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Abstract. It was recently shown that the harmonic measure is absolutely continu-
ous with respect to the Hausdorff measure on a domain with an n − 1 dimensional
uniformly rectifiable boundary, in the presence of now well understood additional
topological constraints. The topological restrictions, while mild, are necessary, as
the counterexamples of C. Bishop and P. Jones show, and no analogues of these
results have been available for higher co-dimensional sets.

In the present paper we show that for any d < n−1 and for any domain with a d-
dimensional uniformly rectifiable boundary the elliptic measure of an appropriate
degenerate elliptic operator is absolutely continuous with respect to the Hausdorff
measure of the boundary. There are no topological or dimensional restrictions
contrary to the aforementioned results.

Résumé en Français. On sait que la mesure harmonique associée à un domaine
de Rn dont a frontière est uniformément rectifiable de dimension n − 1 est absolu-
ment continue par rapport à la mesure de surface, sous des conditions topologiques
récemment bien comprises. Ces conditions, bien que faibles, sont nécessaires,
comme l’ont montré des contre exemples de C. Bishop and P. Jones. On ne dis-
posait pas jusqu’ici de résultats analogues lorsque la frontière est de codimension
plus grande.

On démontre dans cet article que lorsque la frontière est uniformément rectifiable
de dimension d < n − 1, la mesure elliptique associée à des opérateurs elliptiques
dégénérés appropriés est absolument continue par rapport à la mesure de Hausdorff,
sans avoir besoin de condition topologique supplémentaire.
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1. Introduction

Spectacular achievements of the past 20 years at the interface of harmonic anal-
ysis, geometric measure theory, and PDEs have finally identified the necessary and
sufficient conditions for the absolute continuity of harmonic measure with respect
to the Hausdorff measure of an (n − 1)-dimensional set. In some very informal
terms, the problem is as follows. The harmonic measure of a subset E of the bound-
ary of a domain Ω, ωX(E), is the probability that a Brownian traveler, starting at
X ∈ Ω, would exit through the set E rather than its complement. The celebrated
1924 Wiener criterion has identified all boundary points where the harmonic func-
tions are continuous and hence, the harmonic measure is classically well-defined.
However, the quantitative information, that is, the question whether the resulting
probability is reasonably related to the Hausdorff measure of the set E, in other
words, whether the Brownian travelers see the portions of the boundary in accor-
dance with their size, turned out to be much more delicate. In PDE terms it is
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analogous to the question whether the Dirichlet boundary value problem is well-
posed with the Lp (rather than continuous) data, with the appropriate dependence
of solutions on the Lp size of the data on the boundary [MZ].

It is quite remarkable that the key geometric notion in this context was identi-
fied already in 1916, when F. and M. Riesz proved that the harmonic measure is
absolutely continuous with respect to the Lebesgue measure in a simply connected
planar domain bounded by a rectifiable curve [RR]. Rectifiability is the property
that the set can be covered by a countable collection of Lipschitz graphs, modulo a
subset of measure zero. Extending this result to higher dimensions took more than
a century and a development of harmonic analysis, singular integrals, and corona
decomposition techniques on uniformly rectifiable sets. We do not aim to provide
a detailed overview in this introduction, but let us mention that the key milestones
were perhaps Dahlberg’s treatment of Lipschitz domains in [Da], then results on
2-sided and 1-sided NTA domains with uniformly rectifiable boundaries in [JK]
and [HM], and then, finally, the discovery of necessary and sufficient geometric
conditions that were recently identified in [AHMMT]. One of the main problems
was that the uniform rectifiability is not sufficient [BJ], for, in addition, the do-
main has to exhibit some quantitative connectedness, and the exact, sharp form of
this connectedness condition seemed elusive for many years. It is interesting to
point out that the converse result for this seemingly PDE question was ultimately
resolved thanks to the big advancements in the understanding of singular integrals
and other harmonic analysis objects on the uniformly rectifiable sets, for instance,
the resolution of the David-Semmes conjecture regarding the L2 boundedness of
Riesz transforms in [NTV].

However, all of these results have been restricted to the sets with n − 1 dimen-
sional boundaries, and with very few exceptions, up to recently virtually no theo-
rems treated the higher co-dimensional case such as the complement of a curve in
R3. In [DFM2] the authors of this paper, together with J. Feneuil, have launched
a program devoted to the degenerate elliptic operator L = − div A∇ whose ma-
trix of coefficients A has eigenvalues roughly proportional to dist (·, ∂Ω)n−d−1, a
power of the distance to the boundary. Here the additional weight takes the di-
mension of the boundary into account, and something like this is needed because
the usual harmonic functions do not “see” the lower dimensional sets. The authors
proved the existence of the associated elliptic measure ωL, together with funda-
mental properties such as the Hölder continuity of solutions, the maximum princi-
ple, the doubling property for ωL, the comparison principle, and estimates for the
Green function. See [DFM1, DFM2], and more recently [DFM4] for an even more
general setting of domains with boundaries of mixed dimension that will be used
here. They also proved in [DFM3] a first absolute continuity result for ωL as in
the theorem below, but restricted to the special case of Lipschitz graphs with small
constants.
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The present paper culminates this line of research by establishing the A∞ prop-
erty (quantitative absolute continuity) of the elliptic measure with respect to the
surface measure in the most general setting of uniformly rectifiable domains.

Theorem 1.1. Let E be a d-dimensional uniformly rectifiable set in Rn, d ≤ n − 2,
and µ be a uniformly rectifiable measure on E. Let ω be the harmonic measure
associated to the operator L = − div D−(n−d−1)

µ,α ∇ in Rn\E, with the distance function

(1.2) Dµ,α(X) =
{∫

E
|X − y|−d−αdµ(y)

}−1/α
, α > 0.

Then ω is absolutely continuous with respect to µ, and its density is weight in the
Muckenhoupt class A∞(µ).

We chose to state the theorem for unbounded (uniformly rectifiable) sets, but the
case of bounded sets would work as well, with minor modifications.

All the notions in the theorem are customary quantifiable analogues of the prop-
erties we just discussed (rectifiability and absolute continuity), but for complete-
ness let us nonetheless carefully recall the definitions.

We say that the closed set E ⊂ Rn is Ahlfors regular of dimension d when there
is an accompanying Ahlfors regular measure µ on E, which means that

(1.3) C−1
0 rd ≤ µ(E ∩ B(x, r)) ≤ C0rd for x ∈ E and r > 0.

We know that µ is then equivalent to Hd
|E, the restriction to E of the Hausdorff

measure, but we prefer to keep the flexibility of choosing a different µ. The constant
C0 will be sometimes referred to as the AR constant of µ.

The notion of uniform rectifiability was officially introduced by David and Semmes
in [DS]. One of the many equivalent definitions (see Chapter I.1 of [DS]) is the fol-
lowing.

Definition 1.4. A d-dimensional Ahlfors regular measure µ is uniformly rectifiable
if there exist θ,C1 > 0 so that, for each x ∈ supp(µ) and r > 0, there is a Lipschitz
mapping g from the d-dimensional ball Bd(0, r) ⊂ Rd toRn such that g has Lipschitz
norm less than or equal to C1 and

µ(B(x, r) ∩ g(Bd(0, r))) ≥ θrd.

That is, supp(µ) contains “big pieces of Lipschitz images of Rd”. An Ahllfors
regular set E ∈ Rn is called uniformly rectifiable if Hd|E is uniformly rectifiable.
We refer to C1 and θ as the UR constants of µ (or simply the UR constants of E).
This is a quantified analogue of the classical concept of rectifiability of a set, as
discussed above.

Finally, the A∞ absolute continuity of the elliptic (harmonic) measure with re-
spect to the Hausdorff measure is defined as follows.
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Definition 1.5. Let E be a d-dimensional Ahlfors regular set in Rn, µ be an Ahlfors
regular measure on E, and set Ω = Rn \ E. Define an elliptic operator L as above,
and denote by ωX the corresponding elliptic measure with pole at X. We say that
the elliptic measure ω is A∞-absolutely continuous with respect to µ if for every
choice of τ0 ∈ (0, 1) and ε ∈ (0, 1), there exists δ ∈ (0, 1), such that for each choice
of x ∈ E, r > 0, a Borel set F ⊂ B(x, r) ∩ E, and a corkscrew point X = Ax,r (i.e.,
chosen as in (2.5) below),

(1.6)
ωX(F)

ωX(B(x, r) ∩ E)
< δ ⇒

µ(F)
µ(B(x, r) ∩ E)

< ε.

The notion is tiny bit refined compared to the notion of a (single) A∞ weight, be-
cause ω is actually a family of probability measures parameterized by X ∈ Ω, and
our definition accounts for this in a standard way, and as in the classical case this
A∞ property self-improves into a seemingly stronger condition that says that the
harmonic measure and µ are virtually a power of each other, in the sense of Defi-
nition 2.25 below. We refer to [Jé, GR] for general information on Muckenhoupt
weights, and to Section 2 for the special case of harmonic measure.

In the conclusion of Theorem 1.1, we also obtain, naturally, that δ depends on
τ0, ε and the AR and UR constants of the set E only.

Let us discuss Theorem 1.1 in more detail. Even though the motivation has come
from by now “classical” work in domains with (n− 1) dimensional boundaries, the
result itself and its proof are actually different, perhaps surprisingly stronger, than
their classical counterparts.

In contrast with the classical case of co-dimension 1, there is no need for an addi-
tional topological connectedness conditions here. The lower dimensional nature of
E takes care of the topology, our boundary is so small that Ω = Rn\E is sufficiently
connected, and contrary to Bishop-Jones counterexamples, in this setting we prove
that the uniform rectifiability by itself is sufficient for the absolute continuity of
harmonic measure.

Even more intriguing is the situation with the converse. Analogous results for
traditional co-dimension one boundaries suggest that Theorem 1.1 is of the nature
of the best possible, i.e., rectifiability should be necessary and sufficient for the
absolute continuity of harmonic measure with respect to the Hausdorff measure of
the boundary. In our setting, however, there is a surprising “magical” counterex-
ample. When d + α = n − 2 (which forces d < n − 2), it turns out that the distance
function in (1.2) is, in fact, the Green function with the pole at infinity, and ω is
automatically A∞ with respect to the Hausdorff measure on any Ahlfors regular set,
even when d is not an integer. See [DEM]. To the best of our knowledge, this is
essentially a unique case where one can explicitly derive the Green function for an
arbitrary Ahlfors regular set. At this point we tend to believe that it is a miraculous
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algebraic cancellation and for other values of α the A∞ property of harmonic mea-
sure implies uniform rectifiability, i.e., the condition in Theorem 1.1 will be proved
to be necessary and sufficient.

Returning to the discussion of the statement of Theorem 1.1, observe that the
higher co-dimensional setting requires a rather peculiar choice for the operators L
above. The fact that the coefficients are roughly proportional to a certain power
of distance to the boundary is almost a necessity, dictated by the scaling consid-
erations, Sobolev embeddings, etc. The usual Laplacian would not work, because
the harmonic functions do not even see sets of dimension d ≤ n − 2. However,
what is perhaps more surprising, working with the conventional Euclidean distance
would ruin our proof of absolute continuity for the elliptic elliptic measure, even
on a small Lipschitz graph – see the discussion in [DFM3]. The distance Dµ,α of
(1.2) turns out to be a correct substitute, smoothing out appropriately at all scales.
It may also have some special algebraic properties: as we mentioned above, for
α = n− 2− d it actually coincides with the Green function with the pole at infinity.
It appears to be a powerful and perhaps still not completely understood version of
the distance function used in geometric analysis – see [DEM].

These observations lead to a question: what is the range of the operators for
which one could establish an analogue of Theorem 1.1? Certainly not every de-
generate elliptic operator for which A(X) has roughly the size of dist (X, E)−n+d+1

will give an absolutely continuous elliptic measure. Even in the classical case of
co-dimension 1, there are many counterexamples (see [MM, CFK]), and most ab-
solute continuity results concern operators with a special form, or which are small
perturbations of the Laplacian. Here L = − div D−(n−d−1)

µ,α ∇ plays the role of the
Laplacian, and in this case too Theorem 1.1 also holds for any elliptic operator
which is a Carleson perturbation of L; see [MP]. That is, the set of “good” opera-
tors is ultimately quite large, comparable to the classical scenario.

Let us now discuss the proof. A brutal attempt to adapt the “classical” approach
to lower dimensional boundaries collapses spectacularly. The general principle,
that we still want to follow, is to start from [DFM3], which provides the desired
absolute continuity result when E is a small Lipschitz graph, and then use approx-
imations and stopping time arguments to extend this result to sawtooth domains
and then to general uniformly rectifiable sets (in the classical case, we would need
some additional connectivity). The machinery that allows this is very beautiful,
and also quite intricate, but let us highlight at least two big problems which will
make the situation different.

The main obvious one is that the principal engine of the construction is a com-
parison between domains. That is, we like to consider Ω, and hide parts of the
boundary that we do not control outside of sawtooth domains, and for the intersec-
tion of Ω with the sawtooth domain, use the maximum principle to relate the two



HARMONIC MEASURE ON LOW-DIMENSIONAL UR SETS 7

corresponding elliptic measures. Here we manage to construct better approximat-
ing domains whose boundaries coincide with E in some places, but how are we
going to hide the rest of the boundary and compare the harmonic measures on the
intersection?

Another unpleasant issue is that in the classical case, we typically deal with the
Laplacian, which has a local definition, unlike our operator L whose coefficients
depend on E, and even tend to infinity along the boundary. In other words, all the
domains, including the approximating ones, come with their own operator L, which
is not local either, and which typically carries a “memory” of the original domain,
and of course we will need to be more careful about which operator we take when
we make comparisons.

After many different attempts, we decided that the possibility to hide a bad piece
of E behind a sawtooth boundary was too important to be avoided, and this forced
us to consider domains with boundaries of mixed dimensions, i.e., where some
part of the boundary would be (n− 1)-dimensional (and could be used to hide parts
of E that we do not control), and other parts would be d-dimensional. Then we
had to adapt the theory of degenerate elliptic operators to such domains, and in
particular understand how to relate the size of our coefficients to the mass of a
doubling measure on the boundary. For the boundary of the sawtooth regions, for
instance, it helps that the coefficient of L is related to the distance to E, but is not
necessarily singular along the sawtooth. Fortunately the reader will not have to
deal with the extension of the elliptic theory here, because most of it was taken
care of in [DFM4].

Even so, we also have to replace, rather than shield, “bad” portions of the set to
create a better, Reifenberg flat surface. This construction takes a good part of the
present paper and heavily relies on the parametrization of Reifenberg flat domains
in [DT] and on the A∞ results for the elliptic measure on lower dimensional small
Lipschitz graphs that we proved in [DFM3]. Such a replacement is performed at
all scales which eventually have to be glued via a certain extrapolation argument.
Here again, we start from the Hofmann-Martell approach to extrapolation in [HM]
but quickly learn that our hypothesis is quite a bit weaker than theirs, requiring
a careful re-working of the entire scheme. Finally, last but not the least, is the
obstacle arising from the fact that our operator is not local, the coefficients are the
powers of distance to the original boundary, and so changing the domain entails
changing the operator. One has to prove that such a change, at the correct scales,
is not detrimental to the entire enterprise. An experienced reader can take a look at
Theorem 9.68 and compare it to a (considerably easier) standard version in [DJK].

Finally, before we turn to the body of the paper, let us mention that during the
preparation of this manuscript an alternative approach to some of its results has
been developed in [F].
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2. Definitions and preliminaries related to the elliptic theory and properties of
weights

We are given an Ahlfors regular set E of dimension d in Rn and an accompanying
Ahlfors regular measure µ on E. We denote Ω = Rn \ E.

Before we proceed, we need to say a few words about dyadic pseudocubes. We
shall assume that a net of dyadic pseudocubes has been chosen on E. We use the
cubes given by [Chr], except that we will find it more convenient to use scales that
are powers of 10, because this way we will be closer to the notation of [DT]. We
systematically set

(2.1) rk = 10−k for k ∈ Z,

and we suppose we chose a collection D = D(E) = ∪k∈Z Dk (our “dyadic cubes”),
with the usual properties. We will in particular use the facts that for each cube
Q ∈ Dk, there is a center xQ such that

(2.2) E ∩ B(xQ,C−1rk) ⊂ Q ⊂ B(xQ, rk),

and that the different cubes Q ∈ Dk are disjoint, that when k ≤ l, Q ∈ Dk, and
R ∈ Dl, then either R ⊂ Q or else R ∩ Q = ø.

To get this, we merely assume that the cubes Q are Borel sets, but there is a
“small boundary condition”, that we shall not use in full before the last Carleson
estimates for the control on different distances, that implies in particular that

(2.3) µ(Q \ Q) = 0 for Q ∈ D.

We shall often denote by k(Q) the generation of Q (i.e., the integer k such that
Q ∈ Dk), and set l(Q) = rk(Q) = 10−k(Q). For any Q ∈ D(E) we let

D(Q) = DQ = {Q′ ∈ D(E) : Q′ ⊆ Q}.

Definition 2.4. The corkscrew points for Ω are points Ax,r ∈ Ω, associated to x ∈ E
and r > 0, such that (for some constant τ0 > 0)

(2.5) τ0r ≤ dist (Ax,r, E) ≤ |Ax,r − x| ≤ r.

Corkscrew points exist for all x, r whenever E is any Ahlfors regular set of dimen-
sion d < n − 1, and we can take τ0 to depend only on n, d, and C0 from (1.3); see
Lemma 11.46 in [DFM2].

It will also be convenient to use corkscrew points associated to the dyadic de-
composition of E, and for any Q ∈ D(E) we write AQ := AxQ,C−1l(Q) where the
constant C is from (2.2).

Since the set E satisfies (1.3), it enters the scope of the elliptic theory developed
in [DFM2]. Let us recall some of the main properties that will be needed.
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Let L = − divA∇ be a degenerate elliptic operator, in the sense that A : Ω →

Mn(R) satisfies

dist (X,Γ)n−d−1
A(X)ξ · ζ ≤ C1|ξ| |ζ | for X ∈ Ω and ξ, ζ ∈ Rn,(2.6)

dist (X,Γ)n−d−1
A(X)ξ · ξ ≥ C−1

1 |ξ|
2 for X ∈ Ω and ξ ∈ Rn,(2.7)

for some C1 ≥ 1. We say that u is a weak solution of Lu = 0, if u ∈ W1,2
loc (Ω) and

(2.8)
∫

Ω

A∇u · ∇v = 0 ∀v ∈ C∞0 (Ω).

Here, W1,2
loc (Ω) is the set of functions u ∈ L2

loc(Ω) whose derivative (in the sense of
distribution on Ω) also lies in L2

loc(Ω).
For each X ∈ Ω, we can define a (unique) probability measure ωX = ωX

Ω,L on E,
with the property that for any bounded measurable function f on E, the function
u f defined by

(2.9) u f (X) =

∫
E

f (y)dωX(y)

is a weak solution. This is only stated in [DFM2] when f ∈ C0
0(E) is continuous

and compactly supported in E (see Lemma 9.30 and (iii) of Lemma 9.23 there, and
also (8.1) and (8.14) for the definitions) and when f is a characteristic function of
Borel set (see Lemma 9.38 there); the general case would not be hard, but we do
not need it anyway. It has been proved in [DFM2] that ω is doubling on the Ahlfors
regular set E, in the sense of Definition 2.20.

There is also a dense subclass on which we can say a little more. Denote by
M(E) the set of measurable functions on E and then define the Sobolev space

(2.10) H = Ḣ1/2(E) :=
{

g ∈ M(E) :
∫

E

∫
E

|g(x) − g(y)|2

|x − y|d+1 dµ(x)dµ(y) < ∞
}
.

The class H ∩C0
0(E) is dense in C0

0(E) (see about 13 lines above (9.25) in [DFM2]
for the proof of density), and if f ∈ H ∩C0

0(E), the solution u f defined by (2.9) lies
in the Sobolev space W1,2(Ω, dist (X, E)d+1−ndX), which means that

(2.11)
∫

Ω

|∇u f (X)|2 dist (X, E)d+1−ndX < +∞,

and also

(2.12) u f has a continuous extension to Rn, which coincides with f on E.

See (i) of Lemma 9.23 in [DFM2], together with its proof eight lines above (9.25).
It should be stressed that sinceωX is a probability measure, u f is a nondecreasing

function of f ≥ 0. This is of course a manifestation of the maximum principle.
Recall now the definition of the absolute continuity of the elliptic measure in

Definition 1.5. Here, δ depends on τ0 and ε as well possibly other parameters, and
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we shall refer to the latter as A∞ constants of ωL. Typically, those include ellipticity
constants of L as well as some geometric characteristics of the set. We will try to
be prudent below listing them carefully.

Let us temporarily narrow down to Ω0 = Rn \ Rd, where we shall write the
generic point as X = (x, t), with x ∈ Rd and t ∈ Rn−d. The following theorem is the
starting point of our absolute continuity results.

Definition 2.13. We say that a matrix-valued (or scalar-valued) measurable func-
tion F on Ω0 = Rn \ Rd satisfies the Carleson measure condition with constant C
and write F ∈ CM(C) or simply F ∈ CM if there is a constant C ≥ 0 such that for
X = (x, 0) ∈ Rd and R > 0,

(2.14)
∫

Ω0∩B(X,R)
|F(y, t)|2

dydt
|t|n−d ≤ CRd.

Theorem 2.15. [DFM3] Let A0 be a degenerate elliptic matrix satisfying (2.6)
and (2.7) in Ω0 = Rn \ Rd, and set then L0 = − div A0∇. Define the rescaled
matrix A by A = |t|n−d−1A0, so that now A satisfies the usual ellipticity bounds
and L0 = − div |t|d+1−nA∇, and assume thatA has the following block structure:

(2.16) A(X) =

(
A1(X) A2(X)
C3(X) b(X)In−d + C4(X)

)
,

where A1(X) is a matrix in Md×d, A2(X) is a matrix in Md×(n−d), b is a function on
Ω0, In−d is the identity matrix in M(n−d)×(n−d), and in addition we can find constants
C ≥ 0 and λ ≥ 1 such that

(2.17) λ−1 ≤ b ≤ λ on Ω0,

(2.18) |t|∇b ∈ CM(C),

(2.19) C3, C4 ∈ CM(C).

Then the harmonic measure ωX
Ω0,L0

is A∞-absolutely continuous with respect to the
Lebesgue measure on Rd (with the Definition 1.5).

Definition 1.5 might seem confusing at first because traditionally the A∞ prop-
erty of one weight with respect to another is formulated somewhat differently.
However, when the weight is doubling, the A∞-absolute continuity as stated in Def-
inition 1.5 is equivalent to the traditional A∞ property (see, e.g., [CF], Lemma 5,
where it is proved for any two doubling measures). Let us list the main definitions
and results to this effect, complemented by their dyadic counterparts, as they will
be used throughout the paper for a variety of measures.
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Definition 2.20. Let E be a d-dimensional Ahlfors regular set in Rn (or more gen-
erally, any metric space). A nontrivial measure ω on E is doubling if for any x ∈ E,
r > 0,

(2.21) 0 < ω(B(x, 2r) ∩ E) < Cω(B(x, r) ∩ E) < ∞,

with a uniform constant C.
When E possesses a dyadic structure, e.g., when E is a d-dimensional Ahlfors

regular set in Rn and we chose a collection of pseudocubes D(E) as near (2.1), we
say that ω is dyadically doubling on Q0 ⊂ D(E) if for every Q ∈ D(Q0) and every
dyadic “child” of Q, Q′, there exists a uniform constant C such that

0 < ω(Q) < Cω(Q′) < ∞.

In the particular case when ω is in fact a family {ωX} of elliptic measures on
E, we say that ω is doubling if for any surface ball ∆(x, r) = B(x, r) ∩ E, x ∈ E,
r > 0, the harmonic measure with a pole at Ax,r, ωAx,r , is doubling on on ∆(x, r), and
the constant C in the doubling property is independent of x, r. Similar definitions
apply in the dyadic case, with the pole at AQ. Equivalently, one could say that ω
is doubling when (2.21) holds for ωX as long as X is far enough from B(x, r) (for
instance, X ∈ Ω \ B(x, 4r)), and similarly, in the definition of dyadically doubling
for the family ω = {ωX}, we would only ask for the doubling condition when X is
far enough from Q.

In Lemma 11.102 of [DFM2], it is proved that for any d-dimensional Ahlfors
regular set E in Rn, d < n − 1, the harmonic measure of any elliptic operator is
doubling and, hence, dyadically doubling on E.

Next we say a little more about local versions of the A∞ condition. For a single
measure ω, we would use the following definition.

Definition 2.22. Let E be a d-dimensional Ahlfors regular set in Rn and µ be an
Ahlfors regular measure on E. Given any surface ball ∆(x, r) = B(x, r) ∩ E, x ∈ E,
r > 0, we say that a doubling measure ω on E is A∞-absolutely continuous with
respect to µ on ∆(x, r) (denoted by A∞(∆(x, r))), if for every ε ∈ (0, 1), there exists
δ ∈ (0, 1), such that for every surface ball ∆′ = B′∩E, B′ ⊆ B(x, r) and every Borel
set F ⊂ ∆′

(2.23)
ω(F)
ω(∆′)

< δ⇒
µ(F)
µ(∆′)

< ε.

Similarly, replacing surface balls by dyadic cubes, we say that a dyadically dou-
bling measure ω is (dyadically) A∞-absolutely continuous with respect to µ on
Q ∈ D(E) (denoted by A∞D (Q)), if for every ε ∈ (0, 1), there exists δ ∈ (0, 1) such
that for every Q′ ∈ D(Q) and every Borel set F ⊂ Q′,

(2.24)
ω(F)
ω(Q′)

< δ⇒
µ(F)
µ(Q′)

< ε.
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As the reader can guess from Definition 1.5, in the particular case when ω =

{ωX} is (a family of) harmonic measures on E, we say that ω is A∞-absolutely
continuous with respect to if for any surface ball ∆(x, r) = B(x, r)∩E, x ∈ E, r > 0,
the harmonic measure with a pole at Ax,r, ωAx,r , is A∞-absolutely continuous with
respect to µ on ∆(x, r), and the choice of δ depends on ε (and τ0 in the definition of
the corkscrew point as well as AR and doubling constants) but not on x, r. In fact it
would then be possible, using estimates on ω (that the reader may find in [DFM2]),
to deduce the same estimates for other poles X ∈ Ω \ B(x, 4r). All these definitions
are equivalent, in the sense that we get estimates for δ with different definitions that
depend only on those with the initial definition, our bounds for E and L, and the
various corkscrew constants. Similar definitions apply in the dyadic case, with a
pole at AQ.

The A∞ condition is known to imply a stronger form of absolute continuity,
which we define now, starting with the case of a single measure.

Definition 2.25. Let E be a d-dimensional Ahlfors regular set in Rn and µ be an
Ahlfors regular measure on E, Ω = Rn \ E. Given any surface ball ∆(x, r) =

B(x, r) ∩ E, x ∈ E, r > 0, we say that a Borel measure ω is strongly absolutely
continuous in ∆(x, r), with respect to µ, if there are positive constants C and θ such
that for every surface ball ∆′ = B′ ∩ E, B′ ⊆ B(x, r) and every Borel set F ⊂ ∆′,

(2.26) ω(F) ≤ C
(
µ(F)
µ(∆′)

)θ

ω(∆′).

Similarly, replacing surface balls by dyadic cubes, we say that a dyadically dou-
bling measure ω is strongly dyadically absolutely continuous in Q, with respect to
µ, if there are positive constants C and θ such that for every Q′ ∈ D(Q) and every
Borel set F ⊂ Q′,

(2.27) ω(F) ≤ C
(
µ(F)
µ(Q′)

)θ

ω(Q′).

Much as above, in the particular case when ω = {ωX} is in fact a family of
harmonic measures on E, we say that ω is strongly absolutely continuous with
respect to µ if for any surface ball ∆(x, r) = B(x, r)∩ E, x ∈ E, r > 0, the harmonic
measure with a pole at Ax,r, ωAx,r , is strongly absolutely continuous with respect to
µ, and the constants C, θ depend on τ0 in the definition of the corkscrew point as
well as AR and doubling constants but not on x, r. Similar definitions apply in the
dyadic case, with the pole at AQ.

