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Essentially, the two algorithms that I know about:

Reifenberg’ topological disk and Carleson’s corona construction.
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1. REIFENBERG’S THEOREM (SIMPLEST FORM)

We start with notation. We consider sets of dimension d in Rn.
E ⊂ Rn is a closed set, and for Reifenberg’s theorem we assume that
E is flat at all scales. Set

dx,r(E,F ) =
1

r
supy∈E∩B(x,r) dist(y, F ) +

1

r
supy∈F∩B(x,r) dist(y,E)

when F ⊂ Rn is closed, x ∈ Rn, and r > 0.
[We take supy∈E∩B(x,r) dist(y, F ) = 0 if E ∩B(x, r) = ∅.] Then set

γ(x, r) = γE(x, r) = inf
P

dx,r(E,P )

where the inf is taken over all d-planes P through x. Measures how flat
E is in B(x, r)); big holes are not allowed either.
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Theorem 1 (Reifenberg). Simple assumptions on E (closed in Rn):
1. Let P0 be a d-plane, and assume that dist(x, P0) ≤ ε for x ∈ E and
dist(x,E) ≤ ε for x ∈ P0.
2. Also assume that γE(x, r) ≤ ε for x ∈ E and 0 < r ≤ 10.
Conclusion (if ε is small, depending on n and the small τ below):
There is a biHölder bijection f : Rn → Rn, such that

f(P0) = E,

|f(x)− x| ≤ τ for x ∈ Rn,

(1− τ)|x− y|1+τ ≤ |f(x)− f(y)| ≤ (1 + τ)|x− y|1−τ for |x− y| ≤ 1.

Comments: can be localized; bilipschitz not true for snowflakes; qua-
sisymmetric not true for a line times a snowflake; this gives topological
information about E and how it is embedded; the statement is quite
flexible, the algorithm is the main thing. Nice like John and Nirenberg.
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Preparation for the proof

We just construct the restriction of f to P0 for the moment.
Fix k ≥ 0, and choose a maximal collection {xj}, j ∈ Jk, of points

xj ∈ E, with |xj − xi| ≥ 2−k.
Set Bj = B(xj , 2

−k). Thus E ⊂
∪

j∈Jk
Bj .

Also set rj = 2−k.
Set Pj = P (xj , 10 · 2−k) for j ∈ Jk, so that dxj ,10rj (E,Pj) ≤ ε.
Call πj the orthogonal projection on Pj , and Dπj its differential

(the projection on the vector space P ′
j).

Construct a partition of unity

1 = θ0(x) +
∑
j∈Jk

θj(x)

where θ0 is supported on {x ; dist(x,E) ≥ 2−k}, θj is supported on 3Bj

for j ∈ Jk, and |Dlθj | ≤ Cl2
kl for l ≥ 0.
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We shall take
f = lim

k→+∞
fk

with
f0(x) = x on P0,

fk+1 = gk ◦ fk

and
gk(x) = x+

∑
j∈Jk

θj(x)[πj(x)− x]

= θ0(x)x+
∑
j∈Jk

θj(x)πj(x).

[We just push points in the direction of the Pj (and hence E).]
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Some verifications and lemmas.

Lemma 1. For k ≥ 0, i, j ∈ Jk ∪ Jk+1 such that 3Bj ∪ 3Bi ̸= ∅,

||Dπi −Dπj || ≤ Cγ(xi, 10ri) + Cγ(xj , 10rj) ≤ Cε

and, for x ∈ 10Bi ∪ 10Bj

|πi(x)− πj(x)| ≤ C(γ(xi, 10ri) + γ(xj , 10rj))2
−k ≤ Cε2−k.

So Pi is close to Pj in 3Bj ∪ 3Bi.
Proof : use the fact dxj ,10·2−k(E,Pj) ≤ ε and dxi,10·2−k(E,Pi) ≤ ε.

