure to have an overlap when we used two
definitions, on U,,; and on Ej N H;). For these verifications, we already know the desired
result for 0 < ¢ < 1, and we only need to worry when h:(z) # h¢(1) for some ¢ > 1. Hence
we may restrict to x € Ejy N Hy such that dist(z, R™ \ Wy) < 2e, (see (17.95) and (17.98),
and compare (17.99)-(17.101) to (17.62)-(17.64)).

For (1.5), we suppose in addition = € Ey \ B(Xo, Ro + £9) and we want to know that
hi(x) = x for t > 1. But we already know that ¢, (z) = x, so (17.96) yields g2(z) = ¥(Az),
hence g(z) = ¥(Az) by (17.98), 5:(x) = 0 by (17.99), and finally hi(z) = g:(z) = z for
t > 1, by (17.100) and (17.101).

For (1.6) we suppose that x € Ei N B(Xg, Ry + ¢9) and we want to prove that
hi(z) € B” for t > 1. Since we may assume that x € E, N Hy and dist(z, R™ \ Wy) < 2¢,
we can use (17.103), which by (17.101) implies that

(17.108) |hi(z) — 2| < CA?(1+ [ fliip)es,

from which we easily deduce that hi(x) € B”, because x € B(Xy, Ry + ¢¢) and if ¢, is
small enough.

We are left with (1.7). We are given € E;NL;, and we want to check that h:(z) € L;
for ¢ > 1. Again we can assume that x € E N H; and dist(z, R™ \ W) < 2¢,, so (17.103)
holds, and hence

(17.109) dist(ﬁt(x),zj) <|ge(z) — p(Ax)| < CAN(L 4 |fliip)ex < Aco

because x € L; and if ¢, is small enough compared to 9. Then 5,(z) = Clg:(z) — ¥ (Az)|
in (17.99), and since there is a face F of Ej such that dist(3;(z), F) < |§:(z) — v(A\z)| =
C~15:(z) (by (17.109)), we get that IL(g(x), 3:(z)) € F by (17.20) and our choice of C in
(17.99); Thus hy(z) = (G (x),5:(z)) € F C Ej by (17.100) and h.(z) € L;, as needed.
This completes our verification of (17.87) in the Lipschitz context.

We also want to generalize (17.91)-(17.93). In fact, (17.91) still holds, by our definition
(17.94), (17.92) is a definition, and the proof of (17.93) also goes the same way: we just
need to consider points x € Ej N H; such that dist(z,R™ \ Wy) < 2e,, hence for which
(17.108) holds. But dist(z, R™ \ U) > d¢/3 because x € Hy, so dist(h(x),R™ \ U) > 6o /4,
by (17.108), and (17.93) follows.
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18. The final accounting and the proof of Theorem 10.8 in the rigid case

In the previous sections, we managed to construct deformations of £ and the Ej; we
are especially interested in the last one, the family ho;, 0 < ¢ < 1. By (17.87), or the
corresponding verification in the Lipschitz case (see above (17.108), Lemma 17.40 holds
for the hoy, 0 <t < 1. Also, (17.93) says that the analogue of (2.4) for E}), holds for k large
enough. Thus we can apply Definition 2.3 and the quasiminimality of Fj; we get that for
k large,

(18.1) HYE, NW) < MHY(ho(E, 0N W)) + (R")%A,
where R” is as in (17.41) and
(18.2) W ={yeU;hy(z) #z}.

Most of this section will consist in estimating the two sides of (18.1) (and especially the
right-hand side). We shall need to cut U into small pieces, and we shall start with the
least important ones. We shall also try to treat the rigid and Lipschitz assumptions
simultaneously when this is possible, but some estimates for the Lipschitz cases will be
done in the next section.

Return to the definition of hs. First recall from (17.86) (or (17.107) in the Lipschitz
case) that ho(z) = x when x € Ej, is such that dist(z, R™ \ Wy) < e,; hence

(18.3) ExNW C {z € Wy dist(z,R" \ Wy) > e,} C Wy.
The exterior skin. In the rigid case and on the set
(18.4) A, ={zeW;e, <dist(z,R"\ Wy) < 2e,},

we defined go by (17.82), and then decided to use (17.37) as before (see below (17.84)).
That is

(18.5) ha(x) = T(ga(x), s2(2)),

where so(x) is still defined as in (17.38), and g2(x) is defined by (17.82). We shall need to
know that

(18.6) ho is C-Lipschitz on A,.

Since II is C-Lipschitz (by (17.21)), (15.8) and (17.38) say that it is enough to show that
g2 is 3(1 + | f|iip)-Lipschitz on A,. And indeed, for x,y € A,,
dist(zx, R”e\ Wy) — e f(z) + 2e, — dist(g:z:, R™\ Wy) .
dist(y, R™ \ W) — e, 2e, — dist(y, R" \ W
_ dist( \ Wy) ) — ( \ Wy) y
Ex Ex
2e, — dist(xz, R™ \ Wy)

lg2(z) — g2(y)| =

< dist(z, R™ \ Wy) — e,

187 < . £(2) ~ S)] + : -
N | dist(z, R™ \ Wf);k dist(y, R™ \ Wy)| F) -l
<le =31+ 17@) @1 +e ol T2 <3004 i) o~
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by (17.82), and because y € A, and f(y)—yis a (14| f|ip)-Lipschitz function that vanishes
on R™\ W;. So (18.6) holds.

T Under the Lipschitz assumption, we start with an analogue of (18.6). We first work
on Ey N Hy (where Hy is as in (17.61)) and check that

(18.8) g2 is C'(A, f)A-Lipschitz on A, N Ey, N H;.

On A.NE;NHy, we defined g by (17.96) (see (18.4)). Recall that we restricted to Ey N H;

because we were able to define f(x) = ¢ (Af(x)) for x € Ey N Hy, and compute with it.
Then we can follow the same proof of (18.7) and get (18.8).

Then we observe that hy was defined by (17.99) and (17.100), so it is also C(A, f)A-
Lipschitz on E, N H; N A,. Finally,

(18.9) ho is C(A, f)-Lipschitz on A, N E, N Hy,

because of (17.101).
Recall from (17.94) that hao(z) = = on Ueyt, and that Hy and U, cover R™ (even,
with an overlap), by (17.61) and (11.2). So (18.9) will be good enough. For instance,

HeY(hao(Er N AL)) < HE(ho(Er N A, N Hy)) + HEY(ho(Er N AL\ Hy))
(18.10) < CN, HHUE, N H N AL)) +HUE,NA,\ Hy)
< C(A, YHUE, N AL))

by (18.9) and the trivial estimate on Ugy¢. T

In the rigid case, we also have the conclusion of (18.10), directly by (18.6). Thus the
contribution of A, to the right-hand side of (18.1) is easily controlled in both cases. Next
return to the general case, and recall that

18.11 W is compactly contained in U,
f

by (17.78) or (11.19), (11.3), and (11.2). Since A, C Wy by (18.4), it is a compact subset
of U. Then we can apply (10.14) to A, and get that

(18.12) limsup HY(Ex N Ay)) < CyHYE N AL)).

k— 400

Finally

(18.13) limsupHY(ENA,) < limsupHd({x € E; 0 <dist(z,R" \ Wy) <2e,}) =0

€+—0 €+—0
(the monotone intersection of these sets is empty), so we deduce from (18.10)-(18.13) that
(18.14) H(ho(Exr N AL)) <+ CHYENAL)) <29

for k large, and provided that we choose ¢, small enough (depending on the usual quanti-
ties).
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Observe that by (18.3) and (18.4),
(18.15) ExNW\ A, C W, = {z € Wy;dist(z,R" \ Wy) > 2¢. },

and so we shall now concentrate on Ey N W,. On this set, and in the rigid case, (17.85),
(17.37), and (16.13) say that

(18.16) ho () = hi(z) = (g1 (), s1(x)) = (g(x), s1(x)),
where by (17.38) and (16.13)
(18.17) s1(xz) = C'Min(eg, |g1(x) — z|) = C' Min(ey, |g(z) — z]).

T In the Lipschitz case, either z € Ey N Uey and (17.94) says that ho(z) = z, or
else z € E;, N Hy and (since z € W,) (17.101) says that ha(z) = A=t~ (ha(x)), where
ho(x) = I(g2(x), S2(x)) by (17.100). Since (17.95) says that go(x) = g1(x) = g(z), the
definition (17.99) yields
(18.18)  $a(xz) = C'Min(Aeg, |g2(z) — ¥(Ax)]) = 51(x) = C Min(Aey, [g(x) — Y (A\x)]|)
and hence

(18.19) ha(z) = (Ga(), 52(x)) = (G (2), 51 (x)) = L(G(x), 51 (x))

for z € E;, N H; N W, (a good enough analogue of (18.16) and (18.17)). T
In both cases, (18.16)-(18.19), (16.10), and (17.21) yield

(18.20) he is C-Lipschitz on E, N W,

with a constant C' that depends on M and | f|;;;, in particular, and also on A in the Lipschitz
case.

The part outside the balls. Our next small set is
(18.21) wl=w.\VT,
where V;T is as in (16.7). Then (18.20) yields

(18.22) H(ho(E, N W))) < CHUE N W),

where we don’t mention the dependence on A and |f|;;,. Again Wi is a compact subset
of U, because W, C Wy by (18.15), and by (18.11). So (10.14) yields

(18.23) limsup H4(Ex N W) < CyHYENTW,))

k—+oco
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and hence
(18.24) N (ho(E, N WD) < 0+ CHYENTWL))

for k large. Of course it will be interesting to control H4(E N Wl)), and we shall do this
more easily after the next step.

The small rings. Next we want to control the contribution of the small rings.

Lemma 18.25. Set

(18.26) R' = | J [Bj\aB)], R*= J[B;\aB)], and R*= )  [Bjz\Bj,l,
JEJ1 Jj€J2 JjE€J3;x€Z(y; )

where Bj , and B; , are as in (15.19) and (15.17). Then
(18.27) HYEN[R' UR?UR?)) < C(f,7)(1 — a),
where C(f,v) depends on |f|ip, HYE NW;), and 7.

Indeed, we know from (13.24) and the definition (11.20) that
(18.28) HUYENRY) <C(1 — a)HYENW,).
Similarly, (14.20) says that

(18.29) HUENRY) < Y HUENB;\aB;) < C(1 - a)H(ENWy).
JjE€J2

We are thus left with the B;, \ B . First fix j € J3 and = € Z(y;), recall the definitions
(15.16)-(15.19), and cover (2 —a)E(z) \ aE(x) by balls Ay of radius (1 — a)r;. By (15.19)
and (15.20) (but we could also use the definition (15.16) of E(z)), the ellipsoid (2 —a)E(z)
is contained B(z, %771”); by the definition (15.16), it is also contained in the d-plane P,
and so we need less than Cy~%(1 — a)!=% balls Ay to cover (2 — a)E(z) \ aF(x). The
slightly larger balls 24y cover B, , \ B, ., so

j7x7

(18.30) HYENB;.\B;,) <Y HYEN2A).
k

Let us apply Proposition 4.1 (the local Ahlfors-regularity of E) to each 2Aj. This is
allowed, because 44, C Wy C U, since

) r‘)/ : n
(18 31) T > 456 ~ 4051 =70 1St(.17, \ Wf)
by (15.15), (12.7), (11.22), and because x € X9 C X3 (see (15.1)). We get that

J

HYENB;.\B;,) <Y HYEN24;)<CY (1—a)rf <C(1—a)y "]
(18.32) K P
< C(1 - a)yy~ I, HO(E N Bz, |f];;0r))
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by (18.30) and Proposition 4.1, applied a second time but in the other direction. The
reader should not worry about |f |fl; being too large: we know that |f|;;, > 1 because
f(2) = z near co. We claim that

(18.33) the balls B(z, |f|;;,;), j € J3 and & € Z(y;), are all disjoint.

For different j, this is because f(B(x, |f|l_2-;rj)) C B(f(x),r;) = Dj, and the D; are disjoint
by (15.13). For the same j and different x € Z(y,), this follows from (15.6) and the fact
that y; € Yy by (15.12), because we can safely assume that v < 1. Now

HYENR) <Y Y HUENB;.\Bj.)

J€J3 zEZ(y])

(18.34) <C—-ay UlflE, > Y. HUENB(x,|fl;0r)))

JE€J3 2E€Z(y;)
< C(—a)yy U fIE,HUE N W)

by (18.32), (18.33), and because B(z, ]f\l_i;rj) C Wy by (18.31). Lemma 18.25 follows. O
By (18.20),

(18.35) He (ho(Er N W, N[R' U R*U R?))) < CHYE, N [R' U R*U RY))).

But R'U R? U R? is compact because the sets J;, Jo, and J3 are finite, and it is contained
in U by construction of the B; and Bj ,, so (10.14) and (18.27) say that

(18.36) HYERN[R'UR?UR?))) < CHYEN[R'UR?*UR?))+n < C(f,7)(1—a)+Chn
for k large. Altogether,

(18.37) H(hy(Er "W, N [R*UR?UR?))) < C(f,7)(1 —a) + C1.

Return to the part outside the balls. We still want to estimate H¢(E N Wi)), but
we shall even consider the set £ N W?, where

(18.38) W2 =W, \ int(V;).

Let us first check that Wi C W2 Letz € Wi be given; then z is the limit of some
sequence {zy} in W} =W, \ V" (see (18.21)). By (18.15), dist(xs, R™\ W}) > 2¢, for all
k, so x € Wy. But also zy, lies out of V;*, so = ¢ int(V;"). Thus Wl c w2

Now let x € E N W? be given; we want to show that it lies in one of many small
sets. Observe that z lies in Xo = E N Wy, by (11.20). First assume that € B; for some
j € J1UJs. Notice that 132 B; is contained in int(V;") by (16.7), so it does not meet W2,
Hence x € Ej \ H'T“Bj C R' U R?, and the corresponding subset of £ N W?2 is small, by
(18.27).
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So we may assume that z € Xo \ U,c s, 07, Bj. The case when = ¢ Xy is controlled

by (14.24), which says that H¢ (X, \ [Xo U (UjeJluJQ B;)]) < n, so we may even assume
that = € Xo.

The case when = € Xg \ X11 is covered by (15.8) and (15.11), so we may assume that
z € Xy1. In addition, (15.14) allows us to assume that z € f~*( Ujes, Dj), and by (15.36)

x lies in B, , for some j € J3 and z € Z(y;). At the same time, B;fz is contained in V;*

by (16.7), so its interior does not meet W?2. The interior contains B; . (see the definitions

(15.17)-(15.19)), hence x € B;. \ B, , C R3 (compare with (18.26)). The corresponding
set is again controlled by (18.27), and altogether

(18.39) HUENW?) < C(f,7)(1 —a) + Cn.
Since Wi C W2, we get that
(18.40) H(ha(Ex N WD) <+ CHUENW.)) < C(f,7)(1 - a) + Cn

for k large, by (18.24) and (18.39).
We are left with the set V;". Recall from (16.15) that

(18.41) dist(z, X1) < 06 and dist(z,R™\ W) > §;/2 for z € V;'.

In addition, recall from (11.2) that §y = dist(W,]R” \ U); since X; C Xo C W by
(11.20), we get that dist(z,R™ \ U) > §, for z € X7, and hence

(18.42) dist(z, R"\ U) > % for x € VT,

because dg < dg/3 by (12.7). The definition (17.61) then immediately yields
(18.43) Vit C Hy.

Next we check that

(18.44) lg(x) — x| > %5 for z € Vit

Use (18.41) to find z € X; such that |z — x| < g, and notice that |f(z) — z| > d5 by the
definition (12.5). Then

g(x) — 2| > | f(z) — 2| — |g(z) — f(2)] = |f(x) — 2| = ||If — glloc
> | f(x) — @ — 4A2(1 + | fl1ip) S
(18.45) > f(2) = 2 = (1+ | flup)|z — 2] — 403 (1 + | Fluip) 6
> by — (1 AN)(1+ |l 2 2
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by (16.11) and (12.7). So (18.44) holds. We want to use this to show that for k large,
5 +
(18.46) |ho(x) — x| > 1 >0 forxe BNV,

so we want to estimate |ho(x) — g(z)|.

We start in the rigid case. If gg is chosen small enough (compared to d5), we get
that s1(z) = C'Min(eg, |g(z) — z|) = Cep (by (18.17) and (18.45)). In this case, (18.16)
simplifies to
(18.47) ha(z) = I(g(x), Ceg) for z € VT
and hence, by (17.19),

(18.48) |ho(x) — g(x)| < Cep;
in this case (18.46) follows from (18.44).

t Similarly, under the Lipschitz assumption, let = € Ej, N'V," be given. First observe
that © € Ey N Hy, by (18.43). In addition, x € W, if €, < 01/4 (compare the definition
(18.15) with (18.41)), so (18.18) and (18.19) hold.

Recall from the remark below (16.8) that since = € V|7, g(x) was defined in terms of
a function g, through the relation g(x) = 1¥(Ag(x)); thus (18.18) yields
(18.49) s1(x) = C' Min(Aey, [g(x) — (Ax)|) = C Min(Aey, [ (Ag(x)) — v (Ax)|) = CAeg

because |p(Ag(x)) — w(Ax)| > A" g(z) — x| > Aeg if g¢ is small enough, by (18.44), and
(18.19) simplifies to

(18.50) ha(x) = 1(g(x), 31 () = T(G(x), CAeo).
Since (17.101) says that
(18.51) ha(z) = A1~ (ha()),
we deduce from (18.50) and (17.19) that
(18:52) [ha(2) — g(@)] = N0 (a(@)) — A (G(@)] < A ATRa() - §()] < Ceo
where we we don’t care that C' depends on A. That is, (18.48) still holds under the
Lipschitz assumption, and (18.46) follows from (18.44) as before.
Return to the general case; (18.46) implies that
(18.53) E,.NVicw,
where W = {y € U; ho(x) # z} is as in (18.2).
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The balls B;, j € JiUJy. Next we estimate the contribution of Fj, NV]" to the right-hand
side of (18.1). We start with (J,c;, 1eB; C Ujes, Bj- Observe that the set R in (13.3)

and (13.23) is contained in the more recent R' of (18.26), so (13.23) and (11.20) say that

(18.54) Hd<g< U Bj\Rl)) < ’Hd<g< U B \R)) < Clo, [)NT'HYE N W),
JEJ1 jeJ1

In the rigid case, (18.47) and (17.21) imply that on V|, ha(x) is a C-Lipschitz function of
g(x); hence (18.54) yields

wi(r(Beovin (U Br))) s en'(o( U mivm))

(18.55) jEJ eI
< C(a, ANT'HUENW,).

t Under the Lipschitz assumption, (18.50) says that on Ej N V', ho(z) is a C-Lipschitz
function of g(x); hence, since g(x) = ¥ (Ag(z)) is a AA-Lipschitz function of g(z) and
ho(z) = A2~ (hy(x)) is a A~LA-Lipschitz function of ho(z) (see (18.51)), ha(z) is a
CA2%-Lipschitz function of g(z). Thus (18.55) still holds, only with a larger constant that
also depends on A. f.

We can treat |J;c;, +5%

B C Ujng Bj; almost the same way as for J;. Indeed,

Hig(Bn (U B\R))) < 30 Ha(B 0 By \ B)

jEJo JjEJ2
(18.56) < Y HUg(ExNaBy)) < CA(1+ Alflip)y Y 74
JEJ2 je

< C(A | fluip)y HUE N Wy) = CyHUENWy)

for k large enough, by (18.26), (14.15) or (14.37), the fact that g = g; on aB; (see (16.5)),
and (14.19). As for the case of Ji, ha(7) is a C-Lipschitz function of g(z) on Ex NV, (by
(18.47) or (18.50)), so

(kv (U B re))) < ont(o(Ben (U 1))

(18.57) jETs JEJs
< CyHUENW,).

The main contribution from the B;:w, j € J3 and x € Z(y;). Our last piece of V;"

is the union of the B;-rx, and more precisely, of the B; ,, since the rest is contained in R3

by (18.26). We start With the rigid case. Let us check that for j € J3, z € Z(y;), and
z € B,

7,
(18.58) ha(2) = g(2) € Q; N D;.
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Recall that @, is the common value of the d-planes A, (P;), x € Z(y;); see above (15.16).
Fix j € J3, ® € Z(y;), and z € B; . By (16.6) and (15.29), g(z) = g;.(2) = m;(f(2)),
where 7; denotes the orthogonal projection onto @;. By (15.22), f(z) € £D; C D;, so
g(z) € Q;ND; (recall that Q; goes through y; = f(x) = Az(x)). Now ha(z) = II(g(2), Ceo)
by (18.47), and we still need to check that ha(2) = g(2).

Denote by F(y;) the smallest face of our grid that contains y; = f(x), by W(y;)
the affine subspace spanned by F(y,), and by m the dimension of F(y;) and W(y;). By
Lemma 12.27, Q; C W(y;). Also recall from (15.1) and (11.26) that x € X9 C Xo = X 5,.
So (11.23)-(11.25) say that = € X 5,(m) and

(18.59) dist(yj,Sm_l) Z (52.
But

)
(18.60) l9(2) =l <75 <06 < 5

because g(z) € D; = B(yj,r;) and by (15.15) and (12.7). We know that g(z) € Q; C
W (y;) and of course y; € W (y;); hence the line segment [y;, g(2)] is contained in W (y;).
In addition, by (18.59) and (18.60), it does not meet OF (y;) C Sp—1, and since y € F(y;),
we get that g(z) € F(y;) too. We also deduce from (18.59) and (18.60) that

(18.61) dist(g(2), Sm—1) > 62—2

We return to hy(z) = I(g(2), Ceq), and use the definition of IT in (17.23) and (17.24).
Thus

(18.62) h2(2) = HO,SO © Hl,sl Tt 0 anl,sn_1 (g(z))v

where s; = (6C)7 (C E)<C,€0f0r0<j<n—1 For j > m, g(2) € F(y;) C S, and
so Il s, (g(2)) = g(2) by (17.2). For j < m, dist(g(z),S;) > %2 > 2s; by (18.61), and
now II; 5, (9(2)) = g(2) by the second part of (17 2). Altogether, ho(z) = g(z) and (18.58)
follows.

We may now sum over j and x:

wie(U U mam))<w(n(U U 5)

j€Js €2 (y;) €T3 € Z(y))

S Z Hd(Qj ﬂDj) = Wq Z ’I“;l

JE€J3 VESDE!

(18.63)

by (18.26), (18.58), and where w,y denotes the H?-measure of the unit ball in R%. We put
everything together and get that

(18.61) A (h2(Br 0W)) <O+ C(f)(1 =) + Clo, AN+ C(f)y +wa Y, 7f

JEJ3
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where we no longer write the dependence on H4(E N W), by (18.14), (18.15), (18.21) and
(18.40), (18.37) (which control everything except E, N V™ \ [R! U R? U R?]), and then
(18.55), (18.57), and (18.63) which take care of the rest of Ej NV;".

1 Let us say what we get easily under the Lipschitz assumption; additional information
will be needed, but we shall only take care of that in the next section. We first check that
for j € Js, x € Z(y;), and z € Ej N B .,

(18.65) ha(2) = §(2) € Q;,

where @j denotes, as above (15.48), the common image gw(Pw), x € Z(yj). By (16.6),
g9(z) = gj(2) = gj.(2); by the remark below (16.8), we can set g(z) = ¥(Ag(z)); by
(15.47), z € Ujint; by (15.53), g;(2) = ¥(Agj(2)), and hence g(z) = g;(z); by the line
below (15.50), g(z) = g;2(2 ) finally, by (15 48), g(z) = m;(f(z)), where 7; denotes the
orthogonal projection onto QJ So g(z) € Qj Also, ha(z) = T1(g(2), CAeo) by (18.50).
We still need to check that 7L2(z) = ¢(z). Denote by F(y;) the smallest face of our
(deformed) grid that contains y; = f(z); thus F = (\F (y;)) is a flat face of the usual
dyadic grid, the smallest one that contains yj ¢()\yj) Denote by W the affine subspace

spanned by F and by m the dimension of F and W. By Lemma 12.40, QJ C W. As
before, x € X9 C Xy = X3 5,, so (11.23)-(11.25) say that x € X 5,(m) and

(18.66) dist(y;, Sm_1) > 03
as in (18.59). Now

9(2) = y;l = AN 7H(G(2)) = AT (gy)| < ATTAg(2) — g
(18.67) SATIAIf(2) = 75 = AT AR (A (2) — v ()]
< N[(2) ] < A% < N2 < 2
because g(z) = %j(f( )) and Qj goes through y; = f(yj) = A,(z), then by (12.75) and
(15 47), then because f(z) € D; by (15.22), and by (15.15) and (12.7). Since g(2) € Q; C
W and yj € W, the line segment L = [97,9(z)] is contained in W. Since for £ € L,

ATITHE) — gl = NN = AT T ()] < ATTAIE - )
(18.68) e B 52

by the end of (18.67), (18.66) says that A1 ~(L) does not meet OF(y;) C S;—1. Since
y € F(y;), we get that g(z) € F(y;) too. We deduce from (18.66) and (18.67) that
dist(g(2), Sm—1) > %, as in (18.61), which implies that

AAT16,

(18.69) dist(5(2), Sm—1) 2~
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where we denote by S,,_1 = ¥(ASp_1) the (m — 1)-dimensional skeleton in the standard
dyadic grid. B

Recall that ho(z) = I1(g(2), CAeg) by (18.50); we may now use the definitions (17.23)
and (17.24) as above, and the same argument based on (17.2) yields that hy(z) = g(z), if
go is small enough compared to do; (18.65) follows.

We'll also need to know that for j € J3 and « € Z(y;), and k large enough

(18.70) ha(Ex N Bj,) C Dyn A~ 1(Q)).

Let z € ExNB; , be given. We already know from (18.65) that ha(2) = g(z) € )Flwfl(@j),
so we just need to check that ¢g(z) € D;.

By (15.22), f(z) € 142 D;. If k is large enough, then by (10.4) z € E"7, and (16.6)
and (15.60) say that |g(2) — f(2)] = |g;(2) — f(2)| < A%(1 + 3| f|up)er;; hence g(z) € D;
and (18.70) follows.

We may now follow the proof of (18.63) and (18.64); we get that for k large

(18.71) # (ho(Ben U B AR)) < 3 D0 AT TH@,)

Jj€J3 x€Z(y; ) JE€J3
and then

M (ho(Bx N W) < Cn+ C(f,7)(1 = a) + Cla, f)N~' + C(f)y
(18.72) + > 1D NATTHQ)).

JEJ3

We will only see in the next section how to use our assumption (10.7) or a weaker (but
more complicated) one to control the last sum. {

A lower bound for He(f(ENW)). We found in (18.64) or (18.72), a first upper bound
for the right-hand side of (18.1). The main term in (18.64) is wq ) ;. r4, and we want to

bound it by H¢(f(ENW)), plus small errors. The following lemma, which is our analogue
of Lemma 4.111 in [D2], will be useful.

Lemma 18.73. For each j € J3,
(18.74) Hd(Dj NfIENWy)) > (1 - C(f, ’y)s) wdrf,
where C(f,~) depends only on |f|;;, and .

We shall give a different proof here, so as not to have to construct a competitor again.
Instead we shall take advantage of the fact that we could choose extremely small balls D,
which we control by differentiability and density results. Our proof of Lemma 18.73 will
also work, with no modification, in the Lipschitz context.

Let j € Js be given and pick some = € Z(y;); by (15.12), y; € Y11 C Yy = f(Xo)
(see above (15.1)), so Z(y;) is not empty and we can choose z € Z(y;). Then x € Xg C
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X5 = UsesX5(s) (see (15.1) and (11.47)), so there is an index s such that the description
in (11.42)-(11.46) is valid. In particular, the graph I'y contains all the points z + F,(z),
z € P,NB(z,d3), where F, : P, — P is the C! function of (11.42). Let Q; = A, (P;) be as
above, denote by 7; the orthogonal projection onto @, and define G : P, N B(«, %”) — Q)
by

(18.75) G(z) =m;(f(z+ Fy(2))) for z € P, N B(x, 62—3)

Even under the Lipschitz assumption, we really want to use ); and the fact that f itself

(and not f) is well approximated by the affine function A, as in (11.46). Notice that for
z € P,NB(z,%) (as in (18.75)),

(18.76) |Fe(2)] < |[DFyl|oo|z — 2] < glz — 2
by (11.42), so z + F,(z) € I's N B(x, d3) by (11.43), and
(18.77) |f(z+ Fp(2)) — Ax(z + Fr(2))] <elz 4+ Fi(z) — x| < 2|z — 2

by (11.46). Then

G(=) = Au(2)] = Iy (£ + Fa(2))) = Au(2)] = 13 (F(= + Fu(2))) = 3 (Ao ()
< 1f(e+ Fal2)) - A ()
(1878) <1+ o)) = Au(e + Fa(2))] + [ Az + Fa(2)) — Au(2)

< 2elz — @l + | flupl Fr (2)] < (24 [flip)elz — =]

by (18.75), because 7;(A;(z)) = Az(2) (since z € P, and so A,(z) € @; by definition of
Q;), and by (18.77), (11.36), and (18.76).
We can apply this to z € 2E(z), where E(x) = P, N A;1(Q; N D;) is as in (15.16),
because
3
(18.79) 2F(z) C 2B, C B(z,3y"'r;) C B(x,d) C B(x, 10)

by (15.19), (15.20), (15.15), and (12.7). [Again all those things hold in the Lipschitz case;
see the remark below (15.39).] We get that

(18.80) 1G(2) — Ap(2)| < (2 + | flup)elz — 2| <3y~ 12+ | flup)er; for z € 2E(x).

Denote by 0 the boundary of 2E(z) in P,; because z € X9 C Xg and by the definitions
(14.21) and (14.5), A, is a bijective affine mapping from 0 to Q; N 9(2D;). Call 9’ the
unit sphere in the vector d-space parallel to @;. For each w € @Q; N D;; the mapping

Ay @ 2 — %, from 9 to &', is well-defined (because A,(z) does not take the value

w). Its degree is the same for all w € Q; N Dj, and it is equal to £1 because this is its
value at w = y;.
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For w e Q; N Dj; and z € 0, A,(2) € Q; NI(2D;), so |A,(z) — w| > r;, hence by
(18.80) the segment [A,(z),G(z)] does not contain w. Then

(1 —-t)A.(2) +tG(z) —w
|(1=1)Az(2) +tG(2) — w|

(18.81) (2,1) = awe(z) =

is defined and continuous on 0 x [0,1]. It defines a homotopy from a, to a1, among
mappings from 0 to 0’. Thus a, 1 has the same gegree as a,, namely, £1. Then a1
does not extend continuously as a mapping from 2E(z) to 0, and this forces G(z) — w to

vanish at some point z € 2E(z) (otherwise, use égi;:z‘ ). We just proved that

(18.82) G(2E(z)) contains Q; N D;.
Set A=1—3y"1(2+|fliip)ec. We want to estimate the size of
(1883) Y:QJ ﬂ)\D] \W][D]ﬂf(EﬂWf)]

Let w € Y be given, and use (18.82) to find z € 2F(x) such that G(z) = w. Set y =
z + F,(z) and observe that

4
(18.84) ly—z| =2+ Fp(z) —a| < |z —z|+ ez —z| <4y~ lr; < 53
by (18.76) and (18.79), so y € I's by (11.43). Notice that
(18.85) w=G(2) = m;(f(z + Fr(2)) = m;(f(y))

by (18.75) and other definitions.
If y € EN Wy, we observe that

jw = f) = m;(f(y) — fy)] < dist(f(y), Q) < [f(y) — Ax(2)]

(18.86) ~1
= 1f(z+ Fe(2)) = Aa(2)| < 2+ |flip)elz — 2] < 3v7 2 + | fluip)er;

by (18.85), because A,(z) € Q,, by the last lines of (18.78) and the end of (18.80). So
f(y) € D; because w € ADj, and w = 7;(f(y)) lies in 7;[D; N f(ENW/;)], a contradiction
with the definition of Y.

Soy ¢ ENWy. But

(18.87) y € B(z,4y"'r;) C B(z,8) C B(x,61/10) C Wy,

by (18.84), (15.15), (12.7), (11.22), and the fact that z € X9 C X;. Soy ¢ E. In addition,
y € ['s (see below (18.84)). Set p = 4y~ 'r;; we just proved that y € B(z, p)NI's\ E; hence
w=1;(f()) € 7;(f(B(z,p) (1 Ts \ E)) and now

(18.88) HAUY) < HY(mi (f(B(z,p) T\ E))) < |fliipH(B(z, p) N T\ E).
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We want to apply (11.44) to B(z, p); this is allowed because p = 4y~ !r; < §g < 63/10
(again by (15.15) and (12.7)), and (11.44) yields

(18.89) HI(B(w, p) N[0y UE]\ Xy(s)) < ep” < C(y)er

Now I's \ E C T UE\ X3(s), just because X5(s) C Xo C F, so (18.88) yields

(18.90) HUY) < CO)IfIEpers.
Finally,
(18.91) HAUD; N F(ENWy) = HY(mi[D; 0 f(EN Wf)]) > HUQ; NAD;) — HI(Y)
= Mwar§ —HUY) > war] — C(f,y)er]
by (18.83), (18.90), and because A = 1 — 3y~ (2 + | f|1ip)e. Lemma 18.73 follows. O

The final estimate. We are now ready to conclude, at least under the rigid assumption.
We sum (18.74) over j € J3 and get that

derfg (1-C Z’Hd SN f(ENWy))
(18.92)  ics jeds

< (1= C(fim)e) HUS(ENW)) < HU(ENW) +C'(f,7)e

because the D; are disjoint (see (15.13)), and if € is small enough. We compare this with
(18.64) and get that

(18.93) HY(ho(Exy N W)) < HYF(ENTS)) + &,
with
(18.94) ESOnN+C(f,7) 1 —a)+Cla, N+ C(f)y + C'(f,7)e.

Recall from (18.46) that |ha(z) — x| > %5 for x € E,, NV, Since {E}} converges to E and
ho is continuous, we also get that

)
(18.95) \ho(z) — 2| > 25 for z € ENint(V;}),

and hence E Nint(V;") C W (recall that W = {y € U;hs(z) # z} by (18.2)). Hence
E\W C E\ int(V;"), and

HUYENW;) —HUENW) < HYENW; \W) <HYUENW;\ int(V,))
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by (18.38) and (18.39). At the same time, W is open (see the definition above), and
Theorem 10.97 (our main lower semicontinuity result) says that for k large,

(18.97) HYENW) <HYE, W) +1.
By (18.96), (18.97), and then (18.1) and (18.93),

HUYENW;) <HYENW) +C(f,7)(1 —a) + Cn
<HUE,NW)+C(f,7)(1 —a)+Cn
(18.98) < MH ha(E, N W)) + h(R")? + C(f,7)(1 — a) + Cn
< MHYF(ENWy)) 4+ ME + h(R")+ C(f,7)(1 —a) + Cn
< MHYF(ENWy)) +E + h(R")?

for k large, where &’ is given by the same sort of formula (18.94) as £, and where
(18.99) R" = Ry + 4A*(1 + | f1ip)d6 + CAeg

is still as in (17.41). Now we choose our various small constants v, a, a, N, 1, €, dg, and &g
in this order (as announced in Remark 11.17), so as to make £ and (R"”)? — R¢ arbitrarily
small. Since (18.98) holds for all these choices, we get that

(18.100) HUYENW) < MHY(f(ENWy)) + hRE.

This is the same as (2.5) in the circumstances that were described at the beginning of
Section 11 : compare E'N Wy in (11.19) with W; in Definition 2.3, and recall that f = ¢,
(see above (11.18)). So we completed the verification of (10.9), and therefore proved
Theorem 10.8 in the special case when we have the rigid assumption. 0

19. Proof of Theorem 10.8, and variants, under the Lipschitz assumption.

In this section we work under the Lipschitz assumption, and try to prove (18.100)
(almost) as in the previous section.

The only remaining difficulty is that we have (18.72) instead of (18.64), and the
difference between the two right-hand sides is

(19.1) A=) HUD;NAPHQ;) —wa Y _ T

Jj€Js3 JEJ3

If we follow the proof above and use (18.72) instead of (18.64), we do not need to modify
Lemma 18.73 (which is still valid in the Lipschitz context), but we need to add A to £ in
(18.93) and (18.94), and then MA to £ in (18.98). So, if we could prove that A can be
made arbitrarily small (with a choice of constants as above), then we could quietly follow
the same proof above and get the conclusion. Before we do this, we need to modify a little
our definition of our final mapping hs in the B, ,, z € Z(y;), for some j € J3.
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The indices j € J, for which y; € L; only if it lies in its interior. We define the set
Js C J3 to be the set of indices j € J3 such that, for all i € [0, jyqee] such that y; € L;, y;
actually lies in the n-dimensional interior of L; (that is, for the ambient topology of R™).
For these j, we were a little too prudent with the definition of g; and hg, because the
boundary condition (1.7) is much easier to fulfill in these cases. The truth is that we should
have defined the corresponding g; differently, but rather than modifying the construction
above, we shall fix it by continuing our deformation {h;}, 0 <t < 2, a little further. Set

(19.2) hi(z) = ha(z) when2 <t <3and ze€ U\ U U B ..
jeJsz€Z(y;)

In the remaining sets B; ,, j € Jy and z € Z (y;), we can proceed independently (because

these sets are disjoint by (15.27) and (15.20)). Fix j € Jy, denote by @; the common value
of the A,(Py), * € Z(y;), as we did before, and define the hy, 2 <t < 3, on B, by

(19.3) he(2) = (1 = Bj.2(2, 1)) h2(2) + Bj (2, t)7; (ha(2)),
where 7; denotes the orthogonal projection on @; and

100(1 + | f1ip)
(1—a)r;

(19.4) B;.4(2,t) = Min <1, (t — 2) dist(z, 8ij$)>.

Notice that S3;.(z,t) = 0, and hence h¢(z) = ha(z), when ¢ = 2 and when z € dB; , so
we glue things in a continuous way. The final mapping hg is even Lipschitz, because it
is Lipschitz on each B, (there is a finite collection of them), on the rest of R™, and is
continuous across the boundary.

We need to check that the hs;, 0 < t < 3 still satisfy the conditions (1.4)-(1.8), relative
to the set Fj, as in Lemma 17.40 and (17.87) (proved below (17.107)).

The continuity condition (1.4) follows from its counterpart for the ho;, and the Lip-

schitz property (1.8) was just discussed. For the other properties (1.5)-(1.7), and the

constraint on the W—set, we just need to worry about the only places where we change
something, i.e., the sets B;m

Solet j € Jy, x € Z(y;), and z € B N B; , be given, and let us derive some general
information on z and the h:(z). We know that =z € Xg, so ¢1(x) # = by (11.19) and
(11.20), which implies that z € B (by (1.5)) and that x and f(z) both lie in W (by the

definition (2.2)). Since in addition
(19.5) |z — x| < 27_17’j < g
by (15.20) and, say, (15.24), the first part implies that z € B(Xy, Ro + d¢) C B(Xo, R")
(see (11.1) and (17.41)). Then (1.5) holds.
Let us check that
(19.6) ha(2) = g(z) for z € ExN By .
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By (18.65), ha(z) = g(z). In addition, z € V;* (see the definition (16.7) and (15.20)),
hence z € Hy by (18.43). By (17.101), we can compute hy(z) and g(z) in terms of hs(2)
and g(z); (19.6) follows.

Moreover, we get that for z € Ep N B;, and t > 2,

(19.7) |he(2) =yl < Max(|ha(2) —y;l, Imj (ha(2)) = y51) = [ha(2) —y;] = [g(2) —y;| < A6

by (19.3), because y; = f(z) = A,(x) € Q; by definitions, and by (18.67) (which holds
because z € By, N B; ).

Return to our verifications. For (1.6), we need to check that h:(z) € B(Xo, R"”) when
z € Ey N B(Xo, R"), and since we already know about h;, 0 < t < 2, we can restrict to
z € B N B, , as above. The desired estimate follows from (19.7) because y; = f(z) € B,
by (1.5) for f = ¢1 and because x € X9 C Ey = ENW; C B (see (15.1), (11.20), and
(11.19)).

For the verification of (2.4), recall that « and y; = f(x) both lie in (the old set) w,

and so z and the new h;(2) lie within A2d4 of /W, by (19.7) in particular. This still puts
them in a compact subset of U, by (12.6) and (12.7).

We are left with (1.7) to check. That is, we fix 0 < i < jnaz, and we want to check
that for k large, he(z) € L; for 0 < ¢t < 3 as soon as z € Ey N L;. We know this when
0 <t <2 by (1.7) for the ho; (see (17 87)); so we may assume that ¢t > 2. We also know
this when 2 € Ex \ U;c, U:vGZ(y] o because (19.2) says that hi(2) = ha(2) € Li. So
we may fix j € Ju, x € Z(y;), and it is enough to check that
(19.8) hi(z) € L; for z € By, N L; NB;,and 2<t<3.

s L

We first assume that y; ¢ L;. Let us check that for k large,
(19.9) ExnLiNnB;, =0

for z € Z(y;); (19.8) will follow trivially. Let z € B, be given; we proved below (18.68)
that g(z) € F(y;), where F(y;) is the smallest face "of our grid that contains y;. In fact,
since g(z) is also far from the boundary of F(y;) (by (18.69)), we see that g(z) lies in I,
the interior of F'(y;). Now suppose that z € L; for some i. Since g(z) = ha(z), (1.7) for
ho says that g(z) € L;. Then some face F' of L; meets I, and since I is the interior of a
face, ' contains I. But y; € I, by definition of the smallest face F'(y;), so y; € L;. Our
current assumption says that this is impossible, so z ¢ L;, and (19.9) follows.

We are left with the case when y; € L;. Since j € Jy4, this implies that y; is an interior
point of L;, and we want to deduce from this that

(19.10) B(y;,A%8) C L.

Since by (19.7) |ht(2) — y;| < A%86 for z € Ej N B, and t > 2, (19.8) will follow at once.

Denote by §(L;) the (true n-dimensional) boundary of L;, and set D = dist(y;, 6(L;));
we know that D > 0, and we want to show that D > A2?§s. Take £ € 6(L;) such that
|£ —y;| = D, and let F' denote the smallest face of our grid that contains §. Since §(L;) is
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composed of full faces too, F' is contained in §(L;). Hence y; ¢ F', and F does not contain
the smallest face F'(y;) that contains y;. First assume that F'(y;) is not reduced to {y,};
then (3.8) (and a conjugation by 1 that makes us lose a constant A?) yields

(19.11) D = |¢ — y;| > dist(y;, F) > A~ dist(y;, IF (y;))-

In addition, z € Z(y;), so (15.1) says that x € X9 C Xo = X 5,. By (11.23)-(11.25), this
means that € X, 5,(m), where m is the dimension F'(y;), and hence dist(y;, Sp—1) > 02.
Then D > A=25, > 1086 by (12.7). The sad truth is that this is not enough, but this is
easy to fix: we just need to require that dg < 2A~%d, in (addition to) (12.7), or replace
A? with A% in (12.7), and then we get the desired estimate which implies (19.10). In the
remaining case when F(y;) = {y;}, D is at least equal to the smallest distance between a
vertex of the grid (namely y;) and a face that does not contain it. This distance is at least
A"1A71rg; hence D > A~tA~1rg > 2A266, if we put an extra power of A in (12.7).

This completes our verification of (1.7) for our extended family of h;, and also the
verification of (1.4)-(1.8). We also checked (2.4) for the extended family {h;} along the
way, so we have the analogue of (18.1) for hs.

Now we want to see why hg is possibly better than hy. We do not need to modify any
of our estimates, except for the ones relative to the B; , x € Z(y;) and j € Jy. Fix such
j and x, and let us first check that for k large,

Jrx?

(19.12) hs is CA?(1 + | f|up)-Lipschitz on Ej N B ..

We already know that ha(2) = g(2) = g;(2) on ExN B, (also see (16.6)). But (15.62) says
that g; is CA?(1 + | f|sp)-Lipschitz on E7 N B}

4> hence also on By N B, (just because

Ey N B;, C E*" for k large). But we need to worry a little about the rapid fluctuations
of B +(2,3). As usual, pick z,w € Ej N B}, and write

, T

hs(z) — hg(w) = (1 = Bju(2,3))ha(2) + Bjx(z,3)7;(ha(2))
= (1= Bju(w,3))ha(w) — Bjz(w,3)m;(ha(w))
(19.13) = —[Bj,2(2,3) — Bjz(w,3)] [ha(z) — m;(ha(2))]
+ (1 = Bju(w, 3))[ha(2) — ha(w)] + B (w, 3)[m;(h2(2)) — mj(ha(w))]

so that

[h3(2) = ha(w)] < |Bj.0(2,3) = Bjw(w, 3)| |ha(2) — m;(ha(2)| + CA* (1 + [ fluip) |2 — w]

100A(1 + | fliip) 2 — wl| |ho(2) — 7 (ha(2))] + CAZ(L + | flip)|2z — w]

(19.14) S

because hy is CA?(1 + | f|yip)-Lipschitz and by (19.4). Then we want to estimate |ho(z) —
mj(h2(2))], i.e., prove that ha(2) is close to ;. Recall from (18.65) and the line below that

(19.15) ha(2) € Q5 = Ay(Py);
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also, we checked below (19.6) that z € E, N Hy, so we may apply (17.101) and we get that

(19.16) ha(2) = 1(Aha(2)).