Remark 2.28. It was proved in [CF], Lemma 5, that for any two doubling measures
µ and ω, if ω is A∞-absolutely continuous with respect to µ, then ω is also strongly
absolutely continuous with respect to µ, and also µ is also strongly absolutely con-
tinuous with respect to ω. Also see [Jé] or [GR].
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The dyadic (and local) analogues of these facts were established, e.g., in [HM],
Appendix B, Remark 2.10. That is, under the definitions above, a dyadically dou-
bling measure ω is strongly dyadically absolutely continuous on Q ∈ D(E) with
respect to µ if and only if it is dyadically A∞ absolutely continuous with respect
to µ. In fact, both are equivalent to an (apparently) weaker statement that there
exist 0 < ε, δ < 1 such that (2.23) (respectively, (2.24)) hold – the latter property
is referred to as comparability for doubling measures. Moreover, A∞ and its local,
dyadic, and strong versions are equivalence relationships, in the sense that for in-
stance, if ω is strongly absolutely continuous with respect to µ with some constants
C > 0, θ > 0, then µ is strongly absolutely continuous with respect to ω with some
other constants C′ > 0, θ′ > 0; see [CF], Lemma 5 for the standard case and [HM],
Lemma B.7 for the dyadic one.

3. Preliminary geometric considerations

In Sections 3–9 we define a correct change of variables, adapted to a stopping
time region associated to a uniformly rectifiable set of integer dimension d in Rn.
To be more precise, for any stopping time region subject to some flatness and reg-
ularity constraints we construct a Reifenberg flat set Σ which coincides with our
initial set E in the “base” of the sawtooth and which has a nice parametrization, in
fact coming from a nice change of variables transforming Rn \ Σ into Rn \ Rd.

The change of variables will be inspired by that in [DT], but unfortunately we
need an array of properties which was not explicitly targeted in [DT]. Indeed,
we need to use it similarly to the change of variables of [DFM3], to ensure the
absolute continuity of a certain elliptic measure on the underlying set. In both
cases, the philosophy is to respect the orthogonal direction to the tangent plane to
the boundary set. However, the details are quite different and we will have to devote
a considerable effort to the proof that (a slightly modified) construction from [DT]
satisfies the desired properties. We try to take notations that are fairly close to those
of [DT], which we shall cite abundantly. To start, let us describe a stopping time
region.

We are given an Ahlfors regular set E of dimension d in Rn. In our end-game
applications E will be uniformly rectifiable, but we do not need to assume this
for the moment. The definition of the stopping time regions will take care of the
regularity needed for the first few chapters.

In this section, we are given a stopping time region Θ, with some definite con-
straints on how it is built, and associate to it a few geometric objects. There will be
a specific way to construct Θ from its top cube Q0, but let us keep some latitude,
without making our life too complicated. So we start from a cube Q0, and without
loss of generality we assume that

(3.1) Q0 ∈ D0.
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Then Θ will be a subset of D(Q0), the set of subcubes of Q0. For Q ∈ Θ and
0 ≤ k ≤ k(Q), denote by Rk(Q) the cube of Dk that contains Q; thus Rk(Q) is an
ancestor of Q and Rk(Q) ⊆ Q0. We demand that Q0 ∈ Θ (otherwise, there in no
construction to be done) and that Θ is hereditary, which means that

(3.2) Rk(Q) ∈ Θ for Q ∈ Θ and 0 ≤ k ≤ k(Q)

(i.e., if Q ∈ Θ, then all its ancestors between Q and Q0 lie in Θ).
For the remaining properties of Θ, we need to choose a large constant M ≥ 1, a

very small constant ε1 > 0, and another constant δ1 > 0, in practice much larger
than ε1. Apparently our construction will not put any constraint on δ1, except for
the fact that some constants will become very large when δ1 is large. We will take
M quite large, depending on other geometric constants of the construction, and
then ε1 will need to be small enough, depending on n, d, the constant C0 in (1.3),
and M. This includes a dependence on our choice of D through the constant in
(2.2), but we can choose D once and for all, with a constant in (2.2) that depends
only on n, d, and C0.

It will simplify our definition if we assume that for each Q ∈ Θ, a d-plane P(Q)
has been chosen, with the following properties. First of all, P(Q) is quite close
to E near Q. That is, if we define a normalized Hausdorff distance between sets
dx,r(F,G) by

(3.3) dx,r(F,G) = r−1 sup
y∈F∩B(x,r)

dist (y,G) + r−1 sup
y∈G∩B(x,r)

dist (y, F),

then we require that

(3.4) dxQ,Ml(Q)(E, P(Q)) ≤ ε1 for Q ∈ Θ,

where l(Q) = 10−k(Q) is the official sidelength of Q and the center xQ is as in (2.2).
We also measure the average distance from points of E near Q to P(Q), and encode
them into numbers β(Q) such that

(3.5)
∫

E∩B(xQ,Ml(Q))
dist (y, P(Q)) dµ(y) ≤ l(Q)d+1β(Q),

where µ is the measure on E that we started with (but its precise choice does not
matter here). These numbers are close to the β-numbers of P. Jones associated to
E and computed with L1-norms, but we reserve the right to make β(Q) larger than
the actual number β1(xQ,Ml(Q)) and choose the P(Q) differently. Then we define
a Jones function J on Θ by setting

(3.6) J(Q) =
∑

0≤k≤k(Q)

β̃(Rk(Q))2,

where as before Rk(Q) is the ancestor of Q which is of generation k, and unfortu-
nately we need need to replace β(Q) with a slightly larger, more regular, function
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of Q, namely

(3.7) β̃(R) = sup
{
β(S ) ; S ∈ Θ(k(R)) and dist (R, S ) ≤ Ml(R)

}
,

where

(3.8) Θ(k) =
{

Q ∈ Θ ; l(Q) = rk
}
.

Notice that we may count the same set R twice in (3.6), if successive ancestors of
Q happen to be given by the same subset of E. This is all right, and probably even
more reasonable. Notice also that replacing β(R) with β̃(R) will not cost us much
in practice; we will just need to control E (and possibly µ) on an even larger ball.
Finally observe that J(Q) ≥ J(R) when Q ⊂ R ⊂ Q0 and k(Q) ≥ k(R) ≥ 0. We
demand that

(3.9) J(Q) ≤ δ1 for Q ∈ Θ.

This completes the list of conditions that we put on Θ. We do not need to say yet
how we produce Θ, but the algorithm that will be used later is as follows. For each
cube Q, we shall define a quantity α(Q), for instance using the α-numbers coming
from [To] and choose a plane P(Q) that is nearly optimal in the definition of α(Q).
These numbers will be introduced in Section 7; for the moment we do not need to
know what they are.

Then we will start from the top cube Q0, and decide to remove a cube Q ∈ D(Q0),
as well as all its descendants, as soon as α(Q) > ε0 or

Jα(Q) :=
∑

0≤k≤k(Q)

α(Rk(Q))2 ≥ δ0.

It will turn out that the numbers α(Q) control the properties (3.4) and (3.9), in
the sense that if ε0 is chosen small enough, then (3.4) follows from the fact that
α(Q) < ε0, and similarly (3.9) follows from the fact that Jα(Q) ≤ δ0.

Remark 3.10. There are constraints on M and ε1. The first ones will come soon,
to verify the CCBP properties at the beginning of the next section, and then there
will be other ones in the last section. Since we want to keep some freedom in the
choices, we announce now that all we need, up to Section 8, is to take M large
enough, and then ε1 small enough, depending on M, δ1, and the other parameters.

We can let M depend on δ1 (in fact, we claim below that we could even let δ1 be
a large number).

The relation between δ1 and ε1 is more delicate, and we announce it in advance
so that we cannot be suspected of cheating. Both constants will be small in our ar-
gument, and correspond to stopping time conditions. The basic reason for stopping
in our geometric construction of a parameterization is when the set starts being flat
enough, and ε1 corresponds to the minimal amount of flatness that we demand.
We will choose ε1 last, possibly depending on the other parameters. Now we also
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want to control the bilipschitz constants for our approximations, and we use the
Jones function to do this. The role of δ1 is to control the Jones function, and then
the bilipschitz constants for our mappings. In a sense, ε1 acts like the L∞ norm of
some quantity (the β-numbers) that needs to stay small, and δ1 like the L∞ norm of
some integral, or sum, of some related (but different) quantity (the α-numbers).

We promise that we will not let ε1 depend on δ1, because this would contradict
the spirit of stopping times, but we will nonetheless do an offense to that spirit,
because in some argument, and for the sake of laziness, we will use δ1 to control
some quantity that should be in fact be controlled by ε1 in a cleaner (but longer)
argument. Because of this, we will require δ1 to be small, but a real purist would
allow it to be large too, and this would create a more interesting parameterization
when we only stop when this is really needed. Formally speaking, we could also
take δ1 much smaller than ε1, with the effect of stopping because of δ1 all the time
and never because of ε1; this would be allowed by our argument, but it would be a
bad and confusing practice.

There is a second issue with δ1, which is that allowing δ1 to be small (as we will
do to simplify the proof) should have an advantage, which is that our bilipschitz
mappings are actually bilipschitz with constants that are as close to 1 as we want.
We claim that this is true, but it is less easy to use because the estimates in [DT]
that prove this are rather well hidden, so we decided that we shall not use this extra
information (other than saying that we have a uniform bound on the bilipschitz
constants) and merely add remarks along the proof that explain how we could get
and deal with this additional information.

4. The approximating surface Σ

We shall now describe the main lines of the construction of [DT], where one
starts from a stopping time region Θ like the one above, and constructs an associ-
ated Reifenberg flat set Σ, parameterized by a mapping f : Σ0 = P0 = Rd → Σ, and
even a global change of variable g : Rn → Rn (with g|Σ0 = f ).

For the construction to work, one needs to find what is called a coherent collection
of balls and planes (in short, a CCBP), which will be our first task here. This will
involve choosing some collections of d-planes, and let us first see what we have.

Recall that for each Q ∈ Θ, we are given a d-plane P(Q) that satisfies (3.4)-(3.9).
In particular, (3.4) says that dxQ,Ml(Q)(E, P(Q)) ≤ ε1. This means that

(4.1) dist (y, P(Q)) ≤ ε1Ml(Q) for y ∈ E ∩ B(xQ,Ml(Q)),

(and in particular P(Q) passes within 2ε1Ml(Q) of xQ), but also

(4.2) dist (y, E) ≤ ε1Ml(Q) for y ∈ P(Q) ∩ B(xQ,Ml(Q)).
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We do this also for Q0 (which we have assumed to lie in Θ), and call P0 = P(Q0)
the plane that we get. We shall even assume, without loss of generality, that

(4.3) P0 = Rd and xQ0 = 0

In [DT], which we shall often refer to as “there”, a CCBP starts with the choice
of families {B j,k}, j ∈ Jk of balls, where k ≥ 0 still denotes a generation. In fact
B j,k = B(x j,k, rk), where rk = 10−k as above, so we just need to choose the centers
{x j,k}, j ∈ Jk. Recall the definition of Θ(k) in (3.8), let

(4.4) E(k) =
{

x ∈ E ; dist (x,Q) ≤
Mrk

10
for some Q ∈ Θ(k)

}
,

and finally pick a maximal family {x j,k}, j ∈ Jk, of points of E(k) that lie at distances
at least rk from each other. This defines our family of balls. We need to check a
coherence condition, (2.3) in [DT], that demands that for k ≥ 1, each x j,k lies in
B(xi,k−1, 2rk−1) for some i ∈ Jk−1. This comes from the heredity condition for Θ:
since x j,k ∈ E(k), we know that dist (x j,k,Q) ≤ Mrk

10 for some Q ∈ Θ(k); the parent
Q′ of Q lies in Θ(k−1), and since dist (x j,k,Q′) ≤ dist (x j,k,Q) ≤ Mrk

10 , x j,k ∈ E(k−1)
and we can find a point xi,k−1, i ∈ Jk−1, that lies within rk−1 of x j,k.

We should also choose a nice surface Σ0 with which we start the construction;
here we simply take Σ0 = P0 = P(Q0), and the properties (2.4)-(2.7) required in
[DT] are easily satisfied; in particular (2.7) there follows from (4.1) if ε1 is chosen
small enough, depending on ε there.

Finally we need to associate a d-plane P j,k to each ball B j,k, and this is easy to
do: for each j ∈ Jk we choose Q j,k ∈ Θ(k) such that dist (x j,k,Q j,k) ≤ Mrk

10 , and then
we set P j,k = P(Q j,k). Notice that when k = 0, we have many points x j,0 (because
E(0) is rather large), but all of them are associated to P0.

There is an unfortunate little catch here, because it is also required in [DT] that
P j,k goes through x j,k, but we really like P(Q j,k) here, in fact more than the precise
location of x j,k. So we modify the construction a little bit. We start with a maximal
collection of points x̃ j,k ∈ E(k), at mutual distances at least 11rk

10 , define the Q j,k and
P j,k as above, and then use (4.1) (with ε1 small enough) to find x j,k ∈ P(Q j,k) ∩
B(x̃ j,k,

rk
100 ), and use these in the definition of B j,k. This does not perturb our proof

of (2.3) there, we lose the fact that x j,k ∈ E, which looked nicer, but this is not
needed to apply Theorems 2.4 and 2.5 there. Starting from (13.3) in [DT], another
trick is explained, which allows us to replace x̃ j,k with another point x j,k ∈ E that
lies so close to P j,k = P(Q( j, k)) that we could translate P j,k slightly and keep (3.5)
with almost the same constant, but we don’t need to do this.

We need to check that the P j,k satisfy compatibility conditions (namely, (2.7)-
(2.10) there). We start with (2.8), which demands that for k ≥ 0 and all i, j ∈ Jk

such that |xi,k − x j,k| ≤ 100rk, P j,k and Pi,k are so close that

(4.5) dx j,k ,100rk(Pi,k, P j,k) ≤ ε,
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for some ε > 0 that needs to be small enough for the construction of [DT] to work.
We choose ε1 small enough, depending on ε and our constant M, and then this
follows from our definitions, and in particular (4.1) and (4.2); the verification is
fairly simple, and is essentially done in [DT], below Lemma 12.2 on page 66, so
we skip it.

In our case, (2.9) there is just a special case of (2.8) because Σ0 = P0, and (2.10)
demands that for k ≥ 0, i ∈ Jk, and j ∈ Jk+1 such that |xi,k − x j,k+1| ≤ 2rk,

(4.6) dxi,k ,20rk(Pi,k, P j,k+1) ≤ ε.

The verification is almost the same as for (4.5), and we also refer to the argument
in [DT], below Lemma 12.2.

At this stage we are able to apply Theorem 2.4 in [DT], which provides us with
a Cε-Reifenberg flat set Σ and biHölder mappings f : P0 → Σ and g : Rn → Rn,
with some good properties.

Theorem 4.7 (Theorem 2.4 from [DT]). Let (Σ0, {B j,k}, {P j,k}) be a CCBP as above
and assume that ε is small enough depending on n and d. Then there is a bijection
g : Rn → Rn with the following properties;

g(z) = z when dist (z,Σ0) ≥ 2,

g(z) − z ≤ Cε for z ∈ Rn,
1
4
|z′ − z|1+Cε ≤ |g(z) − g(z′)| ≤ 3 |z′ − z|1−Cε

for z, z′ ∈ Rn such that |z − z′| ≤ 1, and Σ = g(Σ0) is a Cε-Reifenberg flat set that
contains the accumulation set defined as the collection of all x ∈ Rn which can be
written as x = limm→∞ x j(m),k(m) with k(m) ∈ N such that limm→∞ k(m) = ∞ and
j(m) ∈ Jk(m) for m ≥ 0. The constant C depends on n and d only.

However, we are interested in more precise properties of g (such as the fact
that it is bilipschitz), and we will also need some information that comes from the
construction, because in [DT] no special attention was given to the specific form of
the Jacobian matrix of g, which we need to study for our application to degenerate
elliptic operators. We start with the bilipschitz part.

Lemma 4.8. If ε1 is small enough, the mapping g : Rn → Rn is bilipschitz, with a
constant that depends only on δ1, n, d, and the different choices above (that depend
on M0, for instance).

This will follow from Theorem 2.5 there and our additional constraint (3.9), once
we decipher some additional definitions. But before we do this, let us check that
whenever Q ∈ Θ(k) and R ∈ Θ(k) ∪ Θ(k − 1) are such that dist (Q,R) ≤ Ml(Q)

2 , then

(4.9) dxQ,Ml(Q)(P(Q), P(R)) ≤ Cβ(Q) + Cβ(R),

where C depends on M, C0, n, and d, but this will not matter.
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Let us rapidly prove (4.9). The argument is similar to what was done in [DS],
below (13.25). We intend to use the fact that both P(Q) and P(R) are very close to E
in a common region to compare their positions. First choose an orthonormal basis
e1, . . . , ed of the vector d-plane parallel to P(R), and consider the points ξ0 = xR and,
for 1 ≤ i ≤ d, ξi = xR + rkei. Notice that B(xR, 2rk) lies well inside B(xR,Ml(R)), so
by (4.2) we can find points xi ∈ E, 0 ≤ i ≤ d, such that |xi−ξi| ≤ ε1Ml(R) ≤ 10−2rk.
Then we use (3.5), the Ahlfors regularity of µ, and Chebyshev’s inequality to find
that for more than half of the points z ∈ E∩B(xi, 10−2rk), dist (z, P(R)) ≤ Cl(R)β(R).
But also, B(xR, 2rk) lies well inside B(xQ,Ml(R)), so we can also apply (3.5) to
P(Q), and find that for a majority of points z ∈ E ∩ B(xi, 10−2rk), dist (z, P(Q)) ≤
Cl(Q)β(Q). For each i we select a point yi with both properties, and this gives zi ∈

P(R)∩B(ξi, 10−1rk) and wi ∈ P(R)∩B(ξi, 10−1) such that |zi−wi| ≤ Crk(β(Q)+β(R)).
At this point, we have sufficiently many points of contact between P(Q) and P(R)
to control their relative positions and prove (4.13); see also Lemma 12.7 there.

Now return to the lemma and Theorem 2.5 there. Define the numbers ε′′k (y),
k ≥ 1 and y ∈ Rn, by

ε′′k (y) = sup
{

dxi,l,100rl(P j,k, Pi,l) ; j ∈ Jk, l ∈ {k − 1, k},

i ∈ Jl, and y ∈ 11B j,k ∩ 12Bi,l
}(4.10)

when y ∈ V11
k =

⋃
j∈Jk

B(x j,k, 11rk), and simply by ε′′k (y) = 0 when y < V11
k . This is

the same definition as in (2.17) and (2.18) there, and then Theorem 2.5 there says
that g is bilipschitz as soon as there is a constant M3 ≥ 0 such that

(4.11)
∑
k≥0

ε′′k (g(z))2 ≤ M3 for all z ∈ P0.

Thus, in order to deduce the lemma from that result, we will just need to show
that the numbers β(Q) of (3.5) control the ε′′k (y), y ∈ V11

k .
So let z ∈ P0 be given, set y = g(z), and let k ≥ 1 be such that y ∈ V11

k (we don’t
care about the other k, since ε′′k (y) = 0). This last means that y ∈ B(x j0,k, 11rk) for
some j0 ∈ Jk, but this will not really matter.

Next let j, l, and i be as in (4.10), and follow the definitions: we picked a cube
Q = Q j,k ∈ Θ(k) such that dist (x j,k,Q) ≤ Mrk

10 , and then we set P j,k = P(Q),
and similarly we chose R = Qi,l ∈ Θ(l) such that dist (xi,l,R) ≤ Mrl

10 and then set
Pi,l = P(R). We record for later the fact that

(4.12) dist (y,Q) ≤
Mrk

5
and dist (y,R) ≤

Mrk

5
.

Obviously dist (Q,R) ≤ Ml(Q)
2 , so (4.9) says that

(4.13) dxi,l,100rl(P(Q j,k), P(Qi,l)) = dxi,l,100rl(P(Q), P(R)) ≤ C(β(Q) + β(P)).
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For each scale k ≥ 0, denote by Q(y, k) the collection of cubes Q ∈ Θ(k) such that
dist (y,Q) ≤ Mrk

5 . Obviously

(4.14)
∑
k≥0

ε′′k (g(z))2 ≤ C
∑
k≥0

∑
Q∈Q(y,k)

β(Q)2

by (4.12) and (4.13), and we shall use (3.9) to control the right-hand side. If the
Jones function J were only using the β(Q), this may seem complicated; here we can
proceed as follow. Let k0 be such that Q(y, k0) is not empty, and select Q ∈ Q(y, k0);
then for 0 ≤ k ≤ k0, denote by Qk the ancestor of Q that lies in Dk; observe that
Qk ∈ Θ(k) by heredity, and Qk ∈ Q(y, k) because dist (y,Qk) ≤ dist (y,Q) ≤ Mrk

5 .
Now all the other cubes S of Q(y, k) lie at distance less than Mrk = Ml(Qk) from
Qk, so β(S ) ≤ β̃(Qk) by (3.7). Thus

(4.15)
∑

0≤k≤k0

∑
Q∈Q(y,k)

β(Q)2 ≤ C
∑

0≤k≤k0

β̃(Qk)2 ≤ CJ(Q) ≤ Cδ1

because each Q(y, k) has at most C elements, and by (3.6) and (3.9). Since this
is true for every k0 (with the same constant), we get (4.11) and, as promised,
Lemma 4.8 follows from Theorem 2.5 there. �

Remark 4.16. For this lemma we do not need δ1 to be small, but the first author
claims that taking δ1 small would allow us to get a bound for the bilipschitz constant
for g which is as close to 1 as we want. This would be reassuring, but apparently
the authors of [DT] were too busy controlling the large constants to make a clear
remark, anywhere in that paper, to the effect that small bounds for J yield small
bilipschitz bounds for g. We will manage not to use this remark in this paper, so as
not to make the reader feel too bad, but will add some comments to this effect for
the case when they would be badly needed in the future.

Lemma 4.8 will be quite useful to help us control other terms; for instance, we
will not need to worry about supremum norms for the derivatives of our mappings.
But we will need more information, typically on the structure of D f and Dg, so let
us step back and recall the construction of f and auxiliary functions fk and then we
will pass to the construction of g in Section 6.

In Section 3 of [DT], one constructs a partition of unity for each generation
k ≥ 0, composed of functions θ j,k, j ∈ Jk, supported in 10B j,k plus a function
ψk supported away from V8

k = ∪ j∈Jk8B j,k. Thus

(4.17) ψk +
∑
j∈Jk

θ j,k = 1

as in (3.13) there, and

(4.18)
∑
j∈Jk

θ j,k = 1 on V8
k = ∪ j∈Jk8B j,k.
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In addition, |∇mθ j,k| ≤ Cmr−m
k , as expected (see (3.15) there).

Then we can define the mapping f on Σ0 = P0 = Rd, as the limit of functions fk

defined by induction by

(4.19) f0(y) = y and fk+1 = σk ◦ fk,

(as in (4.1) there), where σk is a map that tries to move points in the direction of E
(or rather, the local P j,k), and is defined by

(4.20) σk(y) = y +
∑
j∈Jk

θ j,k(y) [π j,k(y) − y] = ψk(y)y +
∑
j∈Jk

θ j,k(y) π j,k(y)

(as in (4.2) there), where π j,k denotes the orthogonal projection from Rn onto P j,k

and the equality comes from (4.17). It turns out that the fk converge quite fast to a
limit mapping f , which is our parameterization of the nice Reifenberg-flat surface
Σ = f (Σ0). We remind the reader that g will ultimately be defined so that g = f on
Σ0 (see (10.13) in [DT] and Section 6) but the construction in [DT] starts with the
fk and f .

Some observations will be useful concerning the local regularity of the interme-
diate surfaces

(4.21) Σk = fk(Σ0),

and the way each one maps to the next one. Proposition 5.1 in [DT] gives a
good local description of Σk in terms of Lipschitz graphs, which we can summarize
as follows. For each j ∈ Jk, there is a Cε-Lipschitz function A j,k : P j,k → P⊥j,k, with
|A j,k(x j,k)| ≤ Cεrk, such that inside 49B j,k, Σk coincides with the graph Γ j,k of A j,k

over P j,k. The same proposition also says that A is of class C2, but does not record
estimates on this, and this is a part that we will need to complement.

We shall not use Proposition 5.1 there directly so much, but it is important in
the description of trajectories that follows, and contains the estimate (5.11) there,
which says that

(4.22) |σk(y) − y| ≤ Cεrk for k ≥ 0 and y ∈ Σk,

which, after using (4.19) repeatedly and summing a geometric series, yields

(4.23) | f (x) − fk(x)| ≤ Cεrk for x ∈ Σ0 and k ≥ 0.

For the description of trajectories that follows, we continue to use the notation

(4.24) VA
k =

⋃
j∈Jk

B(x j,k, Ark) =
⋃
j∈Jk

AB j,k,

when A is an integer. When y ∈ Σk ∩ V8
k (we call this the active region), then

ψk(y) = 0, and the formula (4.20) becomes the simpler

(4.25) σk(y) =
∑
j∈Jk

θ j,k(y) π j,k(y),
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where we know that in addition

(4.26)
∑
j∈Jk

θ j,k(y) = 1.

When on the opposite y ∈ Rn \ V10
k (we call this the dead region), things are simple

too, because all the θ j,k(y) vanish, hence ψk(y) = 1, and (4.20) says that

(4.27) σk(y) = y for y ∈ Rn \ V10
k .

Things are a little more unpleasant in V10
k \V8

k , but fortunately the next lemma says
that this never happens more than once along a given trajectory, and this will leave
a reasonably small trace in our Carleson measure estimates. We call V10

k \ V8
k the

dying region.

Lemma 4.28. Let x ∈ Σ0 be given, and denote by yk = fk(x) ∈ Σk its successive
images.

(4.29) If yk ∈ R
n \ V10

k for some k ≥ 0, then yl = yk ∈ R
n \ V10

l for l ≥ k;

(4.30) If yk ∈ V10
k for some k ≥ 1, then yl ∈ V4

l for 0 ≤ l ≤ k − 1.

This is Lemma 6.1 in [DS]. Notice that if yk ∈ V10
k \ V8

k , (4.30) says that the
previous images were in the active region, and also (applying it to yk+1) that yk+1 ∈

Σk+1 \ V10
k+1 lies in the dead region, as well as all its successors (by (4.29)).

We need some estimates on σk and its derivative that were not necessarily recorded
there. We claim that

(4.31) | fk+1(x) − fk(x)| ≤ Cε′′k ( f (x)) rk for x ∈ Σ0 such that fk(x) ∈ V8
k .

Set y = fk(x) ∈ V8
k , and choose j ∈ J(k) such that |y − x j,k| ≤ 8rk. Then (7.8) there

says that

(4.32) |σk(y) − π j,k(y)| ≤ Cεk(y)rk,

where π j,k denotes the orthogonal projection onto P j,k and the function εk is defined
in (7.7) there (we shall return to this soon). Thus

(4.33) | fk+1(x) − fk(x)| = |σk(y) − y| ≤ dist (y, P j,k) + Cεk(y)rk,

and we now evaluate that distance. When k = 0, y = f0(x) = x ∈ P0, we actually
took P j,k = P0, and the distance is 0. Otherwise, set y′ = fk−1(x), observe that
y′ ∈ V4

k−1 by Lemma 4.28, and choose i ∈ J(k − 1) such that |y′ − xi,k−1| ≤ 4rk−1.
This time (7.8) there says that

(4.34) |σk−1(y′) − πi,k−1(y′)| ≤ Cεk−1(y′)rk−1,

where πi,k−1 denotes the orthogonal projection onto Pi,k−1. Since y = σk−1(y′), we
get that

(4.35) dist (y, Pi,k−1) ≤ Cεk−1(y′)rk−1.
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Recall from (4.23) that | f (x)− y| ≤ Cεrk, and similarly | f (x)− y′| ≤ 10Cεrk. Notice
then that f (x) ∈ 11B j,k ∩ 12Bi,k−1, so the definition (4.10) says that P j,k and Pi,k−1

are 100rk−1ε
′′
k ( f (x))-close to each other in B(xi,k−1, 100rk−1). In particular (4.35)

implies that

(4.36) dist (y, P j,k) ≤ Cεk−1(y′)rk + Cε′′k ( f (x)) rk.

Now we compare the definition (7.7) there of εk(y) with (4.10) and find out that
εk(y) ≤ Cε′′k ( f (x)), because if y ∈ 10Bi,k ∩ 10B j,k for some i, j ∈ J(k), then f (x) ∈
11Bi,k ∩ 11B j,k. Similarly, εk−1(y′) ≤ Cε′′k ( f (x)), with the only small difference that
since this time we are comparing two planes of generation k − 1, we need to go
through our chosen plane P j,k of generation k. Now our claim (4.31) follows from
(4.33) and (4.36).

