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Main theme: Regularity properties of the singular
set for minimizers, and a few techniques of analysis or
elementary geometric measure theory to get them.

1. The Mumford-Shah functional

We are given a simple domain {2 C R™, a bounded
function g € L*°(2), and we set

(1) Jg<u,K>:H”-1<K>+/ |w2+/ u—g|?
O\ K O\ K

for (u, K) € A, the set of acceptable pairs (u, K) such

that K C Q is closed in Q, and v € WH%(Q \ K) has
one derivative in L? on Q\ K.

Here H"1(K), the Hausdorff measure, is the cor-
rect analogue of (n — 1)-dimensional surface measure
of K, defined as soon as K C R" is Borel-measurable.

Introduced by Mumford and Shah (< 1989), at
least in dimension n = 2, for image segmentation. Was
also considered as a tool for modelling cracks when
n=3.



(1) Jy(u, K) = H™}(K)+ / .

Vul2+ / u—g|’

For image segmentation, €2 is a screen, g is a given
image, and u defines a segmentation for g. If (u, K)
minimizes J, u should give a good compromise be-
tween three constraints:

- u — g should be small

- u is simple (varies slowly), but may have jumps along
a singular set K (which we see as describing edges in
the picture), but

- K is not too complicated.

Comments:

- Segmentation # compression: it is also fine if v and
K only give some simplified idea of g.

- We could give different weights to the three terms,
but the difference can be scaled out by multiplying u
and g by a constant, and composing with a dilation

- Lots of variants exist, but often with a term like
H" 1(K).

- This works fine because, as conjectured by Mumford
and Shah, K is automatically regular (instead of just
being short) when (u, K) is a minimal pair.

- Good and bad thing: automatic and context free!



(1) Jg<u,K>=H”—1<K>+/ |w|2+/ u—gl?

Empirical considerations
Assuming that minimizers exist, what can we expect?

Making K larger allows more jumps for u, hence helps
reduce the tension and make [q, |Vu|? smaller. But

this is only efficient if K has good local separation
properties, which:

- forces H" (K N B(x,r)) to be of the order of r"~1
(more would be inefficient, less would allow too much
passage; see later)

- gives the homogeneity of the problem: when there is a
real competition between the first two terms in B(x, r),
r small, we expect both terms to give contributions of
roughly 7"~ 1 in B(z,r)

- shows that the third term, which contributes less
than Cr™ in B(x, ), plays a minor role locally.

In addition, the expected separation properties of
K are a main reason why K is regular.



The Mumford-Shah conjecture
Observe that if ¢ and K are given, it is easy to

minimize / \Vu|2—|—/ lu—g|* with respect to .
O\K O\K

This is a convex problem, there is a unique solution wu,
and u is better than C! away from K (elliptic equation
Au = u — g). So the question is K (and u near K).

First, Mumford and Shah conjectured the exis-
tence of minimal pairs. True (see page 6).

But the (main) Mumford-Shah conjecture is the
following: if (u, K) is a reduced minimizer for J, in
dimension 2, then K is a finite union of C! curves,
which can only meet by sets of 3 and with 120° angles®.

- See the next page for “reduced”.

- C'! implies more when ¢ is regular. Up to analytic
|Koch-Leoni-Morini].

- If © is nice, regularity near 02 is known [Maddalena-
Solimini ; D.-Léger|. Otherwise, make the conclusion
local in €2.

- K is allowed to have tips (but incidentally, we still
do not know whether they can really occur).

- Hence (u, K') looks like a decent segmentation, except
that T-junctions are destroyed at small scales®.

- In dimension 3, some regularity is known, but we do
not know a precise conjectural list of local behaviours.



Definition. The pair (u, K) is called reduced when,

if K C K is a proper closed subset of K, the function
u has no extension u € WH2(Q\ K).

Given (u, K) € A, say with H"!(K) < +oo (and
hence |K| = 0), we can always find K’ C K such that
u e WH2(Q\ K’) and (u, K') is reduced.

Then (u, K') is equivalent to (or even better than)
(u, K) for J,;. So it is enough to consider reduced pairs.

We shall do that.

This allows a better description of K: we avoid
problems that come from adding to K an ugly set of
vanishing H"!-measure.