Then

[ha(2) = f(@)] = [¥(Ah2(2)) — b (Af(@)] < AA[ha(2) = f(2)]

(19.17)
= Mha(2) — y;| < AAry

because hq(z) € D; by (18.70).

Use (19.15) to write hy(z) = A4 (€), with € € P,; we want to evaluate |€ — z|. Recall
from just above (19.3) that QQ; = A, (P,). The discussion near (15.41) says that that since
y; € Yio (by (15.12)), the restriction of ¢ to @Q; is differentiable at Ay;, with a derivative
D, such that

(19.18) ADy (DA, (v)) = DA, (v) forve P,

where P, denotes the vector space parallel to P,. Since A, is affine and A, (z) = f(z) (see
(12.38)), we get that

|ho(2) — f(@)] = |A:(€) — Au(@)] = [DAL(E — @) = [ADy (DAL (€ — 2)))|

(19.19)
> A THDAL (€ — 2)| > M Ty — 2|

because D, just like v itself, is A-biLipschitz, and because DA, has no contracting
direction since z € Z(y;) C X9 C Xg C Xg \ X7; see (15.1), (14.21), and (14.5). We
compare (19.19) to (19.17) and get that

(19.20) € — 2] < A%ty < A% < O
by (15.15) and (12.7). Now

|ha(z) — mj(ha(2))] = dist(ha(2), Q;) < |ha(2) — Ax(§)|
< |ha(2) = O]+ [f(§) — Az(€)]

because A,(§) € Q; (since { € P, and Q; = A,(P;)). By (19.20), we can apply (11.46)
and get that

(19.22) 1£(§) = Az (§)] < el§ — .

Also, (19.20) allows us to apply (12.52), which says that f(§) = ¥(Af(£)) is well defined,

and also that |f(§) — Az (&)| < Ael¢ — z|. Then

(19.21)

ha(2) — FE)] = N (ha(2)) = A7 (F(€)] < A AJha(2) — F(€)]

(19.23) N _
= ATMAJAL(6) — F(O)] < Ael€ -z
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by (19.16), because ho(z) = A, (€) by definition of £, and by (12.52). Altogether,
(19.24) [ha(2) = mj(ha(2))] < (1+ Aelg — o] < (A% + AY)ylery

by (19.21), (19.22), (19.23), and (19.20).
For the record, notice that (19.3) and (19.24) imply that for z € Ex N B

]733,
(1925) |h3(2) — h2(2)| S |h2(2) — 7T]<h2(2))| S €(A4 + A2)’7717‘j S C€A456 S 55/10

by (15.15), (12.7), and if € is small enough (depending on A). We used ¢ here just so that
we don’t have to put an extra power of A in the definition of dg, but we could have done
that too. Since we simply have that h3(z) = ha(2z) when z lies in no B}, , we get that for
k large,

(19.26) |hs(2) — ha(2)| < 05/10 for z € Fk.
Let us return to our z and w, plug (19.24) into (19.14), and get that

100A (L + | fliip)

hs(2) = )] < =3 — 3

|2 — wl [h2(2) = mj(ha(2))| + CA* (1 + | fluip) |2 — w]

(19.27) < C(A* + Ay ler, —Ag t+ LJ; Lfip)
o J

< CA*(1+ [ fliip) |z — wl

|z —w| + CA%(1 + | fliip) |z — w]

if € is small enough, depending on A, v, and a. This proves (19.13).

Next we take care of little rims. Set

' L _ (1 —a)r;
. g . 5 ] <
(19.28) R(j,x) {Z € Bj,; dist(z,0B;,) < 100(1 + |f|up)}

for j € Jy and z € Z(y;). By (15.17), (15.20), and the proof of (18.32), we get that

(19.29) HYENR(j,2)) < C(f)(1 —a)y' e < O(f,7)(1 — a)H (E N B(x, | flhr5))-

] —

The total contribution of these annuli to the right-hand side of (18.1) is still small, because
(as happened near (18.34))

> HUs(ErNR(j2) <C Y Y HUENR(j,x))

Jje€JazeZ(y;) Jj€Jaz€Z(y;)

<n+CY > HUENR(,x))

J€J1xz€Z(y; )

(19.30) <n+C(LNL—a)d Y HUENB(,|fliprs))

JE€EJ1 xz€Z(y;)
<n+C(f,7)A—a)H(ENW;) =n+ C(f,7)(1 - a)
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y (19.12), for k large and by (10.14), by (19.29), and because the B(z, |f|l_z';rj) are disjoint
y (18.33) and contained in Wy by (18.31).

We are left with B;  \ R(j,z). Observe that §;.(z,3) =1 for z € B, \ R(j, ), by
(19.4), so (19.3) and the first part of (18.70) yield

b
b

(19.31) h3(2) = m;j(ha(2)) € Q; N Dj for z € By N B, \ R(j, ),

at least for £ large. Again all the sets Q; N D; = A,(P,) N D;, € Z(y;), coincide, and
now

wu(mn U U o)

JE€EJs x€Z(y;)

(19.32) <N Y HUhs(ELNR(G2) + Y HYQ;N D)
j€JaxzeZ(y;) JEJy
<wg Y ri+n+C(fLy)(1—a).
JEJ4

Thus the contribution of all the sets B; , where we modified hs is just as good as in the

rigid case, and we shall only need to Worry about the contribution of the indices j € J3\ Jy.

We get rid of some small set in Y;;. Let us introduce a small bad set Zy C Yi;1.
For each y € U, denote by F(y) the smallest face of our grid on U that contains y. Also

set ¥ = ¥(Ay) and call F(y) = ¥ (AF(y)) the smallest face of the usual dyadic grid that
contains y. Finally call W (y) the smallest affine space that contains F'(y). Then set

(19.33) Ar(y) = " sup {Hd(B(y, r)N )\_115_1(@)) ; @ is a d-dimensional
) affine subspace of W(y) that contains g};

when the dimension of W(y) is less than d, just set A.(y) = 0. For 0 < i < jmae, Set
L: = L; \ int(L;), where int(L;) is really the interior of L;, taken in R™ and regardless of
the dimension of the faces that compose it, and then set

(19.34) L= |J Liad L'= |J L.

0<i<jmac 0<i<jmaa
Still denote by wy the d-dimensional Hausdorff measure of the unit ball in R%. Set

(19.35) Z={yeL;limsup A, (y) > wq}.
r—0

We chose this definition because it will be easy to use, and we chose to use the condition
(10.7) because it is not too complicated, and because it implies that

(19.36) HYZ)=0.



Let us check this. Let us rather use the translation of (10.7) that is given below (10.7)
itself. This condition gives an exceptional set Zy such that H%(Zy) = 0 and, if y € U \ Z
liesin L} = L;\int(L;) and is such that dimension(F'(y)) > d, then we can find t = t(y) > 0
such that the restriction of ¥ to AF(y) N B(\y,t) is CL.

We want to show that H%almost every y € Z lies in Zy. Let y € Z be given; then
y € L, for some i, there is a face of L; that contains y, and this face contains F(y) by
definition of F'(y) as a smallest face.

If dimension(F(y)) > d and y € Z \ Zy, we can find ¢t = ¢(y) > 0 such that the
restriction of ¢ to AF(y) N B(\y,t) is C!. Since 9 is Lipschitz, this also means that the
restriction of 1)~! to the face F(y) = (AF(y)) is C* in a neighborhood of § = ¥(\y).
Recall that y is an interior point of F(y), so F(y) coincides with W (y) (the affine affine
space spanned by F(y)) near j.

With the notation above, if @ is a d-dimensional affine subspace of W(y), the re-

striction of ¢»~! to @ is also C' near y, with uniform estimates with respect to Q. Then
A~1p~1(Q) is a O surface near y, and lim, ,or ¢H(B(y,r) N A"~ 1(Q)) = wg, uni-
formly in Q. Thus limsup, _, A, (y) < wg, which contradicts the fact that y € Z and takes
care of the case when dimension(F(y)) > d.

If dimension(F(y)) < d, then by definition A,(y) = 0 for » > 0 small, and y ¢ Z (a
contradiction).

If dimension(F(y)) = d, there is only one possible choice of @ in the definition (19.33)

of A,(y), namely W (y), and

Ar(y) = 1Y By, r) NN TH W () = 1 HY By, r) N AT H(E(y)

(19.37)
=r 1Y B(y,r) N F(y))

for r small, because y is an interior point of F'(y) (and hence ¥ is an interior point of
F (y)). But for each face F of dimension d and H?-almost-every interior point y € F,
lim, o7 “H(B(y,r) N F(y)) = wq (because F is rectifiable), so H(int(F) N Z) = 0. This
takes care of the case when dimension(F(y)) = d. This was our last case, and (19.36)
follows.

We now assume (19.36) (and the other assumptions of Theorem 10.8, except perhaps
(10.7)) and show that E is quasiminimal as in (10.9). We proceed as in the last sections,
with only two modifications. The first one occurs in Step 4 (in Section 15), and we shall
explain it now. The second one is the one that was described earlier in this section, and
concerns the indices j € Jy.

So we do not change anything up to Section 15; we also define Yy, Y7o, and Y7, as
before, but before we cover Y7; by disks D; (near (15.12)), we remove some small pieces.

First set Y12 = Yll\Z. Then Hd(Yll \Ylg) =0 by (1936) Set X12 = X11 mf_l(Y12);
the same proof as for (15.11) (or, more precisely, for (4.77) in [D2]) yields that

(19.38) HYX 11\ X12) = 0.
We shall remember that by (19.35),
(19.39) limsup A, (y) < wg when y € Y12 N L'

r—0
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Let 09 > 0 be small, set

(19.40) Vi3 =Yi3(do) = [Via \ L] U{y € Via N L'; A,(y) < wg+e for 0 <7 < dy}
and then

(19.41) Xi3 = X13(09) = X120 f 71 (Y13).

Notice that Yis is, by (19.39), the monotone union of the sets Yi3(dg), so Xio is the
monotone union of the sets X135(dg). Thus we can choose dg > 0 so small that

(19.42) HYUX 19\ X13) < 1.

We choose d9 > 0 like this, and then cover Yi3 as we did before (for Y1) by balls D; =
B(yj,rj), j € J3, so that

(19.43) y; € Y13 and 0 < r; < Min(ds,dg) for j € Js,
(19.44) the D;, j € Js, are disjoint
and
(19.45) HY( X3\ £ U D;)) <.
JEJ3

Then we continue the construction as before, all the way through Section 18, and arrive
to the second modification. We define Jy C J3 as we did near (19.2) and we continue the
deformation all the way to hs, just as was explained at the beginning of this section.

We follow the proof of (18.71), but restrict to the indices j € J3 \ Jy; we get that

(19.46)  H° <h3(Ek“ U U 5 \RS>>§ Y HADNATTHQ,)

JE€JI3\Js zE€Z(y;) JjEI3\Ja

(recall that hs = ho on these sets). Now let j € J3 \ Jy be given. By definition of Jy,
we can find ¢ € [0, jymqe] such that y; € L;, without lying on the interior of L;. That is,

y; € L, C L (see (19.34) and the definition above it). Notice that y; € Yi3 because of our
first modification. Since y; € L', (19.40) implies that

(19.47) A (yj) Swqg+e for 0 <r <y
But D; = B(y,,r;) and r; < dg by (19.43), so
(19.48) r M HYD; N AT TN Q) Swate

222



by (19.47), the definition (19.33), and because @j contains y; and is a d-dimensional

subspace of the affine space spanned by F (y;) (see the discussion below (18.65)). We
replace in (19.46) and get that

(19.49) Hd<h3(Ekﬂ U U B’L \R3>> Z (wd+5)7’;i

J€J3\J4 mGZ(yJ ]€J3\J4

Then we add this to (19.32) and get that

(1950)  H(hs(Ben | U B \RY)) <D (wa+e)rd+n+C(f7)(1-a)

Jj€Js x€Z(y;) JEJ3

because B+ \ R® C Bj, (see (18.26)). The last part is an error term smaller than & in
(18.93) and (18 94). We also have the small term

(19.51) e 1< C(fe > HUENB(x,|fl5ri) < C(f) e HUE N Wy)

Jj€Js3 JjEJ3

by Proposition 4.1 (which we can apply because of (18.31) and Wy C U, as for the proof
of (18.32)), and then the disjointness (18.33) and the fact that B(z, |f|l_i;Tj) C Wy by
(18.31). This term too is dominated by &, so (19.50) is essentially as good as (18.63) (the
difference is controlled by &).

We may now continue the proof as before. There is a last place where we need to be
careful, when we use (18.95) to prove set inclusions in (18.97). Previously the sets W and
W? were defined in terms of ho, and now we need the same inclusions with the sets Ws
and W2 defined in terms of hz. Fortunately, (19.26) says that |h3(z) — ha(2)| < 85/10 for
z € Ey; this stays true for z € E (because hg — ho is continuous and E is the limit of { Ex});
then (18.95) also holds for h3, with the smaller constant d5/10, and we can complete the
argument as before (i.e., E\ W3 C E \ int(V;"), and (18.96)-(18.100) are valid).

This finally completes our proof of Theorem 10.8 in the remaining Lipschitz case. [

Remark 19.52. Our proof shows that in Theorem 10.8 (and under the Lipschitz assump-
tion), we can replace the assumption (10.7) with the slightly weaker (but more complicated)
(19.36).

It is a little sad that the author was not able to get rid of (10.7) or (19.36) altogether.
We seem to be close to that, but not quite close enough. It would seem natural to try the
following modification of what we do for d-dimensional faces. Notice that we just need
to apply the definition of A,(y) at points y;, j € Js, and to the specific d-dimensional
set ij = Zx(Pm), x € Z(y;). Modulo some additional cutting, we could restrict to a
subset of Yi; where (\-) coincides with a C' mapping. Then we are supposed to go
from y; to y; = ¥(A\y;), get @j, which is also the image by D1 (A-) of the tangent place
to Y11 of f(E) at y;, and show that it has density 1. For instance, we would know this
for f( ) = Y(Af(E)), which is tangent to éj at y;. But could it be that by bad luck,

Ly~ (QJ) has more little wrinkles than f(F), even though they are tangent.
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One option to try to overcome this could be to try to project points back from
A p71(Q;) to f(E), or a flatter set, but there are difficulties because we need to do
this in a Lipschitz way, and more importantly along the faces (because of (1.7)), and for
instance f(F) may have little holes (although probably small because E has surjective pro-
jections at places where it is flat). Because all this seems complicated, the author decided
to leave Theorem 10.8 as it is for the moment.

PART V : ALMOST MINIMAL SETS AND OTHER THEOREMS ABOUT LIMITS

In this part we apply the limiting results of the previous part to sequences of almost
minimal, or even minimal sets. The proofs will usually not be very hard, but this part
should be useful because it is likely that the results of this paper will more often be applied
in the almost minimal context.

In Section 20 we give three slightly different definitions of sliding almost minimal sets
(Definition 20.2), and then show that the two last ones are equivalent (Proposition 20.9).
The definitions and proof are inspired of [D5]; the point is to unify some of the definitions,
and to make it easier to check some assumptions.

In Section 21 we use Theorem 10.8 (our main result about limits) to show that limits
of coral sliding almost minimal sets (of a given type and with a given gauge function) are
also coral sliding almost minimal sets, of the same type and with the same gauge function.
See Theorem 21.3.

In Section 22 we prove an upper semicontinuity result for H¢, which says that if { £} is
a convergent sequence of coral sliding almost minimal sets in U (as in Theorem 21.3), then
for each compact set H C U, limsup,,_, , .. HY(Ey N H) < HY(EN H). See Theorem 22.1.
We also prove Lemma 22.3, where we only assume that the Ej lie in GSAQ(U, M, 6, h)
and merely get that limsup,_,, . H*(Ex N H) < (1+ Ch)MHYENH).

In Section 23 we consider sequences of almost minimal sets Fj that live in domains
Ui and with boundary sets L;; that depend slightly on k. We get an analogue of The-
orems 10.8 and 21.3 that works when Uj and the L;; are small bilipschitz variations of
the limits U and the L;. See Theorem 23.8, which is proved brutally with a change of
variables.

We apply this result in Section 24, to the special case of blow-up limits. We find
two sets of flatness conditions on the sets L, (see Definitions 24.8 and 24.29) under which
the blow-up limits at the origin of a sliding almost minimal set are sliding minimal sets
in R™, associated to boundary sets L? obtained from the L; by the same blow-up. See
Theorem 24.13 and Proposition 24.35.

20. Three notions of almost minimal sets.

We shall more often apply the regularity results above, and in particular Theorem 10.8
about limits, in the simpler context of almost minimal sets.

In this section we adopt the same point of view as in [D5], and introduce three types
of almost minimal sets; we shall mostly restrict to the two last ones, which are slightly
weaker, turn out to be equivalent to each other under mild assumptions, and for which
the desired limiting theorem will easily follow from Theorem 10.8. The main point of this
section will be the equivalence between our second and third definitions. It is perhaps not
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vital because we can hope to work with a single definition at a time, but the author will
feel much better for not hiding a little secret under the rug. Also, the regularity results of
the previous sections translate a little better in terms of our second definition, while the
third one seems a little simpler.

So we shall give three different definitions of almost minimal sets, for which we keep
the same setting as in Definition 2.3. That is, we are given an open set U (equal to the
unit ball when we work under the rigid assumption, and to a bilipschitz image of the unit
ball when we work under the Lipschitz assumption), and boundaries L;, 0 < j < jmaaz-
We give a special name to ) = Ly, and require that all our sets be contained in £ (but we
can take Q =U).

Now we also give ourselves a gauge function, i.e., a function A : (0, +00) — [0, 4o0]
such that

(20.1) h is continuous from the right and tlim h(t) = 0;

—0

let us not assume that h is nondecreasing for the moment, because we don’t need this. It
would also make sense, in view of the definition below, to assume that the product h(r)r?
is nondecreasing, but let us not do that either.

Definition 20.2. Let E C QN U be a relatively closed in U and such that, as in (1.2),
(20.3) HYE N B) < 400 for every compact ball B such that B C U.

We say that E is an Aj-almost minimal set (of dimension d) in U, with the sliding
conditions given by the closed sets L;, 0 < j < jmaz, and the gauge function h, if for every
choice of one-parameter family {¢:}, 0 < t < 1, of continuous functions with the properties

(1.4)-(1.8) relative to a ball B = B(z,r), and also such that W cc U asin (2.4), we have
that

(20.4) HEWL) < (14 h(r))H (p1(W1)),

where as usual Wi = {y € E;o1(y) # y}.
We say that E is an A-almost minimal set (with the sliding conditions given by the closed
sets L;j, 0 < j < jmae, and the gauge function h) if under the same circumstances,

(20.5) HAYW,) < HY o1 (Wh)) + h(r)re.

Finally, we say that F is an A’-almost minimal set (with the sliding conditions given by the
closed sets Lj, 0 < j < jmaz, and the gauge function h) if under the same circumstances,

(20.6) HUE\ ¢1(B)) < H (01 (E) \ B) + h(r)r.

So the accounting in the three cases is slightly different, but the competitors are
the same (and are the same as for the generalized quasiminimal sets in Definition 2.3).

We could also have forced the competitors to be such that W, instead of being merely
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compactly contained in U, is contained in a ball of radius r which itself is compactly
contained in U, and this would probably not have made a big difference in practice, but
we decided to keep the same competitors as above.

The last two definitions look slightly easier to use. Let us also check that in Defini-
tion 20.2, we could replace (20.6) with

(20.7) HYENW) < HY(p1(E) N W) + h(r)r?

and get an equivalent definition. Notice that ¢ (F) coincides with E out of W (by the
definition (2.4) of W), and HY(E N /W) < 400 (by (20.3) and because W cc U); then
(20.7) is obtained from (20.6) by adding H%(E N ¢1(E) N W) to both sides.

We shall now worry about the inclusion relations between our three classes of almost
minimal sets.

It is fairly easy to see that if F is A;-almost minimal in U, then F is also A-almost
minimal in every smaller open set U, = {a: cU; B(z,7) C U}, with the same boundaries

L;, but a slightly larger gauge function h (that depends only on h, 7, and n through local
Ahlfors-regularity constants). The proof is the same as in Remark 4.5 of [D5], and it is
fairly easy once you notice that F is quasiminimal, hence locally Ahlfors-regular. This is
also the reason why we restrict to a smaller set U,. The converse looks like it could be
wrong, but the author does not know for sure, even in the case without boundary.

It is also easy to see that if F is A’-almost minimal in U, then it is A-almost minimal
in U, with the same L; and the same gauge function h. To see this, let E be A’-almost
minimal, let the ¢; be as in the definition, and let us deduce (20.5) from (20.7). Set

Z=EnW \ Wi and observe that

HYW) = HYENW) = HYENW A\ W) = HYENW) — HHZ)
(20.8) < HMp1 (E)NW) — HNZ) + h(r)r
< HM @1 (E)YNW \ Z) + h(r)r

because Wy C ENW, by (2.7), and because Z C p1(FE) N W since p1(z) =z for z € Z
(by definition of W7). For (2.5) is is enough to check that ¢ (E) N W \ Z C p1(W7). So
let y € p1(F) HW\Z be given, and write y = p1(z). If z € Wi, we are happy. Otherwise,
p1(x) =z, hence y =z € EN W \ Wy = Z, which is impossible. The A-minimality of E
follows.

Notice that if E is A-almost minimal (and hence also if E' is A’-almost minimal), then
it is quasiminimal in every ball B(z,r) C U, with M = 1 and h = h(r). So we shall be
able to apply the regularity results of the previous parts to almost minimal sets.

The fact that A-minimality implies A’-minimality will be a little more complicated to
prove, and in fact, under the Lipschitz assumption we shall only be able to do it under the

same additional assumption (10.7) as for Theorem 10.8. The following is a generalization
of Proposition 4.10 in [D5].

Proposition 20.9. Suppose that the rigid assumption holds, or that the Lipschitz as-
sumption, plus one of the two technical conditions (10.7) or (19.36), hold. Let E be
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an A-almost minimal set in U, with the sliding conditions given by the closed sets L;,
0 < J < Jmaz, and the gauge function h. Then E is also A’-almost minimal in U, with the
same L; and the same h. The converse also holds (see above).

Without of our extra assumption (10.7), we do not know whether, under the Lipschitz
assumption alone, A, minimality and A-minimality always imply A’-minimality. But we
do not have good reasons to think that it fails either.

Our assumption (20.1) should not bother much, but if it fails we can still do something.
The fact that h(r) tends to 0 when r tends to 0 will be used only once, at the beginning of
the proof in the Lipschitz case, to show that E* is rectifiable and Ahlfors-regular. If we do
not suppose this, we can suppose instead that £ € QSAQ(U, M, d, h) for a number h > 0
that is small enough (depending on n, M, and A) for Theorem 5.16 and Propositions 4.1
and 4.74 to apply. If h is not continuous from the right, our proof will only show that F
is A’-almost minimal with the larger gauge function h'(r) = liminf,_,q+ h(r + €).

We shall need to revise the proof of [D5], because it involves a modification of a family
{¢t}, 0 <t <1, and we want to make sure that we do not destroy the boundary conditions
(1.7). Also, the proof in the Lipschitz case will be a little more complicated, and will use
the rectifiability of F/, so we shall give two different arguments, one for the rigid case and
one for the Lipschitz case. Of course the second argument also works in the rigid case.

Proof of Proposition 20.9 under the rigid assumption. Let E be A-almost minimal;
we want to prove that E is A’-almost minimal, so we give ourselves mappings {¢t}, 0 <
t < 1, that satisfy (1.4)-(1.8) relative to a ball B = B(xg, (), and are also such that

W CC U. If o1 (Wy) were disjoint from E\ Wy, we could easily deduce (20.7) from (20.5):
we would say that

HUYENW) = HYENW \ W) + HE (W)
< HUYENW\ Wy) + H o1 (W) + h(ro)rd
= H (1 (ENW \ W) + H(p1 (W1)) + h(ro)rg
= H (o1 (ENW)) + h(ro)rd,

as needed. In general, we want to modify ¢, slightly, so as to be able to almost apply
the argument above. And rather than move ¢;(W7), it will be more convenient to make
W1 artificially larger, by a minor modification that will not change (20.7) significantly, but
will make (20.5) more useful.

We first want to construct a vector-valued function v, defined on U, which we shall
see as a direction in which we are allowed to move the points. Denote by F the set of faces
of dimension at least d of our usual dyadic grid. For each F' € F, set

F, ={z € F; dist(z,0F) > 7} and
Ff = {x e R"; dist(z, F,) < 17—0},

(20.10)

(20.11)

where the very small 7 > 0 will be chosen later, and then set
hp(z) =1 — 107" dist(z, ;) for x € FT,

20.12
( ) hp(z) =0 for x € R" \ F.F.
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Finally choose for each F' € F a vector v in the vector space Vect(F') parallel to F, and
such that % < |vp| <1, and set

(20.13) v(x) = Z hp(x)vp for z € R".
FeF

Recall from (3.8) that if F,G € F are different faces, with dim(F") > dim(G), then
(20.14) dist(y, G) > dist(y, OF) for y € F.

In particular, dist(y, G) > 7 if y € F., and hence

(20.15) dist(FF,GF) > %.

Thus the sum in (20.13) has at most one term, and when we compute the differential of v
term by term, we get that

(20.16) v is 107~ 1-Lipschitz.
Also, (20.12), (20.13), and (20.15) yield
(20.17) v(x) =vp forx e F;.

We also need a cut-off function y. First select compact subsets S and S’ of U, such
that

(20.18) WcsScint(s)cs cU

and S’ C B(xg,79 + 7), where B = B(xq,70) is as in (1.4)-(1.8). Let us also make sure,
for instance by replacing S’ with a smaller compact set, that

(20.19) HUYENS'\S)<e,

where the small number € > 0 is chosen in advance. Then choose a Lipschitz function y
on U, so that

(20.20) 0 < x(z) <1 everywhere, x(z) =1on S, and x(z) =0on U\ S’

We shall select an extremely small ¢y > 0 and continue the one parameter family {y;}
with mappings ¢;, 1 <t <1+ to, defined by

(20.21) or(x) = Pe(p1(x)), where ¥ (y) =y+ (t —1)x(y)v(y).

Our constant tg will be chosen last, depending on 1, 7, €, S, S’, and even x if needed, so
small that v, is 2-Lipschitz for 1 <t < 1 + tp, and hence

(20.22) V141, 18 2||p1]|1ip-Lipschitz on E.
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Next we want to check that the ¢4y, 0 < ¢ < 1, satisfy the required conditions

(1.4)-(1.8), but this time with respect to the slightly larger ball B’ = B(xg,ro+7+tg). We
still have (1.4) and (1.8) because v and x are Lipschitz. For (1.5), we just need to worry
about ¢ > 1. Observe that when z € E\ B, x(¢1(z)) = x(x) = 0 and hence ¢;(z) = p1(x)
for ¢t > 1; thus (1.5) holds. For (1.6), let x € EN B’ be given. If z € B, (1.6) for our initial
¢ says that ¢1(z) € B, and then ¢;(z) € B for t > 1, by (20.21). If x € B(zg,r0+7)\ B,
then ¢1(z) = x € B(zo,r0 + 7) \ B by (1.5) for our initial ¢, so pi(x) € B’ for t > 1,
again by (20.21) and because t — 1 < ty. Finally, if z € B’ \ B(zg,79 + 7), we still have
that ¢1(z) = z, and now x(z) = 0 and so p¢(z) = = for t > 1. So (1.6) holds.

We are left with (1.7) to check. Let j < jyqee and x € EN L; N B’ be given; we want
to check that ¢¢(x) € L; for t > 1 (we already know about ¢ < 1, by assumption). Set

y = p1(z); thus
(20.23) oi(x) = Ye(y) =y + (t — Dx(y)v(y)

by (20.21). If v(y) = 0, then ¢;(x) = ¢1(z) € L;. Otherwise, y € F for some F' € F, and

(20.24) er(x) =y + (t = Dx(y)hr(y)vr

by (20.12) and (20.13) (also recall that the F. are disjoint by (20.15)). Let G denote the
smallest face of our grid that contains y. We claim that G contains F. Let z € F; be
such that |z —y| < 7/10; if G does not contain F', (3.8) applies and says that dist(z, G) >
dist(z,0F") > 7, a contradiction since y € G. So F C G.

Next we claim that ¢(x) € G, at least if we take tg < 7/10. Denote by 2z’ the
orthogonal projection of y onto the smallest affine space W that contains F’; then |z’ —
yl < |z —y| < 7/10 (because z € W), so dist([z,2],0F) > dist(z,0F) — |2’ —y| >
dist(z,0F) — 27/10 > 87/10 (because z € F;), and so 2’ lies in the interior of F'.

By (20.24), p¢(z) = y + Mg, with [N\ <t —1 <ty < 7/10 and vp € Vect(F'). Let
us compute with coordinates. The face F' is given by some equations z; = a;, where the
z; are coordinates of the current point z, and the a; € 27™Z are constants, and some
inequalities z; € I;, where each I; is a dyadic interval of size 27™. When we replace y
with ¢:(z) = y + Avp, we only modify some of the z;, but since dist(2’, 0F) > 87/10, the
corresponding coordinates stay in the interior of corresponding I;. The other coordinates
z; stay whatever they were, and altogether o, () lies in exactly the same faces that contain
y. Since y € G, we get that ¢;(x) € G. By definition of G as the the smallest face that
contains y, G C L; because y = ¢1(x) € L; (by (1.7) for ¢1). Hence ¢:(z) € L;, as needed
for (1.7).

We also need to check the assumption (2.4) for our extended family. Let x € E and
t € [0,1 4+ to] be such that ¢y(z) # x. If t < 1, we know (by assumption) that z € W,

and p:(x) € W, a compact subset of U. So we may assume that ¢ > 1, and also that
ei(x) # p1(x). Set y = p1(x); since py(z) =y + (¢ — 1)x(y)v(y) by (20.23), we get that
X(y) # 0, hence y € S by (20.20). Thus dist(p¢(x),S") <t —1 < ty and, if ¢y is small
enough, this forces ¢;(x) to stay in a (fixed) compact subset of U. Also, either z = y, and
then z € S’ or else z # y = ¢1(x), hence x € Wy C S’ too, so W, C S’ for t > 1. Thus
(2.4) holds.
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We may now use our assumption that F is A-minimal. Set
(20.25) © =141, and W =Wy, = {z € E; () # z};
then
(20.26)  HAY(W) < HU(@(W)) + h(ro + 7 +to)(ro + 7 + to)* = H(p(W)) + h(r1)r{

by (20.5) for the extended family, and with r1 = rg + 7 + £o.
We want to say that W is large. First observe that

(20.27) {z e E;lpi(x) —z| >t} CW,
just because |p(z) — p1(z)| = [Y144, (p1(x)) — @1(x)| < to by (20.21). Set

(20.28) A= F.,
FeF

and notice that by (20.17), v(x) # 0 on A,; then

(20.29) SNA,NE\W; CW

because if z € SN A, NE\ Wiy, then p1(x) =2 € SN A, and hence
(20.30) p(x) = Q144y(#) = 144, (2) = = +tox(x)v(z) # 2

by (20.25), (20.21), because £(z) = 1 by (20.20), and because v(x) # 0.
Recall that we want to prove that E is A’-almost minimal, so we want to establish
(20.7), i.e., estimate H*(E N W), where

(20.31) W= |J WU
0<t<1

is as in (2.2). But it will be more convenient to work with the compact set S of (20.18),
and estimate HY(E N S); we shall see that it makes no difference for (2.7). We write
S=(SNW)U(S\W), and so

(20.32) HUENS) < HIW) +HUENS\W) < HY o(W)) + h(r)rd + HUENS\ W)
by (20.26). Next we estimate HY(EN S\ W). Set

(20.33) Z; =R"\ A, =R"\ | J F,
FeF

(by (20.28)). By the definition (20.11), every interior point of a face of dimension > d lies
in F, for 7 small, so

(20.34) () Zr = Sa-1,
>0
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where S;_1 still denotes the union of the faces of dimension d — 1 of our net; since the
intersection is decreasing and HY(E N S) < +oo (because S CC U), we get that

(20.35) HUYENS\A)=HYENSNZ,)<¢

if 7 is chosen small enough, and where £ > 0 is the same small number given in advance
as in (20.19).

Similarly, W; = {a: € E;pi(x) # ac} is the monotone union of the sets {x €
E; |p1(x) — x| > to} that show up in (20.27), so (20.27) says that if ¢, is small enough,

(20.36) HIWL\ W) <e
(again, this holds because W; C E N W C EN S and hence HA(W1) < +00). Then

HYENS\W) <HY W \W)+HYENS\ (WUWY))
<e+HUENS\ (WUWY))
—c+HYENS\ (WUW,UA,))
<e+HUENS\ A,) <2

(20.37)

by (20.36), because EN SN A\ (WUW;) =0 by (20.29), and by (20.35). So (20.32)
yields

(20.38) HYENS) < HY@(W)) + h(r)r] + 2

and our next step is to estimate H?(p(W)). Recall from (20.25) and (20.21) that ¢ =
¢1+t0 © @1, S0

(20.39) (W) = Y144, (01 (W)).

We first consider 144, (01 (W) \ S). Let x € W be such that o1 (x) lies outside of S; then
p1(x) = x, because otherwise z € Wy and ¢1(z) € p1(W7) C W c S by (20.31) and
(20.18). In addition, x € S’ because otherwise x(x) = 0 by (20.20) and ¢(z) = 144, () =
x by (20.21); this is impossible because z € W. So x € ENS’\ W1, and even x € ENS"\ S
because ¢1(x) = = and we assumed that ¢q(x) lies outside of S. Hence ¥4, (¢(z)) =
V1410 (T) € Y144, (ENS"\S). We just checked that 1144, (01(W)\ S) C 144 (ENS"\S),
and so

(20.40)  H (144 (1 (W) \ ) < H (114, (EN "\ S)) < 29HUE NS\ S) < 2%

because 1144, is 2-Lipschitz (see above (20.22)), and by (20.19).

We are left with 114+, (p1 (W) N S). By (20.34), the monotone intersection of the sets
01(E)NSNZ,, when 7 tends to 0, is contained in Sq_1. Since He(¢1(E)NS) < +o0, we
get that

(20.41) HY e (E)NSNZ,)<e

231



if 7 is chosen small enough (depending on 7). And then
(20.42) He (144, (01 (W) N SN Z,)) < 29HY oy (W) N SN Z,) < 2%

because W C E and 144, is 2-Lipschitz. We are now left with 144, (1 (W) NS N A;).
Write

(20.43) pr(W)NSNA, = | Gp, with G =e1(W)NSNF,,
FeF

and observe that for y € SN F;, x(y) = 1 by (20.20), and

(20.44) Y144, (y) = y + tov(y) = y + tovr

by (20.21) and (20.17). Hence

(20.45) D1t (1 (W) N SN AL) = | ¥114,(Gr) = | [GF + tovr)
FeF FeF

by (20.43), and

H (144, (01 (W) N SN AL)) <Y HYGF + tovr)
FeF

=) HUGF) < HU (e21(W)))

FeF

(20.46)

because the G are disjoint (by (20.15)) and contained in ¢1(W). Altogether,
(20.47) H(p(W)) = H (Y114, (21 (W) < 1 (o2 (W) + 27 e

by (20.39), (20.40), (20.42), and (20.46). Also recall that if z € W \ S, then ¢1(z) = =

(because (20.18) says that Wy C W C S; also see the definition of W below (20.4)) and
x € S (because otherwise ¢(z) = Y144, © Y1(x) = Y144,(x) = = by (20.21) and because
x(z) = 0 by (20.20)); hence

(W NS)) +HU(pr(W 5))

H (o1 (W)) ( )

Y (ENS)) +HI W\ S)
( )
( )+

(20.48) 4
Yo (ENS)) +H (EmS’\S)

901 EﬂS)

VAN VAN VAN VAN

T

because we just saw that ¢q(x) = z on W\ S, then because W C ENS’ (see the definition
(20.25) and recall that on U\ S’, ¢1(x) = x by (20.18) and (20.31) and hence @144, (x) = x
by (20.21) and (20.20)), and finally by (20.19). Hence

(20.49) HUYENS) < HU (W) + h(ri)ri 4+ 2e < HY(p1(ENS)) + h(r)ri + (27 4+ 3)e

232



by (20.38), (20.47), and (20.48).

Recall that ¢1(z) = x for x € E\ S and p1(ENS) C S (because W c S); then F
and 1 (E) coincide out of S, and so

(20.50) EN\i1(E)=SNE\¢i1(E) and ¢1(E)\ E=5SNgi(E)\E.
Since both sets have a finite measure and contain E'N @1 (E) NS, we get that

HUEN\ 01(E)) — HY(p1(E)\ E) = HYSNE\ p1(E)) = HY(SN¢1(E) \ E)

(20.51) . )
— HUS N E) — HU(S 1 o1 (E))

by subtracting H%(E N o1 (E) N S) from both terms. In addition, S N1 (E) = ¢1(ENS)

because p1(EFNS) C S and pi(z) =2 ¢ S for x ¢ S. Now (20.51) and (20.49) yield

(20.52) HYEN\ ¢1(E)) — H(¢1(E) \ E) < h(r)rf + 29" + 3)e.

Recall from the line below (20.26) that r1 = ro+ 7 + to, which is as close to rg as we want;
since h is continuous from the right, h(r1) is as close to h(rg) as we want. Also, € is as
small as we want too, and since (20.52) holds with all these choices, we get (20.6). This
completes our proof of Proposition 20.9 in the rigid case. O

Proof of Proposition 20.9 in the general case. The proof that we give below will
use the same strategy as in the rigid case, but will be more complicated because we have
a technical problem. When we modify ¢, we move the points a little bit along the faces
of our grid, and we do this because we want to preserve the boundary conditions (1.7).
If we try to do this with our bilipschitz faces, this small translation along the faces may
well multiply H¢(¢1(F)) by a factor of 2, even if our translation is very small, and this
would of course be bad for our estimates. So we will have to find flatter parts of our faces
where we can translate things without increasing the measure too much, and for this an
almost-covering argument with disjoint small balls where 1 (F) looks nice will be helpful.
The proof below also works in the rigid case, with some simplifications.

Let E be A-almost minimal, and let the {p;}, 0 <t <1, satisfy (1.4)-(1.8) relative to
a ball B = B(x,70) and be such that Wccu.

Observe that FE is rectifiable because it is quasiminimal. More precisely, choose A > 0
small, as in Theorem 5.16 with M = 1, and then use (20.1) to find 6 > 0 such that h(r) < ¢
forO0 <r <4. Then E € QMAQ(U, M, 0, h), with M = 1 (compare the definitions 20.2 and
2.3). Now Theorem 5.16 says that E is rectifiable, as needed. Similarly, Propositions 4.1
and 4.74 say that E* (the core of E, defined in (3.2)), is locally Ahlfors-regular.

Let € > 0 be small, and let S be a compact set such that

(20.53) W Cint(S) CSCU, SC B(xo,ro+¢), and HYENS\W) <e¢

(recall from (1.5), (1.6), and (2.2) that W c B(zo,70)). Denote by u the restriction of
H? to the set p1(ENS) = p1(E) NS (recall that 1 (ENW) C W and ¢;(z) = x for
x € E\ W), and by v the image by ¢; of the restriction of H? to E N S, defined by
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v(A) = HYENSNe;'(A)) for A C R" (a Borel set). By (20.3), H4(ENS) < 400, hence
p and v are finite measures (recall that (; is Lipschitz).
We want to cover a substantial part of

(20.54) Go=¢1(E*NW)CW

(as before, the inclusion comes from the fact that o1 (ENW;) C W see (2.1) and (2.2)) by
a collection of disjoint balls B;, and then we will continue our mapping ¢; by composing
1 by deformations defined on the B;. Our first task is to eliminate various pieces of
Go. We defined Gy in terms of the core E*, because it costs nothing in terms of measure
(recall from (3.29) or (8.26) on page 58 of [D4] that HY(E'\ E*) = 0) and E*, being locally
Ahlfors-regular, is a little easier to control. For instance let us check that

(20.55) lim inf r~v(B(y,r)) >0 for y € Gy.

r—0

Let y € Go be given, pick x € E* N W such that p1(z) = y, and for r > 0 small, set
p = (1+ |p1lup)~'r; then @1 (B(x,p)) C B(y,r). By (20.53), B(x,p) C S for p small, so
v(B(y,r) > HYE N B(z,p)NS) > C~1pd > C~1r?, where we don’t even want to know
what C depends on. This is enough for (20.55), which we just mention because it simplifies
the discussion below.

First we remove the points where v is much larger than u. Let M > 1 be very large,
and set

: v(
20.56 Yo = {yeGo:l VBT
(20.56) 0=y & Go; limsup W(B(y, )

We don’t need to worry about the value of 0/0 here, since v(B(y,r)) > 0 by (20.53). Also
set

(20.57) Xo=ENe (Yy)=EnNW N (Vo)

(recall that Yy C Gy C W and o1(z) =z ¢ W when z € E \ W) By (2) in Lemma 2.13
of [Ma],

(20.58) v(A) > Mu(A) for every Borel set A C Yy,
and in particular
(20.59) HY(Xo) = v(Yo) 2 Mp(Yo)

because Xy C S (since W C S by (20.53)). We will not need to worry too much about Yj
because

(20.60) HUYy) < MY HY(Xe) < MTYHYENS) < MY 1+ HYENW)),
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by (20.53). On the other hand, (1) in Lemma 2.13 of [Mal, says that
(20.61) v(A) < Mu(A) for every Borel set A C Go \ Yo;

we don’t intend to use the huge constant M, but merely the fact that v is absolutely

continuous with respect to u on the set G; = Gg \ Yy. This will help, because we can now

remove some small sets in G; without fear of losing a large mass in the source space.
Denote by G5 the set of points y € G; with the following good properties. First,

(20.62) ©1(E™) has an approximate tangent plane P(y) at y
and
(20.63) lim r~*H (o1 (E*) 0 B(y, ) = w

where as usual wy is the H%measure of the unit ball in R?. These properties are true for
H4-almost every y € Gy, because E* is rectifiable (with finite measure in a neighborhood
of S) and ¢; is Lipschitz. We can also replace E* with F in (20.62) and (20.63), since
none of these properties are sensitive to adding a set of vanishing H%measure.

Next, if we are in the Lipschitz case, set ¢1(z) = ¥(Ap1(x)) for € U (and where A
and v are as in Definition 2.7), and also set y = 1(A\y); we require that

(20.64) %1 (E*) has an approximate tangent plane P(y) at §.

In addition, denote by F(y) the smallest face of our (twisted) net that contains y and by
dim(F'(y)) its dimension. We demand that

(20.65) dim(F'(y)) > d,

and also that if W (y) denotes the smallest affine space that contains F(y) = (AF(y)),

(20.66) P(y) c W(y).

Finally we exclude the exceptional set Z of (19.35). In other words, we demand that if y
lies in some boundary piece L;, 0 < < jyaz, but does not lie in its n-dimensional interior
(see the definition of L} and L’ near (19.34)), then

(20.67) limsup A, (y) < wy

r—0

where A,(y) is given by (19.33). Let us check that all these properties are true for H%-
almost every y € Gy, i.e., that

(20.68) HYGL\ Ga) = 0.
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We know that (20.62) and (20.63) hold almost everywhere, and so does (20.64), because
©1(E™*) is rectifiable and (for the invariance of negligible sets) v is bilipschitz. For (20.65)
we remove a set of dimension d — 1, and (20.67) holds almost everywhere because we
assumed (19.36) or the stronger (10.7). The fact that (10.7) implies (19.36) is proved
below (19.36). Finally, let us check that we can arrange (20.66) almost everywhere. Let
F be any face, and let us say how we can get (20.66) for almost every y € G; such that
F(y) =y. Set A= FNGy and A = ¢(MA). This last set is rectifiable (it is also a
subset of ¢1(E*)), so for almost every y € A, we can find an approximate tangent d-plane
to A at § = ¢¥(\y). Call it Q(y), and observe that by definitions it is contained in the
smallest affine subspace that contains ¢)(AF'). By the almost-everywhere uniqueness of the
approximate tangent plane to ¢1(E*), we just have to show that for almost every y € A,
Q(y) is also an approximate tangent plane to ¢1(E*) (and not merely Z) at y. But by
Theorem 6.2 on page 89 of [Ma), lim,_,o r~*H% (&1 (E*) N B(§,r) \ A) = 0 for H%-almost
every y € A. For such y, any approximate tangent plane to ¢;(E*) at y also works for
©1(E™), as needed. This completes the proof of (20.68).

Let us now select, for each point y € G2, a small radius r(y) with the following good
properties. First,

1

(20.69) W) < 11

dist(y, U \ S);
this true for r(y) small enough, because (20.54) and (20.53) say that y € Gy C W c int(S).
We also choose 7(y) so small that

1

(20.70) ") <

dist(y, OF (y))

(where dist(y, 0F (y)), the distance to the boundary of F(y), is positive because y lies in
the interior of F(y))),

(20.71) wqg —e <1 HY o (E*) N B(y,r)) <wg+e for 0 <r <r(y)

(we use the same small € > 0 as before to save notation). We shall not need a uniform
variant for the existence of a tangent plane to o1 (F), because in the delicate part of the
argument, we shall work with ¢1(E). So we use (20.64) to require that for 0 < r < r(y),

(20.72) HY({z € &1(E) N B(y, M) ; dist(z, P(y)) > eAr}) < extrd.