Easy, but uses the bilateral approximation (Pj is rather well determined
by E). �
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Lemma 2. Set Γk = fk(P0). Then

(1) dist(x,E) ≤ Cε2−k for x ∈ Γk.

Fairly easy by induction. Let k ≥ 0 be given, and assume (1).
Then θ0(x) = 0, and hence

∑
j∈Jk

θj(x) = 1 near Γk. So

(2) gk(x) =
∑
j∈Jk

θj(x)πj(x) near Γk.

Now we can control Γk+1 = gk(Γk). Let x ∈ Γk be given. Pick j0 ∈
such that x ∈ 2Bj . Then by Lemma 1

gk(x)− πj0(x) =
∑
j∈Jk

θj(x)[πj(x)− πj0(x)] = O(ε2−k)

and dist(gk(x), E) ≤ Cε2−k−1 since πj0(x) ∈ Pj0 ∩ 3Bj0 lies close to E.
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Easy consequences of the proof of Lemma 2:

(3) |gk(y)− y| ≤ Cε2−k on Γk

(4) |fk+1(x)− fk(x)| = |gk(fk(x))− fk(x)| ≤ Cε2−k on P0

(5) f(x) = lim
k→+∞

fk(x) exists, and f(x) ∈ E

(6) |f(x)− fk(x)| ≤ 2Cε2−k on P0.

More work will be needed to check that f is injective on P0, and that
f(P0) = E.
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Lemma 3. For each j ∈ Jk, Γk coincides in 2Bj with the graph of a
Cε-Lipschitz function φk,j : Pj → P⊥

j , that meets B(xj , 2
−k−10).

Proof by induction on k. Recall that

(2) gk(x) =
∑
j∈Jk

θj(x)πj(x) near Γk.

Let j ∈ Jk+1 be given, choose i ∈ Jk such that xj ∈ B(xi, 2
−k), and

use the induction assumption to describe Γk as a small Lipschitz graph
over Pi, in 3Bi ⊃ 4Bj .

We control the next set Γk+1 = gk(Γk) with the differential

(7) Dgk(x) =
∑
l∈Jk

θl(x)Dπl +
∑
l∈Jk

πl(x)Dθl(x).
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Recall that (on Γn)

(7) Dgk(x) =
∑
l∈Jk

θl(x)Dπl +
∑
l∈Jk

πl(x)Dθl(x).

Recall we have j ∈ Jk+1 and we want a description in 2Bj . So we just
need to control Dgk in 3Bj . And, since

∑
l∈Ik

θl = 1 near Γk,

Dgk(x) = Dπj +
∑
l∈Jk

θl(x)[Dπl −Dπj ] +
∑
l∈Jk

[πl(x)− πj(x)]Dθl(x).

By Lemma 1,

(8) |Dgk(x)−Dπj | ≤ Cε.

The desired Lipschitz control on Γk+1 follows because gk can be con-
trolled by integrating Dgk on Γk.

Surjectivity comes from a little bit of degree theory; Γk+1 then
meets B(xj , 2

−k−11) because it stays close to Pj . Lemma 3 follows. �
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Conclusion.

First, f is surjective: fix z ∈ E. For eack k, choose j ∈ Jk such
that z ∈ Bj . By Lemma 3, Γk meets B(xj , 2

−k−10). So there exists
wk ∈ P0 such that |fk(wk)− z| ≤ 2−k+1. Then use compactness.

We are left with the biHölder property. We shall use the following
distortion estimate that we deduce from (8):

for x, y ∈ Γk, with |x− y| ≤ 2−k−1,

(9) (1− Cε)|x− y| ≤ |gk(x)− gk(y)| ≤ (1 + Cε)|x− y|

(use the fundamental theorem of calculus between x and y along Γn).

11



Now pick x0, y0 ∈ P0. We want to control |f(x0) − f(y0)|. Set
xk = fk(x0) and yk = fk(y0).

We may assume that |x0−y0| ≤ 10−1. As long as |xk−yk| ≤ 2−k−1,
we use (9) which gives

(10) 1− Cε ≤ |xk+1 − yk+1|
|xk − yk|

≤ 1 + Cε.