We also need estimates on the derivatives of fk, and of course we first differenti-
ate σk. We start in the active region (the open set V8

k ), where we can use the simpler
formulas (4.25) and (4.26), and hence

(4.37) Dσk(y) =
∑
j∈Jk

θ j,k(y) Dπ j,k +
∑
j∈Jk

Dθ j,k(y)π j,k(y),

where the differential Dπ j,k of π j,k is the vector projection (which does not depend
on y), which we try not to mix with the affine projection π j,k. In this sort of situation,
we like to pull out a specific index j(y) = jk(y) such that θ j(y),k(y) , 0, and use the
fact that

∑
Dθ j,k(y) = 0 by (4.26) to write that

(4.38) Dσk(y) =
∑
j∈Jk

θ j,k(y) Dπ j,k +
∑
j∈Jk

Dθ j,k(y) [π j,k(y) − π j(y),k(y)],

and even
(4.39)
Dσk(y) − Dπ j(y),k =

∑
j∈Jk

θ j,k(y) [Dπ j,k − Dπ j(y),k] +
∑
j∈Jk

Dθ j,k(y) [π j,k(y) − π j(y),k(y)].

We differentiate once more (but keep the same index j(y) to do the computations
near y; we certainly don’t want to differentiate j(y)) and get that

(4.40) D2σk(y) = 2
∑
j∈Jk

Dθ j,k(y) [Dπ j,k−Dπ j(y),k]+
∑
j∈Jk

D2θ j,k(y) [π j,k(y)−π j(y),k(y)].

Let us not pay too much attention on what we mean by multiplication in these
formulas; the main thing is the size estimate that follows. In this sum the only
terms that do not vanish come from balls such that y ∈ 10B j,k, and there are at most
C of them. The size of Dθ j,k and D2θ j,k is controlled below (4.18). We look at the
definition (4.10) of ε′′k , and find out that for y ∈ V8

k

(4.41) |D2σk(y)| ≤ Cε′′k (z) r−1
k for any z ∈ B(y, rk),
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which we take as a good estimate. Here we shall just take z = f (x) for the point
x ∈ Rd such that y = fk(x), and the fact that z ∈ B(y, rk) comes from (4.23). This
was our better estimate for y ∈ V8

k .

In the dead region Rn \ V10
k where all the θ j,k vanish, we have ψk = 1, σk(y) = y

(by (4.20)), and hence Dσk = I and D2σk = 0 (see also (4.5) there).
In the dying region V10

k \V
8
k , we don’t have very good estimates because ψk is not

identically 1 near y. This time we start from the first part of (4.20), which yields

(4.42) Dσk(y) − I =
∑
j∈Jk

Dθ j,k(y) [π j,k(y) − y] +
∑
j∈Jk

θ j,k(y) [Dπ j,k − I]

and then

(4.43) D2σk(y) =
∑
j∈Jk

D2θ j,k(y) [π j,k(y) − y] + 2
∑
j∈Jk

Dθ j,k(y) [Dπ j,k − I];

we observe that |π j,k(y) − y| ≤ 10rk when Dθ j,k(y) , 0 or D2θ j,k(y) , 0 because P j,k

goes through x j,k and θ j,k is supported in 10B j,k; this yields the brutal estimate

(4.44) |Dσk(y)| ≤ C and |D2σk(y)| ≤ C10k for y ∈ V10
k \ V8

k .

Next we use this to estimate D fk and D2 fk. Recall from (4.19) that fk+1 = σk ◦ fk;
thus (with probably very bad but yet understandable) notation,

(4.45) D fk+1(x) = Dσk( fk(x)) ◦ D fk(x)

(but we shall not always write the variables) and then

(4.46) D2 fk+1(x) = D2σk( fk(x))[D fk(x),D fk(x)] + Dσk( fk(x))[D2 fk(x)]

with ugly notation, but we immediately put norms everywhere, forget the algebra,
and get that

(4.47) |D2 fk+1(x)| ≤ C|D2σk( fk(x))| + 2|D2 fk(x)|

also because we know that all the fk are bilipschitz with uniform constants (that
may depend on δ1). We may rewrite this as

(4.48) rk+1|D2 fk+1(x)| ≤ Crk|D2σk( fk(x))| +
1
5
|rkD2 fk(x)|

because this is the proper scaling, and this way we insist on the fact that the second
term contributes less.

We start in the most interesting case when y = fk(x) lies in the active region V8
k ;

then we use (4.41) with z = f (x) and get that

(4.49) rk+1|D2 fk+1(x)| ≤ Cε′′k ( f (x)) +
1
5
|rkD2 fk(x)|

where z is any point of B(y, rk). It should be noted that when y = fk(x) lies in the
active region V8

k , Lemma 4.28 says that this was the case for all the previous images
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fl(x), l < k, so we also have estimates like (4.49) for these, that we can compose.
We get that

(4.50) |rk+1D2 fk+1(x)| ≤ Cε̃k(x), where ε̃k(x) =
∑
l≤k

5l−kε′′l ( f (x)).

This was when y ∈ V8
k . When y lies in the dying region V10

k \ V8
k , we use the bad

estimate (4.44) for k, but observe that the previous fl(x), l < k, were in the active
region (by Lemma 4.28), so we can use the estimate (4.50) for D2 fk. Thus (4.48)
yields

(4.51) |rk+1D2 fk+1(x)| ≤ C + Cε̃k(x) ≤ C,

which is not a great estimate but should be enough. In the remaining case when
y ∈ Σk \ V10

k , we denote by l < k the last time when fl(x) was in the active or dying
region, and use (4.50) or (4.51) to prove that

(4.52) |D2 fk+1(x)| = |D2 fl+1(x)| ≤ Cr−1
l .

These estimates on the second derivatives will be enough for the better control that
we want on the Jacobian matrix of our global mapping g.

Remark 4.53. Yet we feel bad about using such rude estimates, so let us rapidly
say why (4.44), and then (4.51) can be improved. Our estimate |π j,k(y) − y| ≤ 10rk

below (4.43) was really lousy, because in fact |π j,k(y) − y| ≤ Cεrk when y ∈ Σk (we
have a good Lipschitz graph description of Σk near y). We need to be more careful
about the terms with Dπ j,k − I, because of course it is not small. Yet, when we
apply it to a tangent vector v to Σk, its effect is indeed of size at most Cε|v|, because
TΣk(y) is nearly parallel to P j,k. This is good, because when we compose with fk,
we only compute Dσk on vectors v parallel to TΣk(y). So we can add a factor of
size ε in (4.44), and then (4.52). This way, we get the not too surprising result that
f (and then g later) is biLipschitz with a constant which can be taken as close to 1
as we want, provided that we take δ1 small enough.

5. Tangent planes and fields of rotations

Once the mappings fk and the surfaces Σk = fk(P0) are under control, [DT] starts
the construction of the mapping g. The general idea is that for (x, t) ∈ Rd × Rn−d,
g(x, t) should be obtained from f (x) by going in the orthogonal direction, and at
distance roughly |t|. Of course we need to organize this in a coherent way, and also
it actually makes more sense to start from fk(x), and go in a direction orthogonal
to the tangent direction of Σk, because Σk is smoother. This makes a difference
because the limit object Σ may be spiraling at small scales.

So our first task will be to study a little the variations of the tangent plane to Σk.
Here we roughly follow Chapter 9 of [DT]. We know, for instance from the first
lines of Chapter 7 there, or more directly the description in Proposition 5.1 there,
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that each Σk is (at least) of class C2. Let us denote by TΣk(y) the tangent plane to
Σk at y ∈ Σk. We also set

(5.1) Tk(x) = TΣk( fk(x)),

and denote by πk(x) the orthogonal projection on the vector d-space parallel to
Tk(x); it is easier to define the differential of πk than Tk, which is why we will often
consider πk. We claim that when fk(x) ∈ V8

k (the active region),

(5.2) |Dπk+1(x)| ≤ Cr−1
k ε̃k(x).

There is no problem with the existence of Dπk+1(x), because Σk is C2, so it is enough
to show that for x′ ∈ P0, close enough to x,

(5.3) |πk+1(x) − πk+1(x′)| ≤ Cr−1
k ε̃k(x)|x′ − x|.

Let us evaluate the distance between T ′k+1(x), the vector space parallel to Tk+1(x),
and its analogue T ′k+1(x′) for Tk+1(x′). Let w ∈ T ′k+1(x) be given; we can write
w = D fk+1(x) · v for some vector v ∈ Rd, and since we know (from Lemma 4.8 and
the proof of Theorem 2.5 there) that the fk are bilipschitz with uniform bounds, we
also get that |v| ≤ C|w|. We know from (4.50) that for x′ close to x,

(5.4) |D fk+1(x) · v − D fk+1(x′) · v| ≤ Cε̃k(x) r−1
k+1|x − x′||v|;

since D fk+1(x′) · v ∈ T ′k+1(x′) by definition, we see that

dist (w,T ′k(x′)) ≤ |D fk+1(x) · v − D fk+1(x′) · v| ≤ Cε̃k(x) r−1
k+1|x − x′||w|.

Similarly, dist (w′,T ′k+1(x)) ≤ Cε̃k(x)r−1
k+1|x − x′||w′| for w′ ∈ T ′k+1(x′). It is easy to

deduce (5.3) from this, because both spaces are d-dimensional. Our claim (5.2)
follows.

The estimates when fk(x) ∈ V10
k \ V8

k are less glamorous; we use (4.51) instead
of (4.50) and get that

(5.5) |Dπk+1(x)| ≤ Cr−1
k .

When fk(x) ∈ Σk \ V10
k , we use (4.52) and get that

(5.6) |Dπk+1(x)| ≤ Cr−1
l ,

where l is the last index for which fl(x) lies in the active or dying zone.

Now we turn to the field of linear isometries which is constructed in Propo-
sition 9.3 of [DT]. Let R be the set of linear isometries of Rn. There exist C1

functions Rk : Σ0 → R, with the following main properties:

(5.7) Rk(Rd) = Tk(x) for x ∈ Σ0;

(5.8) |Rk+1(x) − Rk(x)| ≤ Cε for x ∈ Σ0 and k ≥ 0;

(5.9) |DRk+1(x)| ≤ C1r−1
k ε for k ≥ 0 and x ∈ Σ0.
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For (5.9), it comes from (9.33) there, which we can simplify because fk is bilips-
chitz in the present situation.

We like these estimates, but want to improve them in many places to include
Carleson bounds that use the ε′′k . For this we want to use our bounds on the Dπk,
and the way the πk are used to produce the Rk.

Let us recall how this goes. We start with R0 = I. Then we suppose that Rk was
already constructed, and start with a first approximation S k, defined by

(5.10) S k(x) = πk+1(x) ◦ Rk(x) ◦ π0 + π⊥k+1(x) ◦ Rk(x) ◦ π⊥0 ,

where π⊥k+1(x) = I − πk+1(x) is the orthogonal projection in the direction orthogonal
to Tk(x), and we set π0 = p0(x) (the projection on P0) and π⊥0 = I − π⊥0 . This is the
same formula as (9.34) there, with just minor changes in the notation.

The now usual computation on composition, together with (5.2), yield that

(5.11) |DS k(x)| ≤ 2|DRk(x)| + Cr−1
k ε̃k(x) when fk(x) ∈ V8

k .

Then we look at (8.43) there, which says that Rk+1(x) is obtained from S k(x) by the
simple rule

(5.12) Rk+1(x) = H(S k(x)),

where R is a simple nonlinear projection from a set U of linear transformations that
are almost isometries, to the set R of linear isometries. This projection R is given
by a reasonably simple formula, but the main point here is that by (9.45) there it is
(1 + 10−2)-Lipschitz on U, where S k(x) takes its values. As a consequence, (5.11)
implies that

(5.13) |DRk+1(x)| ≤ 3|DRk(x)| + Cr−1
k ε̃k( fk(x)) when fk(x) ∈ V8

k .

Recall that when fk(x) ∈ V8
k , Lemma 4.28 says that this happened also for the

previous indices. Then the same induction computations as for (4.50) yields

(5.14) |rk+1DRk+1(x)| ≤ Cε̂k(x), where ε̂k(x) =
∑
l≤k

2l−kε′′l ( f (x)).

This is a good complement to (5.9), and now let us see how we may improve the
estimate (5.8) on |Rk+1 − Rk|. We claim that

(5.15) |Rk+1(x) − Rk(x)| ≤ Cε′′k ( f (x)) ≤ Cε̃k(x) when x ∈ Σ0 and fk(x) ∈ V8
k ,

where the second part follows at once from the definition (4.50). So suppose that
y = fk(x) ∈ V8

k . Choose i ∈ Jk such that |y − xi,k| ≤ 10rk; then (7.19) there says that

(5.16) Angle(Tk(x), Pi,k) ≤ Cε′k(y),

where ε′k(y) is defined by (7.16) there (recall that Tk(x) = TΣk(y)). Similarly, (7.10)
there says that

(5.17) Angle(Tk+1(x), Pi,k) = Angle(TΣk+1(σk(y)), Pi,k) ≤ Cεk(y),
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where this time εk(y) is defined in (7.7) there, but we can forget about this because
it is noted in (1.17) there that εk(y) ≤ ε′k(y). Thus

(5.18) Angle(Tk(x),Tk+1(x)) ≤ Cε′k(y).

To be honest, we did not define the angles above, and [DT] is not much more pre-
cise; however all our angles here are small, and they are equivalent to, for instance,
the norm of the difference of orthogonal projections on the vector spaces parallel
to the two spaces that we consider. That is, (5.18) can be taken to mean that

(5.19) |πk(x) − πk+1(x)| ≤ Cε′k(y).

When we compare ε′k and ε′′k , we see that the only difference is that ε′′k reaches rk

further, which means that ε′k(y) ≤ ε′′k (z) for any z ∈ B(y, rk). This is very convenient,
because this allows us to take z = f (x) (by (4.23) and because y = fk(x)); then
(5.19) implies that

(5.20) |πk(x) − πk+1(x)| ≤ Cε′′k ( f (x)).

Next we use the definition (5.10) to estimate |S k(x) − Rk(x)|. Since Rk sends Rd to
Tk(x) and hence its orthogonal complement Rn−d to Tk(x)⊥, we see that

Rk(x) = πk(x) ◦ Rk(x) ◦ π0 + π⊥k (x) ◦ Rk(x) ◦ π⊥0 ,

and then (5.10) implies that

|S k(x) − Rk(x)| ≤ |πk+1(x) − πk(x)| + |π⊥k+1(x) − π⊥k (x)|
= 2|πk+1(x) − πk(x)| ≤ Cε′′k ( f (x)).(5.21)

This is good, because (5.12) says that Rk+1(x) = H(S k(x)) for a Lipschitz map-
ping H such that H(Rk(x) = Rk(x) because Rk is a linear isometry (check with the
definition (9.44) there); (5.15) follows.

6. The mapping g and its Jacobian matrix

We are now finally ready to define the mapping g. We shall keep g = f on
Σ0 = Rd, and now we define g on Ω0 = Rn \ Σ0. Since g will be a bilipschitz
mapping of Rn, it will map Ω0 to Ω = Rn \ Σ, where Σ = f (Σ0).

In this section the generic point of Ω0 is denoted by (x, t), with x ∈ Rd and
t ∈ Rn−d \ {0}. We set

(6.1) g(x, t) =
∑
k≥0

ρk(t)
{

fk(x) + Rk(x) · t
}

for (x, t) ∈ Ω0,

where the ρk form a partition of 1 that will be discussed shortly. This is the same
thing as (10.14) or (10.19) there, but some things were simplified, because here our
initial surface Σ0 is just P0 = Rd, so the projections p and q are just the projections
π0 and π⊥0 on Rd and Rn−d.
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The functions ρk are defined by (10.15)-(10.17) there, They are radial,

(6.2)
∑
k≥0

ρk(t) = 1 for t ∈ Rn−d \ {0}

(by (10.16) there), ρ0(t) = 0 when |t| ≤ 1, and (by (10.17) there) for k ≥ 1,

(6.3) ρk(t) = 0 unless rk ≤ |t| ≤ 20rk.

Thus, for each t, there are at most three consecutive k ≥ 0 such that ρk(t) , 0.
Notice that g does roughly what was announced at the beginning of the previous

section: we start from fk(x) ∈ Σk and go in the orthogonal direction for about |t|.
The fact that we actually use an average of up to three different Rk(x) does not
matter much, because (5.8) and (5.15) say that they are almost the same. And we
are happy that we do not need to take a limit this time.

We want to use the change of variable g : Ω0 → Ω to reduce the study of some
degenerate elliptic operators L on Ω to the study of operators L0 on Ω0, and because
of this we are interested in the structure of the the matrix of the differential mapping
Dg : Ω0 → Ω.

As in [DFM3], we prefer to study the matrix J(x, t) of Dg(x, t) in a set of two
orthonormal bases of Rn, where the first one is the canonical basis of Rn, and the
second one its image by Rk(x), where k = k(t) is chosen such that ρk(t) , 0. It does
not really matter much which one, but for the sake of definiteness, let us choose
k(t) as large as possible. Let us denote Jac(x, t) = Dg(x, t) in the usual Euclidean
basis and J(x, t) := Dg(x, t)Q(x, t) where Q(x, t) is our matrix of isometry in the
sense that Rk(t)(x)(y, s) = (y, s)Q(x, t) for (y, s) ∈ Rn. We know, just because g
is bilipschitz, that for small ε1 > 0 the matrix J(x) is (uniformly) bounded and
invertible, with a (uniformly) bounded inverse, and we are mostly interested now
in the block structure of J (when we cut Rn into Rd × Rn−d).

Proposition 6.4. We can write a decomposition of J as a block matrix

(6.5) J(x, t) =

(
A1(x, t) C2(x, t)
C3(x, t) In−d + C4(x, t)

)
,

where the d × d matrix A1 is bounded, C2, C3, and C4 are bounded and satisfy
Carleson measure conditions, and In−d is our notation for an identity matrix of size
n − d. Specifically, (2.14) holds with a constant C = C1(ε + δ1), where C1 depends
on n, d,C0,M0,M (but obviously not on δ1 or ε), and also we have the L∞ estimate

(6.6) |C2(x, t)| + |C3(x, t)| + |C4(x, t)| ≤ C1(ε + δ1)

for (x, t) ∈ Rn.

Remark 6.7. We claim that with the help of Remark 4.53, we can show that A1 is as
close to the identity matrix as we want, as long as we take ε and δ1 small enough.
This is because g is biLipschitz with a constant close to 1, and hence Dg is as close
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as we want to an isometry, But in this paper we shall content ourselves with the
fact that J(x, t) is uniformy biLipschitz because g is.

Proof. The proof of the proposition will keep us busy for some time. We first
consider the t-derivatives of g. Let us compute ∂1g(x, t), where ∂1 is our notation
for ∂

∂t1
. Here we single out the first t-variable, because this way we do not have an

extra index, but the other t-derivatives would be the same. From (6.1) we deduce
that

(6.8) ∂1g(x, t) = D1 + D2

where

(6.9) D1 =
∑

l

∂1(ρl(t))
{

fl(x) + Rl(x) · t
}

and

(6.10) D2 =
∑

l

ρl(t)Rl(x) · ed+1,

where ed+1 is the first element of the basis of Rn−d. In both term, the sum has at
most 3 terms, corresponding to l = k, k − 1, by the comment below (6.3) and our
choice of k as the largest index for which ρ(t) , 0.

We start with D1, notice that
∑

l ∂1(ρl(t)) = 0 because
∑

l ρl(t) = 0 (see (6.2)),
use this to subtract fk(x) + Rk(x) · t, and get that

|D1| ≤
∑

l

|∂1(ρl(t))|
{
| fl(x) − fk(x)| +

∣∣[Rl(x) − Rk(x)] · t
∣∣}

≤ C|t|−1
∑

k−2≤l≤k−1

{
| fl(x) − fk(x)| + |t| |Rl(x) − Rk(x)|

}
= D11 + D12,(6.11)

where some of the terms may not exist. That is, if k = 0, then there was only one
term in the initial sum, coming from k = 0, we managed to kill it, and thus D1 = 0.
Similarly, if k = 1, we are left with only one term, coming from l = 0. And it could
be that even when k ≥ 2, we don’t need l = k − 2, but the extra term will not hurt.

We start with D12 because the needed estimates are more recent. When fk−1(x) ∈
V8

k−1 (the active region), (5.15) says that

(6.12) |Rk(x) − Rk−1(x)| ≤ Cε̃k−1(x).

Then (by Lemma 4.28) fk−2(x) ∈ V8
k−2 (if k ≥ 2, otherwise there is no term with

l = k − 2), and

(6.13) |Rk−1(x) − Rk−2(x)| ≤ Cε̃k−2(x) ≤ Cε̃k−1(x).

If fk−1(x) ∈ V10
k−1 \ V8

k−1 (the dying region), we replace (6.12) with (5.8), which says
that

(6.14) |Rk(x) − Rk−1(x)| ≤ Cε.
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In this case Lemma 4.28 still says that fk−2(x) ∈ V8
k−2, and we can use (6.13). We

are left with the case when y = fk−1(x) lies in the dead region. Then Rk(x) = Rk−1(x)
(because σk−1(y) = y, Σk and Σk−1 coincide at y, and the definitions give S k−1(x) =

Rk−1(x) and then Rk(x) = Rk−1(x). It is still possible that fk−1(x) lies in the dying or
active region, and then we use (6.14) (for k − 1) or (6.13). We summarize the cases
and find that

(6.15) D12 ≤ Cε̃k−1(x) + Cεδ(x, t),

where δ(x, t) = 1 if fk−1(x) or fk−2(x) lies in their respective dying region, and
δ(x, t) = 0 otherwise. We will see later that this leads to a good Carleson estimate
for D12.

Next consider D11 = C|t|−1∑
k−2≤l≤k−1 | fl(x)− fk(x)|, and first assume that fk−1(x) ∈

V8
k−1. Then by (4.31),

(6.16) | fk(x) − fk−1(x)| ≤ Cε′′k−1( f (x)) rk−1.

If k ≥ 2, Lemma 4.28 says that fk−2(x) ∈ V8
k−2, and (4.31) yelds

(6.17) | fk−1(x) − fk−2(x)| ≤ Cε′′k−2( f (x)) rk−2.

Otherwise, we don’t need this estimate because D11 has only one term. Altogether,

(6.18) D11 ≤ Cε′′k−1( f (x)) + Cε′′k−2( f (x))

(because t ≥ rk by (6.2)).
Next we assume that fk−1(x) ∈ Σk−1 \ V8

k−1. If fk−1(x) or fk−2(x) lies in the dying
region, we use the more brutal estimate (4.22) to see that | fk(x) − fk−1(x)| ≤ Cε,
or similarly for k − 1, and get that D11 ≤ C. Otherwise, fk−1(x) and fk−2(x) lie in
their dead regions, and D11 = 0. We summarize the estimates as we did above, by
saying that

(6.19) D11 ≤ Cε′′k−1( f (x)) + Cε′′k−2( f (x)) + Cεδ(x, t)

with the same definition for δ(x, t) and where we set ε′′l ( f (x)) = 0 for l < 0.
Next we study D2, which we write as D2 = D21 + D22, where

(6.20) D21 = Rl(x) · ed+1

and by (6.2) the rest is

(6.21) D22 =
∑

k−2≤l≤k−1

ρl(t)[Rl(x) − Rk(x)] · ed+1.

The main piece D21 gives the first term of the identity matrix In−d in (6.5), and of
course its analogue for the other t-derivatives of g give the rest of In−d. As for D22,
we use the same estimates (6.12)-(6.14) as above and find that

(6.22) D22 ≤ Cε̃k−1(x) + Cεδ(x, t).
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We may now consider the x-derivatives of g, and which we feel couragous
enough to consider all at the same time and denote by Dxg. By (6.1),

(6.23) Dxg(x, t) =
∑
j≥0

ρ j(t)
{

D f j(x) + DR j(x) · t
}

=: D3 + D4.

We start with D4. Notice that when k = 0, Rk = I and DRk = 0, so we may assume
that k ≥ 1. As usual begin with the case when y = fk−1(x) ∈ V8

k−1, apply (5.14), and
find that |rkDRk(x)| ≤ Cε̂k−1(x), and similarly for the previous iterates if they are
needed. This yields

(6.24) |D4| ≤ Cε̂k−1(x) + Cε̂k−2(x) + Cε̂k−2(x) ≤ Cε̂k−1(x)

because |t| ≤ 20rk (by (6.3) and because k ≥ 1), and where the last part comes
from the definition of the ε̂l in (5.14). When fk−1(x), or one of its two predecessors,
lies in the closure of its dying region, we use (5.9) for all of them and find that
|D4| ≤ Cε.

We are left with the case where the three points lie in the interior of their dead
region. Denote by l the smallest integer such that fl(x) lies in the the interior of its
dead region; thus l < k − 2. We know that all the fm(x), m ≥ l, are equal to fl in a
neighborhood of x, and when we follow the computations we see that this means
that the Rm, m ≥ l, also coincide with Rl near x (for instance, we check first that
since σl(y) = y near fl(x), we get that Σl+1 = Σl near fl(x), then πl+1 = πl near x,
then S k = Rk, etc.). Now the DR j in the formula (6.23) are all equal to DRl, and
(5.9) yields

(6.25) |D4| ≤ Cεrkr−1
l ≤ Cε10l−k.

Again we claim that this decay will lead to a Carleson measure estimate, but let
us now concentrate on our last term

(6.26) D3 =
∑
j≥0

ρ j(t)D f j(x),

which as usual we cut in two. The first part

(6.27) D31 = πk(x) ◦ D3,

where we project on the vector plane Rk(x)(Rd) parallel to Tk(x), falls in the matrix
A1 of the decomposition (6.5), and we don’t need any special information about it,
except that we know that A1 is bounded (and even J is bilipschitz). We are left with

(6.28) D32 = πk(x)⊥ ◦ D3 =
∑
j≥0

ρ j(t)[πk(x)⊥ ◦ D f j(x)].
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Observe that the image of D f j(x) is contained in the tangent direction R j(x)(Rd)
(parallel to T j(x)), and π j(x)⊥ vanishes on this space. Also, D f j(x) is bounded, so

(6.29) |D32| ≤ C
∑

k−2≤ j≤k

|π j(x)⊥ − πk(x)⊥| = C
∑

k−2≤ j<k

|π j(x) − πk(x)|.

The simplest for us is to observe that |π j(x) − πk(x)| ≤ C|R j(x) − Rk(x)|. Indeed
π j(x) is the projection on R j(x)(Rd), and an orthonormal basis of that space is given
by the R j(x)(el), 1 ≤ l ≤ d, so π j(x)(v) =

∑d
l=1〈v,R j(x)(el)〉R j(x)(el). Of course

using this is a little strange, because the estimates (5.15) and (5.8) that we are
about to use come from estimates on |π j(x) − πk(x)|, as in (5.19). Anyway, |D32| ≤

C
∑

k−2≤ j<k |R j(x)−Rk(x)| can now be estimated exactly as D22 and D11, and we get
that

(6.30) D22 ≤ Cε̃k−1(x) + Cεδ(x, t).

as in (6.22).
We completed the decomposition of J; now we need to show that the error terms

in (6.15), (6.19), (6.22), (6.24), (6.25), and (6.30) are functions that satisfy a Car-
leson measure estimate.

We start with the function ε̂k−1(x) that show up in (6.24). Recall from (5.14)
that ε̂k−1(x) =

∑
l≤k−1 2l−k+1ε′′l ( f (x)). This is a function of t as well, because since

k = k(t) (and k ≥ 1), (6.3) says that rk ≤ |t| ≤ 20rk. We will use the fact that
ε̂2

k−1(x) ≤ C
∑

l≤k−1 2l−k+1ε′′l ( f (x))2 by Cauchy-Schwarz.
In order to prove (2.14) for this function, we have to estimate

(6.31) I(X,R) =

∫
Ω0∩B(X,R)

|ε̂k−1(x)|2
dydt
|t|n−d ≤ C

∫
Ω0∩B(X,R)

∑
0≤l≤k−1

2l−kε′′l ( f (x))2 dydt
|t|n−d .

First observe that since rk ≤ |t| ≤ 20rk and |t| ≤ R when (y, t) ∈ B(X,R) (recall
that here X = (x, 0) lies in P0), we only sum over k such that rk ≤ R. Let us fix x, k,
and l, and integrate in t first. We integrate in the region A(k, l) where rk ≤ |t| ≤ 20rk,
and

∫
A(k,l)

dt
|t|n−d ≤ C. We are left with

(6.32) I(X,R) ≤ C
∫

y∈P0∩B(X,R)

∑
0≤l≤k−1

2l−kε′′l ( f (x))2dy.