Finally we require a uniform version of (20.67), i.e., that if y lies in some boundary piece
L;, but not in the (true) interior of L;,

(20.73) A (y) Swg +e for 0 <r <2r(y).

This completes our definition of r(y) when y € Gs.
We now use a consequence of Besicovitch’s covering lemma. Consider, for each y € G,
the balls B(y,r), 0 < r < min(e,r(y)) (we are again using the same ¢ in a different role),
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and for which u(0B(y,r)) = 0 (almost every r satisfies this, since the 9B (y, r) are disjoint).
By Theorem 2.8 in [Ma] (applied to all these balls) we get a collection of disjoint balls
B; = B(yj,rj), with the following properties:

(20.74) 0 < rj; <min(e,r(y;))

and p(0B;) = 0 for all j, and

(20.75) G2\ JBy) = (G \|JB)) = 0.

Now we can define a continuation for our family {y;}, with which we shall eventually
apply the definition of A-minimality. We want to define ¢, for 1 <t < 2, by

(20.76) or(x) = gi(p1(z)) forz e Fand 1 <t <2,

where the functions g; : U — U are such that

(20.77) gi(y) =y fory e U\ UB]- and for t =1
J

and will now be defined separately on the B;. We shall use cut-off functions &;, defined
by &;(y) =0 for y € U \ By, and

(20.78) ¢;(y) = min {1, (rr;) " dist(y, 8Bj)} for y € B;.

Here 7 > 0 is another small constant that will be chosen soon.

We start with the simpler case when y; does not lie in any L, = L; \ int(L;), where
int(L;) is the n-dimensional interior of L;. In this case we can pick any unit vector v;, and
set

(20.79) 9¢(y) =y + (t = )& (y)nrjv;

for y € B; and 1 <t <2, where n > 0 is a minuscule constant, to be chosen later.

When the rigid assumption holds, we define the g; by the same formula (20.79), but
we make sure to choose v; in the vector space parallel to the smallest face F'(y;) that
contains y;. This precaution will only help if y; lies in some L.

In the remaining case when the Lipschitz assumption holds and y; lies in some L7, we
need to be more careful and use the mapping v of Definition 2.7. Still denote by ﬁ(yj) the
approximate tangent plane to ¢1(E*) at y; = 1¥(\y;), as in (20.64), and denote by 7; the
orthogonal projection onto P (y;). Also choose a unit vector v; in the vector space parallel
to ﬁ(yj), and then set

(20.80) 9t (y) = V() + (t = D& W) [T (0 () — ()] + (¢ = )& (y)nAr;v;

237



for y € Bj and 1 <t < 2. Notice that

(2081) 19) = ¥Qul < [W0w) = w0yl + (= DIF (V) = )] + (¢ = Dndr;
| < 20y (Ay) — b (Ay;)| + nAr; < 2XA7; + nAr; < 3AAr;

because 1(Ay;) lies in ZS(yj) and if 7 is small enough. Recall from (20.69) and (20.74) that
(20.82) dist(y;, U \ S) > 4A%r(y;) > 4A*r;

Since v maps AU to B(0, 1), this implies that ¢ (\y;) is at distance at least 4AAr; from
B(0,1) \ ¥(AS), hence also from R™ \ 1(\S) (recall that y; C S, which is compactly
contained in U). Now (20.81) yields dist(g:(y), R™ \ ¥(AS)) > AAr;. In particular g:(y) €
Y (AS), so we can define

(20.83) gt(y) = X" (Ge(y)) € 8.

Observe that by (20.81)

(20.84) l9¢(y) — y;1 < ATTA[Ge(y) — ¥ (Ayy)| < A%

This completes our definition of the g; and the ;. Our next task is to show that the
pat, 0 < t < 1, define an acceptable competitor for E. There is no problem with (1.4)
and (1.8); our mappings ¢¢(z), t > 1 are clearly continuous in x and ¢, and Lipschitz in z
(notice in particular that all our definitions yield ¢:(y) = v on the 0B;). Also,

(20.85) oi(x) =2 for 0 <t <2whenx e E\S,

just because S contains W and the B; (see (20.53), (20.69), and (20.77)). In addition, we
claim that

(20.86) oi(x) € S when x € ENS.

When t < 1, this comes from the fact that o(W;) C W C S. When ¢ > 1, we know
that 1(x) € S, and then we just need to use (20.76) and (20.77) or (20.83). This proves
(20.86), and (1.5) and (1.6), relative to B(zg, o + ¢), follow (by (20.53)). We also get the
analogue of (2.4), where we use the compact set S C U in lieu of w.

Next we check the boundary condition (1.7). We do this under the Lipschitz assump-
tion; the rigid case is just simpler. Let ¢ < ju0. and z € EN L; ﬂE(aZo, ro + €) be given;
recall that we want to check that ¢.(x) € L; for all . We already know this for ¢t < 1,
by (1.7) for the initial ¢; (and (1.5) if x ¢ B(xo,70)), so we can assume that ¢t > 1. Set
y = ¢1(z); by (20.76) ¢i(z) = g+(y), and we can assume that y € B, for some j, because
otherwise () = g1(y) = y = ¢1(x) € L; by (20.76). Let us record that (1.7) will follow
as soon as we show that

(20.87) ge(y) € L; for1 <t <2
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when i, j, x € ENL;, and y = ;1 (x) € B; are as above.
By (1.7) for ¢1, y = ¢1(z) lies in L;. Let F be a face of L; that contains y, and let us
check that

(20.88) F(y;) C F.

Set F' = 1(\F) and Fj = ¢(AF(y;)), and observe that F is the smallest rigid face that
contains y; = ¥ (Ay;). Suppose that (20.88) fails; then F is not contained in F. If in
addition Fj is not reduced to the point y;, (3.8) yields

(20.89)  dist(g;, F) > dist(g;, O(F;)) > M~V dist(y;, OF (y;)) > 4AA3r(y;) > 4\Ar;
J J J J J J J

by (20.70) and (20.74). If instead Fj is reduced to the point y;, then F is a rigid face that
does not contain the vertex y;, hence dist(y;, F)) > 27™ > 4\Ar;, by (20.74) and if € is

small enough; so the conclusion of (20.89) holds in both cases. But 9¥(\y) € F because
ye F, so

(20.90) dist (75, F) < [o(Ay;) — ()| < Ay — y;] < AAry,

a contradiction which proves (20.88).

Recall that we want to check (20.87). We start with the most interesting case when
y; € L;. Then g,(y) was defined by (20.80) and (20.83), and (by (20.83)) it is enough to
check that g;(y) € F.

Recall that 7; is the orthogonal projection onto the approximate tangent plane P )
of (20.64), which itself is contained in the affine plane W spanned by F , by (20.66).
Denote by W the affine span of F; by (20.88), F C F and hence W C W Thus the
points y = ¥(\y), 7, (y), and even w = y + (t — 1)&;(y)[7,;(y) — y] all lie in W. Observe
that by (20.80), g:(y) = w + (t — 1)§;(y)nAr;v;, and since we chose v; in the vector space
parallel to P(y;) C W, we see that G (y) C W.

We want to show that g;(y) even lies in F. We start from the fact that yj € F ;i C F
(by definition of F; = ¢)(AF(y;)) and by (20.88)), with

(20.91)  dist(;, OF) > dist(y;, 0F;) > AN~ dist(y;, 0F (y;)) > 4AA®r(y;) > 4MAr(y;)

by (20.70) and (20.74) (that is, as in (20.89)). But [g:(y) — y;| < 3AAr; by (20.81), so the

line segment [y;,g:(y)] C F does not meet OF, and g;(y) € F; (20.87) follows, because
F C L; by definition, and this takes care of our first case.

We are left with the case when y; ¢ L;. Since y; € F(y;) C F' C L; by (20.88), this
implies that y; lies in the interior of L;. We want to show that in fact

(20.92) B(y;,4M%r;) C Ly,

and for this we shall proceed as for (19.10). Denote by 6(L;) the boundary of L;, set
D = dist(y;,0(L;)) > 0, and pick { € §(L;) such that | — y;| = D. Denote by G the
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smallest face of our grid that contains &; since §(L;) is itself an union of faces, G is
contained in §(L;). Since D > 0, G does not contain y;, and even less F'(y;).
First assume that F'(y;) is not reduced to {y;}; then (3.8) (applied to the rigid faces

Y(AG) and F}) yields

D = |y; — &| > dist(y;, G) > A~ AT dist(v(Ay;), p(AG))

(2093) 1A —1 1 ~ —92 1. 2 2
> NTTAT dist (v (Ny;y), Fy) > A7 dist(y;, 0F (y5)) > 4A%r(y;) > 4A°r;

by (20.70) and (20.74). If instead F(y;) = {y;}, and since D is the distance from the
vertex y; to a face that does not contain it, we get that D > A"TA7127™ > 4A%r;, by
(20.74) and if € is small enough. Thus D > 4A?r; in both cases, and (20.92) follows. In
this case the fact that o,(x) lies in L; is trivial because ¢;(z) = g:(y) € B(y;,4A%r;), by
(20.84).

This completes our proof of (1.7), and the series of verifications for the extended family
{¢+}, and now we can use the A-minimality of E. This yields

(2094) Hd(WQ) < Hd(QOQ(WQ)) + h(’l“o + 8)(7“0 + €)d,

by (20.5) and where Wy = {z € E; ¢o(z) # 2 }.
Recall that Wa U po(W3) C S, by (20.85) and (20.86). We start with an estimate of
HY(p2(Wa)). Set A =S Npi(E)\U;[Bj Ne1(E)]. Then

HY(pa(W2)) < HUS Npa(E)) = H(g2(S N p1(E)))
(20.95) <HUA) + Y HYg2(Bj N 1(E)))

J

by (20.76), because SNy (F) CC AU (U] B, ﬂgpl(E)]), and because g2(y) =y on A (by
(20.77)). This will be compared to the fact that

(20.96) HY SN (E) =HYA) + > HYB; N1 (E))

by definition of A and because the B; are disjoint. Next we estimate the sum in (20.96).
There are two types of indices j; we start with the simple case when g; was defined by
(20.79). That is, g2(y) = y + & (y)nrjv; for y € Bj. Write B; = Bj int U Bj eqt, Where
Bj,int = {y c Bj;dist(y,é?Bj) > TTj} and Bj,ecct = Bj \ Bj,int- On Bj,inta (2078) yields
¢i(y) =1 and g2(y) = y + nr;v,, and hence

(20.97) Hd(gz (Bj,int Np1(E))) = Hd(Bj,int Ne1(E)) < Hd(Bj Ne1(E)).

On Bjcst, although &; is only (77;)~!-Lipschitz, we can choose 7 so small that go is
2-Lipschitz on Bj ¢.¢, and we get that

(20.98) HY(g2(Bjext Np1(E))) < 2HY(Bjear N 1 (E))
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But two applications of (20.71) yield

HY(Bjint N01(E)) = HY(Bjine N 01 (E*)) > [(1 = 7)rj]%(wq — €)

(20.99) > (1-7)" 2= 94(B; N o1 (E))

wq + €
because H4(E \ E*) = 0. Thus, if ¢ is small enough, depending on 7, we get that
(20.100) HY(BjextN1(E)) = HU(B;jNp1(E) = HY(BjintN1(E)) < CTHY(B; N1 (E))
and, by (20.97) and (20.98),
(20.101) H(g2(B; N1 (E))) < (14 Cr)HY(B; N1 (E)).

Now we consider the more complicated case when we used (20.80)-(20.83) to define g5. By
(20.80),

(20.102) 92(y) = v(\y) + & W) (b (My)) = P(Ay)] + & (y)nAr;v;

for y € B;. We start with the good set
(20.103) G(j) = {y € Bjint N 01(E); dist($(\y), Ply;)) < edr; },

where P(y;) is the tangent plane that shows up in (20.64) and (20.72), for instance. If
y € G(j), (20.78) yields &;(y) = 1, then (20.102) says that g2(y) = 7;(¢(Ay)) + nAr;v;,
hence

(20.104) 192(y) — Y (Ay)| < |75 (P(Ay)) — L (Ay)| +nAry < (n+e)Ary

(by (20.103) and because 7; is the orthogonal projection on ]S(y])) Then |g2(y) — y| <
(n+e€)Ar; by (20.83), and hence g2(y) € B(y;, (1+nA+eA)r;). Also, m;(¢(Ay)) € P(y;),
and since we chose v; in the vector space parallel to P(y;) (see above (20.80)), we see that
G2(y) € P(y;). Thus

(20.105) g2(y) € AW (P(y;)) N B(yy, (1 + 1A +eA)rj).

by (20.83). By definition of ﬁ(yj) (see (20.64)), ¥(Ay;) € ﬁ(yj). By (20.66), ﬁ(yj) C
W (y;), the affine span of F; = ¢(AF(y;)). We now deduce from (20.105) and the definition
(19.33) of A, (y;) that

HIN 11 (P(y;)) N Bly;, (1 +nA +eA)ry))
(I4+nA+ SA)dT;‘lA(l—f—nA-i-EA)Tj (5)

(wa + )1+ nA +eA)rf

< (14 CeA 4+ CnA) HYB; N1 (E))

H(92(G (7))

IAIA

(20.106)

IN
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by (20.73) and (20.71). Next we consider the less good set

(20.107) G'(j) = {y € Bjewt N1 (E); dist((My), Py;)) < eAry}.

We claim that go is CAA-Lipschitz on G’(j). The first term in the definition (20.102) is
¥(Ay), which is AA-Lipschitz; the third one, &;(y)nAr;v;, is C7~'nA-Lipschitz, which is
much better if 7 is small enough. Notice that |7;(¢(Ay)) — ¥ (Ay)| < eAr; on G'(j), hence
the second term &;(y)[7; (¥ (Ay)) — ¥(Ay)] is Ot~ el + CAN-Lipschitz, our claim follows,
and go is CA%-Lipschitz on G'(j). Then

H(g2(G'(7))) < CA*HUG! () < CN*HY(Bjear N 1(E))

(20.108) < CTHY(B; N p1(E))

by (20.100), and where we no longer write the dependence on A in the last line. We are
left with

(20.109) G"(j) = {y € B; N 1(E); dist(v(\y), P(y;)) > edr;}.

On this set (20.102) only yields that gs is CAAT~1-Lipschitz, hence by (20.83) g9 is CA%27~1-
Lipschitz. Fortunately G”(j) is small. Indeed if y € G”(j), then ¥ (Ay) lies in the bad set
of (20.72), whose measure is at most eA?r{ hence H(G"(j)) < eA%r? and (dropping soon
the dependence on A and by (20.71) again),

(20.110)  H% g2(G"(5))) < CA* 7 4HYG" (5)) < C’T_dér;l < Cr7%HYB; N1 (E)).
We add (20.106), (20.108), and (20.110) and get that
(20111) %d(g2<Bj N (pl(E))) < (1 + 077 +C1+ C€T_d)7‘[d(Bj N1 (E))

We had a slightly better estimate (20.101) in the first case, so (20.111) holds in all cases,
and when we compare (20.95) to (20.96), we now get that

H(p2(Wa)) SHUS No1(E) +Cln+7+er ") Y HYB;Nei(E))
(20.112) :

<HUSN1(E)) + Cn+ 1+ e HHHUS N 1 (E))

(recall that the B; are disjoint, and (by (20.69) and (20.74)) contained in S). Now we
want to check that

(20.113) HUYENS\Wa) <C(M™' +7),

where C is allowed to depend on H(E N W), and M is as in (20.56) and (20.60).

Let EN S\ Wy be given. Let us remove a few small sets. A first possibility is
that . € W = {& € U; ¢1(x) # x}. Set y = ¢1(z); then y # z because z € W.
Since @o(x) = x (because z ¢ Ws) and ¢o(x) = g+(y) by (20.76) we get that g2(y) # v,
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and even |g2(y) —y| = |y — x| = |p1(z) — z|. Then y lies in some B;. If go(y) was
computed by (20.79), this implies that |¢1(z) — x| < nrj. Otherwise, (20.84) says that
192(y) — y| < |92(y) — y;| +r; < 4A%r;. In both cases, |p1(z) — x| < 4A%r; < 4A%e by our
precaution (10.74). If ¢ is small enough, depending on 7, we deduce from this that

(20.114) HUENW\W2) <H({z e ENW; p1(z) — x| <4A%e}) <7

because the monotone intersection, when ¢ tends to 0, of the sets in (20.114) is empty, and
all these sets are contained in E N W for which H*(ENW) < +00. So we may restrict to

re ENS\ [WynW]. Since HY(EN S\ W) < e by (20.53), this set contributes little to
(20.113), and we may assume that z € W. Since x € E'\ W, we get that ¢1(z) = z, and

sox € @1(EN /V[7) Thus (20.54) says that z almost always lies in Go. Next we take care
of Yy, which by (20.60) is such that

(20.115) H(Yp) < MY 1L+ HUENTW));

this is less than the right-hand side of (20.113), so we may now assume that z € G; =
Go \ Yo (see below (20.61)), or even that z lies in some Bj, because (20.68) says that
HY(G1 \ G2) = 0 and then (20.75) says that the B; almost cover G (recall from the line
below (20.53) that p is the restriction of H? to (£ N .S)). By (20.100),

(20.116) > HUBjewt N@1(E)) < C7 Y _HYB; N1 (E)) < CTHY(S N 91 (E))

J

(recall again that the B; are disjoint and contained in S (by (20.69) and (20.74)). This
bound is also compatible with (20.113), so we are left with the case when x € Bj ;ns. In
this case, £;(z) = 1, and we claim that ps(x) = g2(x) # x. The first part follows from the
(20.76) because ¢1(z) = . When go(x) is given by (20.79), the second part is obvious.

When we use (20.80), projecting on P; yields
(20.117) 7(G2(2) = 75 (60w) + Ty £ 75 (60w)
because v; was chosen to be a unit vector in the direction of ]S(yj). Then go(z) # ()

and, by (20.83), g2(x) # x, as needed. But this is impossible, because we assumed that
x € ENS\ Wy. Then (20.113) holds, and we may now put all our estimates together:

HUYENW) < HUENS) < HI(W,) + C(M ™" +7)
< HY oo (Wo)) 4+ h(rg +&)(ro + )+ C(M~L + 1)
(20.118) <HUSN e (E)+C(n+74+er™ )+ hirg+e)(ro+e)+C(M +7)

by (20.53), (20.113), (20.94), and (20.112) (where we now see H¢(SNy;(E)) as a constant).
Let us check that

(20.119) HYS N1 (E)) < HAW N1 (E)) +&.
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Suppose y € SNy1(E) \ W, and let = € E such that p1(z) =y. If y # z, (2.2) says that
Yy € /W, which is impossible. So y = x, and now y € ENS'\ /W; (20.119) then follows from
(20.53).

When we add (20.118) and (20.119), we get that H¢(E N /W) < HIW Nei(E)) +e,
with

(20.120) e = Cn+7+er )+ hirg +€)(ro + ) + C(M ™" + 7).

Of course, C' depends on E and ¢; in various ways, but we can choose 7, then ¢ and M
(recall that we never used M in the estimates, so we can choose it as large as we want),
then 7 so small that e is as close to h(rg)rd as we want. This proves (20.7), the A’-almost

minimality of F follows, and so does Proposition 20.9 (in the general case). O
21. Limits of almost minimal sets and of minimizing sequences.

In this section we just rewrite Theorem 10.8 in the context of almost minimal sets.
For our first statement, we consider a gauge function h : (0,4+00) — [0, 00| which is
right-continuous, i.e., such that

(21.1) h(r) = p_}lgr;]%wh(p) for r > 0,

and for which

(21.2) lim h(r) = 0.

r—0

Theorem 21.3. Let an open set U and boundary pieces Lj, 0 < j < jimaz, be given, and
suppose that the Lipschitz assumption holds (see Definition 2.7). Also suppose that the
technical assumption (10.7), or the weaker (19.36) holds (but this is not needed under the
rigid assumption (2.6)). Let {Ey} be a sequence of coral (see Definition 3.1) and relatively
closed sets in U, that converges locally in U to the closed set E (as in (10.4)-(10.6)).
1. If each Fj is an Aj-almost minimal set in U, with the sliding conditions given by
the sets L;, and the gauge function h (see Definition 20.2), then E is coral, and it is an
A -almost minimal set in U, with the sliding conditions given by the same sets L; and
the same gauge function h.

2. If each Fj is an A-almost minimal set in U, with the sliding conditions given by the
sets L;, and the gauge function h, then E is coral, and it is an A-almost minimal set in
U, with the sliding conditions given by the same sets L; and the gauge function h.

3. If each Ej is an A’-almost minimal set in U, with the sliding conditions given by the
sets L;, and the gauge function h, then E is coral, and it is an A’-almost minimal set in
U, with the sliding conditions given by the same sets L; and the gauge function h.

Proof. We start with limits of A,-almost minimal sets. Since we want to apply The-
orem 10.8, we compare Definition 20.2 with the definition 2.3 of quasiminimality. If Ej
is Aj-almost minimal as above, then for each § > 0, E), € GSAQ(U, M(9),6,0), with
M(6) =1+ h(6).
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By Theorem 10.8, or its variant in Remark 19.52 where we assume (19.36) instead of
(10.7), E also satisfies this property. Notice in particular that since here the last constant
h in the definition of GSAQ is zero, the additional constraint above (10.2) that requires h
to be small is automatically satisfied. That is, for each 6 > 0, F € GSAQ(U, M(9),6,0).
But then F is A -almost minimal with the gauge function A’ defined by

(21.4) h'(r) = liminf h(9).

d—rt

By (21.1), " = h and Part 1 of our result follows.

Next consider a sequence of A-almost minimal sets. If the Ej are as in Part 2, then
for each § > 0, E, € GSAQ(U, 1,6, h(6)) for all k.

We have a minor additional difficulty here, because in order to apply Theorem 10.8,
we have to assume that Fy, € GSAQ(U, M, 6, h) with h sufficiently small, depending on n,
M and A. Here this is true for § small, by (21.2), but maybe not for § large.

Fortunately, as was noted below the statement of Theorem 10.8, this assumption that
h be small enough is only needed to get the right regularity and lower semicontinuity
properties, but as soon as it is satisfied for some acceptable combination of M, 4§, h (here
with M =1 and § so small that h = h(J) works), we get the limiting theorem for the other
combinations. Thus F € GSAQ(U, 1,4, h(d)) for § > 0.

Then we return to Definition 20.2 and get that E is A-almost minimal with the gauge
function A’ of (21.4). Since b’ = h by (21.1), Part 2 follows.

For Part 3, we just need to observe that because of Proposition 21.9, we do not need to
distinguish between A-almost minimal and A’-almost minimal (notice that the additional
sufficient condition for the equivalence, (10.7) or (19.36), is satisfied). Then Part 3 follows
from Part 2. O

Remark 21.5. Probably we could modify our proof of Theorem 10.8 to make it work
also for A’-almost minimal sets (and even with the variant of quasiminimal sets defined
with the same accounting as in (20.6)). We should not expect a huge simplification, and
in particular we cannot content ourselves with applying the almost minimality of Fj with
any extension of our initial mapping ¢, because it still could be that 1 (Ey) is a very bad
competitor because it contains may parallel sheets, that could easily be merged to produce
a better competitor, while these sheets are already merged for E.

Also, we would have to take into account the possibility that the set @1 (ENW7) meets
E\W; (where as usual Wi = {z € R"; ¢1(z) # «}), while this does not happen with Ej.
Then ; defines a better competitor for F than for Ej, which is also bad for our proof. We
did not pay attention to this case in the proof of Theorem 10.8, because it did not matter
with the accounting for quasiminimal sets, but of course we could try to fix it, for instance
by allowing a larger piece of W in the definition of X in (11.20). But this becomes similar
to our proof of Proposition 21.9, so the author does not expect to win much by trying a
direct proof.

Remark 21.6. If we did not assume (21.1), we would still have that the limit E is almost
minimal, but this would be with the gauge function A’ defined in (21.4); this is easy to see
from the proof, and (for Part 3) the similar comment below Proposition 20.9.
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Remark 21.7. Similarly, we do not really need to assume (21.2), but instead we can
assume that (10.2) holds, i.e., that there are constants M, §, and h, with & small enough
(depending on n, A, and M) such that E, € GSAQ(U, M, d,h) for all k. Then we can
use the remark below Theorem 10.8 (as we did for Part 2) and proceed as above, because
(10.2) is enough for the regularity results of Section 10. We shall apply this now, in the
context of local minimizing sequences.

Here is the notation for the next corollary. We are given, as in Theorem 21.3, an open
set U and boundary pieces L;, 0 < j < jpq2, and we suppose that
(21.8) the Lipschitz assumption holds, as well as (10.7) or (19.36)

(again see Definition 2.7 and observe that (10.7) is automatic under the rigid assumption).
We are also given a sequence { F}} of coral relatively closed sets in U, and we assume that

(21.9) the Fj converge locally in U to the relatively closed set £ C U.

In addition, we assume that there are constants M, §, and h, with A small enough (de-
pending on n, A, and M) such that (10.2) holds, i.e.,

(21.10) E), € GSAQ(U, M, 6, h) for all k.

Finally, we assume that {F\} is a locally minimizing sequence, in the following sense.
Given § > 0, we say that one-parameter family {¢;} of functions is §-admissible for Ej if
it satisfies the conditions (1.4)-(1.8), relative to Ej and some ball B of radius r < §, and
in addition the compactness condition (2.4) holds (relative to Ej). Recall that (2.4) says

that /W(Ek) CC U, where we set

(21.11) W(E) = | WilBr) Ue(Wi(Ey)),
0<t<1

with

(21.12) Wi(Ey) = {y € B pe(y) # y} for0 <t <1.

We shall assume that there exists § > 0 such that, for each € > 0 we can find kg > 0
such that

(21.13) HYW(Er)) < 1 (o1 (Wi (ER))) +e

for every k > ko and every one-parameter family {¢;} which is §-admissible for Fj.
Or we shall assume that, with the same quantifiers,

(21.14) HYER\ @1(Ex)) < H(o1(Ex) \ Ex) +¢

for every k > ko and every one-parameter family {p;} which is §-admissible for Ej. This
second assumption, which is more in the mode of A’-almost minimal set, is more natural
in some contexts.
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Corollary 21.15. Let U, the boundary pieces L;, and the sequence {E}} of coral quasi-
minimal sets satisfy the conditions (21.8)-(21.14). Then E is a coral local minimizer in U,
in the sense that

(21.16) HUEN p1(B)) < HY(@1(E) \ E)

for every one-parameter family {¢;} which is §-admissible for E.

To prove the corollary, observe that for k& > ko, (21.13) or (21.14) says that Fj is
A-almost minimal or A’-almost minimal, with the strange gauge function h. defined by
he(r) = r~% for 0 < r < § and h.(r) = +oo for r > 4.

This function does not satisfy (21.2), but Remark 21.7 and our assumption (21.10)
allow us to dispense with this condition. Then by Theorem 21.3, F is coral, and almost
minimal with the same gauge function h.. Since this is true for all € > 0, we also get
that E' is almost minimal with the gauge function hg. If we were dealing with (21.14) and
A’-almost minimal sets, we directly get (21.16) from this. If we were dealing with (21.13)
and A-almost minimal sets, we get

(21.17) HAWA(E)) < H (o1 (Wi (E)))

instead of (21.16), but by the easy part of Proposition 20.9, (21.17) implies (21.16); Corol-
lary 21.15 follows. U

Remark 21.18. In the conclusion of Corollary 21.15, we may also replace (21.16) with
(21.17), since the two conditions are equivalent (by Proposition 20.9, applied with hy).

22. Upper semicontinuity of H¢ along sequences of almost minimal sets.
The main result of this section is the following upper semicontinuity result.

Theorem 22.1. Let U, the L;, the sequence {E}}, and the set E satisfy the assumptions
of Theorem 21.3 (any part) or Corollary 21.15. Then for every compact set H C U,

(22.2) HYENH) > limsup HY(E, N H).

k——+o0

Notice that if the Fj are only supposed to be quasiminimal, the conclusion may fail,
even when there is no boundary condition. For instance, Fy may coincide locally with the
graph of the function x — 27 sin(2*z), which converges to a line; then (22.2) fails. So,
for the sequences of Theorem 21.3, the condition (21.2) is really needed this time.

The proof will only use the rectifiability of E*, a covering argument, and an application
of the quasiminimality (or almost minimality) of the Fj in balls where E is flat. It is
essentially a special case of the following lemma, which is a generalization of Lemma 3.12
on page 85 of [D5], and which we shall prove first.

Lemma 22.3. Let U, the L;, the sequence {Ey}, and the set E satisfy the assumptions
of Theorem 10.8. Then for every compact set H C U,

(22.4) (1+Ch)MHYENH) > limsup HY(E, N H),

k—+oco
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with a constant C' that depends only on n, M, and A.

Our proof of Lemma 22.3 will be similar to the proof of Proposition 21.9 in the
Lipschitz case. Let {Ey}, E, and H be as in the statement. We first try to cover a big
piece of E N H by small balls.

Our assumptions allow us apply the results of Section 10. In particular, the Ej are
uniformly locally Ahlfors-regular (by (10.10)), and E is locally Ahlfors-regular (by (10.11))
and rectifiable (by Proposition 10.15).

Let € > 0 be given, and use the fact that HY(FE) is locally finite in U (for instance,
because E* is locally Ahlfors regular) to choose an open set V' such that

(22.5) HcVccU and HYENV\ H)<e.
Next, the fact that E is rectifiable implies that for H?-almost every x € EN H,

(22.6) lim 7~ “HYE N B(z,7)) = wq,

r—0

(see Theorem 17.6 on page 240 in [Ma]), and
(22.7) E has a tangent plane P(z) at x.

Recall that the fact that an approximate tangent plane to E is a true tangent plane comes
from the local Ahlfors-regularity of E; see for instance Exercise 41.21 on page 277 of [D4].

We shall assume that the Lipschitz assumption holds; the rigid case is easier, and
we could also obtain it the complicated way, by pretending that U = B(0,1) and v is
the identity. For x € E N H, denote by F(z) the smallest (twisted) face of our grid that

contains . We also set T = ¢(Ax) and F(z) = ¢(AF(x)) (a true dyadic face). For almost
every x € £ N H such that (22.7) holds, we also have that

(22.8) E = (A\E) has a tangent plane P(z) at 7,

because F is also rectifiable and locally Ahlfors-regular (recall that v is bilipschitz). We
also want to show that H%almost everywhere on £ N H,

(22.9) P(z) is contained in the smallest affine space that contains F(z).

We proceed roughly as for (20.66). Fix a face F' of our twisted grid, and first observe that
by Theorem 6.2 on page 89 of [Ma),

(22.10) lim 7~ *HY(E N B(z,r) \ F) = 0.

r—0

for H?-almost every x € F'N E. Then

(22.11) lim p HUENB(Z,p)\ F) =0, with F = (\F)
p—
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(because v is blllpschltz) Next notice that £ N F is rectifiable; hence for H?-almost every
z € FNE, ENF has an approximate tangent P (z) at x, which of course can be chosen
inside the affine span of F. When (22.11) holds, P (z) is also an approximate tangent plane
to the whole E (the additional part has vanishing density). By local Ahlfors-regularity of
E P (x) is even a true tangent plane to E. Tt is easy to see that for local Ahlfors-regular
sets, the tangent plane is unique, so P'(z) = P(z ) almost everywhere on F. Since there is

only a finite number of faces to try, we get that P( ) is contained in the affine span of F
for H%-almost every x € E and all the faces F' that contain z; we apply this to F = F(x)
and get (22.9).

We don’t even need to know that the tangent plane is unique to make the argument
work, because we just need to find, for almost every x € E N H, a tangent plane that
satisfies (22.9); so we could use the plane P'(z) associated to F(z), for instance.

Observe also that the set of points x € F'N H for which the dimension of F(z) is less
than d is excluded by (22.9); this is all right, because this set is H%negligible.

We also exclude the exceptional set Z of (19.35). That is, let us denote by X the
set of points x € E'N H that satisfy the conditions (22.6)-(22.9) above, and in addition,
if = is contained in one of the sets L, = L; \ int(L;), where int(L;) denotes the true
(n-dimensional) interior of L;, and

(22.12) limsup A, (z) < wq,

r—0

where A, (x) is given by (19.33). Thus, by the discussion above,
(22.13) HYENH\X)=0.

For the next stage of the proof, we select a small radius r(z) for every x € X. we
choose r(x) so that

1 .
(22.14) r(r) < A2 min(dist(z, U \ V), dist(z, 0F(x)))

(which is positive because x € ENH C V = int(V) and x lies in the (face) interior of
F(z)),

(22.15) wg—e <1 HYENB(z,7)) <wg+e for 0<r < r(z)
(possible by (22.6)),

(22.16) dist(z, P(z)) <er for z € ENB(x,2r) and 0 < r < r(z),

(22.17) dist(Z, P(z)) < elr for Z € EN B(Z,2M\r) and 0 < r < r(z),
and, when z lies in some L} = L; \ int(L;),
(22.18) A () Swg+e for 0 <r <r(z).
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We add two constraints that will simplify our life when we check the boundary condition
(1.7). We require that for each i € [0, jimaz],

1 "
(22.19) r(z) < mdlst(x,R \ L;)

when z lies in the (n-dimensional) interior of L;, and on the opposite
1.
(22.20) r(x) < 3 dist(zx, L;)

when z € U \ L;.

Let us apply Theorem 2.8 in [Ma] to the family of balls B(x,7), € X and 0 < r <
min(r(x), po), where py will be chosen later, and such that H¢(E N dB(x,r)) = 0. We get
a collection of disjoint B; = B(x;,r;), j € J1, such that

(22.21) 0 <r; <min(r(y;), po)s

HYENOB;) =0 for all j, and
(22.22) H'(x\ |J B)=n'x\ | By =o.
JEI JEI

Let us choose a finite subset J of Ji, so that

(22.23) HY X\ |JBj)<e

jed
Set X1 = ENH \ U;c; Bj; then by (22.13),
(22.24) HU(Xy) =HUX\ [ Bj) <e
jedJ
and we can use the definition of H? to cover X by balls B; = B(z;,7;), i € I, so that

(22.25) r; < po fori eI and er < Ce.
icl

Because X is compact, we can replace I with a finite subset for which the B; still cover
X1 and (removing the useless balls) each B; meets X;. By definition,

(22.26) EnHC |J B;
jeTUJ

Since F N H is compact, I U J is finite, and {E}} converges to E, we also get that

(22.27) ExNHC U Bj for k large enough.
jerug
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For each 7 € I pick y; € E N B;. Then for k large, we can find y; , € E; N B; for every
i € I, and of course B; C B(y; k, 2r;). We shall choose

(22.28) po < min(dist(H,U \ V), A" 1rg, 6),

1
10A2
where the constants A\ and ry come from Definition 2.7 (the Lipschitz assumption), and ¢
comes from our GSAQ(U, M, 6, h) assumption. We don’t care how small they are, the main

point is that they depend only on E and the sequence {E)}. Then B(y; x,4r;) CV C U,
and by (10.11) (the uniform local Ahlfors-regularity of the Ej),

(22.29) HYE N B;) < HYEx N Blyi g, 2r3)) < Cre.

This holds for k large enough (and all ¢ € ), with a constant that depends only on E and
{Ex}. By (22.25), this yields

(22.30) HY(Exn|B;) < Ce
i€l

for k large, and we are left with the contributions of the balls B;, j € J.

We need to use the quasiminimality of Ej, and for this we construct a one parameter
family of mappings {¢;.}, 0 <t <1, for each j € J.

Fix j € J for the moment, and define the cut-off function &; by &;(y) = 0 fory € U\ B;,
and

(22.31) ¢;(y) = min {1, (T?“j)_l dist(y, 8Bj)} for y € B;,

where the small constant 7 > 0 will be chosen later (before ¢ and py).
We start with the easier case when when z; does not lie in any L). Then we pick a
unit vector v; parallel to P(x;), and set

(22.32) wit(x) =x +t&(x)[mj(x) —x + nrjv;]

for y € Bj and 0 < t < 1, where 7; denotes the orthogonal projection onto P(z;) and
n > 0 is a minuscule constant, to be chosen later (depending on 7 and ). We do nothing
on U\ By, i.e., set

(22.33) pjt(x)=x forr e U\ Bjand 0 <t <1.

This is also the formula that we would use under the rigid assumption, but because of
(1.7) (and under the Lipschitz assumption) we shall need to be more careful in our second
case.

If z; € L} for some i, we proceed as we did near (20.80). Denote by F; = F(x;)

the smallest face of our twisted grid that contains z;, set ﬁj = (AF}) (a rigid face), call
W; the affine space spanned by Fj, choose a unit vector v; in the vector space parallel to
P(z;) (the approximate tangent plane to E = (AE) at z; = ¢(A\z;)). Notice that by
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(22.9), v; also lies in the vector space parallel to Wj and F . Denote by 7; the orthogonal
projection onto P;, and finally set

(22.34) Bia() = (M) + 165(2) [7; (6 (A1) — Y () + e

for x € B; and 0 <t < 1. Notice that

(235 [Pi) = wQ)| < [Ow) =] + UFs (0 (2)) — )|+t
| < 2(Aa) = w(Az;)| + nAr; < 2047+ r; < SAAT,

because ¢ (Az;) lies in ]Sj and if n is small enough. Then by (22.14) and (22.21),

dist(;,¢(z), R™ \ (AV)) > dist(¢(Az;), R™ \ (AV)) — 3AAr;
(22.36) > A" dist(z;, U\ V) — 3\Ar;
> 4AAr(25) — 3AAr; > AAr;.

In particular @;.(z) € ¥(A\V) C B(0,1) and we can define

(22.37) o5 () = XA (F54(2)) € V.
Observe that by (22.35)

(22.38) [ie(@) — ;| < ATHAIG; (@) — (Aj)] < BAr;.

This completes our definition of the ¢;; on Bj, and naturally we keep the trivial
definition (22.33) on U \ B;. Our next task is to show that the ¢;;, 0 < ¢ < 1, define
an acceptable competitor for Ey. There is no problem with (1.4) and (1.8); our mappings
@j+(x), t <1, are clearly continuous in z and ¢ and Lipschitz in .

Notice that ¢;(z) = « when t = 0. By (22.33) ¢;+(z) = 2 when € U \ B;. When
x € Bj and we use (22.32), notice that x +t&;(z)[r;(z) —x] € B; (because 7;(z) € B; and
Bj is convex), so @;+(x) € B(xj,(1+n)r;). When x € B; but we use (22.34) and (22.37),
we only get that ¢;.(x) € B(z;,3A%r;), by (22.38). In both cases,

(22.39) jt(Bj) C Blaj, 3A%r;),

and the ¢, ; satisfy (1.5) and (1.6), relative to the ball B = B(z;,3A%r;). They also satisfy

(2.4) with W C B, which is compact and contained in V' C U by (22.14) and (22.21).
Finally let us check (1.7). We do this under the Lipschitz assumption; the rigid case
is just simpler. Let ¢ < j,,4. and x € Ei N L; be given. Recall that we want to check that
p;+(x) € L; for all t, so we may assume that = € B;, because otherwise ¢;+(x) = x € L;.
A first case is when z; € int(L;). In this case, (22.21) and (22.19) imply that
B(x;j,4A*r;) C L;, and then (22.39) implies that ¢;+(z) € ¢;+(B;j) C L;, as needed.
The case when x; ¢ L; is impossible, because (22.21) and (22.20) would imply that B;
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does not meet L;. So we are left with the case when x; € L]. Recall that in this case
@;+(x) was defined by (22.34) and (22.37).

Let F be a face of L; that contains z, and set F' = ¢(\F) and ﬁ(xj) = P(AF(xj)).
We first check that

(22.40) F(z;) C F.

Suppose not, first assume that 15(9[:]) is not reduced to {¢(Az;)}, and apply (3.8), (22.14),
and (22.21), to get that

(22.41) dist((Az;), F) > dist(¥(Az;), O(F(z;))) > A~ dist(x;, OF (x;))
. > 4AAAr(x;) > 4MAr;.

If instead ﬁ(x]) = {¢Y(A\z;)}, ¥(Az;) is a vertex, so dist(w()\:z:j),ﬁ) > 1o because F is

a face that does not contain it, and the conclusion of (22.41) still holds, by (22.21) and

(22.28). But ¢(Az) € F because x € F, so

(22.42) dist((Aay), F) < [0(Aay) — o (Aa)] < Mz — 2] < Mry,

a contradiction which proves (22.40).

Return to ¢;.(z), which was defined by (22.34) and (22.37); we want to show that
@;+(x) C L;, and (by definition of F') it is enough to show that ¢, +(x) € F', or equivalently
that ¢;+(x) € F. Recall that 7; is the orthogonal projection onto ]Bj, which by (22.9) is
contained in the affine span WN/J- of F(x;), and (by (22.40)) in the affine span W of F.

Set T = ¢Y(\x) € F'; we know that Z € F, and then, by (22.34),

(22.43) Gii(x) =T+ t&(2)[7;(T) — T+ nArjv;] € W

because v; was chosen in the vector space parallel to ]3j C W. But Y(Ax;) € F (x;) and
F(zj) C F, so

(22.44) dist((Az;), OF) > dist(¢(Ax;), OF (7)) > 4AAr(z;) > 4AAT;

by (22.14) and (22.21). Set I = [¢)(A\x;), ¢;j(z)]. By (22.35), its length is at most 3AAr;,
so (22.44) says that dist(I,0F) > AAr;. In particular, I does not cross OF’; since its initial
point is ¢¥(Az;) € F(z;) C F (by (22.40)), and I C W (by (22.43)), we get that [ C F.
Hence ¢;(x) € F, as desired, and (1.7) follows.

We are now allowed to test the quasiminimality of Ej on the ¢;;; notice in particular

that the radius of our ball B = B(z;,3A%r;) is smaller than the threshold § > 0 in our
quasiminimality assumption (10.2), by (22.21) and (22.28). We get that

(22.45) HYWL(Ey)) < MHY@j i Wi(Er)) + 3hA%rd,
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where

(22.46) Wi(Ey) ={z € Ey; gji(z) # 2} C Ex N B;

(by (22.33)). Next we estimate He(p; 1(Ex N B;)). Let us first check that for k large,
(22.47) ¢j1 is 2A%-Lipschitz on Ej N B;.

We start in the easier case when ¢, 1 was defined by (22.32). Observe that for z,y € Bj,

pi(z) —pi1(y) =z + & (@) [m(x) —z +nrjv;] —y — &(y)[m;(y) —y + nrjvy]
= (v —y) + & (@)[mj(z) — m;(y) — (x — y)]
(22.48) + (& (x) = & W)lmi(y) —y +nrjv;]
= (1= ¢&()(z —y) +&(@)[mj(z) — m;(y)]
+ [&(@) = &Wllm; (y) — y + nrjv;]

and hence

lj1(®) — i1y < |z —yl+1§(@) — &7 (y) — yl +nry)

(22-49) < |.T — y| + (TTj)_1|5L' - y|[|7rj(y) - y| + 7]7']‘]

by (22.31). Since {E}} converges to E, for k large enough we have that for each y € ExNB;,
there is a z € E such that |z — y| < er;. Then z € B(xzj,2r;), and (since r; < r(x;) by
(22.21)) (22.16) says that dist(z, P(z)) < er;. Hence |7;(y) —y| < |mj(2) — 2| +er; < 2erj;
then (22.47) easily follows from (22.49), if £ and 7 are small enough compared to 7.

When ;1 is given by (22.34) and (22.37), it is enough to check that @;q is 2AA-
Lipschitz on E, N B;. Let z,y € Ej N Bj be given; by (22.34) and the same computation
as for (22.49),

251 (x) — 251 (y)] < [pAz) — p(Ay)l + 1€(@) — &) IT5 (0 (Ay)) — w(Ay)] + nAr;)
(22.50) < Mz — yl + (r5) " Ha — y| 1750 (\y)) — ()| + nAr].

Let z be, as before, a point of E such that |z — y| < er;. Set Z = 1(\z), and notice that
Z —(Ay)| < Az —y| < Merj, and also |2 — ¢(Azj)| < AA|z — x| < 2AAr;. Since
z € E=1y(\E), (22.17) yields dist(z, P(z;)) < eAr;. Thus

(22.51)  dist(p(A\y), P(x)) < dist(Z, P(x;)) + [Z — ¥ (\y)| < edrj + Aer; < 2\Aer,

for y € £, N B; (and k large). Then (22.50) yields

(22.52) @51 (2) = Z5,1(Y)] < Az —y| + (775) 7 o — yl[2AAer; +nhry],

©;.1 is 2AA-Lipschitz on Ej, N B; (for k large and if € and 7 are small enough), and we get
(22.47) in our last case.