The first time |xk − yk| > 2−k−1 (which occurs because 2−k decreases
faster!), just say that |f(x0)− xk| ≤ Cε2−k and |f(y0)− yk| ≤ Cε2−k,
so

(11) 1− Cε ≤ |f(x0)− f(y0)|
|xk − yk|

≤ 1 + Cε.

Then compute that we use (10) about log2(|x0 − y0|) times, and get
the Hölder distortion estimates. �
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2. REIFENBERG’S THEOREM (VARIANTS)

Recall:

dx,r(E,F ) =
1

r
supy∈E∩B(x,r) dist(y, F ) +

1

r
supy∈F∩B(x,r) dist(y,E)

γ(x, r) = γE(x, r) = inf
P

dx,r(E,P )

Theorem 1 (Reifenberg). Let E be closed in Rn, and assume that:
1. Let P0 be a d-plane, and assume that dist(x, P0) ≤ ε for x ∈ E and
dist(x,E) ≤ ε for x ∈ P0.
2. Also assume that γE(x, r) ≤ ε for x ∈ E and 0 < r ≤ 10.
Then (if ε is small, depending on n and the small τ below):
There is a biHölder bijection f : Rn → Rn, such that f(P0) = E, and

|f(x)− x| ≤ τ for x ∈ Rn,

(1− τ)|x− y|1+τ ≤ |f(x)− f(y)| ≤ (1 + τ)|x− y|1−τ for |x− y| ≤ 1.

13



Soon: Many variants exist, but we often use the same algorithm.

2.a. Extension of f to Rn

How do we extend the mapping above? First, we can build orthonormal
bases of the tangent plane TΓk at fk(x), with some coherence.

Lemma 4. We can define linear isometries Rk(x) of Rn, x ∈ P0, such
that R0(x) = I on P0,

(12) ||Rk+1 −Rk||∞ ≤ Cε,

appropriate upper bounds on |DRk| hold, and

(13) Rk(x)(P
′
0) = TΓk(fk(x)).

Proof by successive small modifications and partitions of unity.
Compose with the projection on the tangent plane to modify the image,
then retract on the set of isometries.
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Now the formula for the extension F of f .

Call y = p(z) the projection of z ∈ Rn on P0, and p⊥ = I − p, and
write

(13) z = p(z) + p⊥(z) = x+ y for z ∈ Rn.

Write 1 =
∑

k ρk(r) for r > 0 (a reasonable partition of 1 on ]0,+∞)),
with ρk supported on [2−k, 2−k+2] for k ≥ 1.
Finally set

(14) F (z) =
∑
k≥0

ρk(|y|)
[
fk(x) +Rk(x)(y)

]
(with z = x+ y as above) and check that this works!

Notice that F (z) = z for z far from P0 (because only ρ0(y) = 1).
Otherwise, only two or three terms, where |y| ∼ 2−k.
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2.b. Holes and β(x, r)-numbers

What if instead of γ(x, r) we only control the P. Jones numbers

(15) βE(x, r) = inf
P

1

r
supy∈E∩B(x,r) dist(y, P )

where the infimum is taken over the d-planes P through x?

That is, we want to allow flat sets with holes.
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New assumptions (for E ⊂ Rn closed, nonempty):

(16) dist(x, P0) ≤ ε for x ∈ E

and, if we define the Jk as above, then for k ≥ 0 and j ∈ Jk, there is a
d-plane Pj through xj , such that

(17) dist(y, Pj) ≤ ε for y ∈ E ∩ 10Bj

and

(18) dxi,10ri(Pi, Pj) ≤ ε

whenever i, j ∈ Ik ∪ Ik+1 are such that 3Bi ∩ 3Bj ̸= ∅.
Or equivalently, we require the conclusion of Lemma 1, which we

could not get automatically (when E stays close to a (d−1)-dimensional
plane for a long time).
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Theorem 2 [D.-Toro]. (Memoirs of the AMS 2012). Let E satisfy
the assumptions (16)-(18). Then there is a bijective BiHölder mapping
f : Rn → Rn (as in Theorem 1), such that f(P0) is a Reifenberg-flat set
(satisfying the assumptions of Reifenberg’s Theorem 1) and E ⊂ f(P0).