We now sum over k, then l. The sum over k disappears because of the converging
factor 2l−k, and the sum over l is less than Cδ1, by (4.14) and (4.15) (recall that
g(y) = f (y) on P0). We are left with I(X,R) ≤ Cδ1H

d(P0 ∩ B(X,R)) ≤ Cδ1Rd, as
needed.

The numbers ε̃k−1(x) are just smaller than the ε̂k−1(x), so we don’t need to worry
about them; the same is true of ε′′k−1( f (x) and ε′′k−2( f (x), which are just two pieces
of ε̂k−1(x). The next function to control is εδ(x, t), which counts whether fk−1(x) or
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fk−2(x) lies in the dying zone, or its variant where we also include fk−2(x) which is
implicit in the description below (6.24). We need to control

(6.33) I′(X,R) =

∫
Ω0∩B(X,R)

ε δ(x, t)
dydt
|t|n−d .

We know from Lemma 4.28 that for a given x, there is at most one l ≥ 0 such that
fl(x) ∈ V10

l \ V8
l , and the only t for which l ∈ {k − 1, k − 2, k − 3} are such that

rk ≤ |t| ≤ 20rk for k ∈ {l + 1, l + 2, l + 3}. That is, t ∈ [10−3rl, 2rl/10]. We integrate
against |t|d−ndt, get at most Cε, then integrate against y and get at most CεRd, as
needed.

Our last contribution comes from (6.25), where for some earlier l = l(x) < k− 2,
fl(x) lies in the dead region for the first time, and then we pay D4 ≤ Cε10l−k. This
yields the integral

(6.34) I′′(X,R) = ε

∫
y∈Z∩B(X,R)

∫
0<|t|≤R

∑
k(t)≥l(x)

100l−k dydt
|t|n−d ,

where Z is the set of points y ∈ P0 such that l(y) exists. As before, we integrate first
against the t such that k = k(t) and get a constant, then sum in k and get another
constant, and finally integrate in y and get at most CεRd.

This completes out verification that the functions in our various estimates satisfy
a Carleson condition, as announced with a constant dominated by C(ε + δ1). The
L∞ bound (6.6) is easier (we don’t even have to sum the terms); Proposition 6.4
follows. �

It will be good to know that the class of matrices that have the special form given
in Proposition 6.4 is stable under taking inverses, products, and transposes. Indeed
we start from our favorite operator L = − div Dα(Y)d+1−n∇, and then we use g to
change variables and get an operator L0 on the simpler domain Ω0 = Rn \ Rd. A
fairly standard computation, which the reader may find in [DFM3], Lemma 6.17,
shows that L0 = divA∇, where the matrix of A is

(6.35) A(x, t) = (Dα(g(x, t))−(n−d−1) | det J(x, t)|(J(x, t)−1)T J(x, t)−1;

maybe the reader expected the same formula with J(x, t) replaced with Dg(x, t), but
J(x, t) = Dg(x, t)Q(x, t) and the isometry Q(x, t) does not change (J(x, t)−1)T J(x, t)−1

nor the determinant (and J has a simpler form!). The next lemma will thus tell us
that Theorem 2.15 can be applied to L0 and A.

Lemma 6.36. Denote by M(M, τ,K) the class of matrix-valued functions J that
have a decomposition (6.5), where A1 is bounded and invertible, with a bounded
inverse such that ‖A1‖∞+‖(A1)−1‖∞ ≤ M, each Ci, i = 2, 3, 4, satisfies the Carleson
bound (2.14) with C = K, and ‖Ci‖∞ ≤ τ for i = 2, 3, 4. Also assume that τ <
(6M)−1. Then M(M, τ,K) is stable under taking the transposed matrices, J−1 ∈
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M(M2, 6M2τ, 36M4K) for J ∈ M(M, τ,K), and JJ′ ∈ M(M2, 8M2τ, 64M4K) for
J, J′ ∈ M(M, τ,K).

Here, ‖ · ‖ is the norm of the associated operator acting on the Euclidean Rn and
‖ · ‖∞ is its supremum in x, t.

We decided to compute invertibility on the block matrix A1 rather than the full
matrix J, because this is easier, but as soon as the Ci are small enough, there is no
real difference. That is, we know that g is bilipschitz, so J = J(x, t) is invertible,
with some uniform bound M̃ on ||J(x, t)−1||. Of course M̃ does not depend on ε
or δ1; taking these constants smaller only makes our assumptions on the stopping
time region C harder to check. Set

(6.37) T =

(
A1 0
0 In−d

)
and E = J − T ;

then ||E|| is as small as we want, by (6.6), and T and A1 are invertible too, with
||T−1|| = ||T−1|| ≤ 2M̃, so we can apply the lemma to J, with M = 2M̃ and τ =

C(ε + δ1).
Because of the way we once used δ1 to control some geometric quantities that

should really have been controlled by ε1, we have to take δ1 small. Also, we de-
cided not to use the various remarks leading to Remark 6.7, so we do not know
officially that our changes of variable are in fact bilipschitz with a constant near 1.
So our argument is sound, but not optimal.

Proof. Let us now prove the lemma; the verification will be mostly a pointwise
thing. The fact that JT ∈ M(M, τ,K) when J ∈ M(M, τ,K) is clear; let us now
consider the inverse of J ∈ M(M, τ,K). Define T and E as in (6.37), and observe
that T−1 is a block matrix like T (the associated linear mapping acts as we want on
Rd and Rn−d)

(6.38) J−1 = (T + E)−1 = [T (I + T−1E)]−1 = (I + T−1E)−1T−1

(where the invertibility of J follows from the computation below) and then use our
assumption that τ ≤ (6M)−1 to write (I + T−1E)−1 as a Neuman series. This gives

(6.39) ||J−1 − T−1|| ≤ 2||T−1||||T−1E|| ≤ 2M2||E|| ≤ 6M2τ,

which means that J−1 has a nice block decomposition. This give pointwise bounds,
and the L∞ bounds follow by taking supremums. The Carleson estimate also fol-
lows directly from (6.39); we need squares because C in Definition 2.13 is qua-
dratic. Now we consider the product with another matrix J′ ∈ M(M, τ,K). Write
J′ = E′ + T ′, with similar notation, notice that

(6.40) JJ′ = (E + T )(E′ + T ′) = TT ′ + R
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where TT ′ is a diagonal block matrix like T and T ′ (again look at the corresponding
endomorphism), and ||R|| ≤ 6τM + 9τ2 ≤ 6τM. As before, the L∞ and Carleson
bounds follow. �

7. Distance functions like Dα

The next string of estimates concerns the Carleson behavior of two things that are
related. The distance function D = Dα, associated to our final set Σ, or in fact any
uniformly rectifiable set E, and a control function λ(x, r) for the average density of
an Ahlfors-regular measure living on E. Later on, we shall study relations between
two distance functions, typically one coming from E and one coming from our
approximating surface.

7.1. The function λ. Let E be a uniformly rectifiable set E, and σ any Ahlfors
regular measure supported on E. We want to define a λ(x, r) that will measure, in a
reasonable smooth way, the density of σ.

Pick a smooth radial, nonnegative function η, supported in the unit ball of Rn,
with

∫
η = 1, and set ηt = 1

td η
(

x
t

)
(notice the normalization adapted to Rd). We

will use the ηt for different things.
For x ∈ E and r > 0, we define a first, not too precise, measure of the density,

namely

(7.1) λ0(x, r) =

∫
E∩B(x,r)

ηr(y − x)dσ(y) > 0,

and then a center of mass

(7.2)
Φr(x) = λ0(x, r)−1

∫
E∩B(x,r)

y ηr(y − x)dσ(y)

= x + λ0(x, r)−1
∫

E∩B(x,r)
(y − x) ηr(y − x)dσ(y),

where we write the second formula to insist on the translation invariance, and fi-
nally the better density

(7.3) λ(x, r) =

∫
E∩B(Φr(x),r)

ηr(y − Φr(x))dσ(y).

We prefer to use λ rather than λ0, because maybe x itself lies far from an optimal
plane for α(x, 10r) (defined below).

Anyway, we want to show that

(7.4) r|∇x,rλ(x, r)| ∈ CM(E × R+),

where we define CM(E × R+) as in Definition 2.13, but with Rd replaced with E.
That is, we say that a function F(x, t), defined on E× (0,+∞), satisfies the Carleson
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measure condition, and write F ∈ CM(E × R+), when there is a constant C ≥ 0
such that

(7.5)
∫

x∈E∩B(X,R)

∫
t∈(0,R)

|F(x, t)|2
dσ(x)dt

t
≤ CRd

for X ∈ E and R > 0. We could replace σ with Hd
|E without changing the class

CM(E × R+).
The logical plan for proving (7.4) will work: for each (x, r) ∈ E × R+, we will

find a flat measure µ that approximates σ well in B(x, 10r), and compare the three
quantities above to the same ones with σ replaced by µ. The good approximation
will be in terms of the Tolsa numbers α(x, r), which we discuss now.

We will use the same definition of α(x, r) is the same as in [DFM3].
We first define flat measures and local Wasserstein distances. Denote by P the

set of affine d-planes in Rn, and for each plane P ∈ P, denote by µP = Hd|P
the restriction of Hd to P (in other words, the Lebesgue measure on P). By flat
measure, we shall mean simply mean a measure cµP, with c > 0 and P ∈ P. The
number α(z, r) will measure the distance between our measure σ and flat measures,
locally in the ball B(z, r), which we shall often take centered on E because this way
we know that µ(B(z, r)) is fairly large.

Definition 7.6. For z ∈ Rn and r > 0, denote by Lip(z, r) the set of Lipschitz
functions f : Rn → R such that f (y) = 0 for y ∈ Rn\B(z, r) and | f (y)− f (w)| ≤ |y−w|
for y,w ∈ Rn. Then define the normalized (local) Wasserstein distance between two
measures σ and µ by

(7.7) dist z,r(σ, µ) = r−d−1 sup
f∈Lip(z,r)

∣∣∣∣ ∫ f dσ −
∫

f dµ
∣∣∣∣

and the local distance from σ to flat measures by

(7.8) α(z, r) = inf
c≥0, P∈P

dist z,r(σ, cµP).

We normalized dist z,r(σ, µ) with r−d−1 because this way, if µ(B(z, r)) ≤ Crd and
σ(B(z, r)) ≤ Crd, then dist z,r(σ, µ) ≤ 2C because

(7.9) ‖ f ‖∞ ≤ r for f ∈ Lip(z, r).

Also observe that if B(y, s) ⊂ B(z, r), then Lip(y, s) ⊂ Lip(z, r); it follows that
dist y,s(σ, µ) ≤ (r/s)d+1 dist z,r(σ, µ), and hence

(7.10) α(y, s) ≤ (r/s)d+1α(z, r) when B(y, s) ⊂ B(z, r).

Return to the proof of (7.4). We want to show that

(7.11) r|∇x,rλ(x, r)| ≤ Cα(x, 10r) for x ∈ E and r > 0,
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because then (7.4) will follow from Theorem 1.2 in[To], which says that when E is
uniformly rectifiable and σ is any Ahlfors regular measure on E, then

(7.12) (x, r) 7→ α(x, r) ∈ CM(E × R+).

Strictly speaking, [To] defines the function α slightly differently, on the set of
dyadic cubes in Rn rather than balls centered on E. But the diffefence is really
minor, in the sense that one quantity controls the other, and we refer to Lemma 5.9
in [DFM3] for the verification.

It is easy to see that |r∇x,rλ(x, r)| ≤ C, so (7.11) is trivial when α(x, 10r) ≥ C−1.
Therefore we may assume that α(x, 10r) ≤ C−1, with C as large as we want. Choose
an almost optimal flat measure µ = aHd

|P in the definition of α(x, 10r), where of
course P is a d-plane and a > 0. We do not intend to use the fact that µ is nearly
optimal here, just that its distance to σ is small. That is, if this distance was some
small β > 0, we would just get (7.11) with Cβ. The most trivial application of this
(obvious) remark is that we may use α(x, 107r) instead, or use some other numbers
and planes.

With the assumption that α(x, 10r) ≤ C−1 (and by testing for example the defini-
tion against a multiple of ηr), we get that C−1 ≤ a ≤ C, for some C that depends on
η and the regularity constant for σ.

Set α = α(x, 10r) to save energy. Also write λ̃0(x, r) for the analogue of λ0(x, r),
but with µ, and do the same thing for Φ̃r(x) and λ̃(x, r). We use the definition of α
and find easily that

(7.13) |λ̃0(x, r) − λ0(x, r)| ≤ Cα

and then, with just a bit more of computation, that

(7.14) |Φ̃r(x) − Φr(x)| ≤ Crα.

Then we first try to differentiate with respect to x, i.e. estimate

(7.15) ∇xλ(x, r) =

∫
E
∇x[ηr(y − Φr(x))]dσ(y),

and the first thing to do is differentiate Φr. Thus we first differentiate (with respect
to x) the quantity ηr(y − x) = r−dη((y − x)/r) and we get −r−d−1∇η((y − x)/r). So,
for instance,

(7.16) ∇xλ0(x, r) = −r−d−1
∫

E
∇η((y − x)/r)dσ(y)

and, using the second part of (7.2),

∇x[Φr(x) − x] = −
∇xλ0(x, r)
λ0(x, r)

[Φr(x) − x] − λ0(x, r)−1
∫

E
ηr(y − x)dσ(y)

−λ0(x, r)−1r−d−1
∫

E
(y − x)∇η(y/r − x/r)dσ(y).(7.17)
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We prefer to subtract x because despite the more complicated formula, the flawless
homogeneity makes it easier to check that |∇xΦr(x)| ≤ C. We will also need to
know that

(7.18) dist (Φr(x), P) ≤ Cαr.

Indeed, it is obvious that Φ̃r(x) ∈ P because µ is supported in P, so dist (Φr(x), P) ≤
|Φr(x) − Φ̃r(x)| ≤ Crα by (7.14).

Let us return to (7.15), set V(x) = ∇xΦr(x) to save notation, and notice that

∇x[ηr(y − Φr(x))] = −r−d−1∇η((y − Φr(x))/r) · V(x),

so that (7.15) becomes

(7.19) ∇xλ(x, r) = −r−d−1
(∫

E
∇η((y − Φr(x))dσ(y)

)
· V(x),

where we pulled V(x) out of the integral to stress the fact that it does not depend
on y. Since V(x) is bounded, we see that |∇xλ(x, r)| ≤ CA, where

(7.20) A = r−d−1
∫

E
∇η((y − Φr(x))dσ(y).

Let us compare A with the same expression A1, where we just replace σ by µ.
Notice that the integrand f (y) = ∇η((y − Φr(x)/r) is a nice Lipschitz function
supported on B(x, r), with Lipschitz norm less than Cr−1, so

|A − A1| = r−d−1
∣∣∣ ∫

E
f (y)(dσ(y) − dµ(y))

∣∣∣ ≤ Cαr−1

by (7.7) and the definition of µ, and where we get an extra r−1 coming from the
Lipschitz norm of f . Next set denote by ξ the orthogonal projection of Φr(x) on P,
and consider

A2 = −r−d−1
∫

P
∇η((y − ξ)/r)dµ(y),

where we just replaced Φr(x) by ξ in the definition of A1. We claim that A2 · V = 0
for every vector V (and hence A2 = 0). When V is parallel to P, A2 · V = 0 because
we integrate the partial derivative in the direction of V of a function with compact
support. When instead V is orthogonal to P, V(x)·∇η((y−ξ)/r) = 0 for every y ∈ P,
because η is radial and V is orthogonal to the direction of y − ξ. So A2(V) = 0.
Finally, |A1(V) − A2(V)| ≤ Cr−1|Φr(x)/r − ξ/r| ≤ Cr−1α, by differentiating again
under the integral, between Φr(x) and ξ. Altogether |∇xλ(x, r)| ≤ CA ≤ Cr−1α; this
proves the x-derivative part of (7.11), and indeed the only important properties of
Φr(x) are that

(7.21) |∇xΦr(x)| ≤ C and dist (Φr(x), P) ≤ Cαr.
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We still need to take care of r-derivatives, and this will work the same way. This
time we need to compute

(7.22) ∂rλ(x, r) =

∫
E
∂r[ηr(y − Φr(x))]dσ(y),

and we start with the derivatives of λ0 and Φr(x) with respect to r. The derivative
of ηr(y − x) = r−dη((y − x)/r) is

(7.23)
∂

∂r

(
ηr(y − x)

)
= −dr−d−1η((y − x)/r) − r−d−2∇η((y − x)/r) · (y − x),

which means that for instance

(7.24) ∂rλ0(x, r) = −r−d−1
∫

E

[
dη((y − x)/r) + ∇η((y − x)/r) · (y − x)/r

]
dσ(y).

Then r∂rλ0(x, r) is also bounded, as for ∇xλ(x, r).
Next we study W = ∂rΦr(x) = ∂r[Φr(x)−x], with Φr(x)−x = λ0(x, r)−1

∫
E∩B(x,r)(y−

x) ηr(y−x)dσ(y). Recall that C−1 ≤ λ0(x, r) ≤ C and
∫

E∩B(x,r)(y−x) ηr(y−x)dσ(y) ≤
Cr. The part W1 where we differentiate λ0(x, r)−1 is thus at most Cr|∂rλ0(x, r)| ≤ C;
we are left with W2 =

∫
E∩B(x,r)(y − x) ∂

∂r

(
ηr(y − x)

)
dσ(y). We use (7.23) again, get

one more power of r than in (7.24), and it follows that W is bounded. Finally we
return to (7.22); compared to the computation for λ0, we get an extra term coming
from W. That is,

∂rλ(x, r) = −r−d−1
∫

E

[
dη((y − Φr(x))/r) + ∇η((y − Φr(x))/r) · (y − Φr(x))/r

+∇η((y − Φr(x))/r) ·W
]
dσ(y)(7.25)

and we just need to estimate A = r−d−1
∫

E ∇η((y−Φr(x))/r) because W is bounded.
We are lucky; A is the same as in (7.20), and we proved that |A| ≤ Cr−1α, so
|∂rλ(x, r)Cr−1α as well, and the full (7.11) follows. This also completes our proof
of (7.4) (because of (7.12)).

7.2. The distance function Dα versus the distance to a good plane. Now we
take a distance D = Dσ,α related to σ, and use the α numbers to compare it locally
to the distance to a plane.

Lemma 7.26. Let σ be any Ahlfors-regular measure on any AR set, and define
D = Dσ,α by (11.2). For x ∈ E, r > 0, any d-plane P = P(x, r) that almost
minimizes in the definition of α(x, 16r), z ∈ B(x, 2r) such that

(7.27) min( dist (z, P), dist (z, E)) ≥ 10−2r,

we have

(7.28)
∣∣∣ D(z)

dist (z, P(x, r))
−Cαλ(x, r)−1/α

∣∣∣ ≤ C
∑
l≥4

2−αlα(x, 2lr),
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where C depends on n and the AR constants forσ, and Cα is a dimensional constant
that does not depend on E or σ.

We could stop the sum when 2lr ≥ 10 if we are really talking about σ and the
approximating surface Σ, but we continue it forever because we are talking about
an arbitrary Ahlfors-regular set E with an Ahlfors regular measure σ on it. We did
not require E to be uniformly rectifiable in the statement, but this assumption will
be very useful to control the right-hand side through Tolsa’s theorem.

We like to keep some choice on which good plane P = P(x, r) to use, because
some different constraints may show up.
Proof. This statement looks like Lemma 6.57 in [DFM3], but since the notation
may be confusing we give a proof here. This will allow us to think at the same
time about a similar control on the difference between the quantities ∇zD and
Cαλ(x, r)−1/α∇z dist (z, P), which of course is Cαλ(x, r)−1/α times the unit vector
that points in the direction opposite (and orthogonal) to P.

Notice that with our assumption (7.27), both D(z) and dist (z, P) are both of the
order of r, and λ(x, r) is bounded from above and below, we may instead check that

(7.29)
∣∣D(z)−α dist (z, P)α −C′αλ(x, r)

∣∣ ≤ C
∑
l≥1

2−αlα(x, 2lr),

where by (11.2)

(7.30) D(z)−α =

∫
E
|z − y|−d−αdσ(y)

which is easier to compute. And in the gradient variant, we would compare the
gradient of D−α to C′αλ(x, r) times the gradient of dist (z, P(z))−α.

When we say that P = P(x, r) that almost minimizes in the definition of α(x, 16r),
we mean that there is a flat measure µ0 on P such that, say,

(7.31) dist x,16r(σ, µ0) ≤ 2α(x, 16r).

We proceed as in Lemma 6.57 in [DFM3], and cut D(z)−α into pieces

(7.32) Ik =

∫
|z − y|−d−αθk(y)dσ(y),

where the θk form a smooth partition of 1 such that θk is supported in the annulus
Ak = B(x, 2k+4r) \ B(x, 2k+2r) (but just Ak = B(x, 16r) for k = 0). We also set

(7.33) I′k =

∫
|z − y|−d−αθk(y)dµ0(y),

Next write µ0 = λHd
|P, and observe that

(7.34)
∑

k

I′k = λ

∫
P
|z − y|−d−αdHd(y) = C′′αλ dist (z, P)−α,
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by rotation and dilation invariance. So we want to estimate
∑
|Ik − I′k|. Also, for k

large, α(x, 16r) does not control the difference between σ and µ0, so we will need
a flat measure µk = λkH

d
|Pk

that nearly minimizes in the definition of α(x, 2k+4r), as
in (7.31) but at a larger scale; we also set

(7.35) I′′k =

∫
|z − y|−d−αθk(y)dµk(y) =

∫
fk(y)dµk(y),

with fk(y) = |z−y|−d−αθk(y). Obviously we want to use the definition of dist x,2k+4r(σ, µk)
to the function fk. Notice that fk is supported in Bk = B(x, 2k+4r), but the reader
may be afraid that it is not smooth near z.

When k ≥ 1, we know that z ∈ B(x, 2r) and y ∈ Ak, so |z − y| ≥ 2k+1r, fk is
Lipschitz with a constant C(2kr)−(d+α+1), and (7.7) yields

(7.36) |I′′k − Ik| ≤ C|| fk||lip (2k+4r)d+1 dist x,2k+4r(σ, µk) ≤ C(2kr)−αα(x, 2k+4r).

When k = 0, the function fk as it is defined has a singularity at z, but our assumption
(7.27) says that it lies at distance at least 10−2r from both E and P. So we may
modify θ0, so that θ0 and f0 take the same values as before on E and P, but now fk

is smooth, with || f0||lip ≤ Cr−(d+α+1); then (7.36) is also valid with k = 0.
Note that if we wanted to estimate a derivative of order m of Dσ,α we could just

apply the same argument, with a function fk coming from a derivative of |z−y|−d−α,
with the effect of merely adding C2−kmr−m in the the right-hand side of (7.36). The
same remark will apply to the computations and estimates that follow.

Next we estimate |I′′k −I′k|, where we go from µ0 to µk; we write this as a telescopic
sum, i.e., say that |I′′k − I′k| ≤

∑
1≤ j≤k δ j,k, where

(7.37) δ j,k =

∫
fk(y)(dµ j(y) − dµ j−1(y)).

The difference between µ j and µ j−1 is controlled by α(x, 2 j+4r) + α(x, 2 j+3r) (com-
pare both measures to σ and use the triangle inequality in (7.7)). Since we are talk-
ing about flat measures here, this has two contributions on δ j. The first one is from
the difference of densities |λ j −λ j−1| ≤ Cα(x, 2 j+4r) +α(x, 2 j+3r), which we need to
multiply by C(2kr)d|| fk(y)||∞ ≤ C(2kr)−α. The second one is from the distance be-
tween the planes in the region Ak, which is less than C(α(x, 2 j+4r)+α(x, 2 j+3r))(2kr),
which we need to multiply by C(2kr)d|| fk(y)||lip ≤ C(2kr)−1−α. We sum and get that

(7.38) δ j,k ≤ C(2kr)−α(α(x, 2 j+4r) + α(x, 2 j+3r)),

and then

(7.39)
∑
k≥1

|I′′k − I′k| ≤
∑
k≥1

∑
1≤ j≤k

δ j,k ≤
∑
j≥1

(α(x, 2 j+4r) + α(x, 2 j+3r))(2 jr)−α.
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Finally, we need to evaluate λ − λ(x, r). Let us compute I =
∫
ηr(y − Φr(x))dµ0,

where ηr(y − Φr(x)) is the same function that was used in the definition (7.3) of
λ(x, r).

We finally evaluate λ, by computing I =
∫
ηr(y − Φr(x))dµ0(y), where ηr(y −

Φr(x)) is the same function that was used in the definition (7.3) of λ(x, r). This
way, replacing µ0 with σ in I would yield λ(x, r), and so

(7.40) |I − λ(x, r)| ≤ Crd+1||ηr(· − Φr(x))||lip α(x, 16r) ≤ Cα(x, 16r)

by (7.7) and the definition of µ0. If Φr(x) were luckily lying on P, we would get
I = λ immediately, because η is radial and

∫
ηr = 1 on Rd; this is not necessarily

true, but we will check in a moment that

(7.41) dist (Φr(x), P) ≤ Crα(x, 16r),

and then it will follow, by the usual argument where we estimate the derivative of
ξ →

∫
P(x,r) ηr(z − ξ)dµ0(z) along a segment from Φr(x) to P, that

(7.42) |λ − λ(x, r)| ≤ Cα(x, 16r).

Incidentally, this is the reason why we decided to use λ(x, r) rather than λ0: it
could happen that dist (x, P) is much larger than Crα(x, 16r). To check (7.41) we
return to the definition of Φr(x) by (7.2), project on the (n − d)-space orthogonal
the direction of P(x, r), and then use the triangle inequality to find that

dist (Φr(x), P) ≤ λ0(x, r)−1
∫

E∩B(x,r)
dist (y, P(x, r) ηr(y − x)dσ(y)

≤ Cλ0(x, r)−1rα(x, 16r) ≤ Crα(x, 16r),
(7.43)

where the last inequalities come again from (7.7) and the definition of µ0, because
the same integral, but against dµ0, would give 0 because we would integrate on
P(x, r); (7.41) follows.

We may now summarize. We have seen that D(z)−α =
∑

k Ik is quite close to∑
k I′′k , by (7.36), and then to

∑
k I′k, by (7.39); then by (7.34)

∑
k I′k = C′′αλ dist (z, P)−α

Thus by (7.42)

(7.44)
∣∣D(z)−α −C′′αλ(x, r) dist (z, P)−α

∣∣ ≤ Cr−α
∑

k

2−kαα(x, 2k+4r)

which is the same as (7.29) and implies (7.28). Lemma 7.26 follows. �

7.3. The distance DΣ(g(x, t)). In what follows, we return to the construction of a
bilipschitz change of variable associated to a stopping time region Θ, and give a
good evaluation of the distance DΣ(g(x, t)) associated to Σ = g(Rd), first compared
to the distance to a good plane.

We shall use the same notation as in the first part, and in particular work on Rn,
except that we use the coordinates y ∈ Rd and t ∈ Rn−d to avoid some confusion
with the previous subsection. In the present subsection, we use the distance DΣ
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associated with the surface Σ = g(Rd), where we put any Ahlfors-regular measure
σ, and we relate this to our change of variable. We no longer mention the exponent
α in the notation, both because it is fixed and we want to avoid extra confusion with
the Tolsa numbers.

Proposition 7.45. The function Φ defined by

(7.46) Φ(y, t) =

∣∣∣DΣ(g(y, t))
|t|

−Cαλσ( f (y), |t|)−1/α
∣∣∣

satisfies a Carleson condition on Ω0.

As the reader guessed, λσ is the same function λ as above, but associated to the
measure σ and the set Σ. The constant Cα is the same as above.

Later in the subsection, we will manage to apply (7.28), but for the moment we
first estimate the distance from g(y, t) to some other plane that we define now. Let
(y, t) ∈ Ω0 be given, and as always set r = |t|. Also set x = f (y) and z = g(y, t).
Choose k = k(t), as we did above, to be the largest integer such that ρk(t) , 0 (see
near the definition (6.1) of g). Let as before Tk(y) denote the tangent plane to Σk at
fk(y), and recall from (6.1) that

(7.47) z = g(y, t) =
∑
j≥0

ρk(t)
{

f j(y) + R j(y) · t
}
.

In this sum there are at most 3 terms, corresponding to j = k, k−1, k−2 (when they
are nonnegative), and we will see that these terms are almost the same. Set z′ =

fk(y) + Rk(y) · t; notice that since z′− fk(y) = Rk(y) · t is orthogonal to Tk(y) (because
Rk(y) maps (the orthogonal complement of) Rd to (the orthogonal complement of)
Tk(y),

(7.48) dist (z′,Tk(y)) = |z′ − fk(y)| = |t|.