Existence of minimal segmentations is
a theorem of Ambrosio and De Giorgi-Carriero-Leaci.

The “stupid way” (taking a minimizing sequence
(u;, K;) and letting K; tend to a limit K through a
subsequence) does not work trivially, because H" 1 (K)
could be much larger than the limit of the H"~(K}).
Think about dotted lines™.

The proof uses a weak formulation of J, in the
subclass SBV C BV of functions of bounded varia-
tion, where u € SBV, and K = K, is now the singular
set of u (not necessarily closed).

It uses two facts: the nice compactness properties
of BV extend to SBV; and minimizers for the SBV
analogue of .J, are so regular that H"~1(K,\ K,) = 0,
so they also provide minimal pairs for J,.

There is also a direct proof, based on the concen-
tration property of Dal Maso, Morel, and Solimini. By
DMS when n = 2, Maddalna and Solimini for n large.
[Maybe two words about it later.]

No uniqueness in general because there may be
a brutal change of strategy (a circle vanishes*) or by
rupture of symmetry (checkerboard*).

Even less continuous dependence on parameters.

But could it be that uniqueness is generic (in g)7



Local almost-minimizers

Easy to check: if (u, K) is a reduced minimizer for Jy,
then it is a (reduced) almost minimizer, with gauge
function h(r) = C||g||%r.

Definition. A (local) almost minimizer with gauge
function h is a pair (u, K) € A such that, whenever
(U, K) € A coincides with (u, K) out of some ball B =
B(x,r) (such that B C Q),

H”—l(KmF)+/ Vul|?
QNB\K
<H" YK nNB)+ / Va4 h(r)r™ 1,

QNB\K

Proof: By a cut-off argument, ||u||c < ||9]|oo and we
can assume that ||u||ee < ||9]]co, SO

LHS < J,(u,K) < J, (@, K)
:H”_l(IN(HE)Jr/ N!Vﬂ|2+/ u— g/
QNB\K QNB\K

< RHS. [

Comments: other definitions exist; nice way to say
that in J,; the third term matters less at small scales.



2. Regularity properties of K

From now on, (u, K) is a reduced (local) almost
minimizer, with gauge function h (nondecreasing, and
such that lim,_,o h(r) = 0).

We shall mostly worry about local properties (far
from 0€2), and often in dimension 2.

We start with the trivial estimate:

2) H”_l(KHE(x,r))Jr/ Vul? < Crn!
QNB(x,r)\ K

for r <1 (and if B = B(x,r) C Q).

Proof: just try (¥, K) = (u, K) out of B, KNB = dB,
and w = 0 in B. Here and below, C' depends on n and
h, not on (u, K). ]

Next, K is locally Ahlfors-regular:
3) Cc Y l<H"YNKNB(z,r) <Crtt

for x € K and r < 1 such that B(z,r) C Q.

Proof by Dal Maso, Morel, Solimini 89 (n = 2)
and Carriero, Leaci (n > 2). Idea: if K is too thin, it
cannot separate enough to release the tension. Esti-
mate the loss in energy when we remove a piece of K:
integrate by parts and estimate the jump of wu.



Local Ahlfors regularity is not so easy to get, but very
useful. It allows us to use analysis techniques like

Carleson measures.

Often a good idea on spaces of homogeneous type:
define functions on the space of balls

(4)  A={(z,r) € K x(0,1]; B(z,r) C Q}.

Let us measure the normalized local energy with

(5) wlar) = [ v
B(x,r)\K

for (x,r) € A, and its LP generalization for 1 < p < 2

1 5
6 wy(x, ) =17 —/ VulP
©  wlen=r{z[ IV}

Note that w(z,r) = we(x,r) < C by the trivial
estimate, and then w,(z,r) < C by Holder.

But w,(z,r) is often much smaller, to the point of
being integrable against the locally infinite invariant
measure dH" "' (z)%. So we can trade the optimal

power aganist better integrability:



[D-Semmes, 96]: for 1 < p < 2, there exists C), > 0
such that for (z,r) € A,

dH" 1 (y)dt
/ / wp(ya t) <y) < Cprn_l-
yeB(x,r/2) JO<t<r/2 t

dH" ! (x)dr
r

Thus w,(z,r) is a Carleson measure on A.
The result is interesting but the proof is not: use the

trivial bound, Holder, Fubini, and the local Ahlfors-
regularity to compute interior integrals.