Proof: check that the proof above goes through.

Comments.
The slow-motion condition (18) is needed: example of a flat set that
lies close to a circle.
Because of this, this may be hard to apply.
Again easy to localize.
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2.c. Approximation by other sets

Planes in Theorems 1 and 2 may be replaced with other objects.
For instance minimal cones of dimension 2. See D.-De Pauw-Toro.

Or by Lipschitz graphs with constant ≤ 1, if the vertical direction
varies slowly (to be written with Toro).

But we need analogues of the πj (to define local retractions), and
ways to prove (or assume) that the objects (and the πj) vary slowly (as
in Lemma 1).
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2.d. Metric spaces (Cheeger-Colding)

Our only excursion in metric spaces, and even this is slightly ex-
agerated, because or assumption is that E looks Euclidean at all scales.

Here E is (contained in) a metric space, but we have assumptions
that say that it is locally close to d-planes in Euclidean space. We
measure flatness with α(x, r), the infimum of numbers α such that
there is a mapping φ : E ∩B(x, r) → Bd(0, r) ⊂ Rd, with∣∣|φ(y)− φ(z)| − distE(y, z)

∣∣ ≤ αr for y, z ∈ E ∩B(x, r)

and
dist(w,φ(E ∩B(x, r))) ≤ αr for w ∈ B(0, r).

[We do not require φ to be continuous.]
Then [Cheeger-Colding 1997] there is a Reifenberg theorem in this

context: α(x, r) ≤ ε for x ∈ E and r ≤ 1 implies the existence of local
biHölder parameterizations.
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2.e. Lipschitz parameterizations

The mapping f of Theorem 1 or 2 is Lipschitz, under suitable
assumptions. For instance, set

(19) J(x) =
∑
k≥0

β(x, 2−k)2

for x ∈ E (a Jones-Bishop function). Then:

Theorem 2 [D.-Toro, Memoirs of the AMS 2012]. Let E be as
in Theorem 1. Assume in addition that J(x) ≤ M for x ∈ E. Then f
in Theorem 1 is bilipschitz (if ε > 0 is small enough, depending on n,
and with bilipschitz bounds that depend only on M and n).
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Comments. Many variants exist.

- Previously by Toro, when
∑

k

{
supx β(x, 2

−k)2
}
< +∞;

- Cheeger-Colding (with metric spaces), assuming that∑
k

{
supx α(x, 2

−k)
}
< +∞; this fits well (without the square).

- for Ahlfors-regular sets but with numbers βq(x, r)
2; Also, sufficient

conditions for big bilipschitz pieces.

- With holes, but with a control on the sum of angles between the Pj .

Proof: “just” pay more attention to the distortion estimates like (9)
(or directly on the size of Dgk on TΓk).

The γ(x, r) control the angles between the Pj , which are first order,
and the squares control the distortion (by Pythagorus).

This is similar to the travelling salesman results of P. Jones, C.
Bishop, G. Lerman, and others. Not a surprise.
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3. TRAVELLING SALESMAN THEOREMS

What do we do when γ(x, r) (or some angles) are sometimes large?

Main option: work in separate regions of E × (0, 1], and glue partial
pieces.

Usually we won’t get more than a covering of E by a nicely parameter-
ized (but not injectively) surface.

Reference result for this:

Theorem [P. Jones, K. Okikiolu]. Let E ⊂ Rn be compact. There
exists a curve γ of finite length which contains E if and only if

βtot =
∑
k≥0

t1−n

∫
Rn

βE(x, r)
2dx < +∞.
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Comments.

This comes with good estimates : length(γ) ∼ diam(E) + βtot.