We want to compare DΣ(g(x, t)) = DΣ(z) to dist (z′,Tk(y)). Some error terms will
come from |z − z′|, but observe that

(7.49) ψ1(y, t) := |t|−1|z − z′| ≤ |t|−1
∑

k−2≤ j≤k−1

| f j(y) − fk(y)| + |t| |R j(y) − Rk(y)|;

(by (7.47)). Notice that ψ1 satisfies a Carleson condition by our treatment of D1

from (6.11).
Next we want to use (7.48) to estimate dist (z′, P(x, r)) where P(x, r) is a good

plane to apply (7.28). More precisely, since we want to apply (7.28) to various
points, we choose for each x ∈ Σ and r > 0 a nearly optimal flat measure µx,r for
α(x, 16r) (where the α-numbers are associated to Σ and σ), and then let P(x, r) be
the support of µx,r.

We return to our initial pair (y, t), and try to estimate the distance between P(x, r)
and Tk(y). This will take some time, but we shall remember that the main property
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of P(x, r) in this respect is that

(7.50)
∫

Σ∩B(x,8r)
dist (w, P(x, r)) dσ(w) ≤ Crd+1α(x, 16r),

which as usual we obtain by testing the product of dist (w, P(x, r)) by a bump func-
tion against the difference σ − µx,r. Thus it makes sense to estimate the distance
from points of Σ ∩ B(x, 8r) to Tk(y) too.

We start with the distance from points of Σk to Tk(y). Let L be a bound for the
biLipschitz constant for f and the fk. Such a uniform bound for the fk comes from
the proof of Lemma 4.8, but if the reader does not want to believe this, there is an
easy fix explained below. Set

(7.51) ψ2(y, t) = r−1 sup
w∈Σk∩B(x,(10L)−2r)

dist (w,Tk(y));

we want to show that this is a Carleson function. For t so large that k = k(t) = 0,
Σk = Tk(y) = P0 and so ψ2(y, t) = 0. Hence we can restrict our attention to the pairs
(y, t) such that k = k(t) ≥ 1.

We start with the simpler function

(7.52) ψ3(y, t) = sup
y′∈P0∩B(y,((2L)−1rk)

rk|DRk(y′)|,

where in fact we restrict to t such that k(t) ≥ 1 (otherwise set ψ3(y, t) = 0).
To estimate ψ3(y, t), let y′ ∈ P0∩B(y, (2L)−1rk), and first assume that fk(y′) ∈ V8

k .
Then (5.14) says that rk|DRk(y′)| ≤ Cε̂k(y′), where ε̂k(y′) =

∑
l≤k 2l−kε′′l ( f (y′). But

recall that when we chose f (y′) to evaluate the ε′′l , we could in fact have chosen any
point w such that |w − f (y′)| ≤ rk/2, and in particular, since f is M-biLipschitz and
|y′ − y| < (2L)−1rk, w = f (y). Thus |DRk(y′)| ≤ Cε̂k(y) in this case. Notice also that
if fk(y) ∈ V7

k and since fk is biLipschitz, this holds for all y′ ∈ P0 ∩ B(y, (2L)−1rk).
If you do not trust this, use (4.23) to go through | f (y) − f (y′)|.

A second case is when fk(y) ∈ V11
k \V7

k ; this is a little larger than the usual dying
zone, but Lemma 4.28 still says that for a given y this happens for at most one
k. Then we use (5.9), which is valid everywhere, to get that rk|DRk(y′)| ≤ Cε on
P0 ∩ B(y, (2L)−1rk).

When fk(y) ∈ Σk \ V11
k , we return to the largest l such that fl(V11

k ), find that
Rk(y′) = Rl+1(y′), use the estimate above, and find that rk|DRk(y′)| ≤ C10l−kε on
P0 ∩ B(y, (2L)−1rk). Now we can follow our estimates for D4 (see near (6.24)-
(6.25)) and find that ψ3 satisfies the Carleson condition.

Next we use ψ3 to control ψ2. Let w ∈ Σk ∩ B(x, (10L)−2r) be given. A way
to find out where w lies is to return to u ∈ Σ0 such that fk(u) = w, take the line
segment [y, u], and follow its image by fk. Recall that x = f (y) and | f (u) − w| =
| f (u) − fk(u)| ≤ Crkε by (4.23), so |y − u| ≤ (90L)−1r ≤ (4L)−1rk because r ≤ 20rk
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by (6.3). Then by (7.51)

(7.53) |Rk(s) − Rk(y)| ≤ |s − y| r−1
k ψ3(y, t) for s ∈ [y, u].

But Rk(y) maps Rd to the vector space parallel to Tk(y), so the derivative in s ∈ [y, u]
of dist ( fk(s),Tk(y)) is at most C|Rk(s) − Rk(y)| ≤ Cψ3(y, t). Of course this distance
is null for fk(y), hence it is at most Crkψ3(y, t) at the end of the path, for w = fk(u).
That is, dist (w,Tk(y)) ≤ Crkψ3(y, t), and this proves that ψ2 ≤ Cψ3, hence ψ2

satisfies a Carleson measure estimate.
This is not over yet; now want to control the average distance from Σ to Σk, i.e.,

(7.54) ψ4(y, t) = r−d−1
∫

Σ∩B(x,(20L)−1r)
dist (w,Σk)dσ(w),

and show that

(7.55) ψ4 satisfies a Carleson estimate.

We start when r ≥ 10−2 use the fact that for w ∈ Σ, we can write w = f (u) for some
u ∈ P0, and then dist (w,Σk) ≤ |w − fk(u)| = | f (u) − fk(u)| ≤ Cε by (4.23), so that

(7.56) ψ4(y, t) ≤ Cε for |t| ≥ 10−2.

It is easy to see that (7.56) gives a bounded contribution to the Carleson norm of
ψ4(x, t)2 dxdt

|t|n−d . Otherwise, when |t| ≤ 10−2, k ≥ 1 and, since rk ≤ r ≤ 20rk by (6.3),

ψ4(y, t) ≤ Cr−d−1
k

∫
Σ∩B(x,L−1rk)

dist (w,Σk)dσ(w) ≤ Cr−d−1
k

∫
P0∩B(y,rk)

dist ( f (u),Σk)du

≤ Cr−d−1
k

∫
P0∩B(y,rk)

| f (u) − fk(u)|du ≤ Cr−d−1
k

∫
P0∩B(y,rk)

∑
l≥k

| fl+1(u) − fl(u)|du.

We take our earlier estimate for | fl+1(u) − fl(u)|, which we did when we estimated
D11 in (6.19), and which writes

(7.57) | fl+1(u) − fl(u)| ≤ Crl(ε′′l (u) + εδl(u))

where δk(u) = 1 when fl(u) ∈ V10
l \ V8

l , and δk(u) = 0 otherwise. Thus by Cauchy-
Schwarz

(7.58) ψ4(y, t)2 ≤ Cr−d
k

∑
l≥k

10l−k
∫

P0∩B(y,rk)
ε′′l (u)2 + ε2δl(u)2du,

where 10l−k = r−1
k rl. Set ψ′4(y, t) = ψ4(t, y)1k(t)≥1 (the piece that we estimate now).

We integrate (7.58) on a Carleson box B(X,R) ⊂ Rn centered at X = (x0, 0) ∈ P0,
and get∫

B(X,R)
ψ′4(y, t)2 dydt

|t|n−d ≤ C
∑
k≥1

∑
l≥k

10l−k
∫

(y,t)∈B(X,R);k(t)=k

∫
P0∩B(y,rk)

ε′′l (u)2+ε2δl(u)2 dudydt
rd

k |t|n−d
.
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Given y, u, l ≥ 1, and k ∈ [1, l], we integrate in the region where rk ≤ |t| ≤ 20rk,
where

∫
t

dt
|t|n−d ≤ C. Then we sum over y ∈ B(u, rk) and make the rd

k disappear. Then
we sum the geometric series in k, and are left with

(7.59)
∫

B(X,R)
ψ′4(y, t)2 dydt

|t|n−d ≤ C
∑

l

∫
P0∩B(x0,2R)

ε′′l (u)2 + ε2δl(u)2.

where we used the fact that |u − x0| ≤ |u − y| + |y − x0| ≤ rk + R and rk ≤ |t| ≤ R.
Notice that rl ≤ rk ≤ |t| ≤ R in the sum above; we use the Carleson measure
estimates proved in Section 6 and get less than CRd. This completes our proof of
(7.55).

We are now ready to compare P(x, r) (from (7.50)) and Tk(y), and we start with
the most interesting case when r ≤ 100 (so that rk ∼ r). Since (7.50) and (7.54) are
merely averages, we start with a Chebyshev argument to select good points ξ j of
Σ ∩ B(x, r). We assume that ψ2(y, t), ψ4(y, t) and α(x, 16r) are small, otherwise we
will be happy with a trivial estimate.

We first choose points near which we want to select these points. Lemma 6.2 in
[DT] says that in B(x, 19rk), Σk coincides with the graph over a plane P of some
Cε-Lipschitz function. Let P′ be the vector d-plane parallel to P, and choose an
orthonormal basis e1, . . . , ed of P′. Then set w j = fk(y) + (20L)−2e jrk for j ≥ 1 and
w0 = fk(y). By the Lipschitz graph description, we can find points w′j ∈ Σk such
that |w′j −w j| ≤ (200L)−2rk. Then by (7.50), (7.54), the Ahlfors regularity of Σ, and
Chebyshev, we can find points ξ j ∈ Σk, such that |ξ j − w j| ≤ (200L)−2rk, and for
which

(7.60) dist (ξ j, P(x, r)) ≤ Cα(x, 16r)rk and dist (ξ j,Σk) ≤ Cψ4(y, t).

By the definition (7.51) of ψ2 (and if ψ4(y, t) is small enough to guarantee that
dist (ξ j,Σk) ≤ (4L)−1), we even get that

(7.61) dist (ξ j,Tk(y)) ≤ Cψ4(y, t) + ψ2(y, t).

Thus we manage to find d+1 points ξi of Σ, that are sufficiently far from each other,
and that all lie very close to both P(x, r) and Tk(y). With a little bit of geometry, we
get that

(7.62) dx,10rk(P(x, r),Tk(y)) ≤ Cα(x, 16r) + Cψ2(y, t) + Cψ4(y, t);

see the discussion below (4.9) and Lemma 12.7 on page 74 of [DT]. Of course this
estimate is still valid when the right-hand side of (7.62) is large, but it is useless.

Also, we forgot the case when r ≥ 100, but then k = 0, Tk(y) = P0, the con-
struction of Σk gives dist (w, P0) ≤ Cε for every w ∈ Σk, and the same argument as
above yields

(7.63) dx,10r(P(x, r),Tk(y)) = dx,10r(P(x, r), P0) ≤ Cα(x, 16r) + Cεr−1.
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Finally we return to the point z′ of (7.48). Notice that z′ ∈ B(x, 2r) because
|z′ − fk(y)| = |t| = r (by (7.48)) and | fk(y) − x| = | fk(y) − f (y)| ≤ Cεrk ≤ Cεr (by
(4.23)). In addition,

(7.64) r−1| dist (z′, P(x, r)) − r| ≤ Cα(x, 16r)r + Cψ2(y, t) + Cψ4(y, t)r

when r ≤ 100 (by (7.48) and (7.62)), and

(7.65) r−1| dist (z′, P(x, r)) − r| ≤ Cα(x, 16r)r + Cεr−1

otherwise (by (7.63)). Let us first assume for the moment that these numbers are
small, and try to apply Lemma 7.26 to z′ and P(x, r). Notice that dist (z′, P(x, r)) ≥
r/2 directly by (7.65), but we also need to show that dist (z′, P(x, r)) ≥ 10−2r. Re-
call that

∫
Σ∩B(x,8r) dist (w, P(x, r)) dσ(w) ≤ Crd+1α(x, 16r), by (7.50); it then follows

from the Ahlfors regularity of Σ that dist (w, P(x, r)) ≤ 10−1r for w ∈ E ∩ B(x, 7r),
and since z′ ∈ B(x, 2r), that dist (z′, P(x, r)) ≥ 10−2r, as needed for (7.27). So
(7.28) holds, hence

(7.66) |DΣ(z′) −Cαλσ(x, r)−1/α dist (z, P(x, r))| ≤ Cr
∑
l≥4

2−αlα(x, 2lr)

(where we also used the fact that dist (z, P(x, r)) ≤ 3r to multiply the estimate).
Recall from (7.49) that |z − z′| = |t|ψ1(y, t) = rψ1(y, t), and since it is easy to check
that DΣ is Lipschitz, we also have

(7.67) |DΣ(z′) − |DΣ(z)| ≤ Crψ1(y, t).

We add (7.67), (7.66), and (7.65) or (7.64) and get a good control on r−1|DΣ(z) −
Cαλσ(x, r)−1/α|t||, which is the same as Φ(y, t) in (7.46).

When the controlling numbers in (7.65) are large, we just say that Φ(y, t) ≤ C.
At this point, we have a good control of Φ(y, t) by various quantities, which are

functions of (y, t), and we just need to check that they satisfy Carleson measure
estimates on Ω0.

For the functions ψi, this was proved along the way. For the α-function, it is
a function of (x, r) that satisfies a Carleson measure estimate in Σ × (0,+∞), by
the theorem of Tolsa [To] (also see Lemma 5.89 in [DFM3] for the control of the
geometric series), and it is easy to see that when we compose it with the mapping
(y, t) → (x, r) = ( f (x), |t|), we get a function of (x, t) that satisfies a Carleson esti-
mate. We are left with the last term Cεr−11r≥100, from (7.65), which also satisfies
a Carleson measure estimate by direct computation. This completes our proof of
Proposition 7.45. �

8. Surgery with DΣ and DE

In the previous section we managed to control reasonably well the effect of our
change of variable g, provided that we consider the distance DΣ = DΣ,σ associated
to an (in fact, any) Ahlfors regular measure σ on Σ.
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In the larger picture, we started from a set E, with its own Ahlfors regular mea-
sure (we shall now call it µ), and we would like to use the corresponding distance
function DE = DE,µ. Notice that both measures also depend on α, but we shall not
mention this in the notation.

It does not make sense to compare our two measures in the places where E and
Σ have nothing to do with each other, so we will only compare them in the same
region

(8.1) ΩΘ =
⋃
Q∈Θ

W(Q),

where for each Q ∈ Θ, W(Q) is the Whitney box defined by

(8.2) W(Q) =
{

x ∈ B(xQ,M0l(Q)) ; dist (x, E) ≥ M−1
0 l(Q)

}
.

As the reader may have guessed, the precise shape of ΩΘ does not matter so much,
but we probably don’t want it to be too small because this is the region where we
can play. We state the main result of this section, and then discuss.

Proposition 8.3. Suppose E is uniformly rectifiable, µ is an Ahlfors regular mea-
sure on E, Θ satisfies the conditions of Section 4 (with M large enough and ε1

small enough), and Σ = f (P0) denote the surface constructed above. Then there is
an Ahlfors regular measure σ on Σ such that

(8.4) Ψ := 1ΩΘ

∣∣∣DE,µ

DΣ,σ

− 1
∣∣∣ satisfies a Carleson measure condition on Rn \ Σ.

Here it is more convenient (or just safer) to let M0 be as large as possible, then
choose M and ε1, and do the stopping time construction accordingly. We may pay
a huge price (depending on M0), but this is more transparent.

We decided to require a Carleson measure estimate relative to Σ because Rn \Σ is
the place the where distance function D̂ below will live, and this is also the region
where we hope to use our change of variable to control operators. We could equally
prove a Carleson measure estimate relative to E, in fact with the same proof; see
the remark below (8.41).

The goal of this is to control a degenerate elliptic operator L = LE associated to
DE,µ on ΩE = Rn \ E, and we hope to compare it to an operator L̂ on ΩΣ = Rn \ Σ,
but we would like to keep the same formula on a set which is as large as possible,
so we let L̂ be associated to the distance function D̂ defined by

(8.5) D̂(z) = DE,µ(z) for z ∈ ΩΘ

and

(8.6) D̂(z) = DΣ,σ(z) for z ∈ Rn \ [Σ ∪ΩΘ].
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We do not fear a discontinuity between the two regions; our elliptic conditions
allow this. But we will need to make sure that

(8.7) C−1 dist (z,Σ) ≤ D̂(z) ≤ C dist (z,Σ)

(we will do this after (8.12)), to make sure that L̂ lies in the class of acceptable
operators studied in [DFM2]. This estimate is also reassuring, because it says that
DE,µ and DΣ,σ are equivalent on ΩΘ, which implies in particular that dist (z,Σ) ≥
C−1l(Q) on W(Q).

Then Proposition 8.3 will allow us to prove, via the change of variable g, that the
elliptic operator associated to L̂ has an absolutely continuous harmonic measure,
because of a Carleson control on |t|−1D̂ ◦ g that comes from Proposition 8.3 and
Proposition 7.45. So what will be left to do is use the fact that D̂ = DE on the
hopefully sufficiently large region ΩΘ, to get some control on LE itself.

We start our proof with some basic geometric information about E and Σ.

Lemma 8.8. Set M1 = 10−2M. Then for each Q ∈ Θ,

(8.9) M1dxQ,M1l(Q)(E,Σ) ≤ Cε.

See (3.3) for the definition of the normalized local Hausdorff distance d. As
usual, this is true if we assume that M is large enough, and ε1 is small enough,
depending on M. Also we added M1 on the left-hand side just not to lose an ad-
ditional M uselessly, but this does not matter because we always choose ε and ε1

last. Let Q ∈ Θ be given, and let P(Q) be as in (4.1) and (4.2). That is,

(8.10) dxQ,Ml(Q)(E, P(Q)) ≤ 2ε1.

We now want to prove that

(8.11) M1dxQ,2M1l(Q)(Σ, P(Q)) ≤ Cε,

and the lemma will follow. Set B(Q) = B(xQ, 3M1l(Q)) and let p ∈ P(Q) ∩ B(Q)
be given. First use (8.10) to find x ∈ E such that |x − p| ≤ CMl(Q)ε1. Set k = k(Q)
(the generation of Q and observe that x lies in the set E(k) of (4.4). Hence (by the
line below (4.4)) we can find j ∈ Jk such that |x − x j,k| ≤ 2rk. This is good, because
then Proposition 5.1 in [DT] gives a good description of Σk∩B(x j,k, 49rk) as a piece
of a Cε-Lipschitz graph over P j,k that passes within Cεrk from x j,k. Recall that we
even managed to pick planes P j,k that contain x j,k, but if P j,k was only Cεrk-close,
what we are going to say would work too. The small Lipschitz graph description
implies that every point of P j,k ∩ B(x j,k, 48rk) lies within Cεrk of Σk. By (4.23), it
also lies within εrk of Σ (recall that Σk = fk(P0) and Σ = f (P0)). Now P j,k was
chosen to be equal to P(Q j,k) for some Q j,k ∈ Θ(k) such that dist (x j,k,Q j,k) ≤ Mrk

10
(and we even had to move x j,k slightly so that P(Q j,k) goes through x j,k, but this is
not the point here), and so P(Q j,k) is quite close to P(Q) near x j,k (by (4.1) and (4.2)
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for both cubes). Consequently, p lies within CεMrk of P j,k ∩ B(x j,k, 47rk), and we
find ξ ∈ Σ such that |ξ − p| ≤ CεMrk.

Now we take ξ ∈ Σ ∩ B(Q) and try to find p ∈ P(Q) near ξ. Let x ∈ P0 be such
that ξ = f (x). The easiest case is when fk(x) ∈ V10

k , because this means that we can
find j ∈ Jk such that |x j,k − fk(x)| ≤ 10rk, and we can use the same Lipschitz graph
description of Σk ∩ B(x j,k, 49rk) as above. We find a point p′ ∈ P j,k ∩ B(x j,k, 49rk)
such that |p′ − fk(x)| ≤ Cεrk, and use the fact that P(Q j,k) is quite close to P(Q)
near x j,k to find p ∈ P(Q) such that |p − p′| ≤ CMε1rk ≤ Cεrk. Then |p − ξ| ≤
|p − p′| + |p′ − fk(x)| + | fk(x) − ξ| ≤ Cεrk by (4.23).

We are left with the case when fk(x) ∈ Σk \ V10
k . First assume that fl(x) ∈ V10

l
for some l ∈ [0, k − 1], and take l as large as possible. Then take j ∈ J(l) so that
| fl(x) − x j,l| ≤ 10rl. Again use the good Lipschitz description of Σl ∩ B(x j,k, 49rl)
provided by Proposition 5.1 in [DS], or the case k = l of the description above:
there are points of P j,l, and then points of E, that lie at distance less than Cεrl from
fk(x). Use this to pick w ∈ E∩B( fk(x), rl+1). By definition of l, w ∈ Rn \V10

l+1, which
implies that x < E(l + 1). In other words, dist (x,R) ≥ Mrl

10 for every R ∈ Θ(l + 1).
Since |w − ξ| = |w − f (x)| ≤ |w − fl(x)| + Cεrl ≤ 2rl+1, we see that dist (ξ,R) ≥ Mrl

11
for every R ∈ Θ(l + 1). We apply this to the ancestor of Q of generation l, and find
that dist (ξ,R) ≥ Mrl

11 ≥
10Mrk

11 , which contradicts our assumption that ξ ∈ Σ ∩ B(Q).
If we cannot find l < k such that fl(x) ∈ V10

l , then fk(x) = f0(x) = x ∈ P0 \ V10
0 ,

and as before dist (x,Q0) ≥ M/11. This is also impossible because ξ ∈ B(Q). This
completes our proof of (8.11), and the lemma follows. �

A simple consequence of this is the following improvement of (8.7). We claim
that

(8.12) (1 −CM0ε) dist (z, E) ≤ dist (z,Σ) ≤ (1 + CM0ε) dist (z, E) for z ∈ ΩΘ.

Indeed let z ∈ ΩΘ and let Q ∈ Θ be such that z ∈ W(Q). Let w ∈ E be such
that |w − z| = dist (z, E); observe that dist (z, E) ≤ |z − xQ| ≤ M0l(Q) by (8.2),
hence |w − xQ| ≤ 2M0l(Q) < M1l(Q) if M is large enough, Lemma 8.8 applies
to w and gives dist (w,Σ) ≤ Cεl(Q), so dist (z,Σ) ≤ dist (z, E) + Cεl(Q) ≤ (1 +

CM0ε) dist (z, E) because dist (z, E) ≥ M−1
0 l(Q) by (8.2). Now let ξ ∈ Σ be such

that dist (z,Σ) = |z − ξ|. If |z − ξ| ≥ M0l(Q), the first inequality in (8.12) is trivial.
Otherwise, we can apply Lemma 8.8 to ξ and get that dist (ξ, E) ≤ Cεl(Q), hence
dist (z, E) ≤ dist (z,Σ) + Cεl(Q) ≤ dist (z,Σ) + CM0ε dist (z, E) and the first part of
(8.12) follows.

Notice that (8.7) follows from this, since DE(z) is equivalent to dist (z, E) and
DΣ(z) is equivalent to dist (z, E).

Our next task is to construct Whitney cubes (in fact, pseudocubes) in E, which
we will use to define the measure σ on Σ that approximates µ. For this we will use
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the somewhat classic distance to small cubes of Θ, defined by

(8.13) dΘ(z) = inf
Q∈Θ

( dist (z,Q) + l(Q))

for z ∈ Rn. Notice that dΘ(z) ≤ 1 + dist (z,Q0) (because we can try Q = Q0 ∈ Θ),
and dΘ is 1-Lipschitz. Associated to dΘ are a closed set

(8.14) F =
{

z ∈ E ; dΘ(z) = 0
}

and a decomposition of E \ F into Whitney cubes that we describe now. We give
ourselves a small constant τ ∈ (0, 10−2), and we denote by R the collection of
maximal cubes R ∈ D (for the inclusion as a first criterion, and then the smallest
generation if a same set corresponds to cubes of different generations), with the
property

(8.15) l(R) ≤ τdΘ(xR).

These cubes are disjoint (by maximality), they do not meet F because it is easy to
see that for R ∈ R,

(8.16) dΘ(x) ≥ (2τ)−1l(R) for x ∈ R,

because dΘ is 1-Lipschitz. The maximality of R implies that its parent S does not
satisfy (8.15), hence 10l(R) = l(S ) ≥ τdΘ(xS ), and since

|dΘ(xS ) − dΘ(xR)| ≤ |xS − xR| ≤ diam(S ) ≤ 20l(R) ≤ 20τdΘ(xR) ≤ dΘ(xR)/5,

we get that

(8.17) l(R) ≥ 10−1τdΘ(xS ) ≥ 20−1τdΘ(xR) if R ∈ R.

We claim that

(8.18) E \ F is the disjoint union of the cubes R,R ∈ R.

The fact that R ⊂ E\F comes from (8.16). Conversely, if x ∈ E\F, then small cubes
that contain x satisfy (8.15), and are contained in a cube of R (because large cubes
Q fail (8.15), because dΘ(xQ) ≤ dist (xQ,Q0)+l(Q0) ≤ dist (x,Q0)+2l(Q)+l(Q0) <
τ−1l(Q) for l(Q) large). Finally, the cubes of R are disjoint by maximality.

We need a little more geometric information on dΘ and F before we start.

Lemma 8.19. Set B0 = B(xQ0 ,M0 + 10). Then

(8.20) dist (z, E) ≤ CεdΘ(z) for z ∈ Σ ∩ B0,

(8.21) dist (z,Σ) ≤ CεdΘ(z) for z ∈ E ∩ B0,

and

(8.22) F ⊂ E ∩ Σ ∩ Q0.
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We start with the easy part of (8.22). If dΘ(z) = 0, then we can find cubes Q ∈ Θ

such that dist (x,Q) + l(Q) is arbitrarily small, and since Q ⊂ Q0 ⊂ E, we get that
z ∈ E ∩ Q0.

Next let z ∈ B0 be given, pick δ > dΘ(z) close to dΘ(z), and choose a first cube
Q1 ∈ Θ such that dist (z,Q1) + l(Q1) < δ. Then let Q denote the element of Θ that
contains Q1 and whose generation k = k(Q) is the smallest possible, but with the
constraint that l(Q) ≤ δ. Such a cube Q exists, since Q1 satisfies the constraint. First
assume that l(Q) < 1. Then the parent of Q does not satisfy the constraint, even
though it lies in Θ, and this forces l(Q) ≥ δ/10. Obviously dist (z, xQ) ≤ Ml(Q), so
Lemma 8.8 says that

(8.23) dist (z, E) ≤ Cεl(Q) if z ∈ Σ, and dist (z,Σ) ≤ Cεl(Q) if z ∈ E.

If instead l(Q) = 1, i.e., Q = Q0, then dist (z, xQ) ≤ Ml(Q) in this case too, because
z ∈ B0, and (8.23) holds as well.

Recall that l(Q) ≤ δ and we can pick any δ > dΘ(z); (8.20) and (8.21) follow.
Also, in the case when z ∈ F, we already know that x ∈ E, so (8.23) says that
dist (z,Σ) is as small as we want. Hence z ∈ Σ. The lemma follows. �

We are now ready to define a measure σ on Σ that approximates µ reasonably
well. Since we have a nice set F ⊂ E ∩Σ, we do not change the measure there, and
set

(8.24) σ0 = µ|F .

Next we consider the set

(8.25) R0 =
{

R ∈ R ; dist (R,Q0) ≤ 1
}
,

and to simplify some of the notation, enumerate R0 as a collection {R j}, j ∈ J . We
want to replace each µ j = µ|R j , j ∈ J , by a measure σ j with the same mass. Set

(8.26) l j = l(R j) and x j = xR j .

We want to take

(8.27) Σ( j) = Σ ∩ B(x j,M2l j),

where M2 = 10−1τ−1 ≥ 10, and

(8.28) σ j = a jH
d
|Σ( j), with a j =

µ(R j)
Hd(Σ( j))

,

but we need to check some things. First observe that

(8.29) l j ≤ 2τ inf
z∈R j

dΘ(z) ≤ 2τ(1 + dist (R j,Q0) ≤ 4τ

by (8.16) and (8.25). Pick a first cube Q′ ∈ Θ such that

(8.30) l(Q′) + dist (x j,Q′) ≤ 2dΘ(x j) ≤ 40τ−1l j.
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Set Q j = Q′ if l(Q′) ≥ 10l j, and otherwise let Q j be the ancestor of Q′ such that
l(Q j) = 10l j; notice that Q j ∈ Θ (by heredity and because (8.29) says that 10l j < 1),
and

(8.31) dist (x j,Q j) ≤ 40τ−1l j and 10l j ≤ l(Q j) ≤ 40τ−1l j.