Corollary: for each 1 < p < 2 and € > 0, there exists
C'(e,p) such that, for every (z,r) € A, we can find
(y,t) € A, with y € K N B(z,r/2) and C(e,p)~tr <
t <r/2,and wy(y,t) <e.

Thus each ball contains not-much-smaller good balls.

Proof by Chebyshev: otherwise the integral above is

n—1
. / / _dH" T (y)dt
yeB(z,r/2) JC(e,p)~tr<t<r/2 t

dt
Zé‘Hn_l(KﬂB(.T,T/Q))/ —
C(e,p)~lr<t<r/2 t

> C ter™ tlog(Cle,p)/2) > Cpr™ !

if C'(e,p) is large enough |a contradiction]. ]

10



The concentration property: For each small 7 > 0,
there exists C(7) such that, for all (z,7) € A with
h(r) < C(7)™1, we can find (y,t) € A, such that y €
KN B(x,r/2), C(t)"'r <t <r/2, and

(7) H" (KN B(y,t) = (1-7)H""(PNB(y,t)),

where P is any hyperplane through v.

Thus K has almost optimal density in B(y,t).

Theorem of Dal Maso, Morel, Solimini when n = 2,
Maddalena and Solimini when n > 2.

I like it because of the following lowersemicontinuity
result from [DMS]:

Let {K,} be a sequence of closed sets that satisfy the
concentration property with uniform constants C(7).
Suppose that {K;} converges to the closed set K, lo-
cally in €2 for the Hausdorff distance™. Then

8) H" YKNU)<liminf " Y(K; NU)

j—+oo
for U C () open.

Comments:

- Not true without assumption (dotted lines)

- Useful for producing minimizers (see later twice?)
- Proof by definition of H"~! and coverings!

11



Proof when n =2
[Advertisement for Carleson measures|.

Let 7 and (x,7) € A be given. Pick p < 2 close to 2
and € > 0 very small (chosen later), and let (y,t) be
as in the corollary with Chebyshev. Thus

! :
O wwn=t{z[ v} <
B(y,t)\K

(here with n = 2, so the power of ¢ is 1 — 1%)

We want to check that H'(K N B(y,t)) > 2(1 — 7).
Enough to check that K meets 0B(y, p) at least twice
for most p € (0,1).

For instance for all p > ¢ such that

N3

P
2

(10) / VulP < C(1)ezp'™ 2.
OB (y,p)\K

We suppose it does not and construct a better com-
petitor (u, K).

12



Cover KNOB(y, p) with an arc Z of 0B(y, p) of length

55, with C' as in the Ahlfors-regularity condition (3)).

Set K = [K U Z]\ B(y,p). We pay H'(Z) = 5%, but
we win H' (K N B(y,p)) > C~tp>2HYZ) by (3).
The main point is that by (10), we can find an exten-

sion w of u‘aB(y’p)\Z to B(y, p), with

(1) / VA2 < C(r)ep.
B(y,p)

[First estimate the jump across Z, then extend linearly
across Z, then use the Poisson kernel.]

Then (u, K) € A, and coincides with (u, K) out of

B(y,t). The definition of local almost minimizer should
yield

H' (KN Bly.p) < H\(Z) + / Va2 + rh(r)
B(y,p)

< HY(Z) 4+ C(1)ep + rh(r)
a contradiction if € and h(r) are small enough. ]

Already here, the fact that K N 0B(y,p) often
has at least 2 points allows K to separate B(y,t) into
regions. We’ll see this again in the next proof.

13



Uniform rectifiability when n=2

Theorem [D.-Semmes|. For (z,7) € A, there is a
regular curve I' C B(x,r), with constant < C', such

that K N B(x,r/2) CT.

Definition. A regular curve is a (connected) curve I'
such that

length(I' N B(x,7)) < Cr whenever 0 < r < diam(T").

But we could also have taken Ahlfors-regular connected
sets. The point is that regular curves are almost as nice
as Lipschitz graphs or even C! curves.

Another way to say state the theorem: K is locally
uniformly rectifiable.