Proof (of the sufficient condition): rather cover by a connected set.
Proceed scale by scale, cover the xi, i ∈ Jk, add points at each scale,
and compute the costs of the detours.

Sometimes, you need to think a little bit ahead.
In the flat situations like Theorem 1, we just replace segments

with thin triangles, and loose something like 2−kβ(xj , 2
−k+1)2 (by

Pythagorus).

Improvement: set JE(x) =
∫ 1

0
βE(x, r)

2 dr
r . Then Bishop and Jones

say that if JE(x) ≤ M on E, then there is a curve γ such that E ⊂ γ
and length(γ) ≤ CeCM . Here C depends on n only.
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Even more is true, by P. Jones and G. Lerman:

Let µ be a locally finite Borel measure on Rn. For each cube Q (with
faces parallel to the axes), set

βµ(Q) =
1

diam(Q)
inf
P

{∫
Q

dist(y, P )2
dµ(y)

µ(Q)

}1/2

(where the infimum is over all d-planed P ), and then

J(x) =
∑
k∈Z

sup
{
β(Q)2 ; Q is a cube that contains x

}
for x ∈ E, the closed support of E.

25



Theorem [Jones-Lerman]. There exist constants C1 and C2 (that
depend only on n), so that if Q0 is the unit cube and∫

C1Q0

eC2JQ(x)dµ(x) ≤ Aµ(Q0)

then there is an ω-regular surface Γ, with constant at most C(A,n, d),
such that

µ(Γ) ≥ C−1
2 A−1µ(Q0).

[Sorry: no definition of the (uniformly rectifiable) ω-regular surfaces.]

Long and complicated proof, but not unlike the above; with some
amount of gluing too.
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4. CORONA DECOMPOSITIONS

Take the set E. Usually, Ahlfors-regular of dimension d, or at least on
which a d-dimensional measure µ is given.

Go from large scales to small ones.

Define the stopping time regions R in E×(0, 1], under a given ball
B0 = B(x0, r0), by stopping at the largest balls B(x, r) ⊂ B(x0, r0)
such that one of the following bad things happen:

- r−dµ(B(x, r) is too large, or too small;

- β(x, 10r) is too large;

- the good plane P (x, r) makes a big angle with P (x0, r0);

- Maybe some other conditions (in addition or instead).

Then for each R there is a Lipschitz graph ΓR, (or a nice set) that
approximates E well in R.

Cover E × (0, 1] by regions R. Parameterize each ΓR, glue, and
this gives a parameterization of a set that contains E.
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Main problem: give conditions on E, like uniform rectifiability,
that ensure that there are not regions R.

Main advantage: we can use ΓR itself to prove such an estimate!
Works like a machine.
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An extension theorem for bilipschitz mappings
In fact, a technical lemma in a paper of J. Azzam and R. Schul on

big pieces of bilipschitz mappings.

Theorem [Azzam-Schul]. For all small κ > 0 we can find ε > 0 such
that, if E ⊂ Rn us closed and f : E → Rn is (κ, ε)-Reifenberg and L-
bilipschitz, then it has an extension which is a (bijective) L′-bilipschitz
mapping: Rn → Rn.

Comments and definitions.
Here L′ ≤ C(n)κ−1L, and f : ERD, with D > n is possible.
Reifenberg-flat is hard to prove (so Azzam-Schul use this in con-

nection with stopping-time constructions). It is defined as for sets :
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f : E → Rn is Reifenberg-flat means that:

For every dyadic cube Q such that Q meets E, there is an approximat-
ing affine mapping AQ : Rn → Rn such that:

the n singular values of AQ are ≥ κ

|f(x)−AQ(x)| ≤ εdiam(Q) for x ∈ E ∩ 3Q

||DAQ −DAR|| ≤ε when R is a child of Q

and when they have the same size and touch.

Similar in spirit to Theorem 2 above!
Previously, an extension theorem of Tukia and Vaisälä.
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