If M is large enough (compared to τ−1), we may apply Lemma 8.8, with the cube
Q j, and to the point x j ∈ E. We find ξ j ∈ Σ such that |ξ j − x j| ≤ l j, and this is good
because this implies that

(8.32) Hd(Σ( j)) ≥ C−1ld
j .

We also need to know that

(8.33) the Σ( j) have bounded overlap and do not meet F.

and indeed, if ξ ∈ Σ( j), then

(8.34) |ξ − x j| ≤ M2l j ≤ M2τdΘ(x j) = 10−1dΘ(x j)

by (8.15) and the definition of M2, hence

(8.35) 0 <
9

10
dΘ(x j) ≤ dΘ(ξ) ≤

11
10

dΘ(x j) for ξ ∈ Σ( j).

Hence ξ < F, and also the size of dΘ(ξ) determines roughly the generation of j;
(8.33) follows at once. We complement the measures σ j by

(8.36) σ∞ = Hd
|Σ(∞), with Σ(∞) =

{
ξ ∈ Σ ; dist (ξ,Q0) ≥ 1/2

}
.

Finally we set

(8.37) σ = σ0 + σ∞ +
∑
j∈J

σ j.

It will be good to know that

(8.38) σ is an Ahlfors regular measure with support Σ,

with the AR constant depending on n, d,C0 only, provided that M is sufficiently
large and ε0 is sufficiently small. The verification is twofold. First we check that
the density f of σ with respect to Hd is bounded. On F, this is because µ is
Ahlfors regular, and the measures σ j and σ∞ do not charge F. Concerning the σ j,
their density a j is bounded, by (8.32) and because µ(R j) ≤ Cl j, and then the global
density is bounded because of (8.33). As for σ∞, its density is 1.

Conversely, f is bounded from below on F (by (8.24)) and on Σ(∞). Now let
ξ ∈ Σ \ (F ∪ Σ(∞)) be given. Thus 0 < dΘ(ξ) < 3/2 (because dist (ξ,Q0) ≤ 1/2).
Let Q′ ∈ Θ be such that l(Q′) + dist (ξ,Q′) ≤ 2dΘ(ξ). Keep Q = Q′ if l(Q′) ≥
dΘ(ξ)/100, and otherwise replace it with an ancestor Q such that dΘ(ξ)/100 ≤
l(Q) ≤ dΘ(ξ)/10. Notice that Q ∈ Θ because l(Q) ≤ 1. Thus

(8.39) dist (ξ,Q) ≤ 2dΘ(ξ) and dΘ(ξ)/100 ≤ l(Q) ≤ 2dΘ(ξ).
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We can apply Lemma 8.8 to ξ, and find x ∈ E such that

(8.40) |x − ξ| ≤ Cεl(Q) ≤ CεdΘ(ξ);

then dΘ(x) ≥ dΘ(ξ)/2, x ∈ E\F, there is a cube R ∈ R that contains x, dist (R,Q0) <
1 because x ∈ R and dist (ξ,Q0) ≤ 1/2, and hence R is one of the R j. In addition
l j ≤ τdΘ(x j) by (8.15), so dΘ(x) ≤ dΘ(x j) + l j ≤ 2dΘ(x j) (by (2.2)), dΘ(ξ) ≤
2dΘ(x) ≤ 4dΘ(x j) ≤ 80τ−1l j by (8.17), and (8.40) says that ξ lies well inside Σ( j).
The coefficient a j is also bounded from below, so f ≥ a j ≥ C−1 near ξ j; (8.38)
follows.

We are now about ready to prove that Ψ in (8.4) satisfies a Carleson measure
condition. By (8.12), DE,µ

DΣ,σ
is bounded and bounded from below on ΩΘ (because

DE,µ is equivalent to the distance to E, and DΣ,σ to the distance to Σ), so it is
enough to prove that Ψ1 satisfies a Carleson measure condition on ΩΣ = Rn \ Σ,
where

(8.41) Ψ1(z) := 1ΩΘ
dist (z, E)−1

∣∣∣DE,µ(z) − DΣ,σ(z)
∣∣∣.

Notice that we chose dist (z, E)−1 because it seems simpler, but dist (z,Σ)−1 would
have been equivalent. This remark also implies that although we decided to ad-
vertise a Carleson measure condition on ΩΣ, we would obtain a Carleson measure
condition on ΩE = Rn \ E just the same way.

Given the definition of DE,µ(z) and DΣ,σ and the same equivalences as above,
it will be equivalent, and simpler, to prove that Ψ2 satisfies a Carleson measure
condition, where

(8.42) Ψ2(z) := 1ΩΘ
dist (z, E)α

∣∣DE,µ(z)−α − DΣ,σ(z)−α
∣∣.

So we gives ourselves z ∈ ΩΘ, and we want to estimate

∆(z) := dist (z, E)−αΨ2(z) =
∣∣DE,µ(z)−α − DΣ,σ(z)−α

∣∣
=

∣∣∣ ∫ |z − y|−d−α[dµ(y) − dσ(y)]
∣∣∣.(8.43)

Recall that µ j = µ|R j; let us also set µ0 = µ|F and

(8.44) µ∞ = µ|E(∞), with E(∞) = E \
(

F ∪
⋃
j∈J

R j

)
,

so that µ =
∑

j µ j (a sum that includes j = 0 and j = ∞). Naturally we write
∆(z) ≤

∑
j ∆ j(z), where

(8.45) ∆ j(z) =

∣∣∣ ∫ |z − y|−d−α[dµ j(y) − dσ j(y)]
∣∣∣.
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A priori the sum contains 0 as well as ∞, but the term with j = 0 drops, because
µ0 = σ0. We now give an estimate on ∆ j(z) for j ∈ J . Set

(8.46) d j(z) = dist (z,R j ∪ Σ( j)).

We claim that

(8.47) d j(z) ≥ C−1 l j, where we may take C = max(M2, 3τ(M0 + 1)M0) > 0.

Me may assume that d j(z) ≤ M2l j, because otherwise (8.47) holds. Then |z − x j| ≤

2M2l j (see (8.27) and the definition of M2 below (8.27)). Hence

dΘ(z) ≥ dΘ(x j) − 2M2l j ≥ (1 − 2M2τ)dΘ(x j) ≥ dΘ(x j)/2 ≥ (2τ)−1l j

by (8.15), the definition of M2 below (8.27), and (8.15).
Let Q ∈ Θ be such that z ∈ W(Q); then dΘ(z) ≤ l(Q) + dist (z,Q) ≤ (M0 + 1)l(Q)

by the definition (8.2), and now

l j ≤ 2τdΘ(z) ≤ 2τ(M0 + 1)l(Q) ≤ 2τ(M0 + 1)M0 dist (z, E)

by (8.2). On the other hand,

d j(z) = dist (z,R j ∪ Σ( j)) ≥ dist (z, E ∪ Σ) ≥
2
3

dist (z, E)

by (8.12); our claim (8.47) follows.
In the next computations, we no longer record the dependence of our various

constants on M0, M2, or τ. We now use (8.47) to prove that

(8.48) ∆ j(z) ≤ Cµ(R j)l j[l j + d j(z)]−d−α−1 ≤ Cld+1
j [l j + d j(z)]−d−α−1.

Set δ j = diam(Σ( j) ∪ R j) ≤ Cl j. When d j(z) ≤ 2δ j, we just use (8.47) and the fact
that the total masses of σi and µ j are µ(R j) ≤ Cld

j to get the result. Otherwise, set
a0 = |z− xi|

−d−αµ(R j), a1 =
∫
|z− y|−d−αdσ j(y), and a2 =

∫
|z− y|−d−αdµ j(y). Notice

that

(8.49) a1 − a0 =

∫
Σ( j)

[
|z − y|−d−α − |z − xi|

−d−α
]
dµ j(y),

then observe that for y ∈ Σ( j),∣∣∣|z − y|−d−α − |z − xi|
−d−α

∣∣∣ ≤ Cδ j|z − xi|
−d−α−1

(differentiate the integrand along the line segment [y, xi]); this yields

|a1 − a0| ≤ δ j|z − xi|
−d−α−1||σ j|| ≤ Cl jµ(R j)d j(z)−d−α−1.

We have the same estimate on |a2 − a0|, and (8.48) follows.

At this point we have enough information to prove the desired Carleson bound
on Ψ3. The most important part will come from the sum over j ∈ J . Each ∆ j gives
a bump function with an L2 norm controlled by µ(R j), and sufficiently localized
or smooth for the different pieces to be almost orthogonal. The computations that
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follow are reminiscent of other computations done in a similar context, but it seems
that we need to be courageous and do them.

We take a Carleson box B = B(X,R) centered on Σ (but E would give the same),
and want to prove that

(8.50) J :=
∫

z∈ΩΘ∩B

∣∣∣∑
j

∆ j(z)
∣∣∣2δ(z)d−n+2αdz ≤ CRd.

where we set δ(z) = dist (z, E) (but dist (z,Σ) is equivalent on ΩΘ), and the extra
2α come from the fact that we have to multiply

∑
j ∆ j(z)) by δ(z)α before checking

the Carleson condition; see (8.42).
We may assume that R ≤ 1, because ΩΘ ≤ B(xQ0 ,M0) anyway. Also we first

concentrate on

(8.51) J1 :=
∫

z∈ΩΘ∩B

∣∣∣ ∑
j∈J(B)

∆ j(z)
∣∣∣2δ(z)d−n+2αdz,

where J(B) is the collection of j ∈ J for which R j ⊂ CB. The value of C will be
decided when we deal with the rest of the sum.

We write J1 ≤ 2
∑

i

∑
j J(i, j), where it is enough to sum on the pairs such that

li = l(Ri) ≤ l j = l(R j), and

J(i, j) =

∫
z∈ΩΘ∩B

∆i(z)∆ j(z)δ(z)d−n+2αdz

≤ C
∫

z∈ΩΘ∩B

ld+1
j

[l j + d j(z)]d+α+1

ld+1
i

[li + di(z)]d+α+1 δ(z)d−n+2αdz.(8.52)

Recall that d j(z) = dist (z,R j ∪ Σ( j)), but in fact here (8.12) says that d j(z) ≥
1
2 dist (z,Σ ∪ E) ≥ 1

2δ(z). Then (d j(z) + l j)−1 ≤ d j(z)−1 ≤ 2δ(z)−1. We may use this
to replace a negative power of (d j(z) + l j) by the same power of δ(z) and simplify
some things. And we can do the same thing with i. Set

(8.53) ri(z) =
ld+1
i

[li + di(z)]d+1 ≤ 1;

we first use the fact that

(8.54)
ld+1
i

[li + di(z)]d+α+1 = ri(z)[li + di(z)]−α ≤ 2αri(z)δ(z)−α

to get that

(8.55) J(i, j) ≤ C
∫

z∈ΩΘ∩B

ld+1
j

[l j + d j(z)]d+α+1 ri(z) δ(z)d−n+αdz.

Next we divide the integral into annuli A j,k where d j(z) ∼ 2kl j, and get contributions
J(i, j, k). The smallest annulus should be replaced by a ball, but we still get the
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same estimate, namely

(8.56) J(i, j, k) ≤ C2−k(d+α+1)l−αj

∫
z∈ΩΘ∩B∩A j,k

ri(z) δ(z)d−n+αdz.

It will be good to know that

(8.57)
∫

Br

δ(z)d−n+αdz ≤ Crd+α

when Br is a ball of radius r centered on Σ (this is just easier). This estimate is very
easy when Σ is a d-plane; the main point then is that the integral in the direction
orthogonal to Σ converges because of the additional exponent α. When Σ, as here, is
bilipschitz-equivalent to a d-plane, this is as easy because we can change variables.
But this would also be true with E, with just a bit more work, because it is Ahlfors
regular and the measure of tubes of width tr near E are easy to estimate.

Denote by I(i, j, k) the integral on the right of (8.56) and further cut the domain
of integration into annuli Al where di(z) ∼ 2lli. We get integrals

(8.58) I(i, j, k, l) ≤
∫

A j,k∩Al

ri(z)δ(z)d−n+αdz ≤ C2−l(d+1) min[(2lli)d+α, (2kl j)d+α],

where the first piece is an estimate of ri(z) and the second one comes from (8.57),
with the two different choices of diameter. For strategic reasons (we do not want
to distinguish between α ≤ 1 and α > 1, we choose τ ∈ (0, 1], smaller than α,
and replace 2−l(d+1) with 2−l(d+τ) in (8.58). No relation with our previous constant τ,
though; this one will just be here for the duration of the computation.

We need to be careful about the region of integration. Set di, j = dist (Ri,R j), and
first asume that di, j ≤ C2kl j. In this case A j,k stays within C2kl j of Ri, and we can
content ourselves with l such that 2lli ≤ C2kl j, because for larger ones Al does not
meet A j,k. Then use the first option in (8.58) and observe that

(8.59) I(i, j, k) ≤
∑

l

I(i, j, k, l) ≤ C
∑

l

2−l(d+τ)(2lli)d+α = C
∑

l

2l(α−τ)ld+α
i

and the largest terms are when l is as large as possible, i.e., when 2lli ∼ 2kl j. This
yields I(i, j, k) ≤ (2kl j/li)α−τld+α

i and

(8.60) J(i, j, k) ≤ C2−k(d+α+1)l−αj I(i, j, k) ≤ C2−k(d+τ+1)l−τj ld+τ
i .

Now assume that di, j ≥ C2kl j. If C was chosen large enough, all the points of the
annulus A j,k lie at distance roughly di, j from Ri, which means that we just need
to sum over the few l such that 2lli ∼ di, j. For all these l, it is actually better
to use the second option in (8.58), which yields I(i, j, k, l) ≤ C2−l(d+τ)(2kl j)d+α ≤
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C(di, j/li)−d−τ(2kl j)d+α and then

(8.61)
J(i, j, k) ≤ C2−k(d+α+1)l−αj I(i, j, k) ≤ C2−k(d+α+1)l−αj (di, j/li)−d−τ(2kl j)d+α

≤ C2−kd−d−τ
i, j ld+τ

i ld
j .

Now we have to sum all these numbers. We start with the first case, and sum first
over i ∈ J such that li = 2−ml j for a given m ≥ 0. These cubes lie in a ball of size
roughly 2kl j (because di, j ≤ C2kl j), so there is roughly (2kl j/(2−ml j))d = 2(m+k)d of
them. We get a sum bounded by

C2(m+k)d2−k(d+τ+1)l−τj (2−ml j)d+τ

The exponent for m is −τ, so we may sum over m and get C2kd2−k(d+τ+1)ld
j . Then

we sum over k and get Cld
j ≤ Cµ(R j). Then we sum over j, recall that the R j are

disjoint and we only sum over those that are contained in CB, and get less than
CRd, as needed.

Now we consider the second case and sum the terms from (8.61). Fix j, k, and
m ≥ 0, and sum over i such that li = 2−ml j. Further decompose into annuli where
di, j ∼ 2n2kl j. The number of cubes Ri in the annulus is less than C2(n+k+m)d, which
gives a contribution smaller than

C2(n+k+m)d2−kd−d−τ
i, j ld+τ

i ld
j = C2(n+k+m)d2−k(2n2kl j)−d−τ(2−ml j)d+τld

j

The power for m is −τ, so we sum over m and forget about it; we are left with
C2−k2−τ(n+k)ld

j . We sum over k, n, get less than Cld
j , which as before we can sum

over j to get at most CRd.
We are now finished with J1, but we still need to estimate

(8.62) J2 =

∫
z∈ΩΘ∩B

∣∣∆̃(z)
∣∣2δ(z)d−n+2αdz,

where ∆̃ is the remaining part of ∆, i.e.,

(8.63) ∆̃(z) =
∑

j∈Je∪{∞}

∆ j(z),

where Je is the set of indices j ∈ J such that R j is not contained in CB.
We start with Je. Let j ∈ J be given. One possibility is that l(R j) ≥ R; then

(8.47) implies that dist (z,R j ∪ Σ( j)) ≥ C−1R. Otherwise, and if C is chosen large
enough, the fact that R j is not contained in CB implies that R j ∪Σ( j) does not meet
2B, and hence dist (z,R j ∪ Σ( j)) ≥ R.

Now set µe =
∑

j∈Je
[µ j − σ j], and observe that

(8.64) ∆e(z) :=
∑
j∈Je

∆ j(z)
∫
|z − y|−d−αdµe(y)
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is bounded by CR−α, so

(8.65)
∫

z∈ΩΘ∩B

∣∣∆e(z)
∣∣2δ(z)d−n+2αdz ≤ CR−2α

∫
z∈B

δ(z)d−n+2αdz ≤ CRd,

as needed. We are left with ∆∞. We need to control

(8.66) J3 =

∫
z∈ΩΘ∩B

∣∣∆∞(z)
∣∣2δ(z)d−n+2αdz.

Observe that

(8.67) dist (z,Σ(∞) ∪ E(∞)) ≥ C−1

because either z ∈ W(Q) for a cube Q such that diam(W(Q)) ≤ 10−1, and then
(8.67) holds because Q is centered on Q0 and Σ(∞) ∪ E(∞) is far from Q0 (see
the definitions and (8.36) and (8.44)), or else (8.67) comes directly from (8.2) and
(8.12).

Once we know (8.67), we see that ∆∞(z) ≥ C−1 and (8.66) follows as for ∆e.
This concludes our proof of Proposition 8.3. �

9. Construction of the extrapolation saw-tooth region and related results for
the harmonic measure based on Sections 4–8,

9.1. Collecting the results of Sections 4–8. In this section we summarize the
results of Sections 4–8 in application to the particular stopping time region which
we will use for the extrapolation procedure in the forthcoming discussion. At this
point let us start by recalling Tolsa’s α-numbers [To], which give a good control on
sums of squares of local Wasserstein distances to flat measures, for every Ahlfors-
regular measure on a uniformly rectifiable set.

First, recall the Tolsa’s α-coefficients defined in (7.8). Fix some M > 0 which
will eventually be chosen sufficiently large. Given a d-dimensional Ahlfors regular
set E and an Ahlfors regular measure µ on E, equipped with the usual dyadic grid
D = D(E) (see Section 3), we denote

α(Q) := α(xQ,M l(Q)).

Recall the notion of uniform rectifiability from Definition 1.4. In Theorem 1.2,
[To], Tolsa proves the following result (a modification of which corresponding to
balls rather than dyadic cubes we already used in Section 7).

Theorem 9.1. For every uniformly rectifiable set E, every Ahlfors regular measure
µ on E, and every dyadic cube R ∈ D(E),

(9.2)
∑

Q∈D(R)

α(Q)2µ(Q) ≤ Cµ(R)d,

where the constant C depends on M, n, d, C0, and the UR constants of µ.
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Strictly speaking, [To] defines α(Q) slightly differently, indexed by the dyadic
cubes of Rn rather than (pseudo-)dyadic cubes of E and using M = 3, but pos-
sibly adjusting the values of M (say, directly in the proof), the two statements
are equivalent. Indeed, every B(xQ,M l(Q)) for Q ∈ D(E) is contained in some
B(xQ′ , 2M l(Q′)) for Q′ ∈ D(Rn) with l(Q′) ≈ l(Q) and the number of different Q’s
corresponding to the same Q′ is uniformly bounded.

Now let us return to the construction of a stopping time region.

Definition 9.3. Let E be a d-dimensional Ahlfors regular set and let µ be an Ahlfors
regular measure on E, equipped with the usual dyadic grid D = D(E). Fix some
ε0 > 0, δ0 > 0, and Q0 ∈ D. Then the stopping time region Θ = Θε0,δ0(Q0) is
constructed as follows (cf. the procedure in Section 3). We start from the top cube
Q0, and decide to remove a cube Q ∈ D(Q0), as well as all its descendants, as soon
as

(9.4) either α(Q) > ε0 or Jα(Q) :=
∑

k(Q0)≤k≤k(Q)

α(Rk(Q))2 ≥ δ0.

Here, as before, for k(Q0) ≤ k ≤ k(Q), we denote by Rk(Q) the cube of Dk that
contains Q. The remaining collection of cubes will be referred to as Θ = Θε0,δ0(Q0).
For a fixed M0 > 0 a saw tooth region based on Θ is, as before, ΩΘ defined in (8.1)–
(8.2).

It has become customary to also remove the siblings of any cube Q that we
remove as above, because this gives a little more regularity to the decomposition
of D into stopping time regions like Θ, and this costs essentially nothing. Here we
do not need this because of our specific description, but it would not hurt either.

It is convenient to write D(Q0) \ Θ as ∪Q j∈FD(Q j) where F = {Q j} j is a disjoint
collection of cubes Q j ∈ D(Q0) maximal under our stopping time procedure. That
is, the collection F = {Q j} j consists exactly of maximal cubes Q ⊂ Q0 satisfying
(9.4) and the entire collection of all removed cubes (that is, cubes of F and its
descendents) is then ∪Q j∈FD(Q j).

Remark 9.5. At this point and throughout Section 9 we assume that F , {Q0}, for
otherwise Θ = ø and there is no Σ to be constructed.

We remark also that we do not require Q0 ∈ D0 (i.e., k(Q0) = 0 hereafter). This
was often an assumption in previous chapters but the corresponding results rescale
easily – we will mention this in due time.

We shall now collect results from Sections 4–8, to arrive at the following.

Theorem 9.6. Let E be a d-dimensional Ahlfors regular set and µ be an Ahlfors
regular measure on E. Then for M0 > 1 large enough depending on n, d,C0, M > 1
large enough depending on n, d,C0,M0, and ε0, δ0 > 0 small enough depending on
n, d,C0,M0,M, for any Q0 ∈ D(E) and the associated Θ = Θε0,δ0(Q0) built as in
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Definition 9.3, there exists a d-Ahlfors regular set Σ ⊂ Rn and a d-Ahlfors regular
measure σ supported on Σ with the following properties:

(1) for any α > 0 the harmonic measure associated to Lσ = − div D−(n−d−1)
σ ∇,

with

(9.7) Dσ(X) =
{∫

Σ

|X − y|−d−αdσ(y)
}−1/α

,

is A∞ with respect to σ;
(2) for any α > 0 the harmonic measure associated to L̂ = − div D̂−(n−d−1)∇,

with D̂ defined in (8.5)–(8.6), is A∞ with respect to σ.

If M0,M are chosen large enough and ε0, δ0 are chosen small enough as postulated
above, the A∞ constants of ωLσ and ωL̂ and the Ahlfors regularity constant of σ
depend only on n, d,C0, α.

Proof. At this point the proof is a collection of results from Sections 4–8.
First of all, since the assumptions and results are scale invariant, we assume

without loss of generality that Q0 ∈ D0.
Going further, our stopping time region falls under the scope of Sections 4–8.

Indeed, the list of restrictions on Θ in Sections 4–8 is exhausted by two properties,
(3.4) and (3.9). At the same time, as pointed out in Section 3, the numbers α(Q)
control the properties (3.4) and (3.9). To be precise, if Jα(Q) ≤ δ0 and we use a
suitable fixed multiple of M in place of M in the definition of Jα(Q), then J(Q) ≤ δ1,
with δ1 being a fixed multiple of δ0. This is due to (7.10) and the fact that α numbers
control (bilateral) β1 numbers proved in Lemma 3.2 in [To]. Furthermore, bilateral
β1 numbers control powers of bilateral β∞ numbers (see [DS], p. 27) and hence,
slightly adjusting the choice of M as above, similar considerations assure that the
condition α(Q) ≤ ε0 implies (3.4) with ε1 being a fixed multiple of a power of ε0.
Here, the power depends on the dimension only and by a “fixed multiple” we mean
multiplication by a numerical constant which is allowed to depend on dimension
only.

Thus, we can follow the construction of the closed set Σ ∈ Rn through Sec-
tions 4–8. According to Lemma 4.8, if ε0 (and hence, ε1) is small enough, there
exists a closed set Σ ∈ Rn and g : Rn → Rn, mapping Rd to Σ, bilipschitz, with
Lipschitz constants depending on n, d,C0, δ0. Hidden in this statement is the de-
pendence on choices of M0 and M as well (as the choice of ε0 ultimately depends
on them) but all this is harmless. We remark that since g is bilipschitz, Σ is d-
Ahlfors regular, with constants depending on the same parameters as the biLips-
chitz constant for g. Furthermore, by Proposition 6.4 the matrix J = Dg Q has the
a form (6.5), where A1 is bounded and invertible by comment before the proof of
Lemma 6.36.
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Recalling that the Rk(t)(x) are isometries, it follows that

(9.8) A(x, t) = | det(J(x, t))|(J(x, t)−1)T J(x, t)−1

has the same structure as J (with the same control of the Carleson and L∞ norms
of its components), due to Lemma 6.36 That is,

(9.9) A(x, t) =

(
A1(x, t) C2(x, t)
C3(x, t) In−d + C4(x, t)

)
,

where C2, C3, and C4 are bounded (with an L∞ constant which goes to 0 as ε0 → 0)
and satisfy Carleson measure conditions (with a constant which goes to 0 as δ0 →

0). Also, if δ0, ε0 are small enough (depending on n, d,C0,M0,M only), then A1

and A are bounded and invertible, with uniform bounds.
At this point we introduce the d-dimensional Ahlfors regular measure σ on Σ,

with a uniform control on the AR constant and good approximation properties,
which has been constructed in Section 8 (see (8.38)), and use it to define the two
matrices
(9.10)

Aσ(x, t) :=
(

|t|
Dσ(g(x, t))

)n−d−1

A(x, t) and Â :=
(

|t|

D̂(g(x, t)

)n−d−1

A(x, t),

defined for (x, t) ∈ Rn. These define degenerate elliptic operators on Rn \ Rd, and
we want to show that they satisfy the conditions imposed in Theorem 2.15.

First we observe that |t|
Dσ(g(x,t)) and |t|

D̂(g(x,t)
are both bounded from above and below

on Rn \ Rd and hence,A and Â are bounded and elliptic. Next, let us write

(9.11) Aσ(x, t) =

(
|t|

Dσ(g(x, t)

)n−d−1

A(x, t)

=

(
|t|

Dσ(g(x, t)

)n−d−1(
A1(x, t) 0

0 In−d

)
+

(
|t|

Dσ(g(x, t)

)n−d−1( 0 C2(x, t)
C3(x, t) C4(x, t)

)
.

The second term satisfies the same Carleson measure conditions as the original
C j’s, j = 2, 3, 4, since the multiplicative factor is bounded from above and below.
The multiple of A1 is harmless and anyway we did not impose any specific con-

ditions on A1. It remains to analyze
(

|t|
Dσ(g(x,t)

)n−d−1
In−d. Turning to this task, we

recall that according to Proposition 7.45

(9.12)
∣∣∣Dσ(g(y, t))

|t|
−Cαλσ( f (y), |t|)−1/α

∣∣∣
satisfies a Carleson condition on Rn \ Rd. Since both Dσ(g(y,t))

|t| and λσ( f (y), |t|) are
bounded from above and below, applying the fundamental theorem of calculus to
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s 7→ s−(n−d−1), we deduce that

(9.13)
∣∣∣ ( |t|

Dσ(g(y, t))

)n−d−1

−C′αλσ( f (y), |t|)
n−d−1
α

∣∣∣
satisfies a Carleson condition on Rn \Rd. Thus, a multiple of In−d by the expression
in (9.13) can be absorbed into C4 and we are left with

C′αλσ( f (y), |t|)
n−d−1
α =: b.

Since λ is bounded from above and below, the condition (2.17) is verified. On the
other hand, (2.18) follows immediately from (7.4), and this finishes the argument
for Lσ.

At this point we can apply Theorem 2.15 to the operator Lσ associated to Aσ,
and get that its harmonic measure is A∞ with respect to the Lebesgue measure on
Rd. But this operator is conjugated to Lσ by the bilipschitz mapping g (see for
instance Lemma 6.17 in [DFM3]), so the A∞ result for Lσ follows.

For L̂, we proceed similarly with Â, write |t|
D̂

= Dσ

D̂
|t|

Dσ
and use an argument

analogous to (9.11)–(9.12) along with Proposition 8.3 to conclude. �

9.2. Further geometric constructions: replacement sets, sawtooth domains,
and projections. To set up the extrapolation procedure, we rest on the strategy
pioneered by [HM]. However, a large portion of our work happens on replacement
sets rather than saw-tooth domains, and the resulting geometric set up is necessarily
different.