A slightly stronger property, which also makes sense
and holds in every dimension n > 2, is that K locally
contains big pieces of Lipschitz graphs, i.e., that

There exist constants 7 > 0 and C' > 0 such that, for
all (x,r) € A, there is a C-Lipschitz graph G C R"
such that H" Y (K NG N B(x,r)) > 7r" 1.

No proof for n > 2 here, no definition of uniform rec-
tifiability when n > 2, or further advertisement for
uniform rectifiability. Again, separation plays a big
role in the proof.

14



When n = 2, the theorem follows from this

Main Lemma (big pieces of connected sets).
There exists C' > 0 such that for (z,r) € A such that
h(r) < C~1, there is a connected set F' C B(x,r) with
HYF)<Crand HY(KNFNB(xz,r)) > C lr.

Please trust: once we know this, the theorem is a con-
sequence of local Ahlfors regularity, iterations, gluing,
and optimizing.

Proof of the main lemma. Pick p < 2 close to 2, and
e > 0 small. By the corollary with Carleson meaures,
we can find y € KN B(x,7/2) and t € [C™1,7/2] such
that w,(y,t) <e.

By Chebyshev, we can choose p € (¢/2,t) such that

b
2

(12) / VulP < Ce2p'™
OB (y,p)\ K

as for (10) above. Since H'(K N B(y,t)) < 7t by the
trivial estimate, we can also arrange that

(13) K NOB(y, p) has at less than 20 points.

15



Denote by J;, 1 < j < L, the components of
0B(y,p) \ K, and by my, the mean value of u on J.

Claim. we can find 7 and & =# j such that
[ T5| > O p, |k > O Y p, and [my —my| > Cy ' pt/2,

Proof of claim.* Otherwise, cover K N 0B(y, p) and
the short arcs J; by a union Z of arcs of length C; L,
and with H'(Z) < 100C;'p < HY(K n B(y,p))
(if C is large enough).

Then use (12) to extend u first to 0B(y, p),

7 ‘aB(y,p)\Z
and then to B(y, p) with small energy fB(y 5 V|2

(if (5 is large enough).
Get a contradiction as for the concentration property.
[]

Now let 5 and k£ be as in the claim.

By (12), |u(z) — m;| < (10C)~1pt/2 for z € J;, and
similarly |u(z) —mg| < (10C3)~1p/2 for z € J,.

Suppose m; < my. There is an interval [a,b] in the
middle of [m;, mg], with b —a > (2C5) 1 p'/2 and

(14) wu(z) <a<b<u(w) for z € J; and w € Ji.

16



(14) wu(z) <a<b<u(w) for z € J; and w € Ji.

Let us apply the co-area formula to (a smooth
modification of) u in B(y,t)\ K. For t € R, denote by
I, = {z € B(y,t); u(z) =t} the level set. Then

/Hl(Ft) dt < / Vu| = t32w (y, 1)
¢ B(y,t)
< Ct32w,(y,t) < Ct3/2%¢

by Hoélder and our choice of (y,t).
By Chebyshev, we can find s € [a, b] such that

(15) HY(T,) < Cet.

By (14), I's separates J; from J in B(y,t) \ K.
Then K UT'g separates J; from Jj in B(y,t).

By “elementary 2d-topology”, [K U I's] N B(y,1t)
contains a connected piece F' that separates J; from
Ji in B(y,t).

First HY(F) < HY(T'y) + H*(K N B(y,t)) < 8t.

Also HY(F) > iMin{|J;|,|Jx|} > p/(2C1), and then
HYFNnK)> HY(G) - H(T,) > p/(3C;) > r/C
(by (15) and if ¢ is small). O

17



Lots of C! pieces in K
Here we assume that h(r) < Cr® for some a > 0.

Theorem [Ambrosio, Fusco, Pallara]. For almost ev-
ery x € K, we can find » > 0 such that K coincides in
B(w,r) with a C! and 10™2-Lipschitz graph.

Also see D. and Bonnet when n = 2, and the
following improvement™ (when n > 2) from Rigot:

There exists C' > 1 such that whenever (z,r) € A
and r < C7!, we can find y € K N B(wx,r/2) and
t € [r/C,r/2], such that K coincides in B(y,t) with a
C! and 10~ 2-Lipschitz graph.