254



Write B; = Bjint U Bjext, where Bj iy = {y € Bj;dist(y,0B;) < Trj}, Bjext =
Bj \ Bj int, and 7 > 0 is still the small constant in the definition (22.31) of £;. Observe
that by (22.15),

Hd(E N Bj,ea?t) - Hd<E N Bj) - Hd<E N Bj,int)

22.53
( ) < (wg + 5)7”;[ — (wg —e)(1 — T)dr;-i < CTT?

if € is small enough compared to 7. Since Bj . is closed, we can apply the weak lower
semicontinuity result of (10.14), and we get that for k large

(22.54) HY(Ey N Bjeat) < CurHY(E N Bjewt) + 11 < Crr;

of course if the reader does not feel like using (10.14), he may also use the flatness of EN2B;
(see (22.16)), the fact that the Ej converge to E, and the uniform Ahlfors regularity of
the E} near B; to get (22.54). Next, by (22.47),

(22.55) H(pj1(EBk N Bjear)) < Crrf,

where we no longer write the dependence on A.
We are left with the contribution of Bj ;.. If we used (22.32) to define ¢; 1, we get
that ¢, 1(x) = 7j(z) + nrjv; for x € Bj jnt, because &;(z) =1 on Bj jne. Then

(22.56) H (01 (Ek N Bjint)) = H (7 (Bx 0 Bjint)) < HY(P(x;) N B;) < war.

If instead we used (22.34) and (22.37), observe that by (22.34), ¢;1(z) = 7, (¢ (A\zx)) +

nAr;v; for x € E, N Bjint. We chose v; parallel to ﬁ(xj), so ¢;j1(z) € P(x;), and hence
(22.57) i) € X (Pay)),
by (22.37). In addition,

i (@) — 2] S ATIAIG;(2) — Y(Ax)] < ATTA[IT (v (Aa)) — v ()| + nhry]

(22.58) o - ) ) )
< AT Adist(yY(Ax), P(xj)) +nAr; < 2A%er; + A nr;

by (22.37) again and (22.51).
Since x € B, int, we get that |z—x;| < (1—7)r;, and then (22.58) implies that ;1 (z) €
B, if € and n are small enough compared to 7. Thus ¢;1(z) € B; N /\_11/J_1(}N7(xj)).
But P(z;) is a d-plane which is contained in the affine span of the face F; = ¢(AF(z;)
(see (22.9) or the description above (22.34)), so the definition (19.33) yields

(22.59) H (3.1 (Bx 0 Bjie)) < HO(B; 1 A1 (Bay)) < rdA,, (7).

In addition, we only used (22.34) and (22.37) when = € L) for some i, and then (22.18)
(together with (22.21)) says that A, (z;) < wg +¢. Thus

(22.60) Hd(goj’l(Ek N Bjint)) < T?A,«j () < (wq + f—:)r? < (14 Ce¢) wdr?.
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Since (22.56) was a better estimate, we shall remember that (22.60) holds in all cases. We
group this with (22.55) and get that

(22.61) HYp;1(Ex N By)) < CTT;-l + (14 Ce) wdr;-l < (1+ C'T)wdr;l

(if € is small enough).

We now return to (22.45) and give a lower bound for H%(W;(E}y)). We claim that
Er N Bjint C Wi(Ey). Let o € Ep N Bjine be given. If we used (22.32), ¢;1(z) =
7j(x)+nrjv; and w;(p;.1(x)) = mj(x)+nrjv; # 7j(x) because we chose v; parallel to P(x;).
Then ¢; () # x and z € W1 (E)). If instead we used (22.34) and (22.37), (22.34) yields
@j1(x) = m(¥(Ax)) + nAr;v;, and now 7;(p;1(2)) = 7;(Y(Ax)) + nArjv; # 75(Y(Ax))
because v; is parallel to Pj(x); in this case ¢;1(x) # ¥ (Ax), hence ¢;1(z) # = and
x e W (Ek) So Ep N Bjﬂ‘mg C Wl(Ek), and (22.45) yields

HYEp N Bjint) < HUWi(ER)) < MHY (0;0W1(Er)) + 3hArd

(22.62) J 5 4
< MH(p;1(E), N B;)) + 3hA>r

by (22.46). By (22.54), (22.62), and (22.61),

HY(E, N B;) < HY(E, N Bjint) + C1rf
< MH(p;1(Ey N B;)) + 3hA*rd + Crrd
< [de +3hA% + CT} T?
< [Mwq + 3hA? + C7](waq — &) "HY(E N By)

(22.63)

by (22.15). We sum over j and get that

HUE,NH) <HY BN | B)j) <Ce+d HU(E.NBy)
JeruJ JjeJ
< Ce+ [Mwg + 3hA® + C7](wa — €)' Y _HYE N B;)
jed
< Ce+ [Mwg + 3hA* 4 C7)(wg — &) "HUENV)
< Ce + [Mwy + 3hA* + Ot (wq — &) ' HUEN H) + €]

(22.64)

by (22.27), (22.30), (22.63), the fact that the B;, j € J are disjoint and contained in V'
(by (22.14) and (22.21)), and finally (22.5).

This holds for all choices of small constants 7 and e, with € small enough (depending
on 7) and k large enough (depending on 7 and €). We let k tend to 400 in (22.64), notice
that we can take 7 and € as small as we want (depending on E, the Fj, and H), and get
(22.4). This completes our proof of Lemma 22.3. O

Proof of Theorem 22.1. We start with the case when the Fj satisfy the assumptions of
Theorem 21.3. In both of our three cases, the sets Ej, lie in some fixed GSAQ(U, M, 4§, h),
and we shall be able to apply Theorem 10.8 and Lemma 22.3.
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In our first case when the Ej are A -almost minimal, we can take h = 0 and M =
14 h(d) as close to 1 as we want (because (21.2) holds), only at the price of choosing &
small. We do that, get (22.4) with h = 0 and M close to 1, let M tend to 0, and get (22.2).

In the second case when the Fj are A-almost minimal, we take M =1 and h = h(J),
which is also as small as we want by (21.2), apply Lemma 22.3, let § tend to 0, and get
(22.2) as above.

In the third case, we just need to observe that the Ej are also A-almost minimal, by
the easy part of Proposition 20.9, and use the second case.

So we may assume now that the Ej satisfy the assumptions of Corollary 21.15. Because
of (21.10) we can still apply the results of Section 10, with some acceptable choice of M
and h > 0, but we do not want to use Lemma 22.3 with these constants, because we want
to get rid of M and h.

Instead we want to use the proof of Lemma 22.3, change a little bit the definitions and
accounting at the end, and use our asymptotic minimality assumption (21.13) or (21.14).

The main difference will be that we want to group some of the families ;. Recall
that (21.13) and (21.14) come with some 6 > 0. Let us pick a maximal family z;, 1 <1 < L,
of points of H, so that the y; lie at mutual distances §/10 from each other. Then do the
construction of Lemma 22.3, with py < 1072A 72§ (in addition to the constraint in (22.28)).
This gives, in particular, a family of balls B;, j € J, and for j € J a family ¢, ;.

For each [, denote by Jy(l) the set of indices j € J such that |z; — y;| < 6/10. Each
J € J lies in some Jy(1), because otherwise we could add z; € H to our collection of points
y; and that collection would not be maximal. We prefer to have disjoint sets, so we set

(22.65) J(l) = Jo()\ | J(m) for 1 <1< L.

m<l

Then we fix I, and define a new family {p;}, 0 <t <1, by

(22.66) o) =xzfor0<t<landz €U\ U B;
jeJ(l)

and

(22.67) or(z) = @j(x) for 0 <t <1 and x € Bj.

The B; are disjoint, so there in no ambiguity in (22.67). Also, the ¢; are continuous across
the natural boundaries 0B;, j € J(I), because the ¢, are, and by (22.33). Because of
this, the ¢, satisfy the conditions (1.4) and (1.8).

We first need to check that the family {¢;} is d-admissible for Fj, (see the definition
below (21.10)). Let W;(Ejy) and W(Ek) be as in (21.11) and (21.12). If x € W (E)) for
some t € [0,1], then = € B, for some j € J(I) (by (22.66)), and then ¢;(z) = ¢;(z) €
B(z;,3A?r;), by (22.39). This means that

(22.68) W(Ey) ¢ |J Bl;,3A%r;) € By, 6/3)
el
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because 7; < pg < 1072A72§ and |z; — y| < §/10. Thus (1.4) and (1.5) hold for the
E}, with respect to the ball B = B(y;,§/3). Also, the B(xz;,3A%r;) are still contained in
V C U (by (22.14) and (22.21)), so W(Ey) CC U and {¢;} is é-admissible for Ej;. We

thus get that for each € > 0 (we can keep the same one as before), we can find kg > 0 such
that for k > ko,

(22.69) HYW1(Er)) < H (o1 (Wi(ER))) + €
(as in (21.13) or
(22.70) HYEr \ p1(Br)) < H (o1 (Ex) \ Ex) +¢.

(as in (21.14). We first assume that (22.69) holds for k > ko, because it is closer to what
we had for Lemma 22.3. Then

H (o1 (Wi(E)) < HU e (Ben | By) < > HUei (BN By))

(22.71) d jea ) jeI (1) d
= > HUp1j(ErNBy)) < > (1+Cr)war
JEJI(1) jeJ()

because Wi (Ey) C U;e () Bj by (22.66), and by (22.67) and (22.61).
On the other hand, Wi (Ey) contains Ey,NB; ins for k large, by the proof above (22.62);
hence

Z Hd(Ek N Bj) < Z [Hd(Ek N Bj,int) + CTT;-I}

jeJ(l) jeJ )
<HYELN U Bjint) +C Z TT‘;-l < HUWL(EL)) +C Z 7'7“;1
jeJ @) jeJ @) jeJ @)
(22.72) <HU o1 (Wi(ER)) +e+C > i <e+ > (1+Cr)ward
JEJ() jeJ)

by (22.54), because the B; are disjoint, and by (22.69) and (22.71). We sum this over [,
use the fact that J is the disjoint union of the J(I), and get that

(22.73) > HUE,NB;j) < Le+ Y (14 Crwart;
Jjed jeJ
the extra L will not disturb, because it is fixed as soon as we know 9, and we can choose
e later. We proceed as in (22.64):
HUENH) <H (B | By) <Ce+ > HUENBy)
jerug jeJ
< Ce+ Le + Z(l + C’T)wdr?
JjeJ
(22.74) < Ce+ Le + Z(l + CT)wa(wa — ) "HYE N By)
jed
<Ce+Le+(1+Cr)——HYENYV)
Wqg — €
w

d gmdwm H) +¢€]

§05+L5+(1+C7')w
g —
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by (22.27), (22.30), (22.73), (22.15), the fact that the B;, j € J are disjoint and contained
in V (by (22.14) and (22.21)), and (22.5).

This is true for 7 small enough, £ small enough (depending on 7 as well), and k large
(depending on both). We let k tend to+oo, and then let ¢ and 7 tend to 0, and we get
(22.2).

Now assume that (22.70) holds. The simplest is to show that (22.69) holds as well.
Set W = W1 (E)) and observe that

(22.75) W\ p1(W) C Eg \ o1(Ey)

because if z € W\ 1 (W), it lies in Ey, does not lie in 1 (W), and does not lie in ¢ (E \W)
either, because p1(y) =y ¢ W when y € Ejy \ W. Similarly,

(22.76) 1(Ex) \ Ex Cor(W)\ W

because if z € p1(FEy) \ Ex and y € E} is such that ¢1(y) = z, then y € W (otherwise,
x=p1(y) =y € Ei) and of course x ¢ W (because W C Ej, and = ¢ Ej). Then

HIW) = HUW Nor(W)) + HIW \ o1 (W)
<HUW Nor(W)) + HYUER \ 01(Er))
(22.77) i 4
<SHIW Nor(W)) + H(01(Er) \ Ex) +¢
SHIW Ner(W)) + HA o1 (W) \ W) + e =Hp1(W)) + ¢

by (22.75), (22.70), and (22.76), as needed for (22.69). This completes our proof of (22.2)
when (22.70) holds; Theorem 22.1 follows. O

23. Limits of quasiminimal and almost minimal sets in variable domains.

The main result of this section is a variant of Theorem 10.8 where we allow the
domain U and the boundary pieces L; to vary slightly along the sequence. We shall not
try to obtain an optimal result here (this would probably involve following the long proof
carefully), and instead we shall state a result (Theorem 23.8) that we can easily deduce
from Theorem 10.8 by a change of variable.

Let us explain the notation for Theorem 23.8. We are given an open set U (the limit)
and boundary pieces Lj, 0 < j < jpqz, and we assume as in (10.1) that

(23.1) the Lipschitz assumption are satisfied in U.

But we also give ourselves a sequence {Ux} of open sets, and for each k£ > 0 a collection
of boundary pieces L;x, 0 < j < jpmae. We shall make our life simpler and assume that
Ui and the L;; are parameterized by U and the L;, using a single bilipschitz mapping
& U — Up. That is,

(23.2) Uk == fk(U) and Lj,lc == fk(L]) for 0 S ] S jmam-
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In addition, we assume that the £ become optimally bilipschitz, in the sense that there
exist constants 7, > 1 such that

(23.3) & is mg-bilipschitz on U and i lim n = 1.

—+00

We also assume that

(23.4) lim & (x) =z for x € U.

k—+oo

These are quite strong assumptions on our sequence, but our main example will be a blow-
up sequence at a point of an initial domain where each L; has a tangent cone, in which
case the &, can be constructed by hand. See Section 24.

Now we give ourselves a sequence {Ej} of quasiminimal sets. We assume that the
following properties hold for some choice of constants M > 1, 6 € (0,+00|, and h > 0.
First, each F} is a relatively closed subset of the corresponding set Uy, Fj is coral (as in
(10.3) and Definition 3.1), and

(23.5) E), € GSAQ(Uy, M, 8, h),

where of course we define GSAQ(Uy, M, d, h) relative to the sets L; i, 0 < j < jmaz. We
assume, as in (10.4), that for some relatively closed set E C U,

(23.6) lim Ej = E locally in U.

k—+oo

Since the E} are contained in slightly different domains Uy, let us say what this means:
for each compact set H C U and each ¢ > 0, we can find kg > 0 such that for k > ko,

(23.7) dist(x, Bx) < ¢ for every x € ENH and dist(z, F) < ¢ for every z € E, N H.

When the rigid assumption does not hold, we also assume that (10.7) or (19.36) holds
(in U, for the Lj).

Theorem 23.8. Let U, {Uy}, the L;, the L, 1, and { E}} satisfy all the conditions above,
including (10.7) or (19.36) when the L; don’t satisfy the rigid assumption. Also assume
that h is small enough, depending on M, n, and the constant A that comes from (23.1).
Then FE is coral, and

(23.9) E € GSAQ(U, M, 0, h),
with the same constants M, §, and h as in (23.5).

We first prove the theorem, and then comment later. Since we want to reduce to a
fixed domain, we consider the sets

(23.10) B, =&Y (Ey) C U,
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and we want to apply Theorem 10.8 to the sequence {Ek} Since & is bilipschitz, B is
closed in U and coral. We claim that

(23.11) Ey € GSAQU, i M, n; '8, nih),

where GSAQ is defined in terms of the boundaries L;. The proof is the same as for
Proposition 2.8, so we won’t repeat all the verifications, but just give the outline. For each
one parameter family of mappings ¢; : By — R™, 0 <t < 1, that satisfies (1.4)-(1.8) with
a radius 7 < 7, ' and (2.4), we observe that @:(Ey) C U by (2.4), and so we can define
mappings ¢; : Ey — Uy by

(23.12) i =Ep o Prok .

It is easy to see that the properties (1.4)-(1.8) and (2.4) for the ¢, (relative to Uy and the
Lk, and with a radius r < ;7 smaller than ¢§) follow from their counterpart for the ¢,
so we can apply (2.5) to ¢1; this yields

(23.13) HEWL) < MH (o1 (W1)) + hrd,

with Wy = {z € Ei; ¢1(x) # z}. The analogue of W; for the @, is

(23.14) Wi = {z € Ey; $i(2) # ) = &' (W),

so (23.13) yields

(23.15) HA(W1) < nirH (Wh) < i MH (o1 (W) +ithr? < MAH® (G0 (Wh) +ni B,

as needed for (23.11).
We shall want to check that

(23.16) lim Ej = E locally in U,

k——+oco

but we start with simple consequences of (23.3) and (23.4). First notice that (23.4) implies
the apparently stronger fact that

(23.17) i lim & (z) = = uniformly on every compact subset of U,
—+o0

simply because (23.3) says that the & are Lipschitz on U, with uniform bounds. Next we
check that for every compact set H C U, we can find a compact set K C U and an integer
ko such that

(23.18) H C &(K) for k > k.

Set r = 1 dist(H,R™\ U) > 0 and cover H by a finite number of balls B(z;,r). For each
i, we (23.17) says that for k large, | (y) —y| < r for y € 0B(x;,3r). For such k, and each

261



x € B(z;,r), the mapping from 0B(z;,3r) to the unit sphere which maps z € 0B(z;, 3r)
Eu(z)—w
1€k (2) —2]

degree 1 because we can easily find a homotopy from this map to to the map z —

to is well defined (because |£x(z) — x| > |z — | — r > r), continuous, and of

|z—z|
|z—=|

(among continuous mappings : dB(x;,3r) — 0B(0,1)). Then there is no homotopy from
it to a constant, which implies that = € £, (B(z;,3r)) (because otherwise we could use the

mappings z — %, with z; = tx; + (1 —t)(2 — x;). Set K = U; B(w;,3r); we just
proved that & (K) contains all the B(z;,r), and (23.8) follows.

We are now ready to check that {E)} converges to E, as in (23.16). Let H C U be
compact, set dg = dist(H,R™ \ U), and let ¢ € (0,dy/2) be given. First we want to show

that if k large enough, then
(23.19) for every x € E N H we can find g € Ej, such that |z — ;| < 2¢.

By (23.7), we can find y; € Ej such that |z — yi| < . Notice that y, lies in the compact
set Hi = {y € R™; dist(y, H) < du/2}. By (23.18), there is a compact set K such that
&k (K) contains H; for k large.

Set yr = Sk_l(yk) We already knew that fk_l(yk) is defined and lies in Ej, because
Ey C Uy = & (U) and E) = f;l(Ek); now we also know that 3, € K for k large, and
(23.17) says that for k large, |Ji — yr| = [Tk — &k (Tr)| < &. Thus i € Ex, and |z — yx| < 2e;
this proves (23.19).

Conversely, if k is large enough, then for each z;, € Ej, N H (23.17) says that | &4 () —
x| < g; but &(zk) € Er € Hy (by (23.10) and the definition of Hy), and (23.7) gives
(again if k is large enough) a point x € F such that |z — & (z)| < e. Thus |z — x| < 2e.
This completes our proof of (23.16).

We may now return to Theorem 23.8. If we prove that

(23.20) E € GSAQ(U, M', &', 1)

for every choice of M’ > M, §' < 4, and b’ > h, the desired conclusion (23.9) will follow;
this comes from the way we defined GSAQ(U, M, d, h) in Definition 2.3. So it is enough
to show that the ENJk satisfy the assumptions of Theorem 10.8, with any such choice of
M’ B, and where the limit in (10.4) is still .

But (10.1) is the same as (23.1), (10.2) follows from (23.11) (if we use the fact that
n tends to 1 by (23.3), and restrict to k large), and (10.4) follows from (23.16). Since
we also assumed (10.7) or (19.36) if the rigid assumption does not hold, we can apply
Theorem 10.8 or Remark 19.52 and get (23.20). Theorem 23.8 follows. O

We end this section with a few comments and extensions of Theorem 23.8.

Remark 23.21. Our bilipschitz assumption (23.3) could easily be made more local. That
is, if instead of (23.3) we assume that each & : U — Uy is bilipschitz, and that for each
compact set K C U and each n > 1 we can find kg > 0 such that

(23.22) 0~ e —y| < € (@) — & (y)| < nle—y| for k> ko and 2,y € K,
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we still get the same conclusion. This is easy, because given a competitor (i.e., a one pa-
rameter family {¢;} with the usual conditions), we can restrict our attention to a relatively
compact open set V' such that WcVccU , and then apply Theorem 23.8 with the open
set V.

To be honest, even though we claim that the proof still works, the situation is a little
more complicated than this, because V', together with the boundary sets L; NV, may not
satisfy the Lipschitz assumption as in (23.1). This gets better if we choose V', possibly a
little larger, so that )(AV) is a ball centered at the origin (and with a radius close to 1).
Without saying more, we can observe that our proof of Theorem 10.8 still works in that
case (we never used the fact that the radius of B(0,1) is a dyadic number). Or, on a more
formal level, we can also make sure that ¥ (AV) = B(0,1 — 27") for some integer m, and
observe that the sets (1 —27™) 1 (L;NV) satisfy the rigid assumption, although perhaps
with a grid with a 2" times smaller mesh. This has a small incidence on the statement of
Theorem 10.8, so we can get an acceptable formal proof this way.

Remark 23.23. The lower semicontinuity of #¢, as in Theorem 10.97, is still true under
the assumptions of Theorem 23.8. That is, under the assumptions of Theorem 23.8, we
also have that

(23.24) HYENV) <liminf HY(E, NV) for every open set V C U.

k—4o00

(as in (10.98)). Indeed, for this it is enough to show that if V' C U is open, and if H is
any compact subset of V|

(23.25) HYENH) < liminf HY(E, NV),

k—+o0

just because we can write HY(ENV) = lim;_, 4 oo H4(E N H;), where {H;} is an increasing
sequence of compact subsets of V.

Let V and H be given, and let W be an open set that contains H and is relatlvely
compact in V. We have seen in the proof of Theorem 23.8 that the sets Ek NV =¢&, ( ©)N
V satisfy the assumptions of Theorem 10.8 and Theorem 10.97 for some acceptable choices
of constants (i.e., with h small enough), and with the same limit F, so Theorem 10.97 yields

(23.26) HYE N H) < liminf HY(E, NW).

k—+o00

For k large, &, (Ey NW) = & (Ep) NEL(W) C By NV (by (23.10) and because (23.17) says
that the & converge to the identity uniformly on W), and

(23.27) HUE, N W) < i HYE (B N W) < i HYE, N V)

by (23.3); now (23.25) and then (23.24) follow by letting &k tend to +oc.

Remark 23.28 (limits of almost minimal sets). Our statements about limits of
almost minimal sets, namely Theorem 21.3 and Corollary 21.15, also hold in the present
setting.
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We start with Theorem 21.3. If, in Theorem 23.8 above, we replace the quasimini-
mality assumption (23.5) with the assumption that

(23.29) E} is an almost minimal set in Uy, with the sliding
. conditions given by the L;j; and the gauge function h,

where h is a gauge function such that (21.1) and (21.2) hold (otherwise, see Remarks 21.6
and 21.7), and one type of almost minimal set (A4, A, or A’) is chosen. The conclusion
is then, as in Theorem 21.3, that the limit set F is an almost minimal set in U, with
the sliding conditions given by the L;, the gauge function h, and the same type (A4, A,
or A’). The proof consists in following our short proof of Theorem 21.3, and applying
Theorem 23.8 instead of Theorem 10.8.

Similarly, if we replace the assumption (23.5) with the assumptions (21.10)-(21.14)
(and taken, for Ej, in the domain U}, and relative to the boundary sets L; 1), we get the
same conclusion as in Corollary 21.15, namely that E is a coral local minimal set in U,
that satisfies (21.16). Once again, we just follow the proof of Corollary 21.15.

Remark 23.30 (upper semicontinuity of #?). The upper semicontinuity results of
Section 22 can also be generalized in the context of slowly changing domains. We start
with an extension of Lemma 22.3.

Lemma 23.31. Let U, the L;, the Uy the L;, the {Ey}, and the limit E satisfy the
assumptions of Theorem 10.8. Then for every compact set H C U,

(23.32) (1+Ch)MHYEN H) > limsup H*(Ex N H),

k—+oco

with a constant C' that depends only on n, M, and A.

We proceed and as in Theorem 23.8, to deduce Lemma 23.31 from Lemma 22.3 and
a change of variable. We already proved near (23.20) that for each choice of M’ > M,
0" < §,and b/ > h, the end of the sequence {Ek} satisfies the hypotheses of Theorem 10.8 or
Remark 19.52. Then (if A is small enough) they also satisfy the conclusion of Lemma 22.3:
for each compact set K C U,

(23.33) (14 Ch)M'HY(EN K) > limsup H(E), N K),

k—+oco

with a constant C' which we can still bound in terms of n, M, and A (the constant C' that
is associated to 2M also works for all M’ < 2M).

Return to (23.32), let H C U be compact, and let € > 0 be given. Pick a compact set
K C U such that H is contained in the interior of K and H4(ENK) < HYENH) +¢.
Observe that for k large,

(23.34) &(Bx N H) = &(By) N & (H) = Ex N &(H) C By N K
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by (23.10) and because by (23.17) the & converge to the identity uniformly on H. Thus
for k large,

HYEy N H) < i (&e(Epy N H)) < niHYER N K)
(23.35) <1+ Ch)M'HYENK) + €]
<01+ CRM' (HUENH) +¢) + €]

by (23.34). We let k tend to +o00, use (23.3), let € tend to 0, and get (23.29). We take the
limsup of this, recall that 7, tends to 1 by (23.3), then observe that ¢ and M’ — M are
arbitrarily small, and get (23.32) O

Here is a generalization of Theorem 22.1.

Lemma 23.36. Let U, the L;, the Uy, the Ly, the {Ey}, and E satisfy the same assump-
tions as in Theorem 21.3 and Corollary 21.15, but modified as in Remark 23.28. Then for
every compact set H C U,

(23.37) limsupHY(E, N H) < HYENH).

k—+o00

In the case of Theorem 21.3, we can just follow the proof of Theorem 21.3, and replace
Lemma 22.3 with Lemma 23.31 when needed. In the case of Corollary 21.15, the simplest
seems to show that the sets Ej of (23.10) satisfy the assumption of Corollary 21.15, and
then compute as in Lemma 23.31. We claim that the verifications are quite similar to what
we did for Theorem 23.8 and Lemma 23.31, and we skip them. 0

24. Blow-up limits.

In this section we apply the results of Section 23 to the case of blow-up limits of an
almost minimal set E, at a point z¢ € E near which the boundary pieces L; behave in a
roughly C! way.

We fix an open set U C R", boundary pieces Lj, 0 < j < jpae, @ point zo € U, and
a quasiminimal (or almost minimal) set £ C U. We shall systematically assume that

(24.1) U and the L; satisfy the Lipschitz assumption

(see Definition 2.7), and things will be more interesting when E is assumed to be coral
and we take xg € F.
We are also given a sequence {ry}, with

(24.2) lim r, =0,

k— 400

along which we want to define a blow up. We define the sets Ej, by
(24.3) Ey=r."(E—x)={2€R"; 29+ 12 € E}.
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A simple computation shows that

(24.4) Ei € QSAQ(Uy, M,r; ', h) if E € QSAQ(U, M, 4, h),
with Uy, = r,;l(U — x¢), and where on Uy we use the boundary pieces
(24.5) Lix=7;"(Lj —20), 0 < j < fmaz-

Similarly, if F is almost minimal in U, with the sliding conditions coming from the
L;, and the gauge function h, then Fj, is almost minimal in Uy, with the sliding conditions
coming from the L; j, the gauge function hy defined by hy(t) = h(tri), and the same type
of almost minimality (A, A, or A’) as F; see Definition 20.2. Notice that, by (24.2), the
sets Uy converge to R™.

A blow-up sequence for E at the point x( is any sequence {Ejy} defined by (24.3),
under the condition (24.2). In some cases, the sequence converges, i.e., there is closed set
E., C R™ such that

(24.6) E. = lim Ej locally in R".

k—+o00

When this is the case, i.e., when (24.6) holds for some sequence {ry} that tends to 0, we say
that E, is a blow-up limit of E at zg. Of course, different sequences may yield different
blow-up limits F,, even though in some cases one can prove that F has only one blow-up
limit at zg.

By general compactness arguments, we can always extract, from any blow-up sequence
for E/ at the point zg, a convergent subsequence. Thus FE always has at least one blow-up
limit at zo. We shall only consider the case when xy € F (because otherwise Fo, = () and
E is coral (because otherwise the fuzzy sets Ej \ E} could just tend to anything). When
in addition, F € QSAQ(U,M,d,h) with a small enough 4, we know that E is locally
Ahlfors-regular, and so F, is Ahlfors-regular too, so it cannot be too bad.

Our intention is to prove that under reasonable assumptions on the L; near xg, Foo
is quasiminimal and sometimes minimal, with sliding boundary conditions coming from
limit sets L? that we want to define now.

Let us forget about E for a moment, and restrict our attention to the sets L;. We
assume that for each 0 < j < jy,4 such that z¢ € Lj, there is a closed set L? such that

(24.7) the sets L;x =, ' (L; — 0) converge to L9, locally in R™.

This is a weak way of asking for a tangent set at g, at least along the sequence {ry}.
When z ¢ Lj, it is easy to see that the L, go away to infinity, and we can always set
L0 =10.

This condition will not be enough for us, we want to say more uniform about the way
the L;j converge to the L?. The main point of the following definition is that it is just
what we need to apply Theorem 23.8, and its conditions should still be easy to check in
simple concrete situations. Otherwise it is a little too complicated, and we shall partially
address this point later.
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Definition 24.8. Suppose the Lipschitz assumption (24.1) holds, and let xqg € U and a
sequence {ry} that tends to 0 (as in (24.2)) be given. We say that the configuration of L;
is flat at xq, along the sequence {ry}, if we can find closed sets L?, 0 < J < Jmaz, such
that (24.7) holds when z¢ € L;, and for each radius R > 0, numbers n;, > 1 such that
limy oo nx = 1, and bilipschitz mappings & : B(0, R) — &(B(0, R) such that &, (0) = 0,

(24.9) pi e =yl < & (z) — & (y)| < pilz — y| for z,y € B(0, R),

(24.10) LixNB(0,p,'R) C & (LY N B(0,R)) C Lj, N B(0, piR)
for 0 < j < jimar and k large enough, and

(24.11) lim & (x) =z for z € B(0, R).

k——+oo

Probably a more reasonable notion would be that the configuration of L; is flat at z,
meaning along any sequence {rj} that tends to 0. Then it would not be too hard to check
that the L? are cones, and don’t depend on the sequence {ry}. This corresponds more to
the usual notion of being C! at zy.

The main defect of Definition 24.8 is that it concerns the whole configuration of the
sets L, ie., both the faces that compose them and their relative positions. For the existence
of limits LY as in (24.7), this is not a problem and we can check it face by face. That is,
if for each of the faces F' that compose an L;, we can find a closed set Fy such that

(24.12) the F* = 1(F — z¢) converge to F*, locally in R”,

(with FO = 0 if o ¢ F), then (24.7) holds, with a set LY which is just the union of the
FY where F runs along the faces of L; that contain .

To compensate this defect, we shall give in Proposition 24.35 a sufficient condition
for the existence of the & in Definition 24.8, that can be checked face by face, so that we
don’t have to worry about how the different faces (if they are nice) are glued to each other.

Also notice that the flatness condition above is satisfied trivially under the Lipschitz
assumption; most of the work in this section will consist in dealing with the other case.

We are ready for the main statement of this section.

Theorem 24.13. Let E be a coral closed set in U, xo € E, and let the sequence {rj}
tend to 0 as in (24.2). Assume that (24.1) holds, that the configuration of L; is flat at
0, along the sequence {ry}, and that the limit sets L} defined by (24.7) satisty (10.7) or
(19.36). Finally assume that E is a closed subset of R™ such that (24.6) holds.

If E € QSAQ(U, M, 6, h), with a constant h > 0 which is small enough (depending on n,
M, and A), then

(24.14) Eoo € QSAQ(R™, M, +00, h),

with respect to the sliding boundary conditions associated to the L?, 0 < J < Jmaz, defined
by (24.5).
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If E' is an almost minimal set in U, with the sliding conditions coming from the L;, and a
gauge function h such that lim,_,o h(r) = 0, then

FE is locally minimal in R™, with the sliding boundary conditions

(24.15) 0 .
defined by the L3, 0 < j < jmaa-

Some comments about the definitions are in order. Concerning (10.7) or (19.36), we
will see that the L? have natural decompositions into faces, so the definitions make sense,
and since we expect the L) to be at least as nice as the Lj, assuming (10.7) or (19.36) for
them does not hurt more than usual.

For (24.15), we accept the three types (A4, A, or A’) of almost minimality, and our
conclusion (24.15) means that for each one parameter family of mappings ¢; : Foo — R”
that satisfy (1.4)-(1.8) for some closed ball B C R™, we have the two minimality properties

(24.16) H(Boo \ 91(Eso)) < H(p1(Eoc) \ Exc)
as in (20.6) with h(r) =0, and
(24.17) HY(p1(Wh)) < HUW), with Wi = {z € Ex; p1(z) # 7}

as in (20.4) or (20.5), which coincide when h(r) = 0. Notice that our conditions for the
competitors (i.e, the family {¢;}) simplify here, because (2.4) is automatic, and (1.5)-(1.6)
reduce to the fact that ¢;(x) = x for 0 <t < 1 when |z| is large enough.

The class QSAQ(R™, M, +00, h) is as in Definition 2.3, and it makes sense even with-
out the Lipschitz assumption.

Let us now prove Theorem 24.13. Let R > 1 be a (large) number; we want to apply
Theorem 23.8 in a ball comparable to B(0, R), and our first task will be to check the
Lipschitz assumption for the boundary pieces L?, with a grid that we need to construct.
Of course we shall use the grid that is provided by the Lipschitz assumption (24.1) for the
L;. In the special case of the rigid assumption, we don’t even need to worry about this,
because we can directly apply Theorem 10.7 or Corollary 21.15 (once we look at them in
a small enough ball, the L; coincide with simple cones and we don’t eve have a variable
domain).

Recall that the Lipschitz assumption in Definition 2.7 comes with constants A > 0,
A > 1, and a A-bilipschitz mapping ¢ : \U — B(0, 1). For each large enough k, we define

a mapping ¥ : B(0,3A) — R™ by

(24.18) Ui (2) = pi (Ao + Rryz)) — py, Mo (Aao),
where pj, is a power of 2 that we choose so that

(24.19) ARr < pr < 2)\Rry.

Thus ) is defined on B(0,3A) as soon as B(zg,3ARry) C U. By the normalization
(24.19), the ;. are 2A-bilipschitz, and since 1 (0) = 0 there is a subsequence of {ry} for
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which ¢, converges uniformly on B(0,3A) to some 2A-bilipschitz mapping v : B(0,3A) —
1o(B(0,3A)). We replace {ry} with such a subsequence; this will not alter the construction
of a grid for the limit set. Of course ¥o(B(0,2A)) contains B(0,1). Set

(24.20) Ur = Ripg H(B(0,1)) and A\g = R™%;

then we have a 2A-bilipschitz mapping 1y : A\gUr — B(0, 1), that we can use to define a
grid on Ui and then check the rigid assumption. Before we do this, record the fact that
by (24.20) and because g is 2A-Lipschitz,

(24.21) B(0,(2A)"'R) c Ur C B(0,2AR).

So we want to construct the grid. To each face F' of our initial grid G, we associate the face
F = 4)(\F), then for each k the larger face F* = Pk Y(F —(Axg)). We took pj, dyadic, so
it is a translation of a dyadic cube, and it contains the origin if zq € F. _

We claim that for each F' such that zo € F, there is a finite union F'*° of faces of the
standard unit dyadic grid Gg, such that

(24.22) FFNB(0,2) = F* N B(0,2) for k large.

The simplest will be to check this with coordinates. The face Fis given by some equations
z¢ = ag2™ "™, £ € I, and some inequalities a,2™" < zp < (ag + 1)27"™, £ € I3, where the
ay are integers, I; and I form a partition of {1,...,n}, and 27" is the scale of our initial
dyadic grid. Notice that if F was a face of a larger size, we could just adapt the argument
below (and work with a smaller m).

Denote by by the ¢-th coordinate of 1)(Azg); then FF = plzl(ﬁ —(Axg)) is given by
the equations xy, = plzl[aﬂ_m — by], £ € I, and the inequalities

(24.23) plzl[ag2_m — bg] <xzp < ,0,; [(CL@ + 1) — bg]

¢ € I. When b, € 27™Z (and k is so large that p; ! is a multiple of 2™), the corresponding
equation or inequality has integer coefficients. We shall now check that when b, ¢ 27"Z,
we get an inequality which is automatically satisfied when |z, < 2; then F Fk coincides, in
B(0,2), with a union of faces of Gy, as needed.

So let us check that we get no condition when b, ¢ 27™Z. Since x¢ lies in F, we get
that ¥ (Axg) € F. The equation by = a,2~™ is not satisfied (because by ¢ 27™7Z), so £ € I,
and ap2™™ < by < (ag + 1)27™. In addition, both inequalities are strict, so there is an
e > 0 such that a2 +¢ < by < (ag + 1)27™ — e. Then, as soon as k is so large that
pple > 2, we get that p; *[a2™™ — by] < —2 and py*[(ar +1)27 — b] > 2, and (24.23)
is a tautology on [—2, 2], as needed for our claim (24.22).

This gives us an idea of a grid on Ug: simply use the cubes )\1:211/10(62 NB(0,1)) C Ug,
where @ runs in the (rather small) family of unit dyadic cubes that meet B(0,1). We
still need to check that our family of boundaries L? satisfy the Lipschitz assumption, as in
Definition 2.7, and this means that each set A; = ¢o(A RL? N ArUR)) is (the intersection
with B(0, 1) of) a finite union of faces of Gy.
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So let 0 < j < jmae be given, and assume that z¢o € L;; otherwise, Lg-) = () and the
result is trivial. We claim that for k large,

(24.24) 4;=p0,00 (U F>),
FeF

where F is the set of faces of L; that touch zy and F® is associated to F as in (24.22).
First pick w € Aj, and write w = 1o (Arz) for some z € LY N Ug. By (24.7), we can write
z = limg_ 4o 25, With 2, € L. Set xp = x¢ + ri2g; thus 2, € Lj, and since there is
only a finite number of faces, we can assume (after taking a subsequence) that all the
lie in a same face F'. In addition, F' contains z(, because otherwise the z; would go away
to infinity. Recall from (24.20) and (24.21) that A\gUgr = R™1Uxr C B(0,2A), so the z lie
in B(0,2A) for k large (because z € B(0,2A)), and hence

(2425) w = ¢0(>\Rz) = lim wO()\RZk> = lim wk()\RZk)
k—+oco k—+oco
because the 1y, converge to 1y uniformly on B(0,3A). Now

dr(Arzr) = Yr(R™" 21) = p o (Mao + RrR™121)) — pi 9 (Aao)
= pr v(ak) — pi (o)

by (24.20) and (24.18). But z}, € F, so ¢(Az) € F and hence (by (24.26)) ¢ (Arzk) €
pp H(F — (Arg)) = F*. By (24.22) (and because Mgz € B(0,2) for k large; see above
(24.25)), Y (Arzr) € F>°. But F is closed (and no longer depends on k), so (24.25)

implies that w € F'*°, as needed for the first inclusion.

For the other inclusion, let w lie in B(0,1) N F'*° for some face F' of L; such that
zo € F. By (24.22), w € F* for k large, so we can write w = pr (W (Azy) — P(Axg)) for
some zj, € F. Then set z; = 7}, ' (zx — x0) € L; 1 (by (24.5)); notice that

(24.26)

(24.27)  |zi| =y Hog — 20| < v AT AR (Axg) — Y(Axo)| = AT Apg |w] < 2AR|w|

by (24.19), so the zi lie in B(0,2AR), and there is a subsequence for which they converge
to a limit z. By (24.26) (or rather its proof), ¥, (Arzx) = w. By the uniform convergence
of the ¥ on B(0,3A), w = limg_, 400 Yo (Ar2k) = Yo(Arz). But 2z € LY because z;, € Lj
and by (24.7), and z € Ur by (24.20) and because ¢y(Arz) = w € B(0,1). Thus w € A;,
and the converse inclusion holds.

This completes our proof of (24.24); we now know that each A; is a union of faces of
Go, hence the L? satisfy the Lipschitz assumption in the domain Ug.

Now we are ready to apply Theorem 23.8 in the domain Ur and with the sequence
{Ex}. We apply Definition 24.8, with the radius 3AR; this gives, for k large, a pg-bilipschitz
mapping &, defined on B(0,3AR). We are interested in the restriction of & to Ug (recall
from (24.21) that Ur C B(0,3AR)), and the domain Ug = & (Ur). We want to apply
Theorem 23.8 to the sets E, N Ugr and the boundaries L; N Ug k, so let us check the
assumptions.
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We checked (23.1) (the fact that the L) satisfy the Lipschitz assumption on Ug), and
Ur,k = £k(Ur) by definition. For (23.2), we also need to check that

(24.28) Lk NUgk = & (LY N UR).

First let € L;, N Ug be given. Since Ur = &x(Ur) C B(0,2p,AR) by (24.9) and
because £x(0) = 0, (24.10) (with R replaced with 3AR) says that we can write x = &(y)
for some y € L9 N B(0,3AR). But then y = ¢ '(z) € Ug because € Ugy, and hence
x € & (LY NUR). Conversely, if x € (L) NUg) and y € LY N Uk is such that & (y) = «,
(24.10) says that € L, ;, and obviously « € Ug, because y € Ur. So (24.28) holds.

The bilipschitz condition (23.3) comes from (24.9), and (23.4) follows from (24.11).
Also, we assumed that the LY satisfy the unpleasant additional condition (10.7) or (19.36),
so their restriction to U does too.

We start under the first assumption that £ € QSAQ(U, M, d,h), and by (24.4) we
get that Fy € QSAQ(Uy, M, r;lé, h). For k large, Upy C Uy = r;l(U — x9p), and r;lé
becomes much larger than 4A R and the diameter of U 1, so when we restrict to Ug,, C Uy,
we get that Ey € QSAQ (U, M, +o0o, h). That is, (23.5) holds with 6 = +o0o. Since (23.6)
(the limit in Ug) follows from (24.6), and if A is small enough, Theorem 23.8 says that
EoNUgr € QSAQ(Ugr, M, 400, h).

Now this holds for every R > 0, and since (by (24.21)) Ug tends to the whole R™
(when R — 400), we get that Eo, € QSAQ(R™, M, 400, h), as promised in (24.14).

Now suppose that E is A -almost minimal, with a gauge function h that tends to 0.
Then for each M > 1, we can find 6 > 0 such that £ € QSAQ(U, M, §,0) (just compare
with Definition 20.2); by our first case, we get that F, € QSAQ(R™, M, +00,0), and since
this is true for each M > 1, we even get that F is locally minimal in R™, as needed.

If F is A-almost minimal, still with a gauge function A that tends to 0, Definition 20.2
says that for each small number A’ > 0, we can find § > 0 such that £ € QSAQ(U,1,4,h’).
Then by our first case, Eo, € QSAQ(R™,1,+00,h"), and again E is locally minimal in R™.

If £ is A’-almost minimal, we can still conclude as above, except that we now use
the generalization of Theorem 21.3 that goes like Theorem 23.8 (but with almost minimal
sets), as explained in Remark 23.28. Observe that we can always apply this statement
with a gauge function h which is larger than h, continuous from the right, and still tending
to 0. Or we could use Remark 21.6.

This concludes our proof of Theorem 24.13. 0

Let us now give a slightly simpler sufficient condition for the flatness of the configura-
tion of the L;, which depends only on the regularity at o of the faces of the L; (and not,
apparently, on the way they are arranged in space). As we shall see, the construction of
the bilipschitz mapping &, will be simpler than expected, because the bilipschitz property
will come from the fact that the differential stays close to the identity.

We keep the notation of the beginning of this section; that is, U is an open set, xg € U,
and the boundary pieces L; satisfy the Lipschitz assumption (as in (24.1)). Denote by G
the associated grid on U, and by F the set of faces of G that contain xy and are contained
in some set L;. Also call F; the set of faces I’ € F that are ¢-dimensional.

Let a sequence {ry}, that tends to 0, be given too. For F' € F and k > 0, set
F* = Y(F — ).
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Definition 24.29. We say that the faces of the L; are flat at x¢, along the sequence {r}},
when for each 1 < ¢ < n and each face F € F,, there is a set F° that contains 0, such that

(24.30) FY is a closed convex ¢-dimensional polyhedron
. in some (-dimensional vector space Vp,

and with the following connection with the F*. For 1 < R < +o0, there is a sequence {¢}}
such that

(24.31) lim e =0,

k—+oco

and for each large enough k, a Lipschitz mapping ¥y : F° N B(0, R) — F*, such that

(24.32) Yr(0) =0,

(24.33) |Dypy — I| < er  Ht-almost everywhere on F° N B(0, R),
and

(24.34) YrR(FONB(0,R)) D FF N B(0, (1 —&1)R).

Let us comment on the slightly strange aspects of this definition. We shall see soon
(in (24.37)) that F° is the limit of the F*, and this is also why we require that 0 € F°
(recall that xg € F for F € F, hence 0 € F*). We could also check that when F is
of dimension ¢ > 0, our polyhedron F° is unbounded and has a nonempty interior in
Vi. It can even fill the whole space V. We decided not to let the F° depend on R (this
would have at least complicated the proof, maybe with no true additional generality), even
though the relation with F¥ is only stated in each ball B(0, R). Similarly, requiring that
FYis a convex polyhedron will simplify our life, and will probably not hurt in applications.
Finally, we shall not try to see whether (24.34) could, or could not, be deduced from the
other assumptions.

Proposition 24.35. Let U, xo, {ry}, and the L; be as above. If the the faces of the L;
are flat at xo along the sequence {ry}, then the configuration of L; is flat at x¢ along the
sequence {rj}.

Before we start the construction of mappings & : B(0, R) — R"™, as in Definition 24.8,
let us use the 1 pj to control some of the geometry of the FO. Let £ > 1 and F € F; be
given.