Let us start recalling (and adapting to our scenario) the definitions of the dyadic
saw-tooth domains from [HM] and [MZ]. These are morally similar to the domains
defined in (8.1), but a more precise geometric structure will be helpful below. Since
Ω = Rn \ E is an open set, it has a Whitney decomposition – see Theorem 1 on
p. 167 of [S]. We will perform the same argument as in [S], using powers of 10
instead of powers of 2, and then subpartition emerging cubes further into subcubes
of sidelength 103 times smaller. As a result, we get a collection of closed “Whitney”
boxes in Ω, denoted by W = W(Ω), which form a covering of Ω with pairwise
non-overlapping interiors and satisfy

(9.14) 9·102 diam I ≤ dist (102I, ∂Ω) ≤ dist (I, ∂Ω) ≤ 21·103 diam I, ∀ I ∈ W,

and

(9.15)
1

20
diam I1 ≤ diam I2 ≤ 20 diam I1

whenever I1 and I2 in W touch. Let XI denote the center of I and `(I) the side
length of I; then diam I ∼ `(I).
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Let D be a collection of dyadic cubes for the Ahlfors regular set E, as in (2.1)–
(2.3). Pick two parameters η � 1 and K � 1, and for any cube Q ∈ D define

(9.16) W0
Q := {I ∈ W : η

1
4 `(Q) ≤ `(I) ≤ K

1
2 `(Q), dist (I,Q) ≤ K

1
2 `(Q)}.

Recall from Definition 2.4 that AQ denotes a corkscrew point for the surface ball
∆(xQ,C−1rk(Q)), with the constant C from (2.2). We can guarantee that we can
choose AQ = XI for some I ∈ W0

Q provided that we choose η small enough and K
large enough.

We will further augment our collection to include pertinent Harnack chains. To
this end, recall the following definition.

Definition 9.17. We say that an open domain Ω satisfies the Harnack Chain con-
dition if there is a uniform constant C such that for every ρ > 0, Λ ≥ 1, and every
pair of points X, X′ ∈ Ω with δ(X), δ(X′) ≥ ρ and |X − X′| < Λ ρ, there is a chain
of open balls B1, . . . , BN ⊂ Ω, N ≤ C(Λ), with X ∈ B1, X′ ∈ BN , Bk ∩ Bk+1 , ø and
C−1diam(Bk) ≤ dist (Bk, ∂Ω) ≤ Cdiam(Bk). Here C(Λ) does not depend on Ω, ρ, x,
or y. The chain of balls is called a “Harnack Chain”.

The boundary of the domain in the definition above is not presumed to exhibit
any particular dimension, but we recall that for Ω = Rn\E for some Ahlfors regular
set E of dimension d < n − 1, the Harnack chain condition, and even something
stronger, holds.

Lemma 9.18 (Lemma 2.1 of [DFM1]). Let E be a d-Ahlfors regular set in Rn with
d < n − 1 and Ω = Rn \ E. Then there exists a constant c ∈ (0, 1), that depends
only on d, n,C0, such that for Λ ≥ 1 and X1, X2 ∈ Ω such that δ(Xi) ≥ s and
|X1 − X2| ≤ Λs, we can find two points Yi ∈ B(Xi, s/2) such that dist ([Y1,Y2], E) ≥
cΛ−d/(n−1−d)s. That is, there is a thick tube in Ω that connects the balls B(Xi, s/2).

This a stronger property because it ensures that two points are connected by a
thick tube rather than just a chain, but we did verify that it formally implies the
Harnack chain condition from Definition 9.17, with the constants depending on the
ADR constants of E and the dimension only - see Remark 2.2 in [MZ]. We review
some of this for the convenience of the reader.

Remark 9.19. Note that in the situation above,

(9.20) |Y1 − Y2| ≤ |Y1 − X1| + |X1 − X2| + |X2 + Y2| < 2Λs.

Let τ = cΛ−d/(n−1−d)s and Z1 = Y1. For 2 ≤ j ≤ N let Z j be consecutive points on
the line segment [Y1,Y2] such that |Z j − Z j−1| = τ/3. Then

(N − 1)
τ

3
≤ |Y1 − Y2| < N

τ

3
.
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Combined with (9.20) we get a bound for the length of the chain, namely

(9.21) N ∼
|Y1 − Y2|

τ/3
. Λ

n−1
n−1−d .

Let B0 = B(X1, s/2), B j = B(Z j, τ/4) for 1 ≤ j ≤ N and BN+1 = B(X2, s/2). Clearly
B j ∩ B j+1 , ø for all 0 ≤ j ≤ N. Moreover dist (B0, E), dist (BN+1, E) ≥ s/2 and
for 1 ≤ j ≤ N,

(9.22) dist (B j, E) ≥
3
4
τ =

3
4

cΛ−
d

n−1−d s,

and

(9.23) dist (B j, E) ≤ min{δ(X1), δ(X2)}+
s
2

+ |Y1 − Y2| < min{δ(X1), δ(X2)}+ 3Λs.

For each I ∈ W0
Q, by Lemma 9.18 and the discussions after that, there is a

Harnack chain connecting its center XI to the corkscrew point AQ ; we call it HI .
By the definition ofW0

Q we may construct this Harnack chain so that it consists of
a bounded number of balls (depending on the values of η,K), and stays a distance
at least cη

n−1
4(n−1−d) `(Q) away from ∂Ω (see (9.22)). We letWQ denote the set of all

J ∈ W which meet at least one of the Harnack chainsHI , with I ∈ W0
Q, i.e.

(9.24) WQ := {J ∈ W : there exists I ∈ W0
Q for whichHI ∩ J , ø}.

Clearly W0
Q ⊂ WQ. Besides, it follows from the construction of the augmented

collectionsWQ and the properties of the Harnack chains (in particular (9.22) and
(9.23)) that there are uniform constants c and C such that

(9.25) cη
n−1

4(n−1−d) `(Q) ≤ `(I) ≤ CK
1
2 `(Q), dist (I,Q) ≤ CK

1
2 `(Q)

for any I ∈ WQ. In particular once η,K are fixed, for any Q ∈ D the cardinality of
WQ is uniformly bounded, by an integer which we denote by N0.

Next we choose a small parameter θ ∈ (0, 1) so that for any I ∈ W, the concen-
tric dilation I∗ = (1 + θ)I still satisfies the Whitney property

(9.26) diam I ∼ diam I∗ ∼ dist (I∗, ∂Ω) ∼ dist (I, ∂Ω).

Moreover by taking θ small enough we can guarantee that dist (I∗, J∗) ∼ dist (I, J)
for every I, J ∈ W, that I∗ meets J∗ if and only if ∂I meets ∂J, and that 1

2 J ∩ I∗ = ø
for any distinct I, J ∈ W. In what follows we will need to work with further
dilations I∗∗ = (1 + 2θ)I or I∗∗∗ = (1 + 4θ)I etc. (We may need to take θ even
smaller to make sure the above properties also hold for I∗∗, I∗∗∗ etc.) Given an
arbitrary Q ∈ D, we define associated Whitney regions UQ, U∗Q by

(9.27) UQ :=
⋃

I∈WQ

I∗, U∗Q :=
⋃

I∈WQ

I∗∗.
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Let DQ = {Q′ ∈ D : Q′ ⊂ Q}. For any Q ∈ D and any family F = {Q j}

of disjoint cubes in DQ \ {Q}, we define the local and global discretized sawtooth
regions relative to F by

(9.28) DF ,Q := DQ \
⋃

Q j∈F

DQ j , DF := D \
⋃

Q j∈F

DQ j .

We also define the local sawtooth domain relative to F by

(9.29) ΩF ,Q := int
( ⋃

Q′∈DF ,Q

UQ′

)
, Ω∗F ,Q := int

( ⋃
Q′∈DF ,Q

U∗Q′
)
.

For convenience we set

(9.30) WF ,Q :=
⋃

Q′∈DF ,Q

WQ′ ,

so that in particular, we may write

(9.31) ΩF ,Q = int
( ⋃

I∈WF ,Q

I∗
)
, Ω∗F ,Q = int

( ⋃
I∈WF ,Q

I∗∗
)
.

We will need further fattened sawtooth domain Ω∗∗F ,Q etc. whose definitions follow
the same lines as above. We remark that by (9.25), there is a constant C3 depending
on K, θ such that

(9.32) ΩF ,Q ⊂ B(xQ,C3`(Q)) ∩Ω

for any Q ∈ D and collection of maximal cubes F , where xQ is the “center” of Q
as in (2.2).

The global versions ΩF ,Ω
∗
F ,WF are defined analogously using DF in place of

DF ,Q.
The sawtooth domains thus defined, of course, have boundaries with portions

of different dimension: parts of their boundary are given by the intersection with
the original d-dimensional set E, and other parts are composed of the (n − 1)-
dimensional faces of Whitney cubes in Ω. Yet, they are amenable to the analysis in
[DFM4]. In particular, ΩF itself satisfies corkscrew and Harnack chain conditions
and ∂ΩF can be equipped with a doubling measure µ∗ defined as follows. For each
Borel set E ⊂ ∂ΩF , let

(9.33) µ∗(E) = Hd|Γ(E ∩ Γ) +

∫
E\Γ

dist (X,Γ)d+1−n dHn−1|∂ΩF \Γ(X).

It has been demonstrated in [MP] that µ∗ is doubling, and moreover, the domain
ΩF equipped with the measure m(A) =

∫∫
A dist (x, E)−n+d+1 dX and the boundary

measure µ∗, satisfies the conditions (H1)–(H6) from [DFM4] (see Theorem 4.2
in [MP]). In particular, the harmonic measure corresponding to the operator L is
well-defined on ∂ΩF , and we will denote the latter by ω∗. It satisfies the usual
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properties of an elliptic measure: doubling, comparison principle. change-of-pole
inequalities - we send the reader to [DFM4] for details. We point out that the dyadic
cubes in [MP] have been built in powers of 2, while ours are built in powers of 10,
but otherwise the construction is identical and we will freely use the results from
[MP].

As long as η and θ are chosen small enough and K large enough depending on
the dimension and the AR constants of E only, all the properties listed above are
satisfied with constants depending on the dimension and the AR constants of E
only, uniformly for all F (in particular, because for a d-dimensional E, d < n − 1,
its own corkscrew and Harnack chain properties are satisfied with the constants
depending on the dimension and the AR constants of E only). We might adjust the
choice of η, θ and K as we go along but we will always make sure that it depends
on the dimension and the AR constants of E only.

At this point we want to compare the two domains ΩF and ΩΘ that were con-
structed above in (9.29) and (8.1). Retain the notation from Definition 9.3, where
we are given a top cube Q0 and a stopping time region Θ ⊂ D(Q0). Then we con-
sider the now very specific class F = {Q j} j of maximal cubes Q ⊂ Q0 that are not
contained in Θ (we may call them the stopped cubes). Then DF consists of all the
cubes of Θ (those that were used to construct ΩΘ in (8.1)), and also the cubes Q
that are not contained in Q0. In other words,

(9.34) DF ,Q0 = Θ, and, respectively, DF = (D \ D(Q0)) ∪ Θ.

Ultimately, we will be choosing η, θ and K first and then M0 large enough, de-
pending on η, θ and K so that U∗(Q) ⊂ W(Q) and hence

(9.35) ΩF ,Q0 ⊂ Ω∗F ,Q0
⊂ ΩΘ.

More generally, the geometric statements in the remainder of this subsection
implicitly assume that we are allowed to adjust our choices, while keeping their
order intact, that is, if η, θ are small enough and K is large enough depending on
d, n, and AR constants of E; M0 is large enough depending on all these parame-
ters; M is large enough depending on d, n, and AR constants of E and our choice
of η, θ,K,M0; and ε0, δ0 are small enough depending on all of the above, then the
statements are valid. Since all of these ultimately depend on d, n, and AR constants
of E, we shall suppress this in many statements. We will need to define a “projec-
tion” of cubes Q j ∈ F on Σ and a projection of Q j on ∂ΩF . To this end, recall the
collection R defined in (8.13)–(8.18). We recall that by (8.18) E \ F =

⋃
Rk∈R

Rk

and hence, by (8.22),

(9.36) E \
⋃

Rk∈R

Rk = F ⊂ E ∩ Σ ∩ Q0,

that is, E coincides with Σ on the complement of ∪Rk∈RRk.
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Furthermore, we claim that every Rk ∈ R is contained in some Q j ∈ F . Indeed,
if Rk is not contained in any Q j ∈ F then Rk ∈ D(Q0) \

⋃
Q j∈F
DQ j . Then dΘ(xRk) ≤

l(Rk) by definition. However, by (8.16) we have dΘ(xRk) ≥ (2τ)−1l(Rk) ≥ 50 l(Rk),
which is a contradiction.

Having this and (9.36) in mind, we can write any Q j ∈ F as

(9.37) Q j =

( ⋃
Rk⊆Q j

Rk

)⋃(
Q j \

⋃
Rk⊆Q j

Rk

)
with Q j \

⋃
Rk⊆Q j

Rk ⊂ E ∩ Σ,

and then let

(9.38) π(Q j) :=
( ⋃

Rk⊆Q j

Σ(k)
)⋃(

Q j \
⋃

Rk⊆Q j

Rk

)
⊂ Σ,

denote a “projection” of Q j on Σ. Here, Σ(k) is defined in (8.27). The definition of
π(Q) depends on the choice of the numerical constant τ in the definition of Rk and
hence, of Σ(k), but this is, as usual, harmless, as long as τ is small enough for our
considerations from previous chapters to apply.

In order to define the projection of Q j on ∂ΩF we recall the following result
from [MP].

Proposition 9.39. Fix a disjoint family of cubes F ⊂ D. Then for each Q j ∈ F ,
there is an (n − 1)−dimensional cube P j ⊂ ∂ΩF , which is contained in a face of I∗

some I ∈ W, and which satisfies

(9.40) `(P j) ≈ dist (P j,Q j) ≈ dist (P j, ∂Ω) ≈ `(I) ≈ `(Q j),

with uniform constants.

Then we let

(9.41) π∗(Q j) := P j

denote our “projection” of Q j ∈ F on ∂ΩF . We first point out the following.

Lemma 9.42. Retain the definitions above. Then
(1) for any Q j ∈ F the set π(Q j) is contained in some surface ball ∆(x̂Q j , r̂Q j)

where x̂Q j ∈ Σ, r̂Q j = C l(Q j) for some constant C depending on our choice
of τ only;

(2) for any Q j ∈ F the set π(Q j) contains some surface ball ∆(x̂′Q j
, r̂′Q j

), where
x̂′Q j
∈ π(Q j), r̂′Q j

= c l(Q j) for some numerical constant c depending on the
AR constant of µ, d, and on the choice of τ;

(3) the π(Q j), Q j ∈ F , have bounded overlap and for any Q j ∈ F we have
σ(π(Q j)) ≈ µ(Q j), with all implicit constants depending on the dimension,
AR constant of µ, and our choice of τ only.



70 G. DAVID AND S. MAYBORODA.

Similar statements are valid for π∗ in place of π, µ∗ in place of σ, and ∂ΩF in
place of Σ. The relevant constants then depend on our choice of η, θ,K and hence,
ultimately, on the dimension and AR constant of E only.

Proof. We start from the statement that

(9.43) the π(Q j) have bounded overlap and σ(π(Q j)) ≈ µ(Q j).

The fact that the π(Q j) have bounded overlap is a direct consequence of (8.33) and
of the fact that the Q j ∈ F are disjoint. The equivalence of sizes will follow from
statements (1) and (2) of the Lemma. Next,

(9.44) every π(Q j) is contained in some surface ball ∆(x̂Q j , r̂Q j),

where x̂Q j ∈ Σ, r̂Q j = C l(Q j) for some constant C depending on our choice of τ
only. This follows from the observation that for every Rk ⊂ Q j we have l(Rk) ≤
l(Q j) and from definition (8.27) upon recalling that M2 = 10−1τ−1 and τ ∈ (0, 10−2).
Thirdly,

(9.45) every π(Q j) contains some surface ball ∆(x̂′Q j
, r̂′Q j

),

where x̂′Q j
∈ π(Q j) and r̂′Q j

= c l(Q j) for some numerical constant c depending on
the AR constant of µ, d, and on the choice of τ. First, we show that
(9.46)

every decomposition in (9.37) contains at least one Rk with l(Rk) ≈ l(Q j).

Indeed, Q j contains a surface ball E ∩ B(xQ,C−1l(Q j)) by (2.2). Here, C is the
constant denoted by C in (2.2). Using now the second inclusion in (2.2) we deduce
that there is a dyadic cube Q′ contained in E∩B(xQ,C−1l(Q j)/2) with the sidelength
l(Q′) = c1(C, d)l(Q j) for a sufficiently small c1(C, d) depending on C and d only.
For any point z ∈ Q′

dΘ(z) = inf
Q∈Θ

dist (z,Q) + l(Q)

≥ min
{

inf
Q∈Θ: Q j⊂Q

( dist (z,Q) + l(Q)), inf
Q∈Θ: Q j∩Q=ø

( dist (z,Q) + l(Q))
}

≥ min
{

l(Q j), C−1l(Q j)/2
}

= C−1l(Q j)/2.

Now, if C−1/2 ≥ 1/τ then C−1l(Q j)/2 ≥ C−1l(Q′)/2 ≥ l(Q′)/τ, and so Q′ is a subset
of some Rk by definition (8.15). And recalling that any Rk intersecting Q j has to
be contained in Q j, we have l(Rk) ≈ l(Q j) with the implicit constant depending on
C and d only. If, on the other hand, C−1/2 ≤ 1/τ then we can keep subdividing
Q′ (the number of times only depending on τ, C−1, and d), until we reach a cube
Q′′ ⊂ Q′ such that C−1l(Q j)/2 ≥ l(Q′′)/τ. Then, similarly to above, there must be
an Rk containing Q′′ with l(Q′′) ≤ l(Rk) ≤ l(Q j) and therefore l(Rk) depending on
τ, C−1, and d only.
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Finally, once we know that there exists an Rk ⊂ Q j with l(Rk) ≈ l(Q j), it follows
from the definition of Σ(k) in (8.27) that (possibly slightly enlarging M2) Σ(k) con-
tains a surface ball of radius ≈ l(Rk), and this surface ball will be used as ∆(x̂′Q j

, r̂′Q j
).

This finishes the proof of (9.45).
Proving analogous statements for the projection on ∂ΩF is actually much easier:

(1) and (2) follow directly from the fact that P j is a cube, (3) is due to the fact
that P j’s have a bounded overlap and the definition of µ∗ (the reader can consult
[MP] for more general upper and lower estimates on µ∗, but in fact, in this case it
is perhaps easier to see the desired bound directly from definitions). �

Next, for any Q ∈ D(Q0) \ ∪Q j∈FD(Q j) we let

(9.47) π(Q) :=
( ⋃

Q j∈F ,Q j⊂Q

π(Q j)
)⋃(

Q \
⋃

Q j∈F ,Q j⊂Q

Q j

)
=
( ⋃

Rk∈R: Rk⊂Q

Σ(k)
)⋃(

Q \
⋃

Rk∈R: Rk⊂Q

Rk

)
⊂ Σ,

and

(9.48) π∗(Q) :=
( ⋃

Q j∈F ,Q j⊂Q

π∗(Q j)
)⋃(

Q \
⋃

Q j∈F ,Q j⊂Q

Q j

)
⊂ ∂ΩF .

Lemma 9.49. Retain the definitions above. Then

(1) for any Q ∈ D(Q0) \ ∪Q j∈FD(Q j) the set π(Q) is contained in some surface
ball ∆(x̂Q, r̂Q) where x̂Q ∈ Σ, r̂Q = C l(Q) for some constant C depending
on our choice of τ only;

(2) for any Q ∈ D(Q0) \ ∪Q j∈FD(Q j) the ball ∆(x̂Q, 2 r̂Q) above is contained
in ∆(x̂Q0 , 4 r̂Q0); for any Q j ∈ F the ball ∆(x̂Q j , 2 r̂Q j) from Lemma 9.42 is
contained in ∆(x̂Q0 , 4 r̂Q0);

(3) for any Q ∈ D(Q0) \ ∪Q j∈FD(Q j) the corkscrew point of Q with respect to
E, AQ, is a corkscrew point for B(x̂Q, 4 r̂Q)∩ Σ on Σ with implicit constants
depending on the AR constant of µ, on our resulting choice of M0, and on
the choice of τ;

(4) for any Q ∈ D(Q0) \ ∪Q j∈FD(Q j) the set π(Q) contains some surface ball
∆(x̂′Q, r̂

′
Q) where x̂′Q ∈ π(Q), r̂′Q = c l(Q) for some numerical constant c

depending on the AR constant of µ, d, and on the choice of τ;
(5) for any Q ∈ D(Q0) \∪Q j∈FD(Q j) we have σ(π(Q)) ≈ µ(Q), with all implicit

constants depending on the dimension, AR constant of µ, d, and our choice
of τ only.

The analogues of statements (1)–(3) and (5) are valid for π∗ in place of π, µ∗ in
place of σ, and ∂ΩF in place of Σ. The relevant constants then depend on our



72 G. DAVID AND S. MAYBORODA.

choice of η, θ,K and hence, ultimately, on the dimension and AR constant of E
only. The statement (4) for π∗ should be substituted by the following property.

For Q j ∈ F , let B(x∗j, r
∗
j) be a ball, centered on π∗(Q j) = P j, and such that

r∗j ≈ l(Q j) and ⋃
Q∈DQ j

UQ ⊂ B(x∗j, r
∗
j).

Then for each Q ∈ D(Q0) \ ∪Q j∈FD(Q j), there is a surface ball ∆′(x∗Q, r
∗
Q) where

x∗Q ∈ ∂ΩF , r∗Q ≈ l(Q), and such that

(9.50) ∆′(x∗Q, r
∗
Q) ⊂

(
Q ∩ ∂ΩF

)
∪

(
∪Q j∈F :Q j⊂Q B(x∗j, r

∗
j) ∩ ∂ΩF

)
,

with dist (Q,∆′(x∗Q, r
∗
Q)) . `(Q).

Proof. The fact that

(9.51) every π(Q) is contained in some surface ball ∆(x̂Q, r̂Q),

follows from the definition of π(Q): we recall that the surface ball ∆(xQ, l(Q))
contains Q by (2.2) and then observe that all Σ(k) such that Rk ⊂ Q are contained
∆(xQ, (1 + M2)l(Q)). Taking r̂Q = 2(1 + M2)l(Q)) and any x̂Q ∈ π(Q) we then have
(9.51).

We note that the construction above and a virtually identical construction in
the proof of (1) in Lemma 9.42 ensure that (2) in the statement of the Lemma
is satisfied. Moreover, for any Q ∈ D(Q0) \ ∪Q j∈FD(Q j), AQ ∈ B(xQ,C−1l(Q)) ⊂
B(x̂Q, 4 r̂Q) and dist (AQ, E) ≥ τ0C−1l(Q) by definition. It follows that having cho-
sen M0 large enough depending on the AR constant only, AQ ∈ ΩΘ, and hence, by
(8.12),

dist (AQ,Σ) ≥ (1 −C M0ε)τ0C−1l(Q).

Assuming, as usual, that ε is small depending on M0 and other parameters depend-
ing on the AR constant, we have dist (AQ,Σ) ≥ τ0(2C)−1l(Q). It follows that AQ is
a corkscrew point for B(x̂Q, 4 r̂Q) ∩ Σ with implicit constants depending on the AR
constant of µ and our resulting choices of M0 and smallness of ε, as well as on τ.

As a result, x̂Q ∈ Σ and r̂Q = C l(Q) for some constant C depending on our choice
of τ only.

The opposite inclusion, while less straightforward, is also true: for any Q ∈
D(Q0) \ ∪Q j∈FD(Q j)

(9.52) π(Q) contains some surface ball ∆(x̂′Q, r̂
′
Q),

where x̂′Q ∈ π(Q), r̂′Q = c l(Q) for some numerical constant c depending on the
AR constant of µ, d, and on the choice of τ. Let us prove this. Fix some Q ∈
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D(Q0) \ ∪Q j∈FD(Q j). Recall (8.18) which, in particular, means that

Q ∩ F = Q ∩ (Q \ [(E \ F) ∩ Q]) = Q ∩
(

Q \
⋃

Rk∈R: Rk⊂Q

Rk

)
⊂ π(Q).

Now, by (2.2) there exists a constant C1 such that E ∩ B(xQ,C−1
1 l(Q)) ⊂ Q.

Fix κ = C−1
1 /4 ≤ 1/4. If B(xQ, κl(Q)) ∩ Σ ⊂ Q ∩ F ⊂ π(Q) then we can assign

∆(x̂′Q, r̂
′
Q) := B(xQ, κl(Q)) ∩ Σ and finish the argument.

If, on the other hand, there exists a x̂Q ∈ B(xQ, κl(Q))∩Σ such that x̂Q ∈ Σ\F, we
choose ∆(x̂′Q, r̂

′
Q) = ∆̂ := B(x̂Q, κl(Q))∩Σ. Let us show that B(x̂Q, κl(Q))∩Σ ⊂ π(Q).

Assume, on the contrary, that there exists ξ ∈ ∆̂ such that ξ < π(Q). First of all,
∆̂ ⊂ B(xQ, 2κl(Q)) (since |x̂Q−xQ| ≤ κl(Q)) and hence, ∆̂∩F ⊂ B(xQ,C−1

1 l(Q))∩F ⊂
Q ∩ F ⊂ π(Q) for our choice of κ. Therefore, ξ ∈ (B̂ ∩ Σ) \ F and the discussion
near (8.39)–(8.40) applies. In particular, there exists a k0 such that ξ ∈ Σ(k0) and
there exists x ∈ Rk0 such that |x − ξ| ≤ CεdΘ(ξ). However,

dΘ(ξ) = inf
Q′∈Θ

(l(Q′) + dist (ξ,Q′)) ≤ l(Q) + |ξ − xQ| ≤ (1 + 2κ)l(Q).

Therefore,

|x − xQ| ≤ |x − ξ| + |ξ − xQ| ≤ Cε(1 + 2κ)l(Q) + 2κl(Q) < 2Cεl(Q) + 2κl(Q).

Assuming that Cε ≤ C−1
1 /4 (which is always safe because C1 depends only on the

AR constant of µ) and recalling that κ = C−1
1 /4 (which is our choice), we conclude

that x ∈ E ∩ B(xQ,C−1
1 l(Q)) ⊂ Q. Therefore, Rk0 meets Q. Then Rk0 is necessarily a

subcube of Q and therefore, ξ ∈ Σ(Rk0) ⊂ π(Q), which is a contradiction. We have
finished the proof of (9.52).

The last statement of the Lemma follows from (1), (4), and the Ahlfors regularity
of Σ.

Let us turn to the analogous statements for the projection on the saw-tooth. (1)
remains true since π∗(Q j) is at a distance proportional to `(Q j) ≤ `(Q) from Q.
(2) is proved exactly as it is for π. (3) is due to the fact that Q < F and hence,
AQ belongs to some Whitney region associated to Q whose interior (and even its
enlargement) is a subset of ΩF .

Therefore, AQ is also a corkscrew point for a corresponding surface ball on ∂ΩF
with the corkscrew constants depending on η and θ in the definition of ∂ΩF . As for
(5),

(9.53) µ∗(π∗(Q)) = µ

(
Q \

⋃
Q j∈F ,Q j⊂Q

Q j

)
+ µ∗

( ⋃
Q j∈F ,Q j⊂Q

π∗(Q j)
)

≈ µ

(
Q \

⋃
Q j∈F ,Q j⊂Q

Q j

)
+

∑
Q j∈F ,Q j⊂Q

µ∗
(
π∗(Q j)

)
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≈ µ

(
Q \

⋃
Q j∈F ,Q j⊂Q

Q j

)
+

∑
Q j∈F ,Q j⊂Q

µ(Q j) = µ(Q)

where the first equality is due to the fact that the corresponding regions are disjoint,
the second one uses the finite overlap property of P j, the third one follows from (3)
of Lemma 9.42. Finally, (9.50) is proved in [MP]. �

9.3. Projections and the harmonic measure(s). With this setup, we are ready
for the following results. The proofs of the two Lemmas below follow closely
those of Lemma B.2 and Lemma B.6 in [HM] where analogous results have been
established for projections of the harmonic measure on a saw-tooth region starting
for an (n − 1) dimensional set E. Our geometric set-up is, however, different not
only because of mixed dimension but also because we need to tie in ω̂, the harmonic
measure on Σ rather than E.

Lemma 9.54. Let E be a d-dimensional Ahlfors regular set in Rn and µ an Ahlfors
regular measure on E and let F = {Q j} j be the collection of disjoint cubes in
D(Q0) associated to our stopping time region Θ as above. Then the following two
statements are valid.