Main point: if K N B(x,r) is flat enough, and
I |Vu|? is small enough*, then K coincides with
a C'! and 10~ 2-Lipschitz graph in B(z,7/2).

Recent improvement by A. Lemenant for n = 3:
if K N B(z,r) is close enough enough to a minimal
cone, and fB(x " |Vu|? is small enough, then K is C'*-

equivalent to a minimal cone in B(x,7/2).

Comments:

- List of minimal cones below

- Connection with minimal sets and the Jean Taylor
theorem

- Proof: control of many constants, improvement from
B(x,r) to B(xz,r/2), and iteration. Not today.

18



3. Blow up limits and global minimizers

Important developments, following A. Bonnet.

Again let (u, K) be a reduced local minimizer in
() C R™, with gauge function A.

Let {xx} be a sequence in K and {ry} a sequence
in (0,400), with limy_, 1 rx = 0. Also assume that
limg 1 oo rk_l dist(zg, R™ \ Q) = +o0o. Then Qp =
ri ' (Q — x1) tends to R™.

Often we just take x = x (blow-up at a given point).

Set K = ;. '(K — ) and ug(y) = r,{:_l/zu(my + ).

Then (ug,rr) is a local minimizer in 2, with gauge
function h(r/ry).
We can easly® extract subsequences so that Kj

tends to a closed set K and wuy tends to some u €
WL2(R™\ K), in the sense that for every p > 0,

loc

Dp(K7 Kk) — SUPyec KNB(0,R) dlSt(ya Kk)

(16) :
+ SUpy ek, nB(o, ) dist(y, K)

tends to 0, and, for every connected component W of
R™\ K, we can find constants c¢; = ¢ (W) such that

(17) {ug — ¢} converges to u uniformly
on compact subsets of W.

[In effect, Vuy converges to Vu and we integrate.]

19



Theorem [Bonnet + ...]: If (u, K) is a limit of the
(ur, K ) as above, then (u, K) is a global minimizer in
R™.

Definition of global minimizers soon. The main
point of the proof is that K, is uniformly concentrated,
with uniform bounds, so

(18) H" Y KNU) <liminf H" YK, NU)

k— 400
for every open set U C R". Then we consider a com-
petitor (u, K) for (u, K), use it to construct a competi-
tor (uy, Ky ) for (ug, Kx), use the almost minimality of

(ug, K1), and use (18) to get a useful comparizon with
(u, K).

Comments: with this sort of argument, a limit
of reduced almost minimizers in €2 is a “topological
almost minimizer” with the same gauge function A.
This allows many compactness arguments.

Also, there is a proof by Dal Maso-Morel-Solimini
(n = 2) and Maddalena-Solimini (n > 2) that Mumford-
Shah minimizers exist. For instance, when n = 2, first
minimize under the constraint that K has at most N
components, and then take a limit. Not so simple, but
it works.

20



Global minimizers

Denote by A the set of pairs (u, K) such that K €
R™ is closed, and u € Wllof (R™\ K).

A competitor for (u, K) € A is a pair (¥, K) € A
such that for R large,

(19) u=u and K = K out of B(0, R)

and

(20) if z, y € R™\ [B(0,R) U K] and K separates
x from y, then K separates = from y.

By “K separates x from y”, we mean that x and
y lie in different connected components of R™ \ K.*

Definition A global minimizer is a reduced pair (u, K) €

A such that
H" (K A B(0, R)) +/ V)’
B(0,R)\K
< H" Y (K NnB(0,R)) +/ _|va)?
B(0,R)\ K

~
~

whenever (u, K) is a competitor for (u, K) and R is so
large that (19) and (20) hold. [A Dirichlet condition
at infinity|

21



Expected: the study of global minimizers should be
simple (no domain €2, no image g or gauge function
h), to the point that we could even give the full list.

And once we have information on the global min-
imizers, we shall return and get information on the
local minimizers.

Examples of global minimizers when n = 2:

- K = (), u is constant;

- K is aline, u is constant on each component of R?\ K;
- KisaY, uis constant on each component of R\ K;

- The cracktip: K = (—o00,0] C R and

/2 0
u(rcosf,rsing) = C + /= rt/? sin§
7r

for r > 0 and |0| < 7.