First observe that if ¢ is as in Definition 24.29, then for z,y € F° N B(0, R),

(24.36) [VFk(T) = Yrr(y) — 2+ y| < exlr —yl.

Indeed, for almost all choices of x and y (for the 2¢-dimensional product of Lebesgue
measures), we can compute ¢Yr () — Y¥ri(y) as the integral of Dipj on the segment
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[z, y]; this comes from the fact that ¢ p  is Lipschitz, hence absolutely integrable on almost

every line. Notice that [z,y] C F, because F is convex by (24.30). Thus (24.36) holds

for almost all choices of z and y; the general case follows because ¥ is continuous.
Next we check that

(24.37) F°= lim F* in R",

k—+o00
(with the same definition as in (10.4)-(10.6)). Pick » > 0, and let us first check that
dy, = sup{dist(a:,Fk); x € F'nN B(O,r)} tends to 0. Let the ¢} be, for k large, as in
Definition 24.29, with R = 2r, and simply observe that for € F° N B(0,r), dist(z, F*) <
|Ypk(z) — x| < eglz| by (24.33) and (24.32). Thus dj < exr for k large.

Then we control dj, = sup { dist(z, F°); z € F* N B(0,r)}. We keep the same choice
of R = 2r and gy, and observe that for x € F¥ N B(0,r), (24.34) allows us to write
r = Yp(z) for some z € FON B(0,R). Then dist(z, F°) < |z — 2| = |[¢pi(z) — 2| <
erlz| < exR, so dj, < iR for k large, and (24.37) follows.

Next we check that the mappings ¥rj essentially preserve the boundaries. That is,
denote by OFY the boundary of F°, seen as a subset of the vector space Vp. We claim
that for k large,

(24.38) for x € F° N B(0, R), ¥ (r) € OFF if and only if z € OF°.

For this we shall use a little bit of topology. Notice that by (24.36), g\ is a bilipschitz
mapping from F° N B(0, R) to its image. We compose with the affine mapping py, :  —
To+7rEz, and get an image provp i (FY'NB(0, R)) C F, which is contained in U for k large.
We further compose with the usual bilipschitz mapping z — 1(Az), and get a bilipschitz
mapping hy : FO N B(0, R) — he(F° N B(0,R)) C F, where now F is a (straight) dyadic
cube of dimension /.

Let x € F° N B(0,R) be an interior point of FY, suppose that ¥z (z) € OF', and
derive a contradiction. Recall that OF was in fact defined as the bilipschitz image of
OF, so we are assuming that hix(x) € OF. Let S be the unit sphere in Vg, and let us
see what happens to the mapping f : S — Vg, defined by f(§) = x + t§, where we
choose t > 0 so small that f(S) Cc F° N B(0,R). This map cannot be homotoped to a
constant, through mappings from S to Vg \ {z}, yet, for ¢ small we shall use hj to find
such a homotopy. Let L denote the bilipschitz constant for hy; then hy o f(S) C A, where
A={z¢€ Fi Lt <|z—hy(z)| < Lt}. Now, because hy(z) € OF and F is a dyadic cube,
and if ¢ is small enough, A can be contracted (to a point) inside the slightly larger annular
region Ac = {z € F: (CLY™t < |z — hy(x)] < CLt}. That is, there is a continuous
function ¢ : A x [0,1] — A¢ such that ¢(z,0) = 2z and ¢(z,1) = ¢ for z € A, and
where ¢ € A¢ is a constant. The desired deformation is the mapping @ : S x [0,1] — Vg
defined by ¢(&,t) = h,;l(got(hk o f(£),t)); it is easy to see that for ¢ small, it is defined
(because Ac C hi(F° N B(0,R))) and continuous, that it avoids the value x, and that
@(€,1) = h; *(c) is constant. This contradiction shows that ¢z () is an interior point of
Ft.

The same argument, applied with the mapping h;l, shows that if z € F° N B(0, R)
and z = ¢pk(z) is an interior point of F! (which means that hy(x) is an interior point
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of F), then z lies in the interior of FO. This time, we use the fact that since F° is a
convex polyhedron, there is a constant C' such that, for x € OFY and ¢ small enough, {w €
FO, L % <|w—x| < Lt} can be contracted inside {w eFY; C Lt <|w—a| < C’Lt}.
This proves (24.38).

It will also be good to know that OF" can also be seen as the combinatorial boundary
of FO, i.e., that

(24.39) oF’= | ) H°
HeF(F)

where F(F) denotes the set of strict subfaces of F' that meet zy. Indeed, let x € OF°
be given, choose R > |z|, and notice that by (24.38), ¥ri(x) € OFF for k large. Then
there is a strict subface H of F such that ¢pi(x) € H* for infinitely many k. But
z = limg_ 400 ¥rk(z) by (24.36) with y = 0, so by (24.37) z lies in HY. Conversely, let
x € H for some H € F(F), and choose 1) as above. By (24.37), x is the limit of some
sequence {r}}, with 7, € H*. By (24.34) and since H* C F*, we can write x5, = 15 1.(21)
for some 2, € FON B(0, R), and by (24.36) |z, — 2| tends to 0. Also, 2z, € OFY by (24.38),
SO o = limp_ 4 oo Tp = limy_y 4 o0 2x lies in OFY too. This completes the proof of (24.39).

Finally, we shall need the following consequence of (3.8), to control the geometry of
the faces F°. Let F and G be two faces of F, and suppose that F' is neither reduced to a
point nor contained in G; we claim that

(24.40) dist(y, OF%) < A2 dist(y, G°) for y € F°.

Let y € F° be given, and use (24.37) to choose points 3 € F* such that limy_, o0 yx = ¥.
Set xp, = xo + rryr € F, T, = ¥(A\xy), and as usual F = ¢(AF) and G = ¢(A\G). Then

dist(y, G°) = kgar_loo dist(y, G*) = kEI—Poo dist(yx, G*) = lim 7 ! dist(zy, G)

k—+oco

> A~ " limsup ;! dist (T, Q)

k—4o00
(24.41) 1 ) _ -
> A7 A" limsupr, - dist(zg, O(F))
k—+oo
> A2 lim sup rk_l dist(z, OF) = A2 lim sup dist (y, 8Fk)
k——~4o0 k——+oo

by (24.37), various definitions, and (3.8). Use (24.41) to choose a sequence of points
2, € OFF, such that

(24.42) lim sup dist(yx, z1,) < A? dist(y, G°).

k——4o00
Now OF is the union of a certain number of strict subfaces H, and each FF is the union
of the corresponding subfaces. So we can choose a subsequence for which all the z; lie in

H* for the same H.
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Of course dist(y, G°) < 400, and by (24.42) {z;} is bounded. So we can choose a new
subsequence so that {z;} tends to a limit z.,. Since xg + rrpzr € H, {21} is bounded, and
r, tends to 0, we get that o € H, hence H € F. Also, 2o € H°, since z, € H* and by
(24.37) for H. Hence 2o, € OFY, by the representation formula (24.39). Finally, (24.42)
implies that dist(y, 200) < A2 dist(y, G°), and (24.40) follows.

We are now ready to start the construction of our mappings &;. Let R > 0 be given;
we apply our flatness assumption to every face F' € F, in the larger ball B(0,4""1R), to
get mappings Yry : FO N B(0,4""1 R) — F* with the properties (24.31)-(24.34).

We shall obtain &, after building successive extensions, defined on the following col-
lection of skeletons. Set Sy = {0} and for 1 < ¢ < n,

(24.43) By =B(0,4"""'R), S, = | J F'nB,, and S/ = | S
FeF, m<L

We gave a special definition to Sy just because, even when g is not a point of the grid,
we find it more pleasant to take Sp = {0}.

Set £2(0) = 0 to start the process. We want to define successive extensions §£ of &,
with the following properties. First, §,€ is defined on S;7, and is an extension of {’ﬁ‘l if
¢ > 1. Next, for each F' € F; and k large enough,

1
(24.44) FFn 5B C &(F°nBy) c FFn2B,,

and &¢ is locally Lipschitz on F° N By, with
(24.45) |DEE — I < Cyep, HP-almost everywhere on FO N By,

where I denotes the identity on R™ and Cy > 1 is a geometric constant that will be
computed by induction. Finally, we require that

(24.46) &n(2) — E6(y) — x4+ y| < 2(1 + 2A%)2Cpeg|z — y| for z,y € S,

We already have &), and let us construct ¢} to warm up. We choose it so that
(24.47) & =vYpr on F'N By

for every F' € F;. This definition is coherent: there is no conflict with the fact that
£2(0) = 0, by (24.32), and similarly if F and G are different faces of F7, then F'NG® = {0}
(for instance by (24.40) and because OF° and OG° are contained in {0} by (24.39)), and
Yrk(0) =Yg k(0) = 0. Notice that it could happen that S; is empty because F; is empty,
but this does not disturb. Next, (24.44) (i.e., the fact that F* N 3By C ¢¥pi(F'NBy) C
F* N 2B; holds by definition of ¥, and in particular (24.34) (for the surjectivity) and
(24.36) with y = 0 (for the management of radii). Also, (24.45) holds with C; = 1, by
(24.33). We don’t need to check (24.46) for £ = 1, because we shall do it in a more general
case Now.
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Now we check that (24.46) (for some ¢ > 1) follow from (24.45) for ¢ and (24.46) for
¢ — 1 (notice that (24.46) is obvious for ¢ = 0). First we claim that because of (24.45) for
¢, we have that

(24.48) |§,l€(x) — §,l€(y) —x+y| < Coeglr —y| forz,y e F°nB,

for each face F' € F;. The verification is the same as for (24.36): we first check this for
r,y in a dense subset, using the convexity of F° N B, and the absolute continuity of £, on
almost all lines, and the general case follows because ffc is also continuous.

Then we check (24.46); we intend to use (24.40) to control the position of the different
faces. Let z,y € S/ be given. By the definition (24.43), we can find my,m, < ¢ so
that x € S, and y € Sp,,; choose m, and m, are as small as possible, i.e., consider
the first occurrence. Then use (24.43) again to choose F' € F,, and G € F,,, such that
z€ F'N By, andy € G°N By, .

First assume that m, = (. If 2 € G, then in fact it lies in G° N B,,, (because
my < my), and (24.46) follows from (24.48) for G. So we may assume that z ¢ G°, and
then F' is neither reduced to a point (it would be zg, and then z = 0 € G°) nor contained
in G (because if F C G, then (24.37) shows that FY C G°), so we may apply (24.40). We
get that

(24.49) dist(z, 0F%) < A% dist(z, GY) < A%|z — y| < +o0.

In particular, F? is not empty, and we can pick 2’ € 9F" such that |2’ —z| = dist(z, 0F?) <
A?|z — y|. By the representation formula (24.39) for OF°, and the fact that each H° is
convex and contains the origin, we see that tz’ € OF° for 0 < ¢t < 1; we use this to see that
2’| < |z| (otherwise, some tz’ is closer to z). Hence 2’ € B,. By (24.39) again, 2’ € H°
for some H € F of dimension m < /¢ —1, so

(24.50) v’ e HNB, CS, CS .
Since 2’ € OF° N B, C F° N By, we can apply (24.48) to get that
(24.51) E0(2)) — €h () — 2’ + x| < Cpepla’ — x| < CoAPep]x — y).

We will continue with the proof in a moment, but let us record some cases first.
If m, < ¢, we simply keep ' =z € SZ_ 1> and some estimates will be simpler.

If m, = ¢, we can assume (as above) that y ¢ F°, and then we choose y' € S,/ | as
we did for x; if m, < ¢, we just keep v = y. Now

(@) — & () — 2+ | = 1§ (@) - &7 W) — 2 + ]
(24.52) < 2(1 4+ 2A)Cy_ep|z’ — |
< 2(1 4+ 2A%)%C_1ep|z — |

because z',y’ € S, |, by (24.46) for £—1, and because |z’ —y'| < |z—y|+|2' —z|+ |y —y| <
(1+2A2)|x —y|. If 2’ # z or y # vy, we add (24.51) or its analogue for y, and get that

(24.53) €0 (x) — En(y) — x +y| < 2(1 + 2A%)2C_1ek|z — y| + 2C A %er|z — 9|
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which implies (24.46) if we make sure to choose Cy > 2(1 + 2A2)Cy_1.

Next we define fﬁ“ when 1 < ¢ < n, assuming that we already have £f. We shall
construct our extension Ef:rl independently on each F°n By, F € Fyyq, and of course
we shall make sure to keep the same values as ff; on FON Byyi N SZF. We claim that if
we proceed this way there will be no conflict of definition between faces. More precisely,
if F,G € Fyy1 are different faces, we claim that FO N G° N By € S, so &L = €-7F was
in fact already defined on the intersection.

To prove the claim, let y € F* N G° N By, be given. Since F is neither reduced to a
point nor contained in G, (24.40) says that dist(y, 0F") < A2 dist(y, GY) = 0. Recall from
(24.39) that OF? is the finite union of the closed sets HY, where H is a strict subface of
F that contains xg. Then y lies in such an H, and by the definition (24.43), y € SZ’; our
claim follows.

So we now fix F' € F;y; and proceed to define ﬁ,ljl on F°N Byy1. By (24.39),
OFY =J HeF(F) H®, and by induction assumption &5 is defined on OF° N By, with values

in OFF. We want to extend this mapping to F° N By, 1, with values in F*, and for this
it will be easier to use our bilipschitz mapping 1r  to return to the vector space Vr and
work there.

By (24.48) (on the faces H, and with y = 0),

(24.54) &8 () — x| < Cieglz| for x € OF° N By ;

in particular, £f(x) € 2By and (24.34) (which we can apply in the larger ball B(0,4" 1 R);
compare with (24.43) and recall that ¢ > 1) allows us to set

(24.55) h(z) = gl o l(x) € FO for x € 9F° N B

In fact, (24.38) (with the same radius 4"*!'R that we used to define ¥ry, and applied
to h(z)) says that h(z) € OF°. And of course, by (24.36) with y = 0 and because
¢ (x) € 2By C B(0,4""1R), we get that h(x) € 3B,. That is,

(24.56) h(z) € OF° N 3B, for x € OF° N B,.

We also have good estimates on the Lipschitz constant for hy = h — I. Indeed, for
x,y € OF° N By,

(24.57) by (z) — Py (y)] = [¥p), 0 &a(2) — Ym0 &h(y) — 2 +y| < a+b,
with
(24.58) a = |py 0 &) — &) — i), 0 & (y) + & ()]

and b = &4 (x) — £L(y) — = +y|. By (24.36) applied to ¢;}C o &f(r) and w;i o &k (y), we get
that

(24.59) a < eplPpy 0 &hl@) — Py 0 )] < 2exléh(x) — & (y)| < deglz —y]

277



(because (24.36) and (24.46) also imply that ¥r and &5 are 2-bilipschitz on the domains
where we work). Also, (24.46) implies that b < 2(1 + 2A%)2Cyey|x — y|; altogether,

(24.60) |hi(z) — ha(y)] < (44 2(1 + 2A°)°Cy)eklz — yl.

Let us take advantage that F° and the values of h; lie in the space Vz to apply the Whitney
extension theorem to hi; we get an extension of h; to the whole F° N By, so that

(24.61) hy : F'N By — Vg is Cjeg-Lipschitz,
with C) < C(4 4 2(1 + 2A?)2Cy. Now set
(24.62) h(z) = hy(z) +z for € F° N By;

This function is an extension of the mapping in (24.55), it still a Lipschitz function (like
h1), and by (24.61)

(24.63) |Dh — I| < Cjep, H*+'-almost everywhere on FY N By.

We now need some topological information, which will lead to (24.44) for ¢ + 1. We start
with a control on the restriction of h to F°. We claim that

1
(24.64) OF’ N 3B C h(OF" N By).

Let y € OF° N %B[, and set yr, = Yri(y). Notice that yx € F* N %Bg by (24.36), and
yr € OF* by (24.38). This means that y, € H* for some /-dimensional subface H of F.
Observe that then xg + yprr € H, hence dist(H,z¢) < rpd" *t1R. If k is large enough
(depending on the finite list of faces H that get close to xg), this can only happen if ¢ € H,
ie., if H € F(F). By induction assumption, (24.44) holds for H, and since y, € H*N 1By,
we get that yi, = &1 () for some x € H° N By. Now h(z) = ¥ (yx) = y by (24.55), and
this proves (24.64). ’
Next we use (24.64) and a connectedness argument to show that

1
(24.65) F'n 3B C h(F°N By).

Denote by W = F°\ OFC the interior of F¥ in the space Vx; we just need to show that
h(W N By) contains W N 3 By, because (24.64) takes care of F° N 1 By.

Of course we may assume that W N %Bg is not empty. Set Y =W N %B[ Nh(W N By);
we want to show that Y =W N %Bg.

First we check that if k£ is large enough, Y is not empty. Notice that

(24.66) lim h(z) =z for z € F° N By,

k——+oo

by (24.62) and because limy_, 4 h1(2) = 0 by (24.61) and because hi(0) = 0; thus we pick
z € W N 3B, and observe that h(z) € W N £ By for k large, hence Y is not empty.
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Next, Y is open. This is because h : W N B, — Vg is bilipschitz (by (24.61) and
(24.62)), hence open (for instance by degree theory, or a fixed point theorem as in the
implicit function theorem).

Finally, Y is closed in W N %Bg: if {y;} is a sequence in Y, with a limit y € WnN %B@,
then y € Y because we can find z; € W N By such that h(z;) = y;, the x; converge to
a limit = because h is bilipschitz on F° N By, h(x) = y because h is continuous, x € By
because all the z; lie in 2B, (again because h is bilipschitz and h(0) = 0), and z € W
(because otherwise z € OFY and h(z) =y € OFY by (24.56), a contradiction).

Since W N %Bg is connected (and even convex), we get that Y = W n %Bg, as needed
for (24.65).

Let us now deduce from (24.65) that

1
(24.67) h(F° N ZBg) C F°.

IfWNiB, =0, ie.,if F°N1B, C OF", this is a direct consequence of (24.55). Otherwise,
first observe that for k large, h(W N %Bg) meets F° (pick z € W N iBg, and observe that
h(z) € W for k large, by (24.66)). Next we claim that

1
(24.68) h(W N ZBg) does not meet OF°.

Indeed, suppose that z € W N By is such that h(z) € OF°. Notice that h(z) € £By, so
by (24.64) we can find z € F° N By such that h(z) = h(x). This is impossible, because
x €W = F°\ OF° and h is bilipschitz (hence injective) on F° N B. So (24.68) holds.

Since W N By is convex and h(W N 1 B;) meets F°, (24.68) says that h(W N 1 By) C
W C F°. But h(0F° N ;By) C F° by (24.55), so (24.67) holds.

We are now ready to define fiﬂ on FY and check our induction assumptions. By
(24.67) and the bilipschitz property of & (see (24.61) and (24.62)), h(F°N$B,) C F'NiBy,
and we can we set

1
(24.69) = proh on FON 1 Be= F°N Byyy.

This gives the desired definition of fiﬂ (recall that we can proceed face by face). Notice
that for € FO N Byyy, & (x) € F* (by definition of ¢ry), and &' (x) € 2By1, by
(24.36). This proves the second inclusion in (24.44) (for our F' € Fyy1).

For the first inclusion we pick y € F* N %BZH and we need to find z € FYN By
such that ¢! (z) = y. First apply (24.34) to find w € F© such that ¢¥px(w) = y. By
(24.36), w € 2By41 C 3By. By (24.65), we can find = € F° N B, such that h(z) = w. By
(24.61) and (24.62), and because w € %Bu—l, x € Byrq1. Then §£+1(x) =vYproh(x)=y
by (24.69) and our definitions, which proves the second inclusion in (24.44).

The estimate (24.45) on DELT follows from (24.69), (24.33), (24.63), and the fact
that all our mappings are Lipschitz. We just need to pick Cy4; somewhat larger that Cy.
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We already checked (near (24.48)) that (24.46) follows from (24.45) and the induction
assumption, so we completed our induction step, and we get mappings §£, 1 </ <n, with
the properties (24.44)-(24.46).

For the verification of flatness, we need to construct a &, as in Definition 24.8, which
is defined on the whole B(0, R), so we need to extend £} a last time. We proceed as before,
set g = & — I on S;7, observe that by (24.46) gy, is 2(1 + 2A?)2C,,ex-Lipschitz on S, use
the Whitney extension theorem (on R™) to extend g, and set & = g + I on B(0, R) (we
shall not need the values further away). Let us now check that & satisfies the properties
required in Definition 24.8.

First, we need to find sets L?, 0 < J < Jmaa, such that (24.7) holds when z¢ € L;
(otherwise, we don’t need to find L?, or we can take the empty set). Fix j, and let us try
LY = UFef;Fch F°. From (24.37) we deduce that

0 _ : k
(24.70) Lj= lim U F*

J
and L, = r,;l(L;- — x0); then (24.70) says that LY = limy_, 1o L), while (24.7) requires
L? = limy_, 400 Ljk, i.e., for the possibly larger set L;. That is, L; is the union of all the
faces F' that are contained in L;, and not only those that contain z, as in the definition of
F (above Definition 24.29). But the difference does not hurt: there is only a finite number
of faces F' in L; that do not contain xg, and removing them does not change the limit of
the L; ;. because the corresponding sets F' k go away to infinity. So our L? satisfy (24.7).

We know that & is bilipschitz, that £ (0) = £2(0) = 0, the bilipschitz condition (24.9)
holds with any py > 1+ C(1 + 2A%)2C,,e (because of the small Lipschitz constant for
g =& — I), and (24.11) holds because limy_, 4 gr(z) = 0, so we are left with (24.10) to
check.

First let y € L, N B(O,pI;lR). If k£ is large enough, and by the discussion above,

Yy € L;’k, which means that y € F¥ for some F € F such that F C L;. Let £ be such

that F' € Fy; by (24.44) and because %Bg D %Bn D B(0,R), we can find z € F° N By
such that & () = y. Then = € LY, &.(x) = ¢f(x) =y, and x € B(0, R) by (24.48), and
if pp > 1+ CCye. This yields the first part of (24.10). For the second part, we take
T € L? N B(0, R), choose a face F' C F such that F' C L; and = € FO. and notice that
Ep(x) = &L (x) € FF, by (24.44), and that & ()| < (1 + Ceeg)|z| < (1 + Crex)R < pr.R by
(24.48) and if pr > 1+ 2Cye. This proves the second inclusion in (24.11), the & satisfy
the requirements for Definition 24.8, and this concludes our proof of Proposition 24.35. [

Recall that F* = r_'(F — x¢) (see before Definition 24.29), and set L’ = UFE]—";FCLj F

PART VI : OTHER NOTIONS OF QUASIMINIMALITY

25. Elliptic integrands; the main lower semicontinuity result.

Up to now we used the Hausdorff measure H?%(E) to measure the size of our sets
E, but it is natural to consider other measure like [, f(z)dH%(z) (if our space is not
homogeneous), and even with functions h that depend not only on the position of z in space,
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but also on the tangent plane to F at x, to model nonisotropic spaces. To the author’s
knowledge, the question of nonisotropic integrands like h, in the context of the Plateau
problem, was raised by F. Almgren. In [Al], he states his generalization of Reifenberg’s
theorem on the homological Plateau problem in terms of elliptic integrands, and even adds,
probably to explain the use of currents and varifolds in [Al]: “It does not seem possible
to extend the arguments of De Giorgi or of Reifenberg to general elliptic integrands. In
particular, the orthogonal invariance of the m area integrand F' = 1 is essential for the
applicability of Reifenberg’s methods”. The author of these notes does not know whether
this sentence is taken too seriously by the specialists, but just to make sure we shall
explain in this section why many of the results of the previous sections still hold when
H? is integrated against a reasonable elliptic integrand. A good part of it is based on an
adaptation of Dal Maso, Morel, and Solimini’s uniform concentration lemma, which Y.
Fang’s proved to make his extension of Reifenberg’s existence result for the homological
Plateau problem work also in the context of elliptic integrands; see [Fal. As usual, we
shall need to change the lemmas because of the boundary conditions, but not the general
scheme of the proof.

Let us first say what sort of elliptic integrands we shall consider, and how we integrate
them on (rectifiable) sets. Our integrands will be Borel-measurable positive functions
f U x G(n,d) — (0,+00), where U is an open set in R™ and G(n,d) denotes the
Grasssman manifold of vector d-planes in R™, and their integral on rectifiable sets £ C U
will be defined by

(25.1) IB) = [ fa LB aia),

where T, E denotes the non oriented vector d-plane which gives the approximate tangent
plane to E at x; thus T, F is defined H%almost everywhere on E because E is rectifiable.

We shall not really need to define J¢(E) when E is not rectifiable, because we shall
concentrate on quasiminimal sets, but let us mention here that we could do so easily with
a trick: we could define an auxiliary function f : U — (0, +00) (possibly using the values
of f, but not necessarily), and then set

(25.2) J; {E) = Jj(Erec) + / f(x) dH(x)
’ E\Erec

for Borel sets E with H(E) < 400, and where E,.. denotes the rectifiable part of . This
may sound a little artificial, but the issue typically shows up when we want to state a result
connected to the Plateau problem, want to define a functional J even for sets that are not
rectifiable, but know anyway that the minimizers (or even the very good competitors) will
be rectifiable.

We will work with the following class of integrands, which is the same as in Fang’s
paper [Fal; Almgren [A1] and [A3] mentions slightly more restricted classes, but the spirit
is the same.

Definition 25.3. Let U € R™ be open. For 0 < a < b < +o0, we denote by Z(U, a,b) (or
just Z(a,b)) the set of continuous functions f : U x G(n,d) — (0,+00), such that

(25.4) a< f(x,T)<b forzeU and T € G(n,d),
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and, for each x € U, there is a radius r(z) > 0 and function €, : (0,r(x)] — [0, 1], with

(25.5) lim e,(r) =0

r—0

(that will measure the near optimality of planes near x ), such that
(25.6) Ji (PN B(x,r)) < Jp(SNB(x,7)) + ex(r)re

when 0 < r < r(x), P is a d-plane through x, and S C B(z,r) is a compact rectifiable set
which cannot be mapped into PNOB(x,r) by any Lipschitz mapping ¢ : B(x,r) — B(z, )
such that (y) =y fory € PNIB(x,r).

This definition is probably not optimal, but something like (25.6) is needed if we want
to have existence results for the (local) minimization of J¢. Let us just explain what may go
wrong, without computing a precise example. Take n = 2, d = 1, parameterize G(2, 1) by
the angle 6 of a line of G(2, 1) with the horizontal direction, and consider functions of the
form f(z,0) = fi(z1)f2(0), where fi(x) is a function of the horizontal variable of R? which
is minimal on the z1-axis, and f3(#) is an nice function, but such that fo(£mw/4) < f2(0)/2.
A good minimizing sequence will be composed of zig-zag curves that stay close to the ;-
axis, with for instance slopes that stay close to £1; it will converge to the axis itself, which
is not a minimizer because f2(0) is too large. Then we can easily cook up some some
problems for which there is no minimizer because, if one existed, it would have to be the
T1-axis.

Our definition is a little unpleasant because it is hard to control the list of sets S
that satisfy the non-retractability condition above, but there are convexity conditions that
imply that f € Z(a,b) (assuming (25.4)). At least we have one example : the constant 1
lies in Z(1,1) because the orthogonal projection of any S as above contains P N B(x,r).
Similarly, if f is a continuous function of = alone such that a < f(z) < b everywhere, then
f € Z(a,b). We are a little sorry because we do not allow functions f that are merely
lower semicontinuous; see Remark 25.87, Claim 25.89, and (25.96) below for slightly more
general conditions that work.

The main result of this section is the following generalization of Theorem 10.97.

Theorem 25.7. Let U, {E\}, and E satisfy the hypotheses (10.1), (10.2), (10.3), and
(10.4). Also suppose that h is small enough, depending only on n, M, and A. Then

. < Timi
(25 8) Jf(EﬂV) _lklg_'l_gf Jf(EkﬂV)

for 0 < a < b < 400, every open set V.C U, and every f € Z(V,a,b).

Notice that the sets Ej and E are rectifiable, by Theorem 5.16 and Proposition 10.15,
so J(ErNV) and J;(ENV) are well defined by (25.1).

We shall first prove this for sets V' that are relatively compact in U. As in [Fa,
our argument will be inspired by Dal Maso, Morel, and Solimini’s [DMS], but with some
pleasant simplifications in the covering argument. The present argument will rely directly
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on the rectifiability of the limit E (which gives flatness almost everywhere), rather than the
concentration lemma (which gives flatness with a more quantitative control, even though
on balls that are not centered at the original point); this will allow us to apply a more
standard version of the Vitali covering lemma, at the (small) price of a less constructive
argument.

Let {Ex}, E, and V CC U be as in the statement. Our first task is to find a large set
E' of ENV, and lots of nice small balls centered on E'. First observe that F is rectifiable,
by Proposition 10.15, hence for H%-almost every x € ENV,

(25.9) lir% rHYE N B(z,7)) = wy
r—

(see Theorem 17.6 on page 240 in [Ma]), and
(25.10) E has a tangent plane P(z) at x

(here Theorem 15.19 (3) on page 212 of [Ma] only gives an approximate tangent plane, but
since F is locally Ahlfors-regular near x (by (10.11)) Exercise 41.21 on page 277 of [D4]
says that this plane is a true tangent plane.

Set EY denote the set of points x € ENV such that (25.9) and (25.10) hold. In fact,
other constraints will appear later, which will lead us to removing other negligible pieces
of E°, but this will not matter. Let € > 0 be small; we shall let it tend to 0 at the end of
the estimate. For each x € E°, we select r(x) > 0 with various properties, which are all
true for r small enough. First,

(25.11) r(x) is small enough, depending on 79, A, A, and dist(z,R™ \ U),

where A\, A, and ry (the scale of the the dyadic cube that we use in the unit ball) are as
in the Lipschitz assumption; how small will depend on simple geometric constraints that
will arise in our construction, and we don’t need to know this precisely. Next,

(25.12) |wa — r~HYE N B(x, r)| <e for 0 <r<2r(z),
and
(25.13) dist(y, P(x)) < ely — x| for y € EN B(z,3r(x)).

We also need to control the variations of our integrand near z. The function x — T, F
(where with our new notation, 7, F is the vector space parallel to P(x)) is Borel-measurable
on E?; this is unpleasant, but not hard to check, especially because E is locally Ahlfors-
regular, but anyway we leave the proof to the reader. Then by Lusin’s theorem, we can
find a Borel set E' C EY, such that

(25.14) HYENV\EY) <e¢,

and on which T, F is a continuous function of x. We use this, and the uniform continuity
of f on W x G(n,d) for some neighborhood W of z, to say that if r(x) > 0 small enough
(depending on z),

(25.15) \f(y, TyE) — f(z, T, E)| <e fory e ENB(x,2r(x))
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and
(25.16) |f(y, T E) — f(z,T,E)| < e fory € B(z,2r(z)).

We certainly require this from r(z), but other similar constraints concerning the set E*
and the radius r(z) will show up, in relation with our boundary constraints; we shall find
it more pleasant to mention them later, as we use them.

For the moment, we fix # € E' and 0 < r < r(x), set B = B(x,r), and try to evaluate
the contribution of B to the two sides of (25.8). Set D = P(z) N B; we first compare
J¢(E N B) with J¢(D). We just observe that

JH(ENB)=Js(E*NB)+ J;((E\ E')NB)
(25.17) < [E . f(y, T,E) dH (y) + bH (B \ E') N B)
< (f(z,T,E) +¢) HYE' N B) + bHY((E\ E') N B)
by (25.1), because f € Z(a,b), and by (25.15). Then
(25.18) HYE'NB) < HYENB) < (wq+¢)r?

by (25.12), and
(25.19) f(z, T E)war® = / (e, ToE) dH(y) < J;(D) + ewar® = J1(P(2) N B) + cwar®
D

by (25.16) and because D = P(x) N B. Thus

(f(2, ToE) + &) HYE* N B) < (w;'r~4J;(P(z) N B) + 2¢)(wa + &)r®
(25.20) < J¢(P(z) N B) + r(ew;'r= %I (P(x) N B) + 2cwg + 2¢2)
< J¢(P(z) N B) +ert(b + 2w + )

by (25.18), (25.19), and (25.1), and now (25.17) yields
(25.21) J(ENB) < J;(P(x) N B) + &b+ 2wq +e)r? + bHY(E\ E') N B).

We also need a lower bound for J(Ey, N B), and for this we shall need to introduce a
set S as in Definition 25.3 and use the quasiminimality of Ej to show that S cannot be
retracted.

First observe that for k large enough (depending on z, but this will not matter)

3
(25.22) EyN3B CH, where H = {y e R"; dist(y, P(z)) < 3er},

just by (25.13) and because the Ej, converge to F in 2B. We want to modify Fj a first
time, in the set

(25.23) Asg={y € R"; (1 —20e)r < |y — x| < (14 20e)r}
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because we want a set S such that S N 9dB(z,r) C P(x). Denote by 7 the orthogonal
projection on P(z), and set

(25.24) 9() = ally —z))m(y) + (1 — ally — 2))y

for y € R™, where « is the continuous, piecewise affine mapping defined by «(t) = 0 for
t € [0, (1—20e)r]U[(1420e)r, +00), a(t) = 1 for t € [(1—10¢e)r, (1+10e)r], and « is affine
on each of the two remaining intervals [(1 — 20e)r, (1 — 10e)r] and [(1 + 10¢)r, (1 + 20¢e)r].
Notice that

(25.25) l9(y) =yl < |m(y) —y| < 3er fory e H,
and hence, if we set A5 = {y € R™; (1 —5e)r < |y — x| < (1 + 5¢)r},
(25.26) g(H)NAs C P(x)

because if y € H is such that g(y) € As, then ||y — x| — r| < 8er, and hence g(y) = 7(y).
We set S = g(Ex) N B; the next lemma is probably the key step of the proof.

Lemma 25.27. There is no Lipschitz mapping v : B — B such that (as in Definition 25.3)
Y(y) =y fory € P(x) N OB and (S) C P(x) N 0B.

This will allow us to apply Definition 25.3 and get (25.6). We want to prove the lemma
by contradiction, suppose there exists such a ¢, and use it to construct a new mapping ¢
and an impossible competitor for Fj. First observe that m o ¢ has the same properties as
1, so, at the price of replacing ¢ with 7 o ¢, we may assume that

(25.28) Y(z) € P(x)N B for z € B.
We want to extend ¢ to R™, and we do this in two steps. First we set
(25.29) Y(z) =z for z € (P(x)\ B) U[R"\ (1+ 5¢)B].

The first extension that we get this way is still Lipschitz; we can easily check this by
hand, using the fact that 1(z) = z for 2 € P(z) N OB (connect a point of B to any
point of the rest of a domain through a point of P(x) N dB). Then we extend v to the
whole R™, using for instance the Whitney extension theorem; we can even make sure that
Y((1+5¢)B) C (1+ 5e)B, because otherwise we can compose the restriction to (1 + 5¢)B
with the radial projection from R™ onto (1 + 5¢)B.

If we were dealing with quasiminimal sets with no boundary constraints, we would
use the mapping ¢ = 1 o g as the endpoint of a one parameter family (as in Definition
1.3), to test the quasiminimality of Fj and get a contradiction. The point is that Ej N B is
sent to S by g, and then to P(xz) N 9B by 1, which means that all its measure disappears.
We will see that H¢(E, N A) is small, and so is H¢(p(E, N A)), so we would get that
HA(p(Er N (AU B))) is small, while H?(E) N B) is reasonably large, because E, is locally
Ahlfors-regular. The ensuing contradiction would prove Lemma 25.27.
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But we have boundary constraints coming from the L;, and so we will need to modify
© before we use it to test the quasiminimality of Ej. This will be easier if we first add a
few constraints on the set £ and the radius r(x).

We first replace the sets E° and E! above by the slightly smaller sets where we add
the requirement that every point x € EY, is a Lebesgue density point of E N F for every
face F' of our dyadic grid on U that contains x. This means that

(25.30) lim rHYENB(z,7r)\ F) =0
r—

for every such face. For each face F, (25.30) is true for H%-almost every x € EN F, so
our new constraint only removes a H%negligible set from E° and E'. Notice that for each
x € U, there is a smallest face F,, of our grid that contains x (because the intersection of
two faces that contain x is a face that contains x), and (25.30) for F, is stronger than for
the other faces.

We also put additional conditions on the radius r(z), + € E'. Namely, we require
that

(25.31) dist(x, F') > 2r(z) for every face F' of our grid that does not contain z,

we recall our constraint (25.11) that r(x) be small enough (constraints of that type will
arise soon), and we also demand that

(25.32) HYE N B(z,7)\ F,) <e%r? for 0 < r < 3r(z).

Because of the boundary constraints, we shall need a retraction on the smallest face
F = F, that contains xz. Recall from Lemma 3.14 and Remark 3.25 that when F' is
a standard dyadic cube (i.e., under the rigid assumption), there is a natural projection
m = 7l', defined on a (rq/3)-neighborhood of F (where rq is the scale of our smallest

cubes). Under the Lipschitz assumption, we use the rigid face F' = ¢ (AF), and the
projection g defined by

(25.33) r(y) = A (7P (),

which is now defined on a neighborhood of F’ whose width near x could easily be computed
in terms of rg, A, A, and dist(z, R™ \ U). With this projection comes a retraction, defined
by

(25.34) Mr(y,s) = A7 (s(r" (0 (M) + (1 = s)e(\y)),

for y the same neighborhood of F' and 0 < s < 1. We shall use a different time for different
points; that is, for y € R™ and 0 <t < 1/2, we set

(25.35) s(y,t) = 0 when |y — 2| > (1 4 30¢)r,
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and

(1+30e)r — |y — x|
10er

(25.36) s(y,t) = 2¢ min (1, ) when |y — z| < (14 30e)r

(so that in particular s(y,t) = 2t when y € B(x, (1 + 20¢)r). Then we set
(25.37) s(y,t) = s(y,1/2) when 1/2 <t < 1.

We also want to interpolate between y and ¢(y) = ¥ (g(y)), so we set

(25.38) oi(y) =y for 0 <t <1/2
and
(25.39) or(y) = (2t — D(y) + (2—2t)y for 1/2 <t < 1.

Finally, we want to use the family {h;} defined by

(25.40) he(y) = e (pe(y), s(y, 1)),

but a few verifications will be needed.

First of all, 7p(z) and Iz (z, s) are well defined when z € 2B and 0 < s < 1. Indeed,
x € F and hence dist(z, F') < |z — x| < 2r, and (25.11) allows us to choose r(x) so small
that 2B is contained in the neighborhood of F' that was mentioned below (25.33). Next
observe that

(25.41) oi(y) =y for 0 <t <1 when |y —z| > (1 + 20¢)r,

since g(y) = y by (25.24) and because a(|y — z|) = 0, hence ¢(y) = ¥(y) = y by (25.29),
and finally o¢(y) = y by (25.38) and (25.39).

If moreover (1 + 30e)r < |y — x| < 2r, then s(y,t) = 0 by (25.35) and (25.37), so
hi(y) = ¢i(y) =y by (25.40) and (25.34).

If instead y € R™ \ 2B, and even though IIx(y, s) is not formally defined above, we
can safely extend the definitions (for instance, set IIg(z,0) = 2) and keep h:(y) = y there.
So

(25.42) hi(y) =y for 0 <t <1 when |y — x| > (1 + 30e)r,

and nothing happens there.
Before we continue with other regions, it will be useful to know that for some constant
Cy, that depends on the local Ahlfors regularity constant for E near =z,

29
(25.43) dist(y, F') < Cper fory e EN EB.
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Indeed otherwise, E N B(y,Cper) does not meet F, and then HY(E N B(z,3r) \ F) >
HUENB(y, Cper)\F) > C~1(Cper)? by local Ahlfors regularity of E (see Propositions 4.1
and 4.74). This contradicts (25.32) if Cy is chosen large enough; (25.43) follows. Since the
E. converge to F, we also get that for k large,

28
(25.44) dist(y, F') < 2Cper for y € Ex N 1—OB.

For the moment, we only care about y € Eyx N 2B. Set y = 1 (A\y), and notice that for
0<s,s <1,

e (y.s) = rly. ) = A7 [07 (s(x" (5) + (1= 9)7) =47 (s'(x" ) + (1 = 5)7)

<A AJs — &||7F (§) — G < CAVA|s — | dist (7, F)
(25.45) < CA?%|s — §'| dist(y, F) < C(A)|s — s|er

by (25.34), because m¥" is Lipschitz and 7 (z) = z on F (see (3.6)), and by (25.43); here
and below, C(A) is our notation for a constant that depends on A (but also on M and the
other usual constants). Since I1x(y,0) = y, we get that

(25.46) Mp(y,s) —y| < C(Aer forye ExNiiBand 0<s < 1.
Notice also that for y,z € 2B and 0 < s < 1,
(25.47) e (y,s) — e (z,8)] < CA%|y — 2],

by (25.34) and because o is C-Lipschitz.
We continue our study of the h; with what happens in the region

(25.48) Ri={y€Ep; (1+10e)r <|y—z| < (14 30e)r}.

Let y € Ry be given; first observe that |g(y) — y| < 3er by (25.25) and (25.22), hence
lg(y) — x| > Ter (by definition of R;), and (25.29) says that

(25.49) o(y) =v(g(y)) = g(y) fory e R;.
We’ll need to know that
(25.50) 9(y) — 9(2)| < 2|y — 2| fory,z€ EyN2B

so we return to the definition (25.24), write g(y) = an(y) + (1 — o)y, with a = a(|y — z|),
and similarly g(z) = 87 (y) + (1 — 8)y with 5 = a(|z — z|), and write that

19(y) — 9(2)| = |an(y) + (1 — )y — Br(y) — (1 — B)y|
(25.51) <[(a=B8)(n(y) —y)| + Blr(y) — 7(2)| + (1 = B)|y — 2|
< 3erla— Bl + |y — 2| < 2Jy — 2|
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by (25.22), and because |« — 3] < (10e)~!|y — z| by the definition below (25.24). So (25.50)
holds.

By (25.50), the definitions (25.38) and (25.39), and the fact that ¢ = g on R;, each
¢ is also 2-Lipschitz on R;. In addition, notice that for y € R,

(25.52) ot (y) —yl < lo(y) —yl = lg(y) —yl < 3er

by (25.38) and (25.39), (25.49), and (25.25) and (25.22). Thus dist(p:(y), F)) < C(A)er by
(25.44), and the proof of (25.45) also yields

(25.53) Lr (e (), s) = r(pe(y), s")| < C(A)]s — s'ler

for 0 < 5,8 <1 (just replace dist(y, F') with dist(¢:(y), F')). Recall that the ¢:(y) stay
in 2B, where IIr is well defined and all the formulas that we use make sense (because
r < r(z) and if r(z) is chosen small enough). Similarly, we still have (as in (25.47)) that

(25.54) e (pi(y), s) — e (pi(2), 8)] < C(A)]pi(y) — wi(2)] < C(A)]y — 2],

for y,z € Ry and 0 < s <1 by (25.34), and because 7F is C-Lipschitz and ¢; is 2-Lipschitz
on R;. Hence,

1he(y) — he(2)] = [HE(ee(y), s(y, ) — e (pe

< e (pe(y), s(y, 1)) — Hr(p

(25.55) + |TLr oy
< C(Ner|s(y,t) — s(z,t)| + C

~—

(2),8(y,t)
(y), s(,t)
y),S(% )—H (¢i(2),8(2,1))]
Ny — C(A)]y — z|

by (25.40), (25.53), (25.54), and our definition of s(y,t) in (25.36). Thus h; is C(A)-
Lipschitz on R;, and in particular

S

~—

(
(

_v

(25.56) He(hi(R1)) < C(A)VHY(Ry).
Next we consider
(25.57) Ry ={y € Ey; |ly— x| < (14 10e)r and g(y) ¢ B}.
Let us first check that
(25.58) hi(y) € B(x,2A%*r) when y € E, N B(x, (1 +10e)r) and 0 < ¢ < 1.

When t < 1/2, ¢(y) = y by (25.38), hence hi(y) = Ilp(y,s(y,t)) by (25.40). Then
|he(y) —y| < C(A)er < r/2 by (25.46) and if ¢ is small enough, and h:(y) € 2B (which is
better than promised).

When t > 1/2; s(y,t) = s(y,1/2) = 1 by (25.37) and (the sentence below) (25.36),
hence (25.40) yields

(25.59) he(y) = Up(pi(y), 1) = 7F o @i (y)
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(compare (25.34) with (25.33)). Notice that 7 (z) = z (by (25.33), because p(Az) € F
(since x € F), and by (3.6)); then

(25.60) he(y) — x| = |mp 0 u(y) — 7R ()] < A%|gi(y) — 2]

because 7z is A2-Lipschitz by (25.33). If g(y) € B, we also get that ¢(y) = 1og(y) € B, by
(25.28), hence ¢;(y) € 2B by (25.38) and (25.39); then (25.60) says that |h;(y) — x| < 2A%r,
as needed for (25.58).

We are left with the case when g(y) ¢ B, i.e., when y € Ry. We claim that

(25.61) o(y) =m(y) for y € Rs.

As soon as we prove this, we will get that ¢;(y) € 2B (by (25.38) and (25.39)), and (25.58)
will follow from (25.60).

Now we prove the claim. Let y € Ry be given. By definition of Ry, g(y) ¢ B; hence
by (25.25) and (25.22), |y — x| > (1 — 3¢)r. Since |y — x| < (14 10e)r by definition of Rs,
we get that o]y — z|) =1 (see below (25.24)), and g(y) = 7(y) € P(x) by (25.24). Since

g(y) ¢ B, (25.29) yields ¢(y) =¥ o g(y) = g(y) = 7(y), as needed for (25.61).
We are a little more interested in what happens for ¢ = 1. Then (25.59), (25.39), and

(25.61) say that

(25.62) hi(y) = mrop1(y) =mr o p(y) = mr o m(y).

This is good, because it means that h; is Lipschitz on Rs, with a constant that depends
on A, but not on ¢, for instance. Then

(25.63) He(hi(R2)) < C(A)YHA(Ry).
We are left with the region
(25.64) Rs={y€ Ey;|ly—a| < (1+10e)r and g(y) € B}.

On this last region, we do not control the Lipschitz norm of h; (because we do not control
the Lipschitz norm of 1), but fortunately (25.59) and (25.39) yield hqi(y) = 7 0 p(y) =

Tr o Y(g(y)), so
(2565) hl(Rg) Crmpo w(g(Rg,)) Crmpo w(g(Ek) N B) =TFoO IZJ(S) C WF(P(ZC) N 8B)

because we set S = g(FEx) N B (above Lemma 25.27) and by definition of ¢ (below that
lemma). Since 7 is Lipschitz, we get that

(25.66) H(h1(Rs)) = 0.
We want to apply the definition of a quasiminimal set, so we check that the h; satisfy
the conditions (1.4)-(1.8), relative to the ball 2A2B. The continuity and Lipschitz condi-

tions (1.4) and (1.8) are satisfied (all our maps are Lipschitz, even though with possibly
huge constants), and (1.5) follows from (25.42).
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For (1.6), we just need to check that h:(y) € B(z,2Ar) when y € ExNB(z, (1430¢)r,
because otherwise (25.42) says that h.(y) = y. When y € B(x, (14 10¢)r, this follows from
(25.58), so we may assume that y € Ry (see (25.48)). By (25.52), |¢(y) — y| < 3er, and
so (25.40) yields

e 1) == M), (0.0) = o] < (). 0) = ol + C(A)er
< lee(y) — [+ C(A)er < 2r
by (25.53) with s’ = 0, because I1x(v:(y),0) = ¢¢(y) and if € is small enough; (1.6) follows.
As usual, we end the verification with the boundary condition (1.7). Let y € Ej be
given, suppose y € L; for some j, and let us check that h:(y) € L; for 0 <t < 1. There is
nothing to check if |y — x| > (1 + 30¢e)r, because hi(y) = y by (25.42). Otherwise, let G' be
a face of our grid that contains y.
First assume that (1 + 20e)r < |y — x| < (1 4 30¢)r. Then ¢;(y) = y by (25.41), and
hi(y) = I (y, s(y,t) by (25.40). Both mr and IIp were designed to preserve all the faces

of our grid: see Lemma 3.4 for w!", observe that s7 + (1 — s)I preserves the faces of the
usual dyadic grid too (by convexity of the faces), and then 7 and IIp preserve the face
G, because we conjugate with ¥(\-) (see (25.33) and (25.34)). Thus h(y) € G, as needed.

So we may assume that |y — x| < (1 + 20e)r. For t < 1/2, ¢4(y) = y by (25.38), so
hi(y) = lp(y, s(y,t)), and we get that h(y) € G by the same argument as above. So we
restrict to ¢ > 1/2. Then s(y,t) = s(y,1/2) = 1, by (25.37) and (the line below) (25.36).
Then (25.40), together with (25.33) and (25.34), yields

(25.68) he(y) = e (pe(y), 1) = mr(p(y)).

Our next case is when (1+10e)r < |y —x| < (14 20¢e)r; then y € Ry (see (25.48)) and
(25.52) says that | (y) —y| < 3er. Notice that dist(p(y), F) < dist(y, F') +3er < C(A)er
by (25.44), and hence, if € is small enough, hi(y) = 7r(p¢(y)) € F by definition of g
(see near (25.33), and then Lemma 3.4 and Remark 3.25). But by (25.31), G contains
x; since F' was chosen (below (25.32)) as the smallest face that contains z, we get that
F C G C Lj, as needed.

Next we assume that y € Rs. In this case we still have that hi(y) = 7r(p(y)),
by (25.59), and in addition ¢(y) = 7(y) by (25.61). In this case, |¢:(y) — v S lo(y) —
y| = dist(y, P(z)) < 3er by (25.39), the definition of 7w above (25.24), and (25.22). Thus
dist(¢¢(y), F') < C(A)er again, and we may conclude as before.

We are left with the case when y € R3. Then ¢g(y) € B, and by (25.29), ¢(y) =
¥(g(y)) € P(x) N OB. Recall that ¢:(y) € [y, ¢(y)] by (25.39); since dist(y, P(x)) < 3er
by (25.22) and dist(y, B) < |y — ¢g(y)| < 3er by (25.25) and (25.22), this yields

(25.69) dist(p¢(y), P(x) N B) < 6er

But we want to show that o;(y) lies close to F', and since F' is a distorted face which may

not be flat, we shall need to show that ¢;(y) lies close to Ej, and then use (25.44).
Unfortunately, we shall need to use Lemma 9.14. Recall that z € E' C E (see the

definitions above (25.17) and (25.9)), but since we want to apply the lemma to the set Fy,
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we restrict to k large, choose xy € Ey, N B(x,er), and apply the lemma with y =z, t = r
(so that B(xg,2t) C B(x,3r)), and P = P(x). Recall that Ej, = E} because we assumed
(10.3). The size condition (9.15) is satisfied because r < r(z) and if r(x) is small enough
(this is allowed by (25.11)). If some L; meets B(x,2r) and G is a face of L; that meets
B(z,2r), (25.31) says that G contains x; since F' is the smallest face that contains x, we
get that F* C G C L;. Thus the set L of (9.16) contains F', and our assumption (9.17)
holds with n = C(A)e, by (25.44). Finally the assumption (9.18) is satisfied for k large
(and with the constant 2¢), by (25.13) and because the Fj converge to E (recall that we
apply the lemma to Ej, which is why we only get 2¢). Thus, if € is small enough, the
lemma applies, and we get (9.19). That is,

(25.70) dist(p, Ex) < 2er for p € P(x) N B(xy, 3r/2).

Return to y € R3. For each t € [0, 1], (25.69) gives p € P(x)NB such that |p—;(y)| < 6er.
Then (25.70) gives z € Ej, such that |z — p| < 2er. In turn z € 2B, so (25.44) says that
dist(z, F) < C(A)er. Altogether dist(¢:(y), F) < C(A)er, and (if € is small enough),
(25.68) implies that hi(y) € F' C L;, as needed.

This completes our proof of (1.7). Notice that it was surprisingly easy to get, by
requiring r(z) to be small, the only difficulty was to compose with 7z in a way that would
not destroy good Lipschitz bounds on R; U Ry (because we need (25.56) and (25.63)); this
is where we used our good control on E;N2B. This completes also the verification of (1.4)-
(1.8). We also have (2.4), because by our proof of (1.6), the analogue of W is contained in
B(x,2A?%r), which is compactly supported in U if r(z) was chosen small enough.

Anyway, the quasiminimality of Ej now yields

(25.71) HAUW) < MH(hy (Wh)) + hr?,
as in (2.5), and where as usual W; = {y € E, N2A%2B;hi(y) # y}. For each y €
E, N B(z,r), (25.24) says that g(y) € B(z,r); hence y € R3 (see (25.64)). If in addition
y & hi(R3), then hq(y) # y and y € W;. Thus
(25.72) HEW,) > HYE, N B(x,r) \ hi(R3)) = HYE, N B(x,r)) > C™'r
by (25.66), the local Ahlfors-regularity of Fj, and the fact that Ej meets B(z,r/10)
because x € E. As usual, this holds for k large (depending on z), and with a constant C
that may depend on A, for instance, but not on k or .

On the other hand, W; C Ry U R U R3, by (25.42), hence
(25.73) HA(hy (W1)) < CHY (R U Ry)

by (25.56), (25.63), and (25.66). Notice also that |y — x| > (1 — 3e)r for y € Ry, because
g(y) ¢ B and by (25.25) and (25.22). Thus

(25.74) RiURy C A, where A= {z € Ey; (1—30e)r <|y—z| < (1+30e)r}.
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By (25.22) again, A is contained in the thin strip H around P(z), and we can cover A by
less than Ce~%*! balls D; of radius er, which we may even choose centered on A. By the
local Ahlfors regularity of Ej (and because these balls stay far from R™\ U if r(z) is small
enough), H4(E, N D) < Cedrd. We sum and get that

(25.75) HY(A) < Cer?

and hence, by (25.73) and (25.74), #%(hy(W1)) < Cer?. If h is small enough (depending on
n, M, and A through the constants C' of (25.72)), and ¢ is small enough (depending on our
various constants, but not x or r), this contradicts (25.71) or (25.72). This contradiction
proves that ¢/ does not exist and finishes our proof of Lemma 25.27. U

We may now return to our initial construction, with x € E!, » < r(z), and S =
g(Ex) N B. By Lemma 25.27 and Definition 25.3, we get that (25.6) holds, i.e.,

(25.76) Ji(P(x) N B(x,7)) < J;(SNB(z,7)) + e (r)r?
with e, (r) coming from (25.5). But J¢(P(z)NB) = J;(P(x) N B(z,r)) because H4(P(z)N
0B) = 0, and by (25.5) e,(r) < ¢ if r(x) was chosen small enough. Thus (25.76) implies
that
(25.77) Ji(P(x) N B) < Jp(S) +erd,

Let z € S be given, and choose y € Fj such that g(y) = z. Notice that |y — x| <
(1 + 30e)r, because otherwise (25.24) would yield g(y) =y ¢ B. Then y € H by (25.22),
and (25.25) says that |z — y| = |g(y) — y| < 3er.

A first option is that |z — x| < (1 —23¢)r; then |y — x| < (1 —20¢)r, and (25.24) yields
g(y) =y (because a(]y — x|) = 0). Then z € E}, and we get that
(25.78) Jr (SN B(x, (1 —23¢)r)) < Jp(Ep N B(x, (1 —23¢)r)) < Js(Ex N B).

If |z — x| > (1 — 23¢)r, then |y — x| > (1 — 26¢)r and y € A, the annulus in (25.74). Thus
S\ B(z, (1 —23¢)r) C g(A). Now (25.50) says that g is 2-Lipschitz on A and hence

(25.79) J(S\ B(z, (1 —23¢)r)) < J;(g9(A)) < bHY(g(A)) < 29bH(A) < Cber?
by (25.4) (observe also that g(A) is rectifiable) and (25.75). Hence

(25.80) Ji(P(z) N B) < Jp(S) +er? < Jp(Ep N B) + Cher® 4 er?

by (25.77), (25.78), and (25.79). We compare with (25.21) and get that

J(ENB) < J;(P(x) N B) +e(b+ 2wy +e)r +bHY((E\ E') N B)

(25.81) < J;(Ex 0 B) + Cer + bHI((E\ EY) N B),

where in the last line C' is allowed to depend on b too.
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This estimate is essentially what we wanted; note that for each x € E', it holds for k
large (how large depends on x), and for a constant C' that does not depend on x or k. We
need a covering argument to complete our estimate.

We have a set B! C ENV, and for each z € E' we have a family of closed balls
B = B(z,r), 0 < r <r(x), which forms a Vitali covering of E*. Note also that H¢(E!) <
HUENV) < +oo (because V CC U for the moment). By Theorem 2.8 on page 34 in
[Ma], we can extract from this large family of balls a disjoint family {B;}, i € I, so that
HYE\ U;e; Bi) = 0. Then we can choose a finite set Iy C I, such that

(25.82) HYE'\ | Bi) <e.

iEIO

For k large enough, (25.81) holds for every B;, i € Iy, and now

JH(ENV) <Y JH(ENB)+J(EnNV\ | Bi)

iclo i€lo

<Y JHENB)+WHUENV ([ B) <) Jp(ENBi) +2be

i€ly i€l i€ly
(25.83) <2e+ Y [J(Ex N By) + Cerd + v ((E\ EY) N By)]
1€lp
< 2be + Jp(Bx N V) +bHYENV\E") + Ce Y rf
1€y
<Jp(BenV)+Ce+Ce > 1t

1€lp

by (25.4), (25.14), (25.82), then by (25.81), where we set B; = B(x;,r;), because the
B; are disjoint and contained in V' (if each r(z) was chosen small enough, according to
(25.11)), and by (25.14) again. Since F is locally Ahlfors-regular and each B; is centered
on E and such that 10B; C V C U, we get that

(25.84) d <> HUENB) < CHYENV)

1€lp i€lp
(because the B; are disjoint). Then (25.83) says that
(25.85) JHENV) < J(EpxnV)+CA+HUENV))e

for k large. Thus J;(ENV) < liminfxy0o Ji(ExNV) + C(1 +HYENV))e and, since
this estimate holds for every small e, we get (25.8).

This takes care of the special case when V' is compactly contained in U. In the general
case, we write V' as the increasing union of open sets V,,, CC U, notice that

(25.86) J#(E N V) < liminf J¢(Ex N V) < liminf J;(E, N V)

k—+o00 k—+o0
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for each m, then take the limit in m and get (2.8) for V. This completes our proof of
Theorem 25.7. U

Remark 25.87. The author feels that it is a pity that we do not allow f to be merely
lower semicontinuous, but was not able to come up with a clean statement, so we will just
give two possible substitutes here.

First observe that we used the continuity of f only twice, in (25.15), and (25.16)
(but where lower semicontinuity would have been enough), to be used in the last line of
(25.17), then in (25.21), to prove that for our nice balls B, J;(E N B) is almost as small
as J¢(P(x) N B) (the measure of a nearby disk).

We want to replace our continuity assumption with the following one: for each z € U,
each d-plane P through z, and each C!, embedded, submanifold I" of dimension d through
x, which admits P as a tangent plane at x,

1
rd

(25.88) lim sup

r—0

[J;(C N B(z,r)) — Js(PNB(z,r))] <0.

Notice that this goes in the direction opposite to (25.6); this can be seen as a form of
continuity is some direction, possibly much weaker than the full continuity asked above,
but hard to think about as a lower semicontinuity property. We could have given the
same definition, where instead I' is the graph of some C' mapping F : P — P+, with
DF(z) =0, and the two definitions would have been equivalent.

Claim 25.89. Theorem 25.7 also holds when we replace Z(U, a, b) with the class Z;(U, a, b)
of functions f : U x G(n,d) — [a,b] that satisfy (25.5), (25.6), and (25.88).

That is, for the sake of Theorem 25.7, we can replace the continuity of f by the
condition (25.88) in the definition of Z(U, a, b).

Our claim will follow as soon as we show that, with a suitable modification of the set
E' and, for x € E*, of the radius r(x), we still have (25.21) for B = B(z,r), when x € E*
and r > 0 is small enough. Recall that F is rectifiable; thus we can write F as null set, plus
a countable collection of sets Fj, where Fj is contained in a C'', embedded, submanifold I';
of dimension d. We may even assume that the F; are disjoint. Then almost every point
x € F lies in some I';, and is even a point of vanishing density for £\ I';, i.e.,

(25.90) lim r~HYE N B(z,r)\ ;) =0;

T
see [Ma], Theorem 6.2 (2) on page 89. We leave the definition of E° and E' as it was,
except that we forget about the conditions (25.14)-(25.16) (which concerned the continuity

of f, and replace them by the constraints that for x € E', x lies in some I';, i = i(x), and
(25.90) holds. When we choose r(z), we require that for 0 < r < 2r(z),

(25.91) HYENB(z,r)\T;) < ert
and
(25.92) Ji(Liy N B(z,r)) < Jp(PNB(z,7)) + erd,
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which we obtain as a limit of (25.88) for ' > r, because H*(P N dB(z,r)) = 0. Then for
r € E' and 0 < r < r(x), and if we set B = B(z,r) as before, we get that

Jf(Eﬂ B) < Jf(E ﬂFi(m) N B) + bHd(E N B\Fz(m))

(25.93)
< Jy(P(z) N B(x,r)) + (1 + b)er?,
which is even better than (25.21). Our claim follows.

The reader is probably worried about the limsup in (25.88), because the most logical
statement would use a liminf. The proof above accommodates a liminf too, if we are
more careful. Instead of having (25.92) for all the radii » < 2r(z), we would only get it
for a sequence of radii that tends to 0. Then, in the application of the Vitali covering
lemma near (25.82), we would only choose balls B; with a radius that satisfies (25.92). We
decided not to bother.

We can also try to take care of our semicontinuity issue by extending the class Z(U, a, b)
after the fact. That is, denote by ZT(U, a,b) the class of functions f : U x G(n,d) such
that, for each compact set H C U, there is a sequence {f,} in Z(U, a,b), with a < f,,, < f
everywhere, and lim,,, oo fr(2,T) = f(z,T) for x € H and T € G(n,d). We claim that

(25.94) Theorem 25.7 also holds with Z(U, a, b) replaced by Z% (U, a, b).

This would be nice if we could characterize easily Z+ (U, a,b) (for instance, by lower semi-
continuity and the conditions (25.4)-(25.6)), but the truth is that the author does not know
how to manipulate (25.6) concretely.

Let us prove the claim anyway. Let f € Z7 (U, a,b), the sequence {Ex} and its limit
E, and V C U be given. As for Theorem 25.7 itself, it is enough to prove the conclusion
(25.8) when V' CC U (otherwise, write V' as an increasing union of open sets that are
compactly contained in U). Then let {f,,} be as in the definition of Z% (U, a,b), relative
to H = V; notice that for m > 0

(25.95) Jr, (ENV) <liminf J;, (Ex NV) < liminf J;(E, N V)

k—+o0 k—+o0

because (25.8) holds for f,,, and f,,, < f, and that

(25.96) JH(ENV)= lm J; (ENV)

m——+00
by the dominated convergence theorem; (25.8) and our claim (25.94) follow.
The next lemma will help with the extension of Theorem 10.8 to f-quasiminimal sets.
Lemma 25.97. Let f: U x G(n,d) — |a,b] satisfy the conditions (25.4)-(25.6). Then

(25.98) lim nf rid [J;(T A B(x,r)) — J¢ (P B(z,r))] >0
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for each x € U, each d-plane P through z, and each C', embedded, submanifold T' of
dimension d through xz, which admits P as a tangent plane at x.

Notice that the conclusion is the opposite of (25.88), so we could replace (25.88) into
the simpler (but apparently stronger)

(25.99) lim r_d [Js(C N B(z,r)) — Js(PNB(z,r))] =0
in Claim 25.89, without changing the result.

The proof of Lemma 25.97 goes a little as for Lemma 25.27. Let z, P, and ' be
as in the statement, and let » > 0 be small. We want to apply (25.6) to a suitable set
S C B(x,r), and since we want S N dB(x,r) to be contained in P, we use S = B N g(I),
where B = B(x,r), g is defined by (25.24), 7 denotes the orthogonal projection onto P, «
is defined as below (25.24), and £ > 0 is a small positive number, which will tend to 0 at
the end of the argument.

As before, we want to show that there is no Lipschitz mapping ¢ : B — B such that
Y(y) =y for y € PN OB and (S) C PN AIB. Let us suppose that ¢ exists and use it
to define an impossible mapping h : PN B — P N 0B. First extend 1 to P, by setting
Y(y) = p(y) for y € P\ B, where p(y) = = + T|Z:i| is the radial projection of y on 9B.
The extension is still Lipschitz because 1(y) =y on P N JB.

By definition of I, there is a C! function F : P — P+, with DF(x) = 0, such that for
r small, I' coincides with the graph of F' in B(x,2r). Also, for r small enough, |F(y)| < er
fory € PN2B. Set A =1+ 2¢ and, for y € PN B, set y = x + Ay — z) € AB, and
then z = y + F(y) Thus z € B(z, (1 + 3¢)r) (because |F(y)| < er). If g(z) € B, then
g(z) € Bng(T') =5, and ¥(g(z)) is defined and lies in P N dB. Otherwise, notice that

(25.100) 9(2) = 2| < |m(z) — 2| = [F(y)| < er
by (25.24) and because y € AB, and
(25.101) |2 =yl <[F @)+ [y —y| < 3er.

Hence |z —z| > |g(2) —z| —er > (1 —&)r (because g(z) ¢ B), and |z — x| < |y — x|+ 3er <
(14 3)er, so a(jxz — 2|) = 1, hence g(z) = w(z) € P, and again ¢ (g(z)) is defined and lies
in PN OB by definition of our extension 1 on P\ B. So we can define h: PNB — PNJB
by h(y) = 1¥(g(z)), and obviously h is continuous. Also, if y € 9B, (25.101) still holds and
yields |z — y| < 3er, then a(|x — z|) = 1, and hence g(z) = 7(z) by (25.24). In addition,
lg(z) —z| = |7(2) — 2| = |F(y)| < er as in (25.100), so |g(z)| > |z| —er > r (by definition of
A), which means that g(z) € P\ B and ¢(g(2)) = p(g(2)). Thus |h(y) —y| = | (9(2)) —y| =
lp(g(2)) —y| < lg(2) —y| < 4er; this implies that the restriction of h to PN OB is of degree
1, which is impossible because it has a continuous extension from PN B to P N JdB.

This contradiction shows that 1 does not exist, and this allows us to apply (25.6).
That is,

(25.102)  Jf(P N B(z,7)) < J;(S N B(x,7)) + . (r)r® = J¢(g(T) N B(z,7)) + e, (r)re.
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We claim that for r small,
(25.103) J(g(T) N B(x,7)) < J4(T'N B(x,r)) + Cer®.

Let z € g(I')N B(x,r) be given, and let y € I" be such that g(y) = z; if |y — x| < (1 —20¢)r,
afly —z|) = 0, hence g(y) = y. The corresponding subset of ¢g(I") is controlled by the first
term in the second hand of (25.103). The case when |y — x| > (1 + 20¢)r is impossible,
because we would have that g(y) = y for the same reasons. We are left with g(A), where
A={yeT; (1-20e)r < |y—az| < (1—20¢e)r}. We observe that H%(A) < Cer?, and that
g is C-Lipschitz on A (recall that |7(y) — y| < er for y € A, and use the usual argument).
This proves (25.103), and because of (25.102) we get that the liminf in (25.98) is larger
than —Ce; since € > 0 is arbitrarily small, (25.98) and Lemma 25.97 follow. O

26. Limits of f-quasiminimal sets associated to elliptic integrands.

We shall now describe a few implications of Theorem 25.7, in a context of quasiminimal
and almost minimal sets relative to an integrand in the class Z(U, a,b). We could also use
the slightly larger classes Z;(U,a,b) and Z7 (U, a,b) defined for Claim 25.89 and (25.94),
but we shall stick to Z(U, a, b) for simplicity.

We start with some simple observations on quasiminimal sets. Let f € Z(U,a,b) be
given. Since we want to define J¢(E) also for sets E that are not necessarily rectifiable,

define an auxiliary function f : U — (0,400), also with a < f(z) < b; this way we can
define J f(E) as in (25.2). Of course J J;(E) = J¢(E), as defined in (25.1), when E is

rectifiable (which will be our main case).
Then, we can define the class GSAQ (U, M, 0, h), as we did in Definition 2.3, except
that we replace (2.5) with the corresponding inequality

(26.1) J, #(Wh) < MJ, A1 (W) + hr.

With our assumptions, notice that

(26.2) aH(A) < J, #HA) < bH(A)

when A is a Borel set such that H%(A) < +oo. Then it is easy to see that

(26.3) E € GSAQ(U,a 'bM,6,a ="" h) as soon as E € GSAQ;(U, M, 5, h).

That is, quasiminimal sets relative to f are also quasiminimal relative to 1, and if h is
small enough (now depending on a and b as well), Theorem 5.16 says that FE is rectifiable.
Then we can forget about f altogether (since E and also its competitors ¢1(E), where ¢
satisfies (1.8), are rectifiable), and concentrate on f and the formula (25.1). In particular,
our class GSAQ s does not depend on f

We don’t need to worry about the regularity results for £ € GSAQ (U, M, 6, h), since
we can apply the results that we proved for plain quasiminimal sets.

Also, Theorem 25.7 applies to quasiminimal sets £ € GSAQf(U, M,6,h), h small
enough, since they are plain quasiminimal sets.
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Claim 26.4. Theorem 10.8 is still valid when we take g € Z;(U,a,b), and replace
GSAQ(U,M,é,h) with GSAQ4(U, M, d,h) both in the assumption (10.2) and the con-
clusion (10.9).

We decided to call our integrand g because the letter f is used for the Lipschitz map
of Sections 11-19. We work with the slightly larger class Z;(U, a, b) of Claim 25.89 because
the proof for g € Z(U, a,b) works as well with Z;(U, a,b); we shall not attempt to see what
happens when g € Z%(U, a, b).

Also notice that under the Lipschitz assumption, this time we restrict to the additional
condition (10.7), which is easy to use, and do not attempt to use the weaker (19.36).

Because of the length of the proof, we shall not check every detail, so the reader is
invited to use a little more caution than usual before applying this result.

Most of the construction of stable competitors, as in Sections 10-17, does not need to
be changed (we shall just modify the definition of the radii 7(y) defined in (15.4), before
we define the balls Bj, j € J3). In particular, the estimates for all the small perturbation
pieces will give equivalent results when we estimate sets with J; rather than H<, because
of (25.4). Even in Section 18, nothing much happens before the estimates near (18.58),
when we study the main contribution from the B e J € Js and x € Z(y;).

Under the rigid assumption, we still have (18. 58) for the same reason as before, but
instead of (18.63) and (18.64), we use this to prove that

H(U U sLam))<n((U U 5))

Jj€Js x€Z(y;) Jj€Js x€Z(y;)

<> J,(@Q;NDy),

Jj€Js3

(26.5)

where, as we recall, D; = B(y;, ;) is a ball and @), is a d-plane through y;; we then deduce
from this and previous estimates that (as in (18.64))
(26.6)

Jo(ha(Ex N W)) < Cn+ C(f,7)(1 = a) + Cla, )N + C(fy+ Y Jy(Q; N Dy).

JEJ3

Under the Lipschitz assumption, the same estimates as before lead to the following analogue
of (18.72):

Jo(ha(Ex NW)) < Cn+ C(f,7)(1 —a) + C(a, )N~  + C(f)v
(26.7) + > J(Dy N AT THQy))

JEJ3

Now we need to change the argument a little, because we want lower bounds for J,(D; N
f(ENWy)) that fit with (26.6) or (26.7).

We begin with the rigid case, and explain how to modify the definition of the D; in
Section 15, so as to have additional useful properties. We start with the sets X9 C E and
Yy = f(Xo), and of course Yy is rectifiable because f is Lipschitz. This means that we can
find a countable collection {I';,}, m > 0, of C' submanifolds of dimension d, such that

Hd(Y9 \ UmZO Fm) =0.
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Set I',, = 'y \ U<, I, and then Yy(m) = Yy N1I7 ; thus the Yy(m) are disjoint, and
almost cover Yy. Then denote by Yy (m) the set of y € Yy(m) such that

(26.8) lim r =4 (B(y,r) N T \ Yo(m)) = 0;

we know from [Ma], Theorem 6.2 (2) on page 89 that (26.8) holds for H?-almost every y €
Yo(m) (because Yo(m) C I'y,), so HY(Yo\U,, >0 Yg(m)) = 0. Set X{(m) = XoNf~(Yy(m))
for m > 0; we claim that -

(26.9) 1Y (X \ | X5(m)) =0.

m>0

The justification is the same as for (15.11), relies on the fact that f : X9 — Yp is at most
N-to-1, and is done for (4.77) in [D2].
For each m > 0 and y € Yg(m), there is a radius r1(y) such that

(26.10) HUB(y,r) NTp \ Yo(m)) < nr? for 0 < r < r1(y)
(where 1 > 0 is the usual small number in Sections 11-18) and, because of Lemma 25.97,
(26.11) Jg(Qu(y) N B(y. 1)) < Jo(T N B(y,r) +ar? for 0 <7 <ri(y),

where Q,,,(y) denotes the tangent plane to '), at y. We now modify our definition of Yjq
in Section 15. We replace Yy by Yy = |,,>o Yg(m) and X9 by X§ = U,,~o Xo(m) (we
know from (26.9) that we don’t lose any mass), and in addition to the defining condition
(15.2) on r(y), we require that r(y) < ri(y) for y € Yy. Then we define é7, ds, and the
sets X790 and Yjo as before, except that in (15.7) and (15.8) we replace Xg and Yy with
X4 and Yy. This way we get the additional property that ri(y) > dg when y € Y9, and
in particular, once we choose the balls D; = B(y,,r;), j € J3, that r; < r1(y;) for j € J3
(by (15.12)).

Now fix j € J3, and let m be such that y; € Yy(m). We have a d-plane Q);, which
is the common value of the A,(P,), v € Z(y;) (see above (15.16), and we claim that it
is also equal to the tangent plane @, (y;) to I'y, at y;. Since both are d-dimensional, it
is enough to check that Q,,(y;) C Q;. Let v be a unit vector in the direction of Q,,(y;),
and let ¢ > 0 be given. For r > 0, (26.8) says that B(y; + rv/2,er) meets Yg(m). Since
Yo(m) C Yy = f(Xo), we can find z € Xy such that f(z) € B(y; + rv/2,er). By (15.2),
z € B(z,2y~r) for some x € Z(y;). By (11.40), |f(2) — Az(2)| <elz —x| <2y~ lerifris
small enough (recall that Z(y;) is finite). At the same time, dist(z, P,) < er for r small,
because P, is tangent to F at x. Let z denote the projection of z on P,; then

dist(y; +1v/2,Q;) < er+dist(f(2),Q;) = er + dist(f(2), Az(Py))
<er+dist(f(2), Az(2)) <er+|f(2) = Az (2)| + |Azliip|2 — 2|
(26.12) <er+ 2y ter + | fluper < Cer

by (11.36). For each € > 0, this holds for r small enough; since y; € Q;, it follows that v
lies in the vector space parallel to Q;, and @, (y;) = Q;, as needed.
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Since r; < r1(y;), we can apply (26.11) and then (26.10) to get that
Jg(Qj N Dj) = Jo(Qm(y;j) N B(y;,75)) < Jg(I'm N B(y;,75)) + 777“?
(26'13) ()/9< ) N B(yj7 rj)) + erd(B(yj?rj) Ny, \ Y9(m)) + 777”?
< Jg(Yo(m) 0 B(yz, ) + (1 + 0)nr.

m

m

Now Yy(m) C f(E N Wy)), because Yg(m) C Yy = f(Xyg), and X9 C Xo = EN Wy by
(11.20), so (26.13) says that

(26.14) J,(D; N Q) < J,(Dj N fF(ENW;)) + (1 +b)yr

We sum over j € J3, and get that
Y Jy(D;N@Q) <> J(DyNFENWE) + (1+bn > rd
J€Js JE€Js J€Js

< Jy(F(ENWE) + (L+bn Y rd
JE€J3

(26.15)

because the D; are disjoint. Since Jo(D; N Q;) > aH*(D; N Q;) = awqrd for j € Js, we
deduce from this that

(26.16) rf <alwit Y Jy(D;N Q)
JEJs3 VESDE!

and so, by (26.15) and if n is small enough,

(26.17) Dt <207 wi T (f(E N W)
J€Js3

because the D, are disjoint. We now compare (26.15) with (26.6), and get that

(26.18) Ty (ha(Bx VW) < J,(F(E QW) + &,
where
(26.19) E=Cn+C(f,7) (1 —a)+Cla, AN"* +C(f)y+ (1 +b)n Z ry

Jj€Js3

is a small error term (observe that 3 ;. 7 rd < O(f), by (26.17)). This is a good substitute
for (18.93); from there, we estimate the dlfference between Wy and W as in (18.96), replace
the lower semicontinuity estimate (18.97) by (25.8), and end the proof as before, with H¢
replaced with J;. This completes the proof under the rigid assumption.

Now suppose that we only have the Lipschitz assumption; thus we only have the
estimate (26.7), and as before in Section 19, we need to estimate the quantity

(26.20) A=Y JDyna Tty =) J,(Q; N Dy)

JEJ3 JEJ3
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(compare with (19.1)). The first part of Section 19, where for i € J4, we extend our one
parameter family to get a final set which in D; is almost contained in @);, does not need
to be modified. We get an estimate like (19.32), with H? replaced by Jg, which gives a
contribution like the one we had in (26.6), and the effect is that we can remove from A
the contribution from the indices j € Jjy.

For the second part of the argument, where we get rid of some small set Z, we need
to change a few definitions. For y € U, denote by F(y) the smallest face of our grid that
contains y.

Our first set Z; is the set of points y € U such that dimension(F'(y)) > d, that lie in
L) = L; \ int(L;) for some i € [0, jymaz], but for which we cannot find ¢ > 0 such that the
restriction of 1 to AF(y) N B(\y, t) is of class C*. By (10.7) (or rather the translation that
was given below its statement), H¢(Z1) = 0.

Next denote by Zs the union of all the faces F' such that dimension(F) < d; again
HY(Zy) = 0.

Our third small set Z3 is a subset of Y17 (defined by (15.9)). Consider the set Y of
points y € Y77 such that dimension(F(y)) = d. This set is rectifiable, so we can find a
countable collection of C' submanifolds I',,,, m > 0, of dimension d, such that if we set
Y' =Y N (U, Tm), then HH(Y \ Y’') = 0. The I',, = 'y, \ U,,, It are disjoint, and still
cover Y'. Now for each face F of dimension d and each m, we can apply [Ma], Theorem
6.2 (2) on page 89 to show that for #%-almost every y € Y/ NF NI/, ,

(26.21) lim r*HY(B(y,r) T, \Y') =0

r—0
(say that T',, \ Y’ C [[,, \ I, ] U [T, \ Y’] and observe that H%(T,,) is locally finite) and
(26.22) lim r~HY(B(y,r) N F\T’,) =0.

r—0
We remove from Y7, the set Z3 of y € Fyp such that y € Y\ Y’ or y € Y/ but (26.21) or
(26.22) fails for F = F(y) and m = m(y), the index such that y € G/,. That is, we set
Y12 = Y11 \ (Zl U Z2 U Zg) Of course Hd(Yll \)flg) =0.

Now let y € Y75 be given. We want to define a radius r1(y) under which some good
things happen. We start in the special case when dimension(F'(y)) = d, set F' = F(y), and
let m be such that y € G,; thus (26.21) and (26.22) hold, because we excluded Zs.

First, we shall take r1(y) so small that

(26.23) HYB(y,r)NF\T,,) < nre

for 0 < r < ry(y); this is easy because of (26.22). For the next condition, pick any point
x € Z(y); such a point exists because y € Yy = f(Xy) (see (15.1) and the line before), and

in addition y = f(x) and x € X3 (see (15.7) and (15.10)). Set y = ¥(Ay) = f(z) (see
(12.36)) and F' = ¢ (AF); this last is the smallest face of the true dyadic grid that contains

y. By Lemma 12.40, A, (P,) C W(f(x)) = W(y), where W(y) denotes the smallest affine

subspace that contains F'; since F', and hence W (y), are d-dimensional, we will immediately
get that

(26.24) A (Pr) =W (y)



as soon as we check that A, (P,) is d-dimensional. We know that A, (P,) is d-dimensional
(compare the definition (14.5) with (14.21) and the line below); then our proof of (15.41)
shows that shows that the restriction of ¢ to AA,(P,) is differentiable in every direction,
and (15.41) gives a relation between the directional derivatives of A, and ﬁx on P, (and
at :1:) which proves that DA, is injective (because D1 is injective since 1 is bilipschitz).
So A,(P,) is d-dimensional and (26.24) holds. No y lies in the interior of F' (by definition
of F' as the smallest face that contains y, hence y lies in the interior of F the sets A, (Pr),
W (y), and F coincide near y, and (by applying the bilipschitz map A~ 1w 1) the sets F
and A=y~ (A, (P,)) coincide near y. Now set Q = A, (P,); we even know from (15.40)
that all the z € Z(y) give the same Q. If ry (y) is small enough, then for 0 < r < r1(y),

Jo(B(y,7) N A9 1(Q)) = J,(B(y,r) N F)
Jy(B(y,r) NTy) + bHYB(y,r) N F\T,,)
J,

o(B(y,r) N Ty) + byrd

(26.25)

IAIA

by (26.23). Denote by P(I',,) the tangent d-plane to I',, at y. We claim that P(T',,) =
A, (P;). We know from (15.9) that A,(P,) does not depend on z; since both sets are
d-dimensional, it is enough to check that P(I',,) C A,(P,). We then proceed as we did
near (26.12). Let v be a unit vector in the direction of P(I',,), and let € > 0 be given. For
p > 0, (26.21) says that B(y + pv/2,ep) meets Y/ C Y C Yi;. Since Y11 = f(X11), we
can find z € X1; such that f(z) € B(y + pv/2,ep). By (15.2), 2 € B(z,2y 1p) for some
x € Z(y). By (11.40), | f(2) — Az(2)| < €|z — x| < 2y 1ep if p is small enough (don’t worry,
Z(y) is finite). Also dist(z, P,) < ep for p small, because P, is tangent to E at x. Let z
denote the projection of z on P,; then

dist(y + pv/2, Az (Py)) < ep + dist(f(2), Az(Pr)) < ep + dist(f(2), Az(2))
<ep+[f(2) = Az(2)] + [Asliiplz — 2]
(26.26) <ep+2y tep+|flupep < Cylep

by (11.36). For each £ > 0, this holds for p small; since y € A,(P,), it follows that v lies
in the vector space parallel to A,(P,), and P([',, ) A, (P,), as needed.
We add one more constraint to the choice of 1 (y) above: we apply the definition

(25.88)-(25.89) of Z;(U, a,b), and require that

(26.27)  J,(B(y,r) NTy) < Jy(B(y,r) N P(T,,)) + 1" = Jy(B(y,r) N Ag(Py)) + "
for 0 < r < ry(y); then by (26.25)

(26.28) Jg(B(y,r) N /\_W—l(@)) < Jg(B(y,r) N Ag(Py)) + (1 + b)??Td

We like this because if we ever pick y; = y and r; < r(y) for some j € J3, we will
immediately deduce from (26.28) that

(26.29) Jo(D; N AL HQ;)) < Jy(Q; N Dy) + (1 + byyrd
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just because D; = B(yj;, r]) (; is the common value of the A, (P;), z € Z(y;), and @j is
the common value of the A, (P,).

This takes care of the definition of 71 (y) in our first case when dimension(F(y)) = d.
Notice that since we removed Z3, dimension(F(y)) < d is impossible. We are left with the
case when dimension(F(y)) > d. If y lies in no set L, = L; \ int(L;), we won’t need r1(y),
and we can set 71 (y) = +oo. Finally, if y € L/ for some i < jq2, the fact that we removed
the set Z; implies that the restriction of 1 to AF N B(\y,t(y)) is of class C1.

Since y € Y11, and as in our first case, Lemma 12.40 says that for © € Z(y) the d-
plane A, (P,) is contained in W (7)), where W (7) is still the smallest affine subspace W (7))
that contains F (and F is the smallest rigid dyadic face that contains § = f(z)); but
the difference is that now the dimension of W(y) is larger than d. However, there is a
neighborhood of ¥ in W () where the restriction of A™19~1 is of class C! (in fact, the
C'-regularity of this inverse map is the best definition of the C'-regularity of ¢ on \F).

Then, if we set T'(y) = A2y~ (A,(P,)), there is a neighborhood of y in U where I'(y) is
is a C'! submanifold of U. By (25.88) again,

(26.30) limsupr—?[Jy(B(y,) NT(y)) — Jy(B(y,r) N P(y))] <0,

r—0

where P(y) denotes the tangent to I'(y) at y. Then we need to check that
(26.31) P(y) = A, (Py) for x € Z(y).

The fact that all the sets A, (FP,) coincide comes from (15.9), and for the equality with
P(y) we shall be able to compute. Let R denote the differential of A=1¢)~! at 7; this map

is only defined on the vector space parallel to ﬁ, but this will be enough. Also denote by
P’ the vector space parallel to P,; we know from (11.40) that the restriction of DA, to P’
is the differential of the restriction of f to P,. Slmllarly, (12.39) says that the restriction

of DA to P’ is the differential of the restriction of f to P,. We have seen that, because of
Lemma 12.40, A (P,) is contained in the vector space parallel to F. Then the composition

RoDA, : P’ — R™ makes sense, and we claim that it is also the differential of the mapping
f: P, — R". Indeed, for v € P’, set z = f(x + tv) and denote by w the projection of

flz+tv) on Ay(P,). Then z = f(z+tv) = §+tDA,(v) +0(t), sow = §+tDA,(v) + oft)
too (because § + tD A, (v) € Ay(P,)), and finally

flz+t) =29 z) =2 H(w) + O(lz —w|) = A1~ (w) + o(t)
(26.32) =A@ + R(w—17) + o(|w —7]) + o(t)
=y +tRoDA,(v)+ o(t)

because ¢ is Lipschitz, and as needed. Since we also have the differential DA, , we see
that DA, = Ro DA, on P’ and the direction of A,(P,) is Ro DA, (P’"), which is indeed
the direction of P(y) (naturally obtained as the image by R of the direction of the tangent
plane to A, (P,)). This proves (26.31).
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We use (26.30) and (26.31) to choose 71(y) so small that for 0 < r < ry(y),
(26.33) Jo(Bly,r) NT(y)) < Jy(B(y,r) N Ae(P)) + 1

for z € Z(y). This way, if we ever pick y; = y and r; < ri(y) for some j € J3, we will
automatically get that (for z € Z(y;))

Jo(Dj N AT THQy)) = Jy(B(yj,m5) NT(y;))

(26.34) ) )
< Jy(B(yj,r5) N Az (Pr)) +nrj = Jo(Q; N Dy) +mrf,

which is as good as (26.29).

We may now continue the construction as suggested in Section 19; recall that we set
Ylg = Y11 \ Z, and Hd(Yll \ Ylg) = 0; then we set Xlg = X11 N f_l(Ylg), and use (477)
in [D2] to get that

(26.35) HYX 11\ X12) = 0.

Then we choose d9 > 0, and set

(26.36) Y13 =Yi3(0o) = {y € Yi1; ri(y) < dg} and X135 = X135(d9) = X120 f' (V13);
since the decreasing intersection of the X13(d9) is X12, we can choose dg so small that
(26.37) HYX 11\ X13) = HY (X1 \ X13) < n/2.

Then we proceed as before, choose the D; as we did near (15.12) but with the stronger
constraint that (instead of (15.12))

(26.38) r; < min(ds,dg) for j € Js.

We continue our construction as before, except that we also define the modification hg,
which concerns the indices j € Jy, as described near (26.20). This way, we only have to
estimate the numbers

(26.39) Aj = Jo(D; N A HQ;)) — J4(Q; N D;)

for j € J3 \ Js. For such j, we have defined a radius 7 (y;) > 0, and made sure that since
yj € Y1z, 0 < r; <r(y;). But then A; < (1+b)nrd, by (26.29) or (26.34). We sum this
over j € Js\ Jy, and get an additional error term which is dominated by T\ Js A <
(L+0)n>ier, r¢ < C(f)n by (26.17). This is small enough for us to complete our
proof of the extension of Claim 26.4. O

We may also generalize many results of Part V to f-almost minimal sets, where f is
an elliptic integrand. Most of the time, the proof is the same once we have Theorem 25.7
and Claim 26.4, but we prefer to omit the details.
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27. Smooth competitors.

In our definition of quasiminimal sets, we used competitors for E that come from
one-parameter families {¢;}, 0 <t < 1, for which the final mapping ¢, is required to be
Lipschitz, as in (1.8). We added this requirement because Almgren did it, and because this
would not disturb in the proofs. The main advantage of this definition is probably that it
makes it possible to show that some types of minimal currents (typically, size minimizers)
have supports that are almost minimal sets. The author suspects this has been known for
ages by specialists, but wrote a short proof for this in Section 7 of [D8] anyway. For other
classes, such as Reifenberg homological solutions of Plateau’s problem, we would not need
(1.8).

To make the verification of quasiminimality easier for some other classes of sets, we
may want to restrict the class of one-parameter families {¢;} (but without changing the
main defining inequality (2.5)), typically by requiring the final mapping ¢; (or maybe
even the whole family of mappings ;) to be smoother. The issue appeared with some
of the classes of differential chains introduced by J. Harrison, and at some point we even
produced, with J. Harrison and H. Pugh, a sketch of proof for the some of the results in
the present section (in the special case with no boundary). The details were never written
down, essentially because Harrison and Pugh managed to verify the almost minimality of
their supports in a different way.

The author thinks this is a reasonably interesting issue to mention, especially because
we did not find a trivial way to deal with it directly with density arguments, hence the
present section. He wishes to thank J. Harrison and H. Pugh for discussions about this
issue and letting him write down this section.

We start with some definitions. Since all our sets (like E) may be thin, and we don’t
want to worry about about Whitney jets, let us agree that a function f is of class C'* on
the set F' when f has a C'“ extension to a neighborhood of F.