The 120° angle in the Mumford-Shah conjecture comes
from the Y (the only global minimizers for which u is
locally constant are as above).

The fact that Cracktip is a global minimizer is true,
but non trivial [D., Bonnet|. But is it a blow-up limit?

The constant 2—: is forced by balance betwen length
and energy (otherwise, make the crack longer or shorter).

Strong Mumford-Shah conjecture: modulo rotations
(for the cracktip), there is no other global minimizer.

22



What is known in R2?

Theorem [Bonnet]. If (u, K) is a global minimizer in
R? and K is connected, then (u, K) is in the list above.

Main ingredient: prove that r — — Vul? is
" JB(z,r)\K
nondecreasing, and use limits.

Consequence: If (u, K) is a minimizer of the Mumford-
Shah functional in Q C R? and K| is an isolated com-
ponent of K, then K is a finite union of C! curves.

Use blow-up limits and perturbation results near lines
and sets Y.

Similarly, the strong Mumford-Shah conjecture would
imply the standard one.

Léger’s formula: if (u, K) is a global minimizer in R?,

ou, . 1 dH! (w)
25(2) =

27 K (2 —w)?

for z € R\ K ~ C\ K (Beurling transform of H,lK).
In particular, u is essentially unique given K.
Theorem [D., Léger|. If (u, K) is a global minimizer
in R? and R? \ K is not connected, then (u, K) is in
the list above.

Etc. ..

23



What is known in R3?

Less, but this makes more interesting questions.

Examples of global minimizers in R? for which u is
locally constant. That is, minimal sets K in R3, with
the topological constraint (20) for competitors:

- @;

- planes;

- products Y of a Y with an orthogonal line: Y is the
union of three half planes bounded by a common line
L and making 120° angles along L;

- cones T over the union of the edges of a regular tetra-
hedron centered at the origin (six infinite triangular
faces bounded by four half lines).

Theorem [J. Taylor+D.] Every Mumford-Shah mini-
mal set KX in R3 is one of these cones.

Curiously recent, and no answer yet for Almgren
minimal sets, where we still minimize H?(K) locally,

but competitors for K are sets K = ¢(K), where ¢ :
R3 — R? is Lipschitz, with ¢(z) = z out of some ball.

Recall that Mumford-Shah competitors for K are
sets K such that K = K out of some big ball B, and
K separates z and y € R\ [K U B| whenever K sepa-
rates them. Almgren competitors are Mumford-Shah
competitors. so there may be more Almgren minimal
sets.
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So we control the global minimizers for which u is
locally constant.

Even locally: A. Lemenant’s result says that if
(u, K) is a local minimizer in Q C R?, with h(r) < Cr,
and if one of the blow-up limits of K at x is one of the
cones above, then x has a neighborhood B where K
is C'l'-equivalent to this cone and u is smooth in each
component of B\ K.

Example where u is not constant: cracktip times a
line, so K = (—o00,0] x {0} x R (a vertical half plane)
and

2 0
u(rcosf,rsinf, z) = C + \/jrl/2 sin 5"
s

Comments:

- Not too hard to check the minimality, by slicing;

- Here u is essentially unique given K |Lemenant|;

- This is the only known (or suspected) global mini-
mizer in R® where v is not locally constant.
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Questions

- Are there other global minimizers? What happens
when you cut cut a Y locally*? I had suggestions, but
B. Bourdin and B. Merlet don’t seem to like them.

- Can we first describe (u, K) when K is a cone?
[Lemenant: w« is homogeneous of degree 1/2; hence
connections with the spectrum of A on 0B(0,1) \ K]

- Is u essentially unique given K7 [True in the exam-
ples above.]

- Suppose K contains a small (flat) disk; is it one of
the examples above?

- Suppose u is constant somewhere?

- Is every connected component of R®\ K a John do-
main (true when n = 3); how many components?

And, even in dimension 2,
- prove the strong Mumford-Shah conjecture

- Does Cracktip really show up as the blow-up limit
at x of (u, K) for some Mumford-Shah minimizer in a
domain?

- Suppose it does, can K spiral at 7 [I think not,
proof by Bonnet.|

- Would the list of global minimizers change if we al-
lowed u to be valued in R*?
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