Let us define modified classes of quasiminimal sets. We keep most of the notation in
Definition 2.3 as it was, and say that the closed set E C €2 is quasiminimal for competitors
of class C°, with o € {1,2,...,00}, if (2.5) holds for every one-parameter family {y:},
0 <t <1, which satisfy (1.4)-(1.8) and (2.4), and for which, in addition, ¢; is of class C¢
on E. The corresponding classes are denoted by GSAQ(U, M, 6, h, p1 € C).

We shall also discuss the following intermediate notion of quasiminimal set for piece-
wise C* competitors, denoted by GSAQ(U, M, §, h, p1 € PC?*), where we only require the
competitor to piecewise C'“. This last means that the closure of {z € E; ¢1(z) # z},
which by (2.4) is required to be a compact subset of U, can be covered by a finite number
of compact sets K, and ¢ (z) is C* on each K, with the definition above. Thus we do
not care whether the various pieces K; are smooth or not.

Let us mention yet another variant of these definitions. We say that E is quasiminimal
for families of class C%, and we write E € GSAQ(U, M, 0, h, o, € C%), if we only require
(2.5) for families {(; } that satisfy (1.4)-(1.8) and (2.4), and in addition define a C* function
on V x [0, 1], where V is some neighborhood of the set E. We define GSAQ(U, M, §, h, p; €
PC®) likewise, with piecewise C* functions defined on E x [0, 1]

We shall not worry too much about the difference between the GSAQ(U, M, 6, h, ps €
PC?) and the corresponding GSAQ(U, M, d, h, o1 € PC%), or directly GSAQ(U, M, 6, h, p; €
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C?%) and GSAQ(U, M, 6, h,p; € C*). We shall say a few words about this in Remark 27.47
though. We mention GSAQ(U, M, §, h, p; € PC%) now because our first result applies eas-
ily to that class with no special effort.

The main result of this section is that if our boundary pieces L; are smooth enough, the
classes GSAQ(U, M, 5, h) and GSAQ(U, M, 6, h,p; € C1) are the same. See the remarks
at the end of the section concerning possible further results, in particular concerning the
case of a > 1.

We start our discussion with a basic regularity result for the class GSAQ(U, M, 6, h, p; €
PC®). We mention it now because it seems hard to compare our different classes before
we get the rectifiability of E. For this first result, we do not try to compare directly
GSAQ(U,M,é,h, oy € PC*) with GSAQ(U, M,0d,h), but just observe that our initial
proofs go through. We start with the Lipschitz assumption.

Proposition 27.1. For each M > 1 we can find h > 0 and Cy; > 1, depending on
the dimensions n and d, such that if E € GSAQ(By, M,d,h, o1 € PC>®), where By =
B(0,1) ¢ R™, and if the rigid assumption holds, then E is rectifiable and E* is locally
Cyr-Ahlfors regular in By.

The local Ahlfors regularity condition means, as for Proposition 4.1, that
(27.2) Cyfrt <HYEN B(x,r)) < Cyr?

when x € E* and 0 < r < Min(ro,d) are such that B(z,2r) C By; we decided not to check
that Proposition 3.3, which says that the closed support E* of ’H|dE is also a quasiminimal

set, also holds in GSAQ(By, M, 6, h, o € PC), and this is why we have to deal with E*.

Our proof will consist in checking that modulo a few minor modifications, all the
competitors that we build to prove Proposition 4.1 and Theorem 5.16, under the rigid
assumption, are obtained with piecewise C*° functions. And indeed, these mappings are
compositions of Federer-Fleming projections that can be described as follows. We fix a face
F of a dyadic cube, of some dimension m € [d, n], a point £ in the interior of F', and which
lies outside of the image of the previous mapping, and then compose with the mapping pe¢
which sends a point y € F'\ {£} to its radial projection on OF (centered at £). On the
other faces of the same dimension, we set p¢(y) = y (but then we compose with mappings
coming from other faces). On the face F', we don’t need to know m¢ near £, which is not in
the current image of E, and away from &, F' is decomposed into a finite collection of closed
pieces F!, the inverse images of the faces of dimension m — 1 that compose OF, where after
a change of coordinates (so that £ = 0 and the face of OF is contained in the (m — 1)-plane
with equations z; = a, and z,,41 = ... = z, = 0, the mapping ¢ is just given analytically
by me1(y) = a, Tem+1(y) = ... = e n(y) =0, and 7¢ j(y) = a@% for 2 < j <m. So it is
easy to extend our definition of 7¢ so that it is defined and Lipschitz on R", and piecewise
C*°°. As before, the values of other m; outside of the faces don’t matter. Recall also that
for this result, we were not disturbed by the boundary condition (1.7), because we chose
to project on cubes parallel to our grid, so that the Federer-Fleming projections, which
preserve the faces, automatically preserve the L;. O]

The special case of Proposition 27.1 where we use the stronger assumption that E €
GSAQ(By, M,0,h,ps € PC™) easily extends to the case when the Lipschitz assumption
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holds, but the bilipschitz function ¢ : AU — B(0,1) of Definition 2.7 is C%; we just
conjugate the projections onto faces of dyadic cubes with v, and get projections on faces
in U that we can use as in the argument above. It seems hard to adapt the argument to
make it work when v is merely bilipschitz, and also the author is not sure that the notion
of piecewise smooth competitors is interesting then.

Our next result will say that if the boundary pieces L; are sufficiently smooth, the
adverb “piecewise” in the definition does not add anything. It will rely on the following
simple extension lemma.

Lemma 27.3. Let Fy, F, ..., F,, be closed subsets of R", with dist(F;, F;) > 0 for i # j,
set F'=U,;F;, and let f : F — R be a Lipschitz mapping. Suppose that for 1 < i < m, the
restriction of f to F; has an extension g; to an open neighborhood V; of F;, which is both
C% and Lipschitz. Then there f has an extension to R™, which is of class C“, and which
is Lipschitz with

(27.4) |flLipeny < C|f|Lipry + CZ 9il Lip(v;)-

We had to mention that g; is Lipschitz on V;, because when F; is not compact this
may not follow from the fact that it is C“.

Let £ > 0 be so small that the sets W; = {y € R"; dist(y, F;) < 3¢} are disjoint and
contained in the corresponding V;. Denote by h the usual Lipschitz extension of f to R",
obtained from the values of f on F' with Whitney cubes, as in the first pages of [St]. Thus
his C|f|Lip(r)-Lipschitz, and it is also C* on R™ \ F.

For each i, let & denote a smooth function such that &;(y) = 1 when dist(y, F;) < e,
& (y) = 0 when dist(y, F;) > 2¢, and 0 < &;(y) < 1 everywhere. We can choose &; so that
it is 2e~!-Lipschitz (and we leave the verification as an exercise). Also set oo =1, &;;
notice that 0 < £, <1 by definition of . Finally we set

(27.5) f=Cch+> &g

it is clear that it is as smooth as the g;, so we just need to check the Lipschitz bound, and
since f is smooth we just need to bound D f. By (27.5), Df = D{ch+) ", D&igi+E&sc Dh+
> &Dg;. The last two terms are bounded, so we are left with A = D{ h+ ), DE;g;. Let
y € R™ be given. Notice that Dé(y) + ), D&i(y) = 0 because £ + Y & is constant. We
may assume that DE;(y) # 0 for some i, because otherwise A(y) = 0. Then dist(y, F;) <
2e, which implies that D¢;(y) = 0 for j # i, and A(y) = D&;(y)(gi(y) — h(y)). Since
gi and h are Lipschitz and coincide on Fj, we get that |A(y)| < |D&(w)|(|hlLipr) +
\9ilLipevyy) dist(y, ;) < C(|f|Lipr) + |9ilLip(vy)), and the lemma follows. O

For the next result, we allow the Lipschitz assumption, but require the boundary
pieces L; to be sufficiently smooth and transverse. Of course, when we work with no
boundary pieces (or just the unique Ly = R™), thing are much simpler and we don’t need
the assumptions below, whose main goal is to allow a re-projection on the face when we
leave them.
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Rather than giving simple natural conditions that works well (the author tried to do
this and did not manage), let us say what we will use; hopefully our assumptions will not
be too brutal and will be easy to check in potential applications. We want local retractions
on the L;, which work for all the L; at the same time. More precisely, we shall assume
that for each compact set K C U, we can find constants 79 > 0 and Cy > 1, so that the
following holds. For 0 < 7 < 73, we can find a C* mapping 7, defined on

(27.6) K™ ={z € U; dist(z,K) < 7},

such that

(27.7) |7 () — x| < Cor for x € K7,

(27.8) 7 (z) — 7 (y)| < Colz —y| for z,y € K7,

(27.9) 7 (z) € L; for 0 < j < jmar and z € K7 such that dist(z, L;) < Cy'7,

but also, setting
(27.10) Zj(p) ={z € U; 0 <dist(z,L;) < p}

for 0 < j < Jimaz and p > 0 and

(27.11) Z0)= U 2z,

0<j<jmax
such that
(27.12) mr(z) =2z forxe K7\ Z(7).

Finally, we require that m, is the endpoint of a one parameter family {m,,}, such that
7r¢(x) is a function of x € K7 and ¢ € [0, 1] which is both C* (with no precise bound
needed), but also Cp-Lipschitz (we shall use this near (27.43)) and such that 7, () =
and 7, 1(z) = m.(x) for x € K7,

(27.13) |mri(z) —2x| < Cor forz e K™ and 0 <t <1,
and
(27.14) mre(x) € Ly for 0 <t <1 whenz € L.

This looks like a long list, but the reader may check that is easy to construct such retraction,
say, when the L, are two transverse smooth submanifolds (first project on the first one
parallel the second one, and continue with a projection on the second one along the first
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one), or when the L; are contained in each other (retract on the largest, then on the second
largest inside the first one, etc.).

Proposition 27.15. If the L; satisfy the assumption above, then the two classes
GSAQ(By, M,d,h, 1 € PC®) and GSAQ(By, M, 0, h,p1 € C*) are equal.

The following example shows that this result will at least be harder to prove if we
do not assume that the L; are smooth. Consider, in the unit disk D C R? ~ C, a single
boundary L = [0,1) U [0,47) (two orthogonal intervals), and the set £ = L U .J, where
J =DnNJ0,1+i]is a piece of the first diagonal. It is easy to produce better Lipschitz,
or piecewise C'' competitors, by replacing J with a shorter curve I' that ends somewhere
else on the positive first axis, for instance (push part of the first quadrant down and to
the left). The obvious map ¢; that does this (i.e., maps L to itself and J to I') is not C?!,
and it looks like there is an obstruction because we changed the angles at the origin. But
this is not a counterexample, because we can find a smoother mapping, with a vanishing
derivative at the origin, and which does the job even though it destroys some angles. For
instance, precompose the function ¢; above with the mapping r — |z|?z.

We shall not try to extend Proposition 27.15 to such situations; this may be hard, and
the benefit is not clear, because the class GSAQ(By, M, d, h, o1 € C%) is not too natural
in that case. Similarly, our assumptions are probably much too strong, but we prefer the
proof to be short.

Let us prove the proposition. We only need to show that GSAQ(By, M,d,h,p1 €
C%) C GSAQ(By, M,6,h,p1 € PC?), since the other inclusion is trivial. Thus we are
given E € GSAQ(By, M,d,h,p1 € C*) and a family {¢;} for which ¢, is piecewise C'¢,
and we want to construct a modified family with a final map of class C%, apply the
definition of GSAQ(By, M, 6, h, p1 € C*), and get (2.5) for the initial ;.

Set Wy = {z € E; ¢1(z) # 2} and

(27.16) K = Wl U hl(Wl);

by (2.4), K is a relatively compact subset of U. We use this K to apply our assumption
on the L;, with a very small constant 7 that will be chosen later; we get mappings 7, and
Trs, 0 <5 <1, defined on K”. Since we do not want to modify the ¢; too far from Wi,
we shall use a smooth cut-off function x such that 0 < y(z) < 1 everywhere,

(27.17) x(z) =1 when dist(z, W;) < 7/4, x(x) = 0 when dist(z, W7) > 7/2,

and |Vy| < Cr~! everywhere.
We continue our family {¢;} a first time. Set

(27.18) 0t (T) = Tr (t—1)x(2) (p1(7)) forz € ENKT and 1 <t < 2;

notice that when =z € Wi, p1(z) € K and 7  —1)y(a)(¢1(z)) is well defined. When
v € ENK™\ Wi, p1(z) =z and 7; 4_1)y(a)(p1(x)) is well defined too. When in addition
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dist(z, W1) > 7/2, x(z) = 0 and so ¢i(z) = ¢1(x) = x (see above (27.13). Thus we can
safely set

(27.19) o) =x forc € E\ K" and 1 <t <2,

and ¢ (x) is a continuous function of x and t. Because of what we just said, we even have
that

(27.20) oi(x) =z for 1 <t <2 when x € F is such that dist(z, W) > 7/2.

We want to continue with mappings ¢;, 2 <t < 3, so that the final mapping 3 is smooth.
Recall that ¢ is piecewise smooth; we shall single out one piece, Fy = E \ W7, on which
we know that ¢q is smooth because ¢ (x) = = there. Then, since ¢; is piecewise smooth,
we can cover Wi with a finite collection of compact sets Hy, 1 <1 < m, such that ¢; is
C“ on some open neighborhood of H;. Of course we may assume that H; C E.

We want to replace the H;, 1 <[ < m, with slightly smaller compact sets F; C Hj, so
that

(27.21) the Fj, 0 <[ < m, are disjoint,

and, if we set

(27.22) F= |J F,
0<I<m

such that

(27.23) HUE\F) <7

and

(27.24) dist(z, F) <n forz € E,

where n > 0 is a very small constant that will be chosen later.

This is easy: we choose the F; one by one; if the Fj, k£ < [ have been chosen, we try
F = {:z: € Hy; dist(x, Fy) > a; for 0 < k < l}, where a; > 0 will be chosen soon. Set
H] = H;\ (Ug<k<; Fr), and observe that

(27.25) E\Fc | J#H \F).

1>1

Also, for each I, H]\ F; decreases to the empty set when a; tends to 0, so HI(H]\ F}) < n/m
if a; is chosen small enough. Then (27.23) follows from (27.25). In addition, if a; < n for
I > 1and x € E\ F, then by (27.25) € H| \ F; for some [ > 1, and this forces
dist(x, Fi) < a; < 7, as needed for (27.24).
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Apply Lemma 27.3 to the function ¢; and the disjoint sets Fj. We get a smooth
extension of the restriction of ¢; to F', which we call f. Thus

(27.26) f(x) = p1(x) for x € F.

Notice that in f is Lipschitz with a norm that does not depend on 7 or 7 (because for
[ > 1, the C'* extension of ¢ in a neighborhood of H; that we used can be assumed to be
Lipschitz too, since H; is compact). Of course f may differ from 7 on the very small set
E\ F, but nonetheless

.
Co+2

(27.27) |f(z) — p1(x)] < C|flupdist(z, F) < C|flipn <

for € E, by (27.24), our Lipschitz control on f, and if 7 is small enough compared to 7.
We go from ¢y to f by the usual linear interpolation, i.e., set

(27.28) z(x,t) = (t —2)f(x) + (3 —=1t)p1(x)

for x € £ and 2 <t < 3, and then compose with 7., (,) as we did for ¢o; that is, we want
to set

(27.29) i(2) = T y(2)(2(2,t)) forz e ENKT and 2 <t < 3.
We just need to check that
(27.30) z(x,t) € KT whenxz € ENK"

If x € W1, then ¢1(z) € K (by (27.16)), and the result follows because (27.27) says that
|f(z) — p1(x)| < 7/2. Otherwise, x € Fy C F, so f(x) = p1(x) =z € K7, and the result
holds too. So (27.30) holds, and (27.29) makes sense.

On the rest of E, we set, as in (27.18),

(27.31) or(x) =2 forx € E\ K™ and 2 <t < 3.

When x € EN K7 but dist(z, W1) > 7/2, observe that € Fy C F, hence f(x) = ¢ =z,
and since x(z) = 0 by (27.17), we get that ¢;(z) = 1, 0(z) = 2. So

(27.32) oi(x) =z for 2 <t <3 when x € F is such that dist(z, W71) > 7/2,

as for (27.20).

This completes our definition of the extended family {¢:}, 0 < ¢t < 3, modulo some
choices of constants that we still need to make. We want to apply our assumption that
E € GSAQ(By, M,0,h,1 € C%), so let us check the usual requirements for the s,
0<t <.

The continuity condition (1.4) is satisfied; in particular, for t = 2 and x € EN K7,
(27.29) yields @¢(x) = - y(2)(@1(2)), just like (27.18). Of course @g(x) = x. Also,

(27.33) pi(zr) =z for 0 <t <3 when x € E is such that dist(xz, W7) > 7/2,
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by (2.1), (27.19), and (27.32). If B = B(zg,70) was the ball for which (1.5) and (1.6)
hold for the initial ¢, we get (1.5) for the extended family, with any ball B’ that contains
B(xo, 7’07’).

Let us now check (1.6), with the ball B’ = B(xg,70 + (Co + 2)7). We are given
x € EN B, and we want to check that ¢(z) € B’ for all . We may assume that
dist(x, W7) < 7/2, because otherwise the result follows from (27.33), and also that ¢ > 1,
because we know (1.6) for the ¢;, 0 <t < 1. Let us check that

(27.34) lpe(x) — p1(x)| < (Co + 1)

If 1 <t <2 ¢(x)is given by (27.18), and |pi(x) — p1(z)| < Cot by (27.13). Otherwise,
@¢(x) is given by (27.29); thus ¢ (z) = 7,y (a)(2(2, 1)), where z(x,t) is defined by (27.28)
and lies in [f(z), p1(x)] N K™ by (27.30). Then

|pe(2) = p1(2)] = |77 x(2) (2(2, 1)) — a1 ()]
(27.35) < (@) (2(2, 1)) = 2(2, )] + [2(2, 1) — 1 (2))]
< |mr @) (2(2, 1) = 2(2, 1) + | f(2) — (@) < (Co+ )7

by (27.13) and (27.27). So (27.34) holds. But now
(27.36) dist(p¢(x), Wh) < dist(z, W1) + (Co + 1)7 < (Co + 2)7,

which proves that ¢;(x) € B’, because Wy C B = B(zq,70).

The compactness condition (2.4) also holds, because the analogue of W for the ex-
tended family lies in a (Cy + 2)7-neighborhood of W, by (27.33) and (27.36) in particular.
Of course this neighborhood is compactly contained on U if 7 is small enough.

We managed to end our family with a mapping ¢3 which is C*. Indeed, (27.29) yields
3(7) = T y(2)(f(2)) for v € ENKT, f was constructed to be C, 7, ;(x) is a C* function
of s and z, and as usual there is an overlap between the definitions by (27.29) and (27.31),
where both definitions yield ¢3(x) = x. This takes care of the improved constraint (1.8)
with C°.

Finally we check (1.7). We are given x € ENL;, and we want to check that ¢ (z) € L;
for all t. We can assume that ¢ > 1 (otherwise, use the old (1.7)), and that dist(x, W;) <
7/2 (by (27.33)). By the old (1.7), p1(z) € L; and now (27.18) yields ¢(z) € L; for
1 <t <2 by (27.14). So we assume that ¢t > 2, and p;(z) is given by (27.29). If z € F, then
f(x) = p1(z) and (27.29) yields ¢i(x) = p2(z) € L; for t > 2, as needed. So can assume
that x € E\F. Since x ¢ Fy = E\W1, we get that x € Wi, and then x(x) = 1 (see (27.17)),
80 @i (x) = mr1(2(x,1)) = mr(2(2, 1)), with z(x, 1) = (t=2) f(2)+(3—t)¢1(z) € [f(2), p1(2)]
(see above (27.13)). By (27.27),

(27.37) dist(z, L;) < |2(z,t) — p1(2)| < |f(z) — p1(2)| < Cg ',

and now (27.9) says that ¢(x) = 7. (2(z,t)) € L.
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This completes our list of verifications, and we may now apply the quasiminimality of
E. Set Wy = {x € E; p3(x) # x}; then the analogue of (2.5) for @3 says that

(27.38) HY(Ws) < MH (03(Ws)) + hr,

where r; = rg + (Cy + 2)7 is the radius of our ball B’, and rg is the radius of our initial
ball B.

We want to use W7, so let us estimate the size of the symmetric difference W AWs3.
By definition, W1 AW3 C =, where

(27.39) E={zeE;ps(x) # pi(a)}.

We claim that

(27.40) EC(E\F)UX(r)uY(r),

where

(27.41) X(r)={z € E; 7/4 < dist(z, W) < 7/2}
and

(27.42) Y(r)={z € E; p1(z) € Z(1)},

where Z(7) is defined by (27.10) and (27.11). Indeed, let « € E be given. If x € E\ F we
are happy, so we may assume that x € F. Then f(z) = ¢1(x). Also, dist(z, W;) < 7/2,
because otherwise (27.30) and (2.1) say that ps(x) = x = ¢1(x). Thus (27.26) applies,

and @3(z) = 77y (2) (f (%)) = 77y (2) (¢1(2)). Since p3(z) # p1(x), we get that x(z) # 0. If
x € X(7), we are happy; otherwise, £(z) = 1 (see above (27.17)) and p3(z) = 7, 1(p1(x)) =

T (p1(2)).

If p1(x) € Z(7), we are happy. Otherwise, (27.12) says that ¢3(z) = 7 (p1(x)) =
1(x) (recall that we checked that ¢ (z) € K7 below (27.18)); this contradiction completes
the proof of (27.40).

Our function @3 is C-Lipschitz, with a (possibly huge) constant C' that does not
depend on T; thus

H(p5(W3)) < H(p3(W3 \ E)) + CHY(E)
(27.43) < HYp1 (W3 \ E)) + CH(S)
< HY(p1(Wh)) + CHY(E)

[1]

(1]
[1]

because 3 = 1 on W3\ E, and W1 AW3 C Z. Also, H4Y(W;) < HA(W3) + HY(Z) because
W1AWs C E, so (27.38) yields

H(Wh) < HUWs) + HYE) < MH (p3(W3)) + hrf + HY(E)

(27.44) < MH o1 (W1)) + C(1 + MYHY(Z) + hrt.
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We shall now use (27.40) to estimate H%(Z). Recall that we may choose 7 as small as
we want, and then 7 even smaller. By (27.23), H¢(E \ F) < 1 can be made as small as
we want; similarly, X(7) C X'(7) = {z € E; 0 < dist(z, W) < 7/2}, and since all the
X'(7) have a finite H%measure and their monotone intersection is empty, H*(X (7)) can
be made as small as we want too. The same argument applies to Y (7) (recall from (27.10)
and (27.11) that the monotone limit of Z(7) is empty.

Thus (27.44) holds for arbitrarily small values of 7 and hence H%(Z). In addition,
r1 = 19+ (Co + 2)7 is as close to 79 as we want, we get (2.5) for the initial ¢, and
Proposition 27.15 follows. O

When o = 1 we can use the fact that Lipschitz functions are not far from C* to obtain
easily the main result of this section.

Corollary 27.45. Suppose the L; satisfy the same assumption as for Proposition 27.15,
with a = 1. Then the two classes GSAQ(By, M, 6, h) and GSAQ(Bgy, M, 5, h,p1 € C1) are
equal.

Recall that GSAQ(By, M, d, h) is the usual class of quasiminimal sets that we studied
in the rest of this text.

As before, one of the inclusions is trivial, and we just need to check that if E €
GSAQ(By,M,8,h,p1 € Cl), then E € GSAQ(By, M,d,h). We first apply Proposi-
tion 27.15 and get that E € GSAQ(By, M, 6, h, o1 € PC'). This is good, because now we
can apply Proposition 27.1 to show that E is rectifiable.

Let {¢:} satisfy (1.4)-(1.8) and (2.4); we want to copy the proof of Proposition 27.15,
but we need C'' mappings, so we first pick a compact set K that contains a neighborhood
of W1 U (W7), and then use the rectifiability of E and Theorem 3.2.29 in [Fe] or Theorem
15.21 in [Ma] to find a countable collection of C' submanifolds I'; C R™, and disjoint Borel
sets F; C I'j, so that HY(E N K \ |J, F;) < n, where the very small > 0 will be chosen
at the end of the argument. In fact, at the price of replacing n with 27, we can suppose
that the family is finite, and that each F; is compact. Even more, Theorem 3.1.16 in [Fe]
allows us to (make F}; a tiny bit smaller and) assume that ¢; coincides on F; with a ct
function on I';. Notice that this function can be extended into a C' function g; defined on
a neighborhood of I'; (and hence F;). We may now proceed as before; the only difference
is that the small neighborhoods where we have C! extensions only cover F' = U;F; (and
not F), but we did not use this to apply Lemma 27.3 and define our extension f. So we
conclude as in Proposition 27.15. O

We end this section with further results that may well be true, but which the author
was too lazy to check. Thus the point of the following remarks is mostly to record what
the author believes, just for the case when the potential results may become useful. The
situation for GSAQ(By, M, d, h,p1 € PC') is correct, perhaps modulo our transversality
assumption for the L;. But we may feel bad about the very small difference between
Lipschitz (as in (1.8)) and C“.

Remark 27.46. It is probably true that for a > 1, the two classes GSAQ(By, M, 6, h)
and GSAQ(By, M, 0, h,p1 € C%) coincide under the same regularity condition for the L;
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as in Proposition 27.15. But even if there is no boundary piece L;, it seems that some
nontrivial argument is needed.

As before, and because of Proposition 27.15, it is enough to show that every F &€
GSAQ(By, M, 4, h,p1 € PCY) lies in GSAQ(By, M, 6, h). But this time we really need to
modify our family {¢;} on a large set, because ¢; may not be smooth anywhere.

We encountered this sort of problem before, when we were dealing with limits; we
wanted to construct good competitors for sets Ej that lie close to E, and were led to
constructing stable competitors first. Here we probably want to do something similar, and
proceed roughly as follows. We are given our set £ € GSAQ(By, M, 6, h,p1 € PC*), and a
family {¢;} that only satisfies the usual Lipschitz condition (1.8), and we want to construct
a smoother family. We first build the stabler family of Sections 11-17, and because it is
stable, we should be able to make it smoother without making is much worse. That is, the
places where we expect the largest contributions are the B; ., j € J3 and « € Z(y;), and
on these places we composed the initial mapping ;1 by a projection onto a d-plane and
compared the measure of the image with the measure of a disk. We claim that replacing
1 with a smoother mapping before we project will not change the final estimates much.

On the other balls, or the intermediate regions (thin annuli, bad sets), we typically
used no more than the fact that we project onto planes (which we still intend to do after
we smooth out ¢1), and that our final mapping is Lipschitz with uniform bounds (which
will not be disturbed by smoothing).

This description is probably enough if there is no boundary piece Ly, but in the
general case we would also need to compose with retractions on the faces, as we did in
Part IV and later, and for this the assumptions of Proposition 27.15 will probably be
needed again. The fact that we are allowed competitors which are merely piecewise C'*
may not be really needed (we can probably glue our pieces smoothly), but is at least
psychologically comforting. At this point the reader probably guessed why we do not want
to do all this here.

Remark 27.47. Let us say a few words about the difference between the two classes
GSAQ(U, M, 6, h,pr € C*) and GSAQ(U, M,0,h, 1 € C%).

The author believes that under the assumptions of Proposition 27.15, these two
classes are probably equal, and that the same thing holds for their piecewise counterparts
GSAQ(U, M, 6, h, oy € PC*) and GSAQ(U, M, 0, h, 1 € PC?).

In fact, the issue may also arise with our definition of the standard GSAQ(U, M, d, h),
where we only require the final mapping ¢ to be Lipschitz, and we could have required
instead that the whole map (x,t) — ¢¢(x) be Lipschitz. We expect that this yields the
same class of quasiminimal sets, but never checked.

This time, given a family {¢;} such that ¢, is (piecewise) smooth, we want to change
the ¢, 0 < t < 1, to make the family (piecewise) smooth. If there is no boundary piece,
the point is merely to find a (continuous and piecewise) smooth mapping on E x [0, 1],
with the given boundary value for ¢t = 0 and ¢ = 1. For this, the simplest is to use the
definition of smoothness for ¢, which gives a smooth extension to an open neighborhood
of E, then decide brutally that ¢ = 1 for 1 —e < ¢ < 1 (and similarly for 0 < ¢ < ¢),
and in the middle use partitions of unity and the values of ¢;(x) on a discrete, but rather
dense set of F x [0, 1] to interpolate. Maybe a small smooth gluing will be needed near
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t=candt=1—¢ too (as in Lemma 27.3). We proceeded a little like this in Section 11
when we extended f, and the advantage is that the construction is rather explicit, and in
particular we can get that the new family {©;} is such that ||@; — ¢t||eo is as small as we
want.

When there are boundary pieces L;, the new ¢; may not respect the L;, and we
need to use the smooth universal retractions 7, ; of Proposition 27.15 (defined near (27.6)-
(27.14)) to send points back to the L;. That is, first observe that we can choose the ¢,

so that the analogues for them of the sets W7y, 1(W7), and W all stay within 7/100 of
the original W7y, ¢1(W7), and W, with 7 as small as we want. Choose for K the closure

of W, 7 very small and in particular such that K™ CC U, and use the assumptions for
Proposition 27.15 to find the retractions 7, ;. Then set

(27.48) 902 (.CE) = Tr x(z,t) (6t(x))

forx € F and 0 <t <1, with a function x that we still need to define.

The point of keeping ¢; = @1 for 1—e <t < 1 and similarly for 0 < ¢ < ¢ is that we did
not destroy anything on these intervals, and so we can take x(z,t) =0for 1 —¢/2 <t <1
and for 0 < t < £/2. We also want to take x(z,t) = 0 when z € E\ K™/2. We take
x(z,t) =1 when z € ENK™/3 and ¢ <t <1—¢e. We also make x smooth, with values in
[0,1]. We claim (but will not check) that if ||@; — ¢¢||ee < Cy 7 for all ¢, (27.48) gives a
family {gpg} which is smooth, for which (1.7) holds, and which still satisfies (2.2) and (1.4)-
(1.6), although perhaps with a slightly larger ball B because, to be safe, we want the new
one to contain K7. Thus the only effect in the verification of the quasiminimality property
(2.5) is that, even though we did not change ; and Wi, we have to replace r? in the
right-hand side with a slightly larger r{, which does not harm much. This completes our
sketch of a potential proof of equivalence between the classes with ¢; € C* and ¢, € C'*.

PART VII : MONOTONE DENSITY

Monotonicity results for minimal sets or surfaces are very useful, for instance because
they usually give a good control on the blow-up limits of these objects.

The starting point of this part is the following simple result (Theorem 28.4 below).
Suppose that E is a (locally) minimal set, with boundary pieces L; that are cones centered
at x; then the density 0(z,7) = r~*H4(ENB(x,r)) is a nondecreasing function of r (small).

We also show (in Theorem 29.1) that when in addition (F is coral and) 6(z,-) is
constant, E coincides with a minimal cone centered at x. This, with our result of Section 24,
is our way to show that bow-up limits of almost minimal sets are minimal cones (Corollary
29.52 below).

We shall establish (with essentially the same proof as for Theorem 28.4) that 6(z,-)
is nearly monotone when F is almost minimal with a sufficiently small gauge function h
(and the L; are still cones centered at z); see Theorem 28.7. This result is extended, with
a slightly different density function to make the computations easier, to the case when the
L; are not exactly cones. See Remark 28.11 and Theorem 28.15.

The equality case proved in Section 29 will allow us to show, by compactness, that
(under suitable assumptions) if for the almost minimal set E, the density 6(z,-) is almost

317



constant, then F is close to a minimal cone, both in Hausdorff distance and in measure.
See Proposition 30.3 for a statement of approximation in an annulus, and Proposition 30.19
for a simpler statement of approximation in a ball.

The results of this part clearly have some interest, but we should observe that it would
be much better to have monotonicity results for some quantity like 6(x, ), which would
also hold when z is not the center of the L;. We shall not try to prove such formulae here.

28. Monotone density for minimal sets; almost monotone density in some cases

We start our study with the monotonicity of density for a minimal set. We consider
a coral minimal set E, more precisely such that

(28.1) E € GSAQ(U,1,5,0)

for some open set U, and where the boundary pieces L;, 0 < j < jinqq, satisfy the Lipschitz
assumption. See Definitions 2.3 and 2.7. We are also given a ball B(zg,r9) C U, and we
assume that ro < 9, and also that for 0 < j < jmaz,

(28.2) L; coincides, in B(x,r¢), with a closed cone centered at z.

We allow L; N B(zg,r9) = 0 (even though in this case there is not much point in keeping
L;), and we allowed the Lipschitz assumption because we do not want to restrict to plane
sectors that make square or flat angles. In fact our proof will only use the Lipschitz
assumption to make sure that E is rectifiable, and otherwise (28.2) will be enough. Next
set

(28.3) 0(r) = r~"HYE N B(zg,r)) for 0 <r < rg.

Theorem 28.4. Let U, the L;, the minimal set E, and B(xo,ro) C U satisfy the assump-
tions above. Then 6 : (0,79) — Ry is nondecreasing.

This should not shock the reader. The result for minimal sets far from the boundary
is classical, and relies on comparisons of F with cones, which can be obtained as limits
of radial deformations of E. These deformations will preserve the boundary pieces L;, by
(28.2), and we will be able to conclude from there.

We shall follow the proof of Proposition 5.16 in [D5], which was conveniently done in
a similar context. We start with the integrated version of monotonicity which is stated as
Lemma 5.1 in [D5]. In the statement of that lemma, the author required that E be coral
and that zo € F, but this is not used in the proof (only later in the section). The proof
then used the rectifiability of £ and a radial deformation, defined near (5.3), and it is clear
that such deformations satisfy our boundary constraint (1.7) because of (28.2). So Lemma
5.1 in [D5] goes through. Once we have that lemma, the proof is a simple manipulation of
measures and integrals, that does not use the minimality of F, and it goes through as it
is. Theorem 28.4 follows. U

Let us now record a version of Theorem 28.4 for almost minimal sets. We give ourselves
a gauge function h : (0,4+00) — [0,4+00], which we assume to be nondecreasing and
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continuous on the right; these are probably not exactly needed, but won’t disturb much
and the assumption was made in Section 4 of [D5] and the beginning of our Section 20.
We also assume the Dini condition

"o dt
(28.5) / h(20) % < oo
0

(which is really used in the proof; don’t mind the fact that we have h(2t), which we repeat
from [D5] and is jut due to the fact that we wanted to estimate h(t) with an integral). We
replace our minimality condition (28.1) with the new one that

(28.6)  E is an A-almost, or an A’-almost minimal set in U, with gauge function h

(and with the sliding conditions given by the closed sets L;). See Definition 20.2; we don’t
care whether the A-almost or A’-almost minimality is used, both are equivalently easy to
use in the proof. We now copy the analogue in the present context of Proposition 5.24 in
[D5].

Theorem 28.7. There exist constants a« > 1 and e, > 0, that depend only on the
dimension n and on the constant A in the Lipschitz assumption, such that the following
holds. Let U, the L;, the gauge function h, the almost minimal set F, and the ball
B(xg,rg) C U satisfy the assumptions above. Suppose in addition that E is coral, that
xog € E, and that h(rg) < &,. Then

(28.8) 0(r) expa(/ h(2t)%> is a nondecreasing function of r € (0,79).
0

Notice that the exponential tends to 1 as r tends to 0, so we can see it as a nice
(increasing) extra term that we multiply with 6(r) to get a nondecreasing function. The
fact that we use h(2t) is just an artifact of the statement; the reader should not worry
about the case when t is close to rg and h(2t) may not be defined naturally: just set
h(r) = h(rg) for r > rg.

It looks strange that now we require F to be coral and zy € F; this is because in the
proof, we use a lower bound for 6(r), that comes from the local Ahlfors-regularity of E,
to simplify a differential inequality. See Remark 28.9 though. For the proof we proceed as
we did in [D5]; our almost minimality assumption is only used twice, once in Lemma 5.1
as before, and once, through the local Ahlfors regularity, in the computation of differential
inequalities; so the proof goes through. We have to let ¢, depend on A because we use
our regularity theorems to prove that F is rectifiable and locally Ahlfors-regular, and «
depends on A too, through the local Ahlfors-regularity bounds that we use to modify a
differential inequality. ([l

Remark 28.9. We may even drop our assumption that E is coral and xy € E if we replace
(28.6) with the stronger

(28.10) E is an A -almost minimal set in U, with gauge function h.
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This is Proposition 5.30 in [D5], and as before the proof just goes through. Then we don’t
need the local Ahlfors-regular bound and « does not depend on A.

Remark 28.11. Theorem 28.7 can also be generalized slightly to situations where the L;
are not exactly cones.

Let us assume that, instead of (28.2), we have a bilipschitz mapping & = B(xg, ) —
&(B(zg,r9)) C R™, with the following properties. First of all,

(28.12) &(B(xo,m0)NLj) coincides, in £(B(xo,70)), with a closed cone centered at &(xo);

this will be our replacement for (28.2). We want a better control (typically, of C! type) in
the smaller balls centered at z(, so we assume that for r € (0, rg], there is a constant p(r))
such that

(28.13) the restriction of £ to B(xg,r) is (1 + p(r)) bilipschitz
and
"o dt
(28.14) / p(t)7 < +00.
0

Then we have the following extension of Theorem 28.7.

Theorem 28.15. There exist constants a; > 1 and ¢, > 0, that depend only on the
dimension n and on the constant A in the Lipschitz assumption, such that the following
holds. Let U, the L;, the gauge function h, the coral almost minimal set E, and the ball
B(xg,r9) C U be such that h is nondecreasing and continuous on the right, (28.5) and
(28.6) hold, xy € E, h(rg) < e,, and there exists £ and p as above, such that p(ro) < &,
and (28.12), (28.13), and (28.14) hold. Set B(r) = £~1(B(&(x0), 7)) and

(28.16) W(r) = HUE N B(r)exp (o /0 "(h(ot/4) + p(9t/4))%>>
for 0 < r < rg/2; then ¥ is nondecreasing on (0,1¢/2].

We were a little lazy here, because we measured the density in terms of the slightly
distorted balls B(r). This way we will be able to reduce to Theorem 28.7 via a change of
variable. Probably the more reasonable statement with the the same function 6 as above
also holds, but for this it seems that we would have to follow the proof above, and in due
time modify the proof of Lemma 5.1 in [D5]. That is, we would obtain some estimate on
the measure of thin annuli by constructing directly a competitor that expands the annulus
and contracts the inside disk. Since our initial radial competitor probably does not satisfy
(1.7) (because the L; are no longer cones), we could conjugate by & and apply a radial
transformation in the new variables. We decided to use the function ¥ above and avoid
the computations.

So we try to deduce Theorem 28.15 from Theorem 28.7 and a change of variable.
Without loss of generality, we may assume that &(xg) = xg = 0. Set By = B(xg,r0) and
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E = &(ENDBy); we would like to say that E is almost minimal in &(By), but this is probably
wrong, because we did not assume £ to be asymptotically conformal near each point of By
(this would be a very strong assumption to make!), but only at the point xy. So we need
to be a little careful with our assertions.

Let us first prove that F is quasiminimal in By = &(By), with M =1, § = 2rg, and
h = Ce,. That is, with the notation of Definition 2.3, that

(28.17) E € GSAQ(By, 1,2rg, Cey),

where on B, we use the boundary pieces 'Ej = By N&(Lj). We put § = 2r as a way to

imply that we put no constraint on the size of the analogue of W for competitors of E.

The proof will be easy. Let the ¢;, 0 <t < 1, define a competitor for F in By; that
is, assume that they satisfy the analogue of (1.4)-(1.8), in a ball B of radius 7, and (2.4).
Then define ¢y, 0 < t < 1, by pi(z) = EH@(E())) for z € €71(By) and ¢i(z) = =
otherwise. It is easy to see that the ¢, define a competitor for E (i.e, satisfy the usual
constraints (1.4)-(1.8) and (2.4)), in a ball B that contains £~*(B); we can choose B or
radius r = min(ro, (1 + p(ro))7). In addition, W = {z € ENBy; & (x) # z} is equal to
E(W), where W = {z € ENBy; ¢1(z) # x}. We may assume that F is A-almost minimal
(because A’-almost minimality implies A-almost minimality with the same gauge function
h; see near (20.8)), and the defining property (20.5) yields

Hd(%—%d(g( W) < (1+p(m>>dﬂd< )
(28.18) < (14 p(ro)*[H (1 (W) + h(r)r?]
< (1+ p(r0)) d[<1+pm HY(E1(W)) + h(r)r?].

If HAYW) < HYB1(W)), we are happy. Otherwise,
(28.19)  HUG(W)) < HAYW) < HUENB) < (1 + p(ro))*HYE N B) < Crt < CF

because E is locally Ahlfors-regular in By (if h(rg) < &, is small enough). Then (28.18)
yields

HAW) < (14 p(ro) > > (@1 (W) + (1 + p(ro)) *h(r)r

(28.20) L y

S HY@r(W)) + [Cp(ro) + h(r)] 7

because r = (1 + p(ro))7; (28.17) follows because h(r) < h(rg) < &, and p(rg) < &,.
When the ball B is contained in B(0,t) for some t < 8r/9, we can use the better

bilipschitz control provided by (28.13), and the proof of (28.20) yields

(28.21) HAW) < HYUGL(W)) + [Cp(9t/8) + h(9t/8)] 7
Consequently,
(28.22) ENB(0,t) € GSAQ(B(0,t),1,2ro, Cp(9t/8) + h(9t/3)).
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We may now follow our proof of Theorem 28.7, which we want to apply to E. For this proof
we need to know that F is rectifiable and locally Ahlfors regular in B;y. Since £ is bilipschitz,
we just need to check that E is rectifiable and locally Ahlfors regular in By, and this
follows from our assumption (28.10), together with the fact that h(rg) < e, and as usual
Propositions 4.1 and 4.74 and Theorem 5.16. We even get bounds on r_de(E NB(z,r)),
for x € £ and B(x,2r) C Bj, that depend only on n and A, as long as ¢, is chosen small
enough. Incidentally, it is a little easier to proceed this way here, rather than trying to
use (28.17) directly, because this way we don’t need to worry about the fact that on By,
the boundary pieces Zj = B; N&(L;) may not satisfy the Lipschitz assumption exactly as
it was stated.

Then we turn to the main ingredient of the proof, which is the comparison argument
in [D5], Lemma 5.1, that we already used for Theorem 28.4. This lemma uses a radial
deformation of the set (here, this means E). The fact that the boundary sets & (Lj) are
conical allows us to use the same deformation, and then apply (28.20) or (28.21). That is,
we do not need to use the full almost minimality of E , because we just need to compare with
a single competitor that lives in a small ball B centered at the origin. Now this is the only
place where we use the almost minimality of E in [D5] (see (5.4) there); after this, the same
argument as in Theorem 28.7 applies, and again does not use the full almost minimality
(or the Lipschitz assumption), but just the rectifiability and local Ahlfors regularity of F,
plus measure theory. We get that H(r) is a nondecreasing function of r € (0, 8r¢/3), where

(28.23) H(r) = r=4HY(E N B(0,r)) exp a( /0 (Cpot/a) + h(9t/4))%>

is the analogue for E of the function in (28.8). Of course there is a small difference between
¥ and H, because HI(E N ¢~ H(B(0,r)) is not the same as H(E N (B(0,7)) (one set is
the image of the other one by &), but this will not disturb much for the monotonicity.
Once again, we want to avoid a computation, so let us recall how (28.23) is obtained in
[D5]. We write H(r) = I(r)g(r), with I(r) = H4(E N B(0,r)) and g(r) = r~4e*A() | with
A(r) = [ (Cp(9t/4) + h(9t/4))%. Then we find out that those functions have a derivative
almost everywhere, and that it is enough to show that H'(r) > 0 almost everywhere. A
computation shows that

(28.24) H'(r)=1'(r)g(r) +1(r)g'(r) = g(r){l’(r) — @ [d —a(Cp(9r/4) + h(97“/4))}}

(see (5.27) in [D5]), and it tuns out that because of Lemma 5.1, the right-hand side of
(28.24) is nonnegative almost everywhere. That is, setting a = Cp(9r/4) 4+ h(9r/4),

(28.25) I'(r) > @(d — aa)

Now we want to replace I(r) with I1(r) = H(E N B(r)) = H4(EY(E N B(0,r)), and
prove the same inequality, but with « replaced by a larger a;. We observe that, by a
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change of variable, I1(r) < (14 p(97/4))%(r) and I} (r) > (1 + p(9r/4))~%'(r). Therefore

L) > (14 p(0r/4) () = (1 + p(0r/4) " (4 — aa)
(28.26) r

> (14 p(0r/1)~ 17 (4 — aa).

Now p(97/4) < a and a is as small as we want, so (1 + p(9r/4))724(d — aa) > d — aya
for some new constant a; > «, and (28.26) gives an analogue of (28.25) for I; and a;,
which implies that ¥/(r) > 0 almost everywhere, and then that ¥ is monotone, by the
same argument as in [D5]. O

Remark 28.27. When F is an A-almost minimal set (as in (28.10)), we do not need to
assume that F is coral and that zo € E. The reason is the same as for Remark 28.9.

29. Minimal sets with constant density are cones

Our goal for this section is to prove that under the assumptions of Theorem 28.4, if in
addition the density function 6 is constant on some interval, the set F (almost) coincides
with a minimal cone on the corresponding annulus. As a corollary we will get that under
mild assumptions, blow-up limits of coral almost minimal sets are minimal cones. See
Corollary 29.53.

Theorem 29.1. Let the open set U and the boundary pieces Lj, 0 < j < jp,qq satisfy the
Lipschitz assumption, let E be a coral local minimal set in U, with E € GSAQ(U, 1,4,0)
for some § > 0, and let B(xg,r9) C U, with 0 < ro < § be given. Assume (as in (28.2)) that
each L; coincides in B(xzq,ro) with a cone centered at xo and that we can find constants
a, b, and 6 such that 0 < a < b < ry and

(29.2) HYE N B(xo,7)) = 6r® fora<r <b.

Then there is a closed coral minimal cone C centered at xg, such that E N B(xg,b) \
B(zg,a) = CN B(xp,b) \ B(xg,a).

Let Ej denote the cone that coincides with L, in B(zg,7¢); the fact that C is a
minimal cone in R", associated to the boundary pieces Ej, is a fairly easy consequence
of local minimality of E. The argument is given in more detail in [D5], pages 125-126,
but we sketch it here for the convenience of the reader. In the ball B(zg,79), the cone C
is a competitor for F, i.e., can be obtained as ¢ (F) for some family {p;} of mappings
that contract part of E along the rays through zy. In particular, the constraint (1.7) is
satisfied by (28.2) and because we move points along rays. The cone also has the same
measure as E in B(zg, 1), by our assumption of constant density. Then every competitor
for the cone gives rise to a competitor for E (by scale invariance, we may assume that the
modifications only occur in B(xg,70/2), and then we just compose our two deformations);
the minimality of E then implies the minimality of C. Similarly, C is coral because F is
Ahlfors-regular.
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We required E to be coral to have a cleaner statement; if we don’t, we just get that
conclusion that the difference between E N B(xg,b) \ B(zo,a) and CN B(xo, b) \ Bz, a) is
H%-negligible. Recall that the core of a minimal set is a coral minimal set; we would use
this to replace an initial minimal cone C with a coral one.

Let us now prove the theorem. Just for convenience and by translation invariance, let
us assume that xy = 0; notice that we work with the Lipschitz assumption, so the origin
does not have a special position in our grid, except for the fact that it is the center of our
cones.

Set A = B(0,b) \ B(0,a). We first follow carefully our proof of monotonicity for 6
(Theorem 28.4), use the fact that all the inequalities are identities almost everywhere, and
get that for H%almost every x € EN A, E has a tangent plane P(z) at =, which goes
through the origin. The existence of a tangent plane follows from the rectifiability and
local Ahlfors regularity of E; only the fact that 0 € P(z) is new, and we get it essentially
because otherwise the measure of F in a thin annulus that contains x would be too large,
compared to HI"1(0B(0,|z|). See (6.5) in [D5] (and its translation one page later); the
same proof (of measure theory only) applies here.

Our next stage is to show that for #%almost every y € EN A,

(29.3) E contains the line interval A N L(y),

where L(y) = {/\y; A > O} is the open half line through y. Once we prove this, the
conclusion will follow, because (29.3) then also holds for all y € E N A; see [D5] (below
(6.12)) for the easy verification.

We can thus restrict our attention to the points y € EN A for which the tangent plane
P(y) exists and contains the origin, but we also add the following density constraint, which
is valid H%-almost everywhere (see [Ma], Theorem 6.2 (2) on page 89). For y € U, denote
by F(y) the collection of all the faces F' of our grid that contain y. We require that for
every face F' € F(y), y be a density point of E N F in F, i.e., that

(29.4) lim 7~ HY(B(y,r) N E\ F) = 0.
r—0

Let y € E be such a point, and assume that we can find z € AN L(y) \ E; we want to
apply the proof of Proposition 6.11 in [D5], with a few modifications, to get a contradiction.

The construction will use two radii r, and r,, and will work as soon as r, is small
enough (depending on y) and then 7, is small enough (depending on 7, and the position
of z, y, and in particular on the ratio |y|/|z|, which may be large). Various smallness
conditions will arise along the proof, but let us mention the first ones. First set

(29.5) B, = B(y,ry), By = B(z,73), and P = P(y)

to simplify the notation. As in (6.13) in [D5], we require that for some small ¢y (that will
be chosen near the end),

(29.6) dist(z, P) < egry for z € EN B(y,3ry);

324



this is true for r, small because P = P(y) is a true tangent plane, by Ahlfors-regularity (see
Exercise 41.21 on page 277 of [D4]). We also demand that for each face F' that contains
y, and in particular the smallest one,

(29.7) HY(B(y,3ry) N E\ F) < efrd,

where € is another, even smaller, positive constant. Again small r, satisfy this, by (29.4).
Let us deduce from this that

(29.8) dist(z, L;) < Cegr, when L; contains y and z € PN B,,.

We want to apply Lemma 9.14 to E and the ball B,. If r, is small enough, the first
condition (9.15) on the size of B, is satisfied. Also, every L; that meets 3B, contains
y, so the set L of (9.16) is the intersection of all the L; that contain y. The smallest
face F' that contains y is contained in all these L;, hence F' C L and (29.7) says that
HY(B(y,3ry) N E\ L) <efrd. Since E is locally Ahlfors-regular, this implies that

(29.9) dist(z,L) < Ceyry for z € EN2B,.

That is, the constraint (9.17) is satisfied if £; is small enough.
Next, the flatness condition (9.18) holds (for the same P and with € = g¢); if ¢ is
small enough, we can apply Lemma 9.14 and we also get that

(29.10) dist(p, E) < eory for p € PN B(y,3r,/2),

as in (9.19). Now (29.8) follows from this and (29.9), if €1 is smaller than &.

Let us try to describe the construction of [D5], without entering into too much detail.
For simplicity, all the references of the type (6.x) will refer to the corresponding number
in [D5].

The construction of [D5] starts with the choice of a set T' C B,, which is defined near
(6.19); the fact that T C B, follows from Lemma 6.15 (of [D5]). Then we consider the
cone T over T, and more precisely the part that lives near [z,y]. That is, if z; and x5
lie in the half line L(y) through y, we denote by V(x1,x2) the set of points of R” whose
orthogonal projection on the line that contains L(y) lies between z1 and z5. We shall use
a lot the piece of tube

(29.11) To=TNV(x1,y)

where 7 is a point of L(y) that lies quite close to = (on the other side of x as y, so that
V(z,y) C V(x1,y)); see (6.22) for the definition of x;, which was called z( in [D5] (but we
want to avoid a conflict with the center of our main ball). Notice that

(29.12) dist(z, [z,7]) < (14 |z| " |y|) . for z € Ty,

essentially because T' C B,. We shall use Tj to connect B, to By; the point of the specific
choice in Lemma 6.15 is to find a tube, inside T}, that does not meet T, but we shall not
need to know this here. Now set

(29.13) Z =TyUB,,
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as in (6.43); this is the place where most of the transformations will take place. That
is, a few successive mappings f1,..., f5 are constructed in [D5], and the composition
f = fsofio fso foo fi is used to define a competitor for E, and eventually get a
contradiction. The point of these mappings is to use the hole that we have in B, (that
is, there is no E there) to push £ N B, onto a set of much smaller measure, essentially
contained in 0B,. We will not need to know here how these mappings are constructed,
but for the information of the reader, let us rapidly say how it works. Our first mapping
f1 uses the hole in T' to send points of E (vertically, i.e., in hyperplanes perpendicular to
L(y)) to something that looks like a thin double tunnel (say, when d = 2 and n = 3), with a
common flat floor that is contained in P, and which we shall use to communicate between
B, (which does not meet E) and PN B, (which we want to kill). Then f5 acts in By, where
it pushes points of Ey = fi(E) to B, NP (a large disk, with an entrance that was the floor
of the tunnel), plus some small part of 0B, near P. Then we compose with a mapping f3
that pushes the points of the floor, starting from the empty part P N B,, and eventually
sends every point of the floor to a point of P N dB,. This is good, because this is how we
get rid of most of the measure of £ N B,. In codimension larger than 1, since B, has
an infinite measure, we need to compose with two additional Federer-Fleming projections
on d-dimensional skeletons, one near the boundary of our tunnel that is not the floor, and
one near 0By, to get some good control on the image of the part of E5 = f3 0 fo o fi(E)
that lives there.

We return to the final mapping f, and record some of its properties. There is a slight
enlargement Z* of Z, that will be described in a minute, such that

(29.14) f(z)=zfor ze€ E\ Z*, and f(Z") C Z".

This set is defined just above (6.90), and we just need to know that

(29.15) Z7r=ZUZiNZ;

(see just above (6.90)) with sets Z; and Z5 with the following properties. First
(29.16) dist(z,Tp) < Cr, for z € Z7;

see above (6.79). Next Z3 is defined as a neighborhood, roughly of width Cr,, (see (6.58)) of
a set Zs, which itself is defined by (6.51) and contained in Ty (because V (z,y) C V(z1,y)).
And similarly

(29.17) dist(z, 0B, N P) < 3egry + Cr, for z € Z3;

this time see the line above (6.88) for the definition of Z in terms of Zy, (6.51) for the
definition of Z5, and (6.39) for H.
The main nice thing about f is that, as in (6.92),

(29.18) HU(Es N Z7) < Ceorl + Cpyrd ™,

where E5 = f(F), and the constant C, , does not depend on r,, so that we can choose r
very small to make H(E5 N Z*) as small as we want compared to rg.
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It is easy to find a continuous one parameter family of functions ¢; : E — R", such
that po(z) = z and ¢1(2) = f(z) for z € E, ¢i(2) = z for z € E\ Z*, and ¢(Z*) C Z*.
This is not exactly what was done in [D5], where a brutal linear interpolation was enough,
but did not yield ¢;(Z*) C Z* because Z* is not convex. Here we want to proceed with
just a little more care, and the most natural thing to do is construct a family that goes
from the identity to fi, then from f; to fs o f1, then to f3 o fo o f1, and so on. For the
first two times, we proceed by brutal linear interpolation. When we go from f; o f; to
f3 o fao fi1, we proceed slightly differently.

The main part of the definition of f3 is (6.47), which is its definition on the floor
F=PnZnV(x,b), where b is a point of L(y) a little further from x than B,; see the
bottom of page 114 in [D5], and the statement of Theorem 6.2 for the definition of b (which
essentially lies on 0B(0,7o) here). We don’t care about the definition of f5 on the rest
of the interior of Z, because the intersection of Fy = f5 o fi(F) with the interior of Z is
reduced to F'; see (6.46), and compare with (6.43) or see the comment three lines above
(6.52) for a hint. And on R™\ Z, we set f3(z) = z (see (6.48)). So for the interior of
Z, the only interesting piece is the definition of f3 on the floor F', and it is obtained by
conjugating with a bilipschitz mapping v that goes from F' to a cylinder a radial mapping
on the cylinder that maps it to its boundary. To define the intermediate mappings on F',
we just interpolate linearly the radial projection, and conjugate. Of course we keep the
identity on R™ \ Z, and the way we extend to the rest of Z does not matter anyway.

Even though this is not important (and a brutal interpolation would do), for the
last two segments where we compose with f; and f5, it is more natural to decompose
the deformation into successive Federer-Fleming (radial) projections, and for each one
interpolate linearly. This way we are sure not to leave the sets Z; and ZJ introduced in
(29.15).

Anyway, this allows us to define a one parameter family {¢;} that goes from the
identity to f, but because of the boundary condition (1.7) we cannot use this family
directly, and we shall compose it with retractions.

We shall use the mapping II that was constructed for Lemma 17.18, except that here
we can work under the Lipschitz assumption, in which case we conjugate it with our usual
mapping ¥ (A:) to make it work on a different grid. This only makes the constant C in
(17.19)-(17.21) larger, and also forces us to define II(z, s) only when 0 < s < C~! (instead
of 0 < s <1071), but this will not matter. We define a first part of our path by

(29.19) gt(z) =II(z,tx(z)) for z€ Eand 0 <t <1,

where the cut-off function x = x1 + X2 is defined as follows. We start with i, for which
we use the small scale 7y = Cir,, where the geometric C; will be chosen later and may
also depend on |y|/|z|, and set

(29.20) xi(z) = [271 — dist(2, TO)L for » € R".

Here Ty is the truncated cone of (29.11) and a; denotes the positive part of a € R.
Similarly, we choose 19 = Caeqgry, where the large Co will also be chosen later, and we set

(29.21) x2(z) = [272 — dist(z, By)] s for z € R".
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Thus, by (17.19), ¢g:(z) = z for 0 < ¢ < 1 unless z lies in a 27-neighborhood of Ty, or a
2715-neighborhood of B,,. At the end of this first stage, we are left with g;(z) = II(z, x(2)).
For our next stage, we use the ¢, above and set

(29.22) 9:(2) = H(pi—1(2), x(pt—1(2))) for z € F and 1 <t < 2.

We want to check now that the go;, 0 <t < 1, define an acceptable competitor for E. We
start with (2.4). Set

(29.23) Zy={z€E; x(z) >0} ={z € E; dist(z,Tp) < 2y or dist(z, By) < 272 }.

If C; and Cy are large enough, Z, contains Z*, (by (19.13), (29.16), and (29.17)). If
z € E\ Z4, (29.14) and the definition of the intermediate mappings say that p4(z) = 2
for all s, then x(ps(2)) = x(2) = 0, and by (17.19) I(ps(2), x(¢s(2)) = ¢s(2) = z for all
s; thus (29.19) and (29.22) yield

(29.24) gt(2) =2z when z€ E\ Z; and 0 <t < 2.

Next suppose that z € Z, \ Z*. Since ¢s(z) = z for 0 < s < 1 (again by (29.14)
and the definition of the intermediate mappings), we get that g¢(z) = Il(z, s) for some
s € [0, x(z)]. Since x(z) < 211 + 279, (17.19) yields

(29.25) dist(g¢(2), Z4) < |ge(2) — 2| S C(m1 + 12) < C(ry + cory).
Finally, assume that z € Z*; then all the p;(2) lie in Z* (by (29.14)), and in this case
(29.26) dist(g¢(2), Z%) < |gt(2) — @s(2)| < C(11 + 12) < C(ry + €01y)

for some s, by the proof of (29.25).

Thus, if 7, and then r, are chosen small enough, z and the g;(z) lie in a compact
subset of B(xg,rg) when z € Z; (2.4) follows, and also (1.5) and (1.6). Here we can take
for B a compact ball that is almost as wide as B(z, o), and we do not care if its radius
is quite large (provided that it stays smaller than rg), because there is no price to pay in
(2.5) when B is large, since E is minimal. The constraints (1.4) and (1.8) (continuity and
Lipschitzness) hold by construction, so we are left with (1.7) to check.

Let z € EN L; be given. We may assume that z € Z,, because otherwise g:(z) =
ze Ljforallt. If z€ Z, \ Z*, (29.14) says that ¢,(z) = z for all s, and then (29.19) or
(22.22) says that every g.(z) is of the form II(z, s), which by (17.20) lies in any face of L;
that contains z. We are left with the case when z € Z*.

Even in this case, (29.19) and (17.20) say that g:(z) = II(2,tx(2)) € L; for 0 <t <1,
so it is enough to show that

(29.27) gi(z) € Lj when z € LN Z* and t > 1.
Let t > 1 be given, and set w = ¢;_1(z); thus
(29.28) g¢(2) = (w, x(w))
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by (29.22). As we shall see, the mapping II tends to send to L; points that lie sufficiently
close to L;, so we want to show that w lies close to L;. Let us first check that

(29.29) dist(¢, L;) < C(1 + |y|/||z|)r, for € € Tp.

Set 2z’ = z|y|/|z|; first observe that 2z’ € L; because z € L; and by the cone property (28.2).
Also, |2/ —y| < Cry + C(1 + |y|/||z])rs, because z € Z* C Z, and by (29.15), (29.13),
(29.12) and, for Z{ and Z3, (29.16) and (29.17). If r, and r, are chosen small enough,
this forces y € L;. That is, we choose 7, and r, so small that the ball centered at y and
with radius Cry, + C(1+ |y|/||z|)r» does not meet any L; that does not already contain y.
Then [z,y] C L, too, by the cone property (28.2), and now (29.29) follows from (29.12).
Also recall from (29.8) that

(29.30) dist(§, L;) < Ceory for £ € PN By,

Let us return to w = ¢;_1(z) and use this to evaluate its distance to L;. We will unfortu-
nately need to distinguish between cases. First assume that

(29.31) dist(w, T1) < C(1 + [y|/||z])rs,

where Ty = TNV (x1, o) is defined like Ty in (20.11), but with a point yo that lies on L(y),
but at distance r,/5 from y, in the direction opposite to . Thus T} is a little larger than
Ty (in the direction of y), but not much. By (29.29), dist(w, L;) < C(1+|y|/||z|)rs too. If
71 is large enough (compared to (1 + |y|/||z|)rs), this implies that x(w) > x1(w) > 71 (by
(29.20)), and that 71 is much larger than dist(w, L;). Then (17.20) (applied to any face
of L; that lies near w) implies that g;(z) = 7(w, x(w)) € L;, by (29.28), and as needed.
Similarly, if

(29.32) dist(w, P N By) < Cegry,

(29.30) says that a similar estimate holds for dist(w, L;); then, if 7 is large enough
compared to eory, and by (29.21), x(z) > x2(z) > 72 and (17.20) implies that g;(2) =
m(w, x(w)) € Lj.

Finally, if w = z, we know that ¢:(z) = 7(z, x(2)) € L;, because z € L; and by (17.20)
again.

We now want to check that we always fall in one of these three cases. We start
with the case when t comes from the first part of the construction of f in [D5], when
we go from the identity to the first map f; that is defined on pages 107-110 of [D5].
Let us say that we define these intermediate functions ¢; by linear interpolation, i.e., set
wi(z) = 2tf1(2) + (1 — 2t)z, for 0 <t < 1/2. Also recall that f; was obtained by moving
points in vertical hyperplanes (i.e., in directions perpendicular to the line L(y) through
2 and y), and inside the tube T7. That is, fi(z) = z for z € E \ Ty (by (6.25) in [D5]),
and f1(Ty) C Ty by (6.26) (also compare our definition of yo with (6.22)). The same thing
holds for ¢;(2), 0 <t < 1/2, and we are happy because w = z or (29.31) holds.

At the end of this first stage, all the points z € E are sent to Fy = f1(FE), and we now
apply to them our second mapping fo, defined on pages 111-114 of [D5]. This map only
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moves points of B, (see (6.37)), and moves them like a radial projection, centered on a
(n —d — 1)-dimensional sphere Sy, onto a part of PN 0B, (recall that ) on pages 106 and
111 of [D5] is (n — d)-dimensional). We do not care about the details here, we just need to
know that if £ € F; C B, (the only place where we may move something) then by (6.30),

(29.33) dist(&, P) < 2¢0|€ — y| < 2e0ry.

The function fo maps B, to itself (see above (6.38)) and maps E; N B, to a 2eqr,-
neighborhood of P, by (6.41) and the definition (6.39). Again we interpolate linearly, i.e.
set @i(2) = (4t — 2)fa o f1(2) + (3 — 4t) f1(z) for 1/2 < t < 3/4, and are happy because
(29.32) holds as soon as w # fi1(z). (In the other case, we already new that w = fi(z)
satisfies (29.31)).

We now consider the case when ¢; comes between fs o fi and f3 o fo o f1, where f3
is described on pages 114-116 of [D5]. This is the place where we said below (29.18) that
we do not interpolate linearly, but only after a conjugation with a biLipschitz mapping.
There is only one part of Es = fyo f1(E) where f3 moves points, which is the floor F' C P.
See our discussion below (29.32), or directly (6.47), (6.48), and (6.46) in [D5]. But we
choose the ¢, so that they move points of F' along F', which means that (29.31) or (29.32)
holds. Thus we are happy, up to the stage of f3o foo f1. As was explained below (6.52) in
[D5], in codimension 1 we could stop here, but in higher codimensions we have to complete
our construction with Federer-Fleming projections that act near Z. For these we can
interpolate linearly between each elementary projection and the (composition with the)
next one. By construction we never leave the sets Z7 U Z3 of (29.15) (see (6.58), the proof
of (6.78) (the intermediate projection also stay close), (6.81), and the proof of (6.96)); then
the desired conclusion follows from (29.16) and (29.17), which show that (29.31) or (29.32)
holds whenever we move a point.

This completes the proof of the boundary constraint (1.7) for our family {g;}. Thus
we are allowed to use (2.5), which says that

(29.34) HIW) < HY (g (W)

(recall that we work with minimizers here), with W = {z € E; ga(2) # z}. Recall that
(29.22) yields g2(2) = I(f(2), x(f(2)), because ¢1 = f. Also, II(w, x(w)) is a C-Lipschitz
function of w, by (29.20), (29.21), and (17.21), and with a constant C' that may now
depend on the bilipschitz constant A when we work under the Lipschitz assumption, but

not on gy or r,, for instance. Because of this, we can easily take care of go(E N Z*), since
(6.95) and (6.97) in [D5] yield

(20.35)  HU(g2(ENZ*)) < CHUF(ENZ*)) < CHYEs N Z*) < Cegrll + Cpyrd ™1

note that the rg in (6.97) is a misprint, but that we really get 7¢~1 because the points of
Ty stay C -close to a line.

Because of (29.24), W is contained in Z;. So we still need to worry about the set
Wo=W\Z* C Z,\Z*. On thisset f(z) = z by (29.14), so g2(2) = II(z, x(2)) # z, where
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the last part holds by definition of W. Now we follow the construction of II(z, x(z)), and
notice that by (17.24)

(29.36) (2, X(2)) = Mosg 0 s, - 0 Tt e,, (2)

where the II} ;, come from Lemma 17.1 and we set

(29.37) Sm = (6C)"x(z) for 0 <m <n-—1,

as in (17.23). Also denote by x, n+1 > k > 0, the successive images of z = x,,, 1, defined
as (above (17.26) and) in (17.26) by xj = I s, (x+1). By the property (17.2) of Il ,,,
we see that xp = xp41 unless 0 < dist(xgy1,Sk) < 2sg. That is, unless z, lies very close

to some face of the grid, without actually lying on that face. By an easy induction, we see
that II(z, x(z)) = z unless

(29.38) 0 < dist(z, F') < 2x(z) for some face F' of our grid.

First assume that z € 2B,. By choosing r, small enough, we can ensure that 2B, only
meets the faces F' that already contain y. But (29.38) means that z € EN2B, \ F. Then
of course z € EN 2B, \ Fy, where Fy is the smallest face that contains y, and by (29.7)

(29.39) HYWoN2B,) < HYEN2B,\ Fy) < efrd.
By (29.23), we are left with
(29.40) Wo\2B, C ENZy\ 2B, C {z € E; dist(z,Tp) < 27 }.

Because Tj stays so close to [x,y] (see (29.12)), we can cover Wy \ 2B, by less than C, , 7,
balls centered on F and with radius Cr,. Then by local Ahlfors regularity (Propositions 4.1
and 4.74), HY Wy N 2B,) < C,,rd~1. Again g2(z) = II(2, x(2)) is a C-Lipschitz function
of z € Wy, so

(29.41) HY (g2 (W) < CHAW,) < Celrl + Cyyrd ™.

We add this to (29.35) and get that

(29.42) ’Hd(gg(W)) < Csorif + C’sfrg + Cw,yrg_l.

On the other hand, we claim that W is large because it contains most of £'N B,. More
precisely, if z € EN By \ W, then ¢2(z) = z and hence z € g2(ENBy) C g2(ENZ*) (by
(29.13) and because Z C Z*). Thus

(29.43) HUYENB,\W) < HYg2(EN Z*)) < Ceoryf + Cyyrd ™

by (29.35). But HY(E N By) > C’_lr?‘j because F is locally Ahlfors regular (by Proposi-
tions 4.1 and 4.74), hence

(29.44) HYW) > HUENBy) —HYENB,\W) > C 'rll — Cegrl — Cyyrd™.
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If £g and €7 are small enough and r, is small enough (depending also on the position of
x and y through |y|/|z|), (29.42) and (29.44) contradict (29.34), and this concludes our
proof of Theorem 29.1. 0

We complete this section with a simple consequence of Theorem 29.1 and the results
of Section 10 on limits, revised in Section 24 so that they apply to blow-up limits.

Let us list the assumptions for the next theorem. Most of them are the same as for
our Theorem 24.13 on blow-up limits, which we intend to combine with Theorem 29.1.
We are given a coral almost minimal set £ in the open set U, an origin ¢ € E, and a
sequence {7}, with

(29.45) lim rj, = 0.

k—+oo

We assume that
. and the L; satisty the Lipschitz assumption,
29.46 U and the L; isfy the Lipschi i
as in Definition 2.27, and that
. the configuration of L, 1s flat at xg, along the sequence (7.
29.47 h fi i fL;isfl 1 h

See Definition 24.8, but also recall that we have a simpler condition, the flatness of the
faces of the L; along the sequence, which is introduced in Definition 24.29 and implies it;
see Proposition 24.35. Recall that (29.47) comes with a collection of limit sets L?, the
natural blow-up limits of the L;, that are defined by (24.7). We assume that

(29.48) the L; satisfy (10.7) or (19.36),
the additional assumptions that we used for our theorems on limits, and that

(29.49) FE is a coral almost minimal set in U, with
. sliding conditions coming from the L;,

and with a gauge function h such that

(29.50) lim A(r) = 0.

r—0

For this, we accept the three types (A4, A, or A’) of almost minimality; see Definition 20.2.
Also see Definition 3.1 for corality.
We also give ourselves a closed set E,, C U, and we assume that

(29.51) E. = lim 7 '(E — ) locally in R"

k——+o0

(see near (10.5) for the definition). Finally, we suppose that the following limit exists:

(29.52) 0(zo) = lim p~*H*(E N B(xo, p)).
p—0
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Notice that the existence of §(xy) follows from Theorem 28.7 when h satisfies the Dini
condition (28.5) and the L, are cones. One may also use Remark 28.11 to prove this when
the L; are almost cones (but with conditions stronger than (29.47)).

Corollary 29.53. Let the coral almost minimal set E in U, the point x¢ € F, the sequence
{rr}, and the set E, satisfy the conditions above. Then E, is a coral minimal cone, with
the sliding boundary conditions defined by the sets L?, 0 < J < Jmaz, defined by (24.7),
and with the constant density

(29.54) 1Y Es 0 B(zo, 7)) = 0(20).

The first assumptions allow us to apply Theorem 24.13, which says that E. is a coral
minimal set, with the sliding boundary conditions defined by the sets L?. Recall that this
is defined by (24.16) or (24.17), as the reader prefers.

We still need to check that E. is a cone and that (29.54) holds, and naturally we
start with (29.54). For this shall need to say more about how Theorem 24.13 is proved.
We consider the same sets Fj, (compare with (24.3)), and the main point of the proof is
to show that Theorem 23.8 can be applied. A long first part consists in showing that for
any fixed large radius R > 1, the Lg- satisfy the Lipschitz assumption on some appropriate
domain Ug (defined by (24.18)-(24.20)). Once this is done, we apply Theorem 23.8 to
the domains Ug = &, (Ur) and the sets Ey N Ugy. In turn Theorem 23.8 consists in
applying Theorem 10.8 to a single domain (with single boundary sets), but the different
sets Fj, = & Y(E}), where the bilipschitz mappings &, come from the condition (29.47),
and satisfy the asymptotic conditions (23.3) and (23.4). Eventually, one proves that these
sets satisfy the assumptions of Theorem 10.8 (see (23.16)-(23.20)). Their limit is still E
(by (23.3) and mostly (23.4)), and Theorem 10.97, which has the same assumptions as
Theorem 10.8, shows that for 0 < p < p1 < R/2,

HY(Es N Bz, p)) < liminf HY(E), N B(zo, p)) < liminf HY(E), N B(zo, p1))
k—+oo k— 400

(29.55) e e —dayd d
= liminfr, “H*(E N B(xo,mkp1)) = p70(x0)

k—+o00

where we used the asymptotic bilipschitz property (23.3) for the change of variable to
control the measures, and then the scale invariance and (29.56). Since we may take p; as
close to p as we want, this gives the upper bound in (29.54).

Similarly, we can apply Lemma 22.2 (whose assumptions are the same as for Theo-
rem 10.8) and with any choice of M > 1 and h > 0; this yields, for 0 < p; < p2 < p < R/2,

(1+ Ch)MHY(Es N B(xo,p)) > (1 + Ch)MH(Es N B(xo, p2))
> limsup H*(Ey, N B(xo, p2))

k—+oco

(29.56) > limsup H(Ey, N B(zo, p1))

k—+oco
= limsup ;. “H(E N B(xo, mip1)) = p10(w0)

k—+oco
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by (22.4) and the same sort of computation as above. This yields the rest of (29.54).
Once we know (29.54), we can apply Theorem 29.1, we get that E is a cone, and
this completes the proof of Corollary 29.53. 0

30. Nearly constant density and approximation by minimal cones

In this section we use Theorem 29.1 and the results of Section 10 on limits to give
sufficient conditions, in terms of density, for an almost minimal set to be very close to a
minimal cone.

For the main statement, we give ourselves a fixed ball By = B(z¢, (), boundary pieces
L?, 0 < J < Jmaz, and we suppose that the Lipschitz assumption of Definition 2.7 holds
for By and the L? and (in the non rigid case), that the L? satisfy the technical assumption
(10.7), or the weaker (19.36). We also suppose that 0 € By and that, for 0 < j < jaa,

(30.1) L? coincides with a cone in By.

We see By and the collection of L? as a model for domains U, endowed with boundary
pieces L;, and such that there is a bilipschitz mapping £ such that

(30.2) §(Bo) =U and L; =¢&(LY) for 0 < j < jmaa-

We want to say that when the bilipschitz constant of £ is small, F is a coral quasiminimal
set in U with constants M close enough to 1 and h small enough, and the density ratios of
E in two different balls centered at £(0) are close enough, then E looks a lot like a minimal
cone in the corresponding annulus. The statement will be a little complicated, but later
on, in Proposition 30.19, we shall consider the simpler case when the annulus is just a ball
centered at the origin.

Proposition 30.3. Let By and the L?, 0 < Jj < Jmaz, be as above. In particular, assume
that we have (30.1), the Lipschitz assumption, and (10.7) or (19.36). For each T > 0, we
can find € > 0 such that the following holds. Let U, the L;, and § satisfy (30.2), and
assume that

(30.4) ¢ is (1 + €)-bilipschitz.

Let E be a coral quasiminimal set in U, with

(30.5) E € GSAQ(U,1 +¢,2rg,¢),

set xg = £(0) € U, and assume that for some choice of radii 0 < r1 < ry < 1y,

(30.6) ry “HYE N Bz, ) < 17 HYE N B(xo,71)) + .

Then there is a minimal cone T centered at xq such that

(30.7) dist(y,T) < 7rg for y € EN B(xg,r2 — 7) \ B(wo,71 + 7)
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(30.8) dist(z, E) < trg for z € T N B(xg, 72 — 7) \ B(zo, 71 + 7),

(1T N By, 1)) — HY(E N B(y, 1))| < 7

30.9

(30.9) for y and t such that B(y,t) C B(xzg,r2 — 7) \ B(xo,r1 + 7),

and

(30.10) ’Hd(E N B(zo,7)) — HY(T N B(zo,1))| < mrd forry +7<r<ry—T.

Let us comment this statement before we prove it.

Proposition 30.3 is a generalization of Proposition 7.1 in [D5].

In (30.6), it could happen that B(zg,70)) goes slightly out of U, so we could have
written HY(E N U N B(xg,72)) instead of H4(E N B(zg,72)) to be more explicit (but the
result is the same since £ C U).

Of course (30.6) is only meaningful if 71 is not too close to 72, but otherwise the
conclusion is empty anyway.

We can always apply the result to domains U’ D U and quasiminimal sets E’ in U’,
since it is easy to check that E'NU € GSAQ(U, 1+¢,2rg,¢) assoon as E' € GSAQ(U’, 1+
g, 2’/“0, 9 ) .

We are lucky because we don’t need the Dini condition in (28.5), or even the fact that
F is almost minimal. Thus we may not be in the situation where we know for sure that
the density »~9H*(E N B(x,7)) is almost nondecreasing (as in Theorems 28.7 and 28.15).
On the other hand, we only state a result at a fixed scale, not an asymptotic result, and
we will not compute € in terms of 7, but just apply a compactness argument.

The author is not too happy about the statement of Proposition 30.3, because we
let € depend on the L;. This is because the proof below, just like the limiting result of
Section 23, for instance, uses the very fine bilipschitz convergence on domains, for which it
seems too hard to extract converging subsequences. Both for Section 23 and here, there are
probably ways to improve the statement, but the author is not really sure of what would
be needed, and hopes that in practice Proposition 30.3 will often be enough. Anyway, we
still put the scale invariant factors 79 and 7¢ in (30.7)-(30.10), even though our statement
allows € to depend on rq through By and the L;.

We shall prove the proposition by compactness. It will be easier to take limits of sets
like E = £71(FE), because they live in the fixed domain By. A simple computation, using
(30.4) and (30.5), shows that if F is as in the statement,

(30.11) E € GSAQ(By, 1+ Ce,rg, Ce),

where the associated boundary pieces on By are still the Lg.
Now let us fix By, the Lg, and 7, and assume that we cannot find € > 0 as in the
statement. Let &, Ux = &k(By), the sets L?, Ej, and the radii 1, and rg provide a

counterexample, associated with e, = 2~k By translation invariance, we may assume that
:(0) = 0. Also set Ey = &, ' (Ek).

335



Recall that & is defined on By and (1+27%)-bilipschitz (by (30.4)). Since & (0) = 0 for
all k, we see that modulo extracting a subsequence, we may assume that the & converge,
uniformly on By, to a mapping 7 which in addition is 1-bilipschitz. That is, n is the
restriction of a linear isometry of R™ that fixes 0. Let us replace &, with ™! o0&, Ej with
n~1(E}), and so on; we get a new counterexample for which 7 is the identity. So we may
assume that the &, converge, uniformly on By, to the identity. Because of our bilipschitz
property (30.4), the &, 1 also converge, uniformly on compact subsets of By, to the identity.

Modulo extracting a new subsequence, we may assume that the sets Ek converge in
By to a limit F'; then the sets Ejx = £, (F)) converge, locally in By, to the same limit F.
By (30.11), E € GSAQ(By,1+C27% 1y, C27%). Then for each small § > 0, we can apply
Theorem 10.8 to the (end of the) sequence { )}, in the domain By. We get that F is a coral
quasiminimal set (associated to the boundary pieces Lg), with F € GSAQ(By, 146,10, 0).
Since this holds for every ¢ > 0, F' is a minimal set in By.

Now we want to take care of the measures. Let B be an open ball, with B C B(0, 7 —
7/3) (we may assume that 7 << rg, so we don’t lose much). By the lower semicontinuity
property (10.98),

(30.12) HY(F N B) < liminf H*(E), N B).

k—+o0

By Lemma 22.3 (applied with h and M — 1 as small as we want), we also get that

(30.13) HYF N B) > limsup H4(Ex N B).

k—+o00

We want to compare this with our density assumption (30.6). Let us replace our
sequence with a subsequence for which 71 tends to a limit r; and ry; tends to a limit
ro. Notice that 7o > r1 j + 27 for all k& (otherwise the conclusion (30.7)-(30.10) would be
trivially true, which is impossible for a counterexample), so 7o > r1 + 27. Then take § > 0
very small, and notice that for k£ large,

(30.14) E, N B(0,79 — 8) = & (Ex) N B(0,r2 — 8)) C & (Ex N B(0,73))

(because (30.4) says that &, is (14+27%)-bilipschitz). Then apply (30.12) to B = B(0,r,—95),
and get that

HY(F 0 B(0,r2 — 8)) < lim inf H(Ey, 0 B(0,r2 — )

— 400

< liminf H4(&, ' (B N B(0,72)))

k—+o0

(30.15) < liminf(1 + 27" AU By N B(0,79))

—+o0

= lim inf H4(E), N B(0,73))

k——+oo

< (?“1/7’2)_d lklm_il_nfr}‘[d<Ek N B(O, 7”1))
— o0
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by (30.4) and because (30.6) holds for Ej, with ¢ = 27%. Similarly,
(30.16) E,NB(0,71 +68) = & (Ex) N B(0,r1 4 6)) D & (Ex N B(0,71))
for k large, so when we apply (30.13) to B = B(0,71 + ), we get that

HUE NB(0,r1 +96)) > limsupHd(Ek N B(0,r; +6))

k——+oco

> limsup’Hd(Ek_l(Ek N B(0,71)))
k—+o0

30.17
( ) > limsup(1 4 27%) "¢ 14 (B, 0 B(0,r1))

k——+oco

= limsup H*(Ey, N B(0,r1)).

k——+oco

We compare (30.15) and (30.17), let § tend to 0, and get that
(30.18) HYF N B(0,72)) < (r1/r2) “HYF N'B(0,71)).

By Theorem 28.4 (and because F' is minimal in the full By) 0(r) = r=H(F N B(0,7)) is
nondecreasing on (0,79). But (30.18) says that 0(r2) < lim,__, + 6(r), so € is constant on

(r1,70). We apply Theorem 29.1 and get that F' coincides, in the annulus B(0,72)\ B(0,71),
with a coral minimal cone T'.

We shall now prove that the approximation properties (30.7)-(30.10) are satisfied for
k large (and the cone T that we just found), and this will give the desired contradiction
with the definition of FE}.

First notice that (30.7) and (30.8) hold, because we observed earlier that F' is also
the limit of the Ej in compact subsets of By. For (30.9) and (30.10), we deduce them
from (30.12) and (30.13). The details of the verification were done in [D5], pages 128-129,
so we refer to that and merely mention the two minor difficulties that may worry the
reader. For (30.10), it is easy to deduce it, for a single radius, from (30.12), (30.13), and
the fact that for the cone T, (T N dB(0,r)) = 0. But it is enough to check (30.10) for
a finite collection of radii, because H%(T N B(0,r)) is a continuous function of r, while
each H?(E, N B(0,7)) = 0 is nondecreasing. For (30.9), we can proceed similarly, but
we also need the less obvious fact that H¢(T' N 0B(y,t)) = 0 for every ball B(y,t). This
is (7.14) in [D5], and the verification, done as Lemma 7.34 [D5], only uses the fact that
HYTNB(0,1)) < 400 and a little bit of geometric measure theory, but not the fact that T
is minimal (which is good, because here minimal is merely meant with additional boundary
constraints, so our cone 7' is probably not minimal as in [D5]). This concludes our proof
of Proposition 30.3 by contradiction and compactness. 0

Let us now state the analogue of Proposition 30.3 for the density in a ball (i.e., with

T :0)

Proposition 30.19. Let 0 < rg be given, and let By and the L?, 0 < 7J < Jmazx, be
as in the statement of Proposition 30.3. In particular, assume that we have (30.1), the
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Lipschitz assumption, and (10.7) or (19.36). For each T > 0, we can find € > 0 such that
the following holds. Let &, U, and the L; satisfy (30.2), and assume that

(30.20) € is (1 4 ¢)-bilipschitz.
Let E C U be a coral quasiminimal set, with

(30.21) E € GSAQ(U,1 + ¢, 2rg,¢),
set xg = £(0) € U, and assume that for some ro € (0, o],

(30.22) ry “HYE N B(zg,m)) <e+ inf 7 9HYEN B(xg,7)).
0<r<10—37g

Then there is a minimal cone T' centered at xg such that

(30.23) dist(y,T) < 7rg fory € EN B(xg,m2 — T)
(30.24) dist(z, E) < 7r¢ for z € T N B(xg,r2 — T),

[HUT N By, 1)) = HYENB(y,1))| < 77§

(30.25)
for y and t such that B(y,t) C B(xzg,rs — T),

and in particular

(30.26) ’Hd(E N B(zo,7)) — HYT N B(zo,1))| < rd for 0 <r <7y —T.

This is now the generalization of Proposition 7.24 in [D5]. We write (30.22) in this
strange way because, since we do not assume E to be almost minimal with a small gauge
function, we do not know that lim, o r~9H%(E N B(xg,r)) exists and gives a good lower
bound on r~4HY(ENB(zg,7)) for r small. Of course, with suitable additional assumptions
on the almost minimality of E, we could use Theorem 28.15 and replace the infimum in
(30.22) with the density lim, o r~9H*(E N B(zg,7)).

We repeat the proof of Proposition 30.3 because we don’t want to worry about the
way € depends on r1, and also because in (30.25) we allow balls B(y, t) that contain zy. So
we suppose that for k > 0, we have a counterexample Ej, to the statement with ¢ = 2%,
extract suitable subsequences, and find a minimal set I, which is the joint limit in By of
the sequences {E} and {Ej}.

For each small r; € (0,1073r), we can repeat the argument near (3.12)-(3.18), and
get (3.18). This is why we required an infimum in (30.22). Then 0(r) = r~4H*(FNB(0,r))
is constant on (r1,72), and F coincides with a minimal cone T' on B(0,75) \ B(0,71). We
let 1 tend to 0 and get that F'N By =T N By.
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The desired contradiction, i.e., the fact that (30.23)-(30.26) actually hold for k large,
is then proved as before. In particular, since now F' coincides with T near the origin, we
are allowed balls B(y,t) that contain it. Proposition 30.19 follows. O

31. Where should we go now?

There were two main reasons for the present paper. The first one was to obtain some
boundary regularity results for quasiminimal sets and almost minimal sets.

As far as quasiminimal sets are concerned, the author believes that the results in
Parts I-III are not so far from being optimal, because of the bilipschitz invariance. That
is, Lipschitz graphs are quasiminimal, and uniformly rectifiable sets are not so far the
Lipschitz regularity. Of course it would be nice to know that the strange dimensional
condition (6.2) can be removed, especially because this would mean that we found another
proof of uniform rectifiability than the very complicated stopping time argument coming
from [D1]. Also, the uniform rectifiability result of Theorem 6.1 barely contains more
information than the fact that F is locally uniformly rectifiable away from the boundary
pieces L;, plus the uniform rectifiability of the pieces themselves.

The situation is quite different for the almost minimal sets (typically, minimizers
of a functional like [, f(z)dH%(x), maybe plus some lower order terms, and where f :
R™ — [1, M] is continuous). For these sets, we expect much more regularity than what
we obtained so far. Sufficiently flat sets are a little easier to control, because of Allard’s
theorem [All], but we should not expect precise general results, because we know that a
general description is already hard away from the boundary. Recall that J. Taylor [Ta] gave
a very good local description of the 2-dimensional almost minimal sets in R3. A similar,
but already much less precise description is available for 2-dimensional almost minimal
sets in R™ (see [D5,6]), and there are even some first descriptions of 3-dimensional almost
minimal sets in R* near special (but non flat) points ([Lul,2]), but we expect a lot of
trouble except in very small dimensions. Maybe see [D7] for a rapid description.

Because this is always a good way to start, a first step consists in studying the blow-up
limits of our minimal sets at a point of the boundary, and Corollary 29.53 says that in
the reasonable situations, these are sliding minimal cones associated to conical boundary
pieces. So it seems interesting to study (find a list of) the minimal cones in some simple
situations. Even for 2-dimensional minimal cones in R*, with no boundary piece, the list of
minimal cones is not known. It was recently shown [Li2] that the almost orthogonal union
of two planes in R* is minimal (partially answering a conjecture of F. Morgan [Mo2]), and
that the orthogonal product of two one dimensional sets Y in R?* is minimal too [Li3], but
there may be lots of other 2-dimensional minimal cones in R* that we did not guess. To
the author’s best knowledge, the list of 2-dimensional minimal cones in R3, with a unique
boundary L; which is a line, is not known either, and this would be a very good start for
some versions of the most classical Plateau problem in 3-space.

Once we have an almost minimal set E, with a known blow-up limit at some point
x of the boundary, we can try to give a good description of E near z, for instance a nice
parameterization by the blow-up limit, like for the J. Taylor theorem [Ta]. This should
not be too hard, in a very limited number of situations.

Of course it would be good to have a substitute for the monotonicity of the density
O(z,r) = r *HYENDB(z,r)) when z € F lies close to a boundary piece, but not on it. The
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monotonicity fails stupidly when E is a half plane (bounded by the line L) and x € E\ Ly,
but one may dream to use more clever functions of r, that would probably need to depend
on the approximate shape of I/ and the distance to L;.

A second motivation is that a good local knowledge of the sliding almost minimal sets
near the boundary should help attacking some existence problems. A typical one is the
version of Plateau’s problem that was described in the introduction: take a simple curve I'
in R? and an initial set Ey bounded by I'. You do not have to know what this means, but
if you pick a wrong Ej, the problem will probably have a trivial solution (like a point).
Then try to minimize H2(E) (or a variant) among all the competitors for F (as defined
in Definition 1.3). In [D3], the author proposed to use sequences of quasiminimal sets,
together with the concentration lemma of [DMS] and a construction of adapted polyhedral
networks by V. Feuvrier [Fv1], [Fv2] to find existence results for problem of this type. Some
existence results were indeed found (see [Fv3], [Lil], [Fa]), but often avoiding complicated
problems at the boundary. For the problem above, for instance, it would be good to know
that for the limit F of the minimizing sequence that we construct, and which is a sliding
minimal set by Theorem 10.8, there is a Lipschitz retraction of a neighborhood of E onto
E. Also see [D8] for variants of this problem, probably not all easy to solve. As was
mentioned in the introduction, since other categories (such as size minimizing currents)
also yield sliding minimal sets, boundary regularity results could be useful there too.
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