(1) Assume that ω̂ is a doubling measure on Σ. Then the projection of ω̂ on F
within Q0 ∈ D(E) defined as

(9.55) PF ω̂(A) := ω̂

(
A \
( ⋃

Q j∈F

Q j
))

+
∑
Q j∈F

µ(A ∩ Q j)
µ(Q j)

ω̂(π(Q j)), A ⊂ Q0,

is dyadically doubling on Q0. In particular, the conclusion of this lemma
holds for the elliptic measure ω̂ = ω̂AQ0 , associated to the operator L̂ on
Rn \ Σ.

(2) Assume that ω∗ is a doubling measure on ΩF . Then the projection of ω∗ on
F within Q0 ∈ D(E) defined by

(9.56) PF ω∗(A) := ω∗

(
A \
( ⋃

Q j∈F

Q j
))

+
∑
Q j∈F

µ(A ∩ Q j)
µ(Q j)

ω∗(π∗(Q j)), A ⊂ Q0,

is dyadically doubling on Q0. In particular, the conclusion of this lemma
holds for the elliptic measure ω∗ = ω

AQ0
∗ associated to the operator L on

ΩF .

Proof. Let Q ∈ D(Q0) and Q′ ⊂ Q be a dyadic child of Q. There are three possible
cases: Q (and hence Q′) is contained in one of the Q j ∈ F ; Q′ coincides with one
of the Qk ⊂ F and hence, Q is not contained in any Q j ∈ F ; Q′ (and hence, Q) is
not contained in any Q j ∈ F .
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If Q (and hence Q′) is contained in one of the Q j ∈ F , then

PF ω̂(Q) =
µ(Q ∩ Q j)
µ(Q j)

ω̂(π(Q j)), PF ω̂(Q′) =
µ(Q′ ∩ Q j)
µ(Q j)

ω̂(π(Q j)),

and the desired result follows from the doubling property of µ.
The second case is when Q′ coincides with one of the Qk ∈ F and hence, Q is

not contained in any of Q j ⊂ F . Notice that Q contains any cube Q j ∈ F such that
Q ∩ Q j , ø. Since in addition the π(Q j) have finite overlap and are disjoint from
Q \

(⋃
Q j∈F

Q j
)
,

(9.57) PF ω̂(Q) = ω̂

(
Q \

( ⋃
Q j∈F

Q j
))

+
∑

Q j∈F : Q∩Q j,ø

µ(Q ∩ Q j)
µ(Q j)

ω̂(π(Q j))

= ω̂

(
Q \

( ⋃
Q j∈F

Q j
))

+
∑

Q j∈F : Q∩Q j,ø

µ(Q j)
µ(Q j)

ω̂(π(Q j))

= ω̂

(
Q \

( ⋃
Q j∈F

Q j
))

+
∑

Q j∈F : Q∩Q j,ø

ω̂(π(Q j)) . ω̂(π(Q)).

We claim that there exists x̂Q′ ∈ π(Q′) and c′,C′ > 0 such that

(9.58) ∆(x̂Q′ , cl(Q′)) ⊂ π(Q′), π(Q) ⊂ ∆(x̂Q′ ,Cl(Q′)).

The first statement follows from (9.45). The second one follows from (9.51) harm-
lessly enlarging C so that the ball in (9.51) is contained in ∆(x̂Q′ ,Cl(Q′)) for any
x̂Q′ ∈ π(Q′). Now, recalling that ω̂ is doubling (here, we have to use (2) and (3) of
Lemma 9.49 to ensure that the pole is properly placed), we have

(9.59) PF ω̂(Q) . ω̂(π(Q)) ≤ ω̂(∆(x̂Q′ ,Cl(Q′))) . ω̂(∆(x̂Q′ , cl(Q′))) . ω̂(π(Q′)).

Since we are in the case when Q′ coincides with one of the Qk ∈ F , we have, in
particular, PF ω̂(Q′) = ω̂(π(Qk)) = ω̂(π(Q′)), so that the right-hand side of (9.59)
is equal to PF ω̂(Q′).

Finally, we consider the third case when Q′ (and hence, Q) is not contained in
any Qk ∈ F . The very same argument as above, using (9.52) in place of (9.45),
yields

(9.60) PF ω̂(Q) . ω̂(π(Q′)).

However, much as in (9.57),

(9.61) PF ω̂(Q′) = ω̂

(
Q′ \ (

⋃
Q j∈F

Q j)
)

+
∑

Q j∈F : Q′∩Q j,ø

ω̂(π(Q j)) & ω̂(π(Q′)),

as desired.
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Passing to the projection of ω∗, we remark that the treatment of the first two
cases is literally the same. The only significant difference is the argument for the
third case when Q′ (and hence, Q) is not contained in any Qk ∈ F . Much as for ω̂
we have

PFω∗(Q) . ω∗(π∗(Q)) . ω∗(∆(x∗Q, r
∗
Q)),

where the first inequality follows from the argument analogous to (9.57) and the
second one is due to Lemma 9.49, a version of (1) for ∂ΩF , and the surface ball
∆(x∗Q, r

∗
Q), x∗Q ∈ ∂ΩF , r∗Q ≈ l(Q), is the one containing π∗(Q). Using the doubling

property of ω∗ we have

ω∗(∆(x∗Q, r
∗
Q)) . ω∗(∆′(x∗Q′ , r

∗
Q′)),

where ∆′(x∗Q′ , r
∗
Q′) is the surface ball from (9.50) for the cube Q′. Now, by (9.50)

and the doubling property of ω∗,

(9.62) ω∗(∆′(x∗Q′ , r
∗
Q′)) ≤ ω∗

(
Q′ ∩ ∂ΩF

)
+

∑
Q j∈F :Q j⊂Q′

ω∗
(
B(x∗j, r

∗
j) ∩ ∂ΩF

)
. ω∗

(
Q′ ∩ ∂ΩF

)
+

∑
Q j∈F :Q j⊂Q′

ω∗
(
π∗(Q j)

)
. ω∗(π∗(Q′)).

Then, analogously to (9.61), we can finish the argument.
We remark that the elliptic measure of L on ∂ΩF fits the hypothesis and, in

particular, is doubling by [MP, DFM4].
�

Lemma 9.63. Let E be a d-dimensional Ahlfors regular set in Rn and µ be an
Ahlfors regular measure on E. Under the conditions of Theorem 9.6, the projection
of the harmonic measure of L̂ on F within Q0 ∈ D(E) defined by (9.55) with
ω̂ = ω̂AQ0 is A∞D (Q0) with respect to µ.

Proof. As per Remark 2.28, we aim to show (2.24) for some δ, ε ∈ (0, 1).
For brevity, we will write ω̂ = ω̂AQ0 throughout the proof. We fix 0 < η < 1/2

and A ⊂ Q ∈ D(Q0) with µ(A) ≥ (1 − η)µ(Q).
If Q ⊆ Q j for some Q j ⊂ F , then

PF ω̂(A)
PF ω̂(Q)

=
µ(A ∩ Q j)
µ(Q j)

ω̂AQ0 (π(Q j))
(
µ(Q ∩ Q j)
µ(Q j)

ω̂AQ0 (π(Q j))
)−1

=
µ(A)
µ(Q)

≥ (1−η),

as desired.
If Q is not contained in any cube of F , then it belongs to D(Q0) \ ∪Q j∈FD(Q j).

It might or might not intersect with the cubes of F and we let

FG = {Q j ∈ F : µ(A ∩ Q j) ≥ (1 − 2η) µ(Q j)},
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and
E0 := Q \

⋃
Q j∈F

Q j, G :=
⋃

Q j∈FG

Q j, B :=
⋃

Q j∈F \FG

Q j.

Then simply dropping the cubes of F \ FG in the sum,

(9.64) PF ω̂(A) ≥ ω(A ∩ E0) +
∑

Q j∈FG

µ(A ∩ Q j)
µ(Q j)

ω̂(π(Q j))

≥ ω(A ∩ E0) + (1 − 2η)
∑

Q j∈FG

ω̂(π(Q j)) ≥ (1 − 2η) ω̂((A ∩ E0) ∪ π(G)),

where we set
π(G) :=

⋃
Q j∈FG

π(Q j),

and used the fact that π(Q j) and E0 are disjoint. Recall now (9.47)–(9.51). Using
the property that ω̂ is A∞ with respect to σ by Theorem 9.6, we have

(9.65)
ω̂((A ∩ E0) ∪ π(G))

ω̂(∆(x̂Q, r̂Q))
&

(
σ((A ∩ E0) ∪ π(G))

σ(∆(x̂Q, r̂Q))

)θ

.

Here again we have to use (2) and (3) of Lemma 9.49 to ensure that the pole is
properly placed.

Now, from (9.43) and the fact that the Q j are disjoint we conclude thatσ(π(G)) ≈
µ(G) and since furthermore A ∩ E0 and π(G) as well as A ∩ E0 and G are disjoint,

(9.66) σ((A ∩ E0) ∪ π(G)) ≈ µ((A ∩ E0) ∪G).

Also,
µ(A ∩ B) ≤ (1 − 2η)

∑
Q j∈F \FG

µ(Q j) ≤ (1 − 2η)µ(Q),

and hence,

(1− η)µ(Q) ≤ µ(A) ≤ µ((A∩E0)∪G) +µ(A∩ B) ≤ µ((A∩E0)∪G) + (1− 2η)µ(Q),

so that

(9.67) µ((A ∩ E0) ∪G) ≥ η µ(Q).

Since by Ahlfors regularity of σ

σ(B(x̂Q, r̂Q)) ≈ r̂d
Q ≈ µ(Q),

invoking (9.66) and (9.67) we see that the right-hand side of (9.65) is bounded from
below by ηθ, modulo a multiplicative constant.

Coming back to (9.64), this yields

PF ω̂(A) & (1 − 2η)ηθ ω̂(∆(x̂Q, r̂Q)).
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Finally, we recall that the ball ∆(x̂Q, r̂Q) contains π(Q) by (9.47)–(9.51) and the sets
π(Q j) have have finite overlap and are disjoint from Q ∩ E0. Therefore,

ω̂(∆(x̂Q, r̂Q)) ≥ ω̂(π(Q)) & ω̂(Q ∩ E0) +
∑
Q j∈F

ω̂(π(Q j)) = PF ω̂(Q),

as desired. �

Theorem 9.68. Let E be a d-dimensional Ahlfors regular set and µ be an Ahlfors
regular measure on E. Let ω be the harmonic measure associated to the operator
L = − div D−(n−d−1)

µ ∇ in Rn \ E, with

(9.69) Dµ(X) =
{∫

E
|X − y|−d−αdµ(y)

}−1/α
, α > 0.

Then let Q0 ∈ D(E) be given, construct Θ = Θε0,δ0(Q0) and the complementary
collection F as in Definition 9.3, assume that Θ , ø, and define the projection of
ω = ωAQ0 on F within Q0 by

(9.70) PF ω(A) := ω

(
A \ (

⋃
Q j∈F

Q j)
)

+
∑
Q j∈F

µ(A ∩ Q j)
µ(Q j)

ω(Q j), A ⊂ Q0.

If our various constants are chosen correctly (see below this statement), PFω lies
in the class A∞D (Q0) with respect to µ, with A∞ constants that depend only on
n, d,C0, and α.

To be precise, if η (see above (9.16))and θ (near (9.26)) are small enough and
K (above (9.16)) is large enough, depending on n, d,C0; M0 > 1 is large enough
depending on n, d,C0 and η, θ,K; M > 1 large enough depending on n, d,C0,M0,
and ε0, δ0 > 0 small enough depending on n, d,C0,M0,M, then PFω lies in the
class A∞D (Q0) with respect to µ, with A∞ constants that depend only on n, d,C0, and
α.

As usual, the uniform rectifiability is not needed at this stage.

Proof. The plan of the proof is to show that PF ω
AQ0
∗ (where ω∗ is the elliptic mea-

sure associated to the operator L on ΩF ) is A∞D (Q0) with respect to PF ω̂AQ0 (asso-
ciated to the operator L̂ on the domain Rn \ Σ) and PF ω

AQ0
∗ is A∞D (Q0) with respect

to PF ωAQ0 , so that PF ωAQ0 is A∞D (Q0) with respect to PF ω̂AQ0 (in the notation of
Lemma 9.63) at which point we can use Lemma 9.63 to achieve the desired result.
This second part is easier, and is closely related to the Main Lemma for sawtooth
projections in [DJK], its version in [HM], and similar results. However, working
with a “replacement boundary” Σ and the associated harmonic measure is new, and
the first part, requiring both a change of the domain and a change of the operator,
is more intricate.

We remark that formally speaking, we only defined A∞ and A∞D properties with
respect to the Ahlfors regular measure on the boundary, but the same Definitions (2.22),
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(2.25) apply to any doubling measure µ together with the equivalent reformulations,
in particular, in Remark 2.28.

We start with the proof of the simpler statement that PF ω
AQ0
∗ is A∞D (Q0) with

respect to PF ωAQ0 .
As usual, we will simplify the notation by writing ω = ωAQ0 , ω∗ = ω

AQ0
∗ , and

ω̂ = ω̂AQ0 throughout the proof. Recall from Remark 2.28 that A∞D is an equivalence
relationship, and let us concentrate on showing that there is a constant C > 0 such
that for every Q ∈ D(Q0) and every Borel set A ⊂ Q,

(9.71)
PFω∗(A)
PFω∗(Q)

≤ C
PFω(A)
PFω(Q)

.

The simplest case is when Q ⊆ Q j for some Q j ∈ F . Then, by definition,
PFω(A)
PFω(Q)

=
PFω∗(A)
PFω∗(Q)

=
µ(A ∩ Q j)
µ(Q ∩ Q j)

.

Let us assume now that Q is not contained in any Q j ∈ F . In this case, similarly
to (9.61) and (9.62)

(9.72) PFω∗(Q) & ω∗(π(Q)) ≥ ω∗(∆′(x∗Q, r
∗
Q)),

where ∆′(x∗Q, r
∗
Q) is the surface ball from (9.50).

Therefore, with the notation E0 = Q0 \
(⋃

Q j∈F
Q j
)
,

(9.73)
PFω∗(A)
PFω∗(Q)

.
ω∗(A ∩ E0)
ω∗(∆′(x∗Q, r∗Q))

+
∑

Q j∈F : Q j⊂Q

µ(A ∩ Q j)
µ(Q j)

ω∗(π∗(Q j))
ω∗(∆′(x∗Q, r∗Q))

.

Using the change of pole formula for ω∗ in [DFM4] and, if necessary, Harnack’s
inequality to slightly adjust the corkscrew point, we can write the above as

(9.74)
PFω∗(A)
PFω∗(Q)

. ωAQ
∗ (A ∩ E0) +

∑
Q j∈F : Q j⊂Q

µ(A ∩ Q j)
µ(Q j)

ωAQ
∗ (π∗(Q j)).

By the maximum principle and the fact that ωX(Q j) ≈ 1 for X ∈ π∗(Q j), we have

ωAQ
∗ (A ∩ E0) . ωAQ(A ∩ E0) and ωAQ

∗ (π∗(Q j)) . ωAQ(Q j).
Then

(9.75)
PFω∗(A)
PFω∗(Q)

. ωAQ(A ∩ E0) +
∑

Q j∈F : Q j⊂Q

µ(A ∩ Q j)
µ(Q j)

ωAQ(Q j) .
PFω(A)
PFω(Q)

,

as desired.
Now let us turn to the proof that PF ω

AQ0
∗ (where ω∗ is the elliptic measure as-

sociated to the operator L on ΩF ) is A∞D (Q0) with respect to PF ω̂AQ0 (associated to
the operator L̂ on the domain Rn \ Σ). The challenge is to change the operator and
the domain on which the harmonic measure is evaluated simultaneously.
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To this end, we recall that by Remark 2.28 (which as we mentioned, applies to
general doubling measures) in order to show that a doubling measure ω is A∞D (Q0)
with respect to another doubling measure ν, it is sufficient to show that there exists
0 < ε, δ < 1 such that for every Q ∈ D(Q0) and every Borel set F ⊂ Q,

(9.76)
ω(F)
ω(Q)

< δ⇒
ν(F)
ν(Q)

< ε.

We claim that it is moreover sufficient to show an even weaker property, where
we only check something like (9.76) in the middle of Q (but in a uniform way).
First we claim that if we choose the constant M′ large enough, then for each Q ∈
D(Q0), we can find a dyadic subcube Q′ ⊂ Q such that

(9.77)
1

10M′
`(Q) ≤ `(Q′) ≤

1
M′

`(Q), and dist (Q′, E \ Q) ≥
M′

2
`(Q′).

Indeed, (2.2) gives a “center” xQ for Q such that dist (xQ), E \Q) ≥ C−1`(Q), and if
M′ is large enough, any cube Q′ such that 1

10M′ `(Q) ≤ `(Q′) ≤ 1
M′ `(Q) (this covers

a generation of cubes) and that contains xQ will satisfy the second part of (9.77)
automatically.

Now pick any M′ as above, and for each Q ∈ D(Q0) a cube Q′ = Q′(Q) ⊂ Q
such that (9.77) holds; we claim that in order to show that a doubling measure ω is
A∞D (Q0) with respect to another doubling measure ν it is enough to prove that there
exists 0 < ε′, δ′ < 1 such that for every Q ∈ D(Q0) and every Borel set F ⊂ Q′,

(9.78)
ω(F)
ω(Q′)

< δ′ ⇒
ν(F)
ν(Q′)

< ε′.

Now assume that (9.79) holds for every F ⊂ Q′ ⊂ Q as stated, and that for some
F ⊂ Q we have ν(F)

ν(Q) > ε, with ε ∈ (0, 1) to be defined shortly. Obviously

ν(Q \ Q′) + ν(F ∩ Q′) = ν(F) > εν(Q).

Since ν is doubling, there exists a small constant cν depending on the doubling
constants of ν, the dimension, and M′, such that ν(Q) ≤ 1

cν
ν(Q′). Hence,

ν(F ∩ Q′)
ν(Q′)

>
εν(Q′) − ν(Q \ Q′)

ν(Q′)
= 1 − (1 − ε)

ν(Q)
ν(Q′)

≥ 1 − (1 − ε)
1
cν
.

Choosing 0 < ε < 1 so that cν(1 − ε′) = 1 − ε (which is always possible, for any
given 0 < ε′ < 1), we get ν(F∩Q′)

ν(Q′) > ε′. Then, by (9.79), ω(F∩Q′)
ω(Q′) ≥ δ

′. Therefore,

ω(F)
ω(Q)

≥ cω
ω(F ∩ Q′)
ω(Q′)

≥ cωδ′ =: δ,

where cω is a constant depending on the doubling constants of ω, the dimension,
and M′ only. We arrive at (9.76).
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Hence, in application to our situation, it is enough to show that there exists 0 <
ε, δ < 1 such that for every Q ∈ D(Q0) and every Borel set F ⊂ Q′,

(9.79)
PF ω

AQ0
∗ (F)

PF ω
AQ0
∗ (Q′)

> ε⇒
PF ω̂

AQ0 (F)
PF ω̂

AQ0 (Q′)
> δ

where the large constant M′ will be chosen below, and Q′ is a descendent of Q
chosen as above.

If Q′ is a subcube of some Q j ∈ F , there is nothing to prove, for

PF ω̂
AQ0 (F)

PF ω̂
AQ0 (Q′)

=
PFω

AQ0
∗ (F)

PFω
AQ0
∗ (Q′)

=
µ(F ∩ Q j)
µ(Q ∩ Q j)

.

Therefore, we concentrate on the case when Q′ and hence, Q, belongs toDF . Since

PF ω̂
AQ0 (Q′) . ω̂AQ0 (π(Q′))

(see (9.57), (9.60)), the usual change of pole considerations yield

PF ω̂
AQ0 (F)

PF ω̂
AQ0 (Q′)

& ω̂AQ′
(

F \
( ⋃

Q j∈F

Q j
))

+
∑
Q j∈F

µ(F ∩ Q j)
µ(Q j)

ω̂AQ′ (π(Q j))

& ω̂AQ′
(

F \
( ⋃

Q j∈F

Q j
))

+
∑

Q j∈F :
µ(F∩Q j)
µ(Q j)

>η

µ(F ∩ Q j)
µ(Q j)

ω̂AQ′ (π(Q j))

& ω̂AQ′
(

F \
( ⋃

Q j∈F

Q j
))

+ η
∑

Q j∈F :
µ(F∩Q j)
µ(Q j)

>η

ω̂AQ′ (π(Q j))

& η ω̂AQ′
((

F \
( ⋃

Q j∈F

Q j
))⋃( ⋃

Q j∈FG

π(Q j)
))
.

Here 0 < η < 1 is a parameter to be chosen below, and FG is the collection of cubes
in F such that µ(F∩Q j)

µ(Q j)
> η. Let Z =

(
F \
(⋃

Q j∈F
Q j
))⋃ (⋃

Q j∈FG
π(Q j)

)
be the set

from the last line. By the maximum principle and the fact that L = L̂ in ΩF ∩ ΩΘ,
ω̂AQ′ (Z) is larger than the solution to Lu = 0 on ΩF ∩ΩΘ with the data given by the
restriction of 1Z to the boundary of ΩF ∩ΩΘ, evaluated at AQ′ .

We claim that for some constants C, α > 0 depending on the usual geometric
parameters only, the latter is larger than ωAQ′

∗ (Z) − C (M′)−d+1−α. In order to prove
this, by the maximum principle we only need to show that

(9.80) ωX
∗

(
π(Q′)

)
≤ C(M′)−d+1−α for X ∈ ∂(ΩF ∩ΩΘ) \ ∂ΩF = ΩF ∩ ∂ΩΘ,

because Z ⊂ π(Q′) since F ⊂ Q′.
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Let us postpone for now the proof of (9.80) and try to finish the argument. At
this point, collecting all of the above, we have

(9.81)
PF ω̂

AQ0 (F)
PF ω̂

AQ0 (Q′)
& ηω

AQ′
∗ (Z) − η (M′)−d+1−α.

However,

(9.82) ω
AQ′
∗ (Z) & ωAQ′

∗

(
F \
( ⋃

Q j∈F

Q j
))

+
∑

Q j∈FG

ω
AQ′
∗ (π(Q j))

≥ ω
AQ′
∗

(
F \
( ⋃

Q j∈F

Q j
))

+
∑

Q j∈FG

µ(F ∩ Q j)
µ(Q j)

ω
AQ′
∗ (π(Q j))

≥ ω
AQ′
∗

(
F \
( ⋃

Q j∈F

Q j
))

+
∑
Q j∈F

µ(F ∩ Q j)
µ(Q j)

ω
AQ′
∗ (π(Q j)) − η

∑
Q j∈F \FG

ω
AQ′
∗ (π(Q j))

≥ PFω
AQ′
∗ (F) − η.

where the first inequality is due to the finite overlap property of π(Q j), the second
one is simply due to the fact the density does not exceed 1, while in the third one
we have added back and subtracted the cubes where µ(F∩Q j)

µ(Q j)
≤ η, and the fourth one

uses once again the finite overlap property and the fact that∑
Q j∈F \FG

ω
AQ′
∗ (π(Q j)) ≤ ω

AQ′
∗ (π(Q′)) ≤ 1.

Then (9.81) and (9.82) give

(9.83)
PF ω̂

AQ0 (F)
PF ω̂

AQ0 (Q′)
& η
(
PFω

AQ′
∗ (F) − η − (M′)−d+1−α

)
.

We started with the assumption that PF ω
AQ0
∗ (F)

PF ω
AQ0
∗ (Q′)

> ε as in (9.79), and we may as well

take ε = 1/2. Then we change the poles, and (9.74) yields PFω
AQ′
∗ (F) ≥ C−1ε, and

where of course C does not depend on η. We may now choose M′ so large and η
so small that the right-hand side of (9.83) is larger than C−1η. Then the conclusion
of (9.79) holds, with δ = C−1ε.

To finish the proof, it remains to show (9.80). This is essentially the comparison
principle once we observe that

(9.84) dist (Q′,ΩF ∩ ∂ΩΘ) ≥ CM′`(Q′),

where C depends on η, θ, and K, and the dimension and AR constants of E only.
This estimate was the entire reason for introducing M′ into the argument. To this
end, we observe that by (9.35)

ΩF ∩ ∂ΩΘ ⊂ ∪Q̃∈D\D(Q0)U
∗

Q̃.



HARMONIC MEASURE ON LOW-DIMENSIONAL UR SETS 83

We split into two cases. Assume first that Q̃ ∈ D \ D(Q0) is such that `(Q̃) ≥
c0 `(Q0), with a small constant c0 to be determined below. Then

(9.85) dist (U∗Q̃,Q
′) ≥ dist (U∗Q̃, E) ≥ C(η, θ)`(Q̃)

≥ c0 C(η, θ) `(Q0) ≥ c0 C(η, θ) M′ `(Q′),

where we used (9.25) and (9.26) for the third inequality above and (9.77) along
with the fact that `(Q0) ≥ `(Q) for the last one.

If, on the other hand, Q̃ ∈ D \ D(Q0) is such that `(Q̃) ≤ c0 `(Q0), with c0 < 1,
then Q̃ ∩ Q0 = ø and

dist (U∗Q̃,Q
′) ≥ dist (Q̃,Q′) − dist (U∗Q̃, Q̃) ≥ dist (Q′, E \ Q) −C(K, θ) `(Q̃)

≥
M′

2
`(Q′) −C(K, θ) `(Q̃) ≥

M′

2
`(Q′) −C(K, θ) c0 `(Q0)(9.86)

≥
M′

2
`(Q′) − 10 C(K, θ) c0 M′`(Q′),

where we used (9.25) for the third and the fifth inequality and (9.77) for the fourth
one. Now choosing c0 so that 10 C(K, θ) c0 = 1/4, and combining (9.85) and (9.86),
we arrive at (9.84), with a small constant C depending on η, θ,K, the dimension,
and the AR constant of E only.

With (9.84) at hand, by Lemma 15.28 of [DFM4]

ωX
∗ (π(Q′)) ≤ C

m(BQ′ ∩ΩF )
l(Q′)2 g∗(X, AQ′),

where g∗ is the Green function of L on ΩF , BQ′ is a ball of radius Cl(Q′) centered in
Q′, and the measure m is given by m(A) =

∫∫
A dist (X, E)−n+d+1 dX. Next, according

to Lemma 14.83 in [DFM4]

g∗(X, AQ′) . `(Q′)α
|X − AQ′ |

2−α

m(B(X, |X − AQ′ |)
. `(Q′)α

(M′`(Q′))2−α

m(B(AQ′ ,CM′`(Q′)) ∩ΩF )
.

Combining the two estimates above,

ωX
∗ (π(Q′)) ≤ C

(M′)2−α

m(B(AQ′ ,CM′`(Q′)) ∩ΩF )
m(BQ′ ∩ΩF ) = C(M′)−d+1−α,

as desired. �

10. Extrapolation

Let us start with the following definitions of dyadic Carleson measures.

Definition 10.1. Let E be a d-dimensional Ahlfors regular set, µ be an Ahlfors
regular measure on E, and D(E) be our usual collection of dyadic cubes on E
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(associated to µ). Let {a(Q)}Q∈D(E) be a sequence of non-negative numbers indexed
by Q ∈ D(E). For any subcollection D′ ⊂ D(E), Q0 ∈ D(E) we let

m(a,D′) :=
∑
Q∈D′
a(Q)2 µ(Q),

and

‖m(a)‖CMD := sup
Q∈D(E)

m(a,D(Q))
µ(Q)

, ‖m(a)‖CMD(Q0) := sup
Q∈D(Q0)

m(a,D(Q))
µ(Q)

,

and if the latter two quantities are finite, we say that m(a) ∈ CMD or m(a) ∈
CMD(Q0), respectively.

These definitions pertain to the measure (rather than to the sequence) and could
seem different in homogeneity from their continuous analogue in geometric saw-
tooth in Definition 2.13. To reconcile these differences we say, slightly abusing the
notation, that the sequence {a(Q)}Q∈D(E) ∈ CMD if the corresponding m(a) ∈ CMD
and similarly {a(Q)}Q∈D(Q0) ∈ CMD(Q0) if m(a) ∈ CMD(Q0).

Furthermore, for any family of pairwise disjoint dyadic cubes F =
⋃

j Q j we
define the restriction of m on the sawtooth by

mF (a,D′) =
∑

Q∈D′\
⋃

Q j∈F
D(Q j)

a(Q)2 µ(Q),

and for any Q ∈ D(E)
Dshort

Q := D(Q) \ {Q}.

As the reader may correctly guess, we aim to use the forthcoming Lemmas for
Tolsa’s α-numbers in place of a(Q). At this point, however, we keep the state-
ments in full generality and note that throughout Section 10 {a(Q)}Q∈D(E) denotes
any sequence with non-negative entries.

Lemma 10.2. Let E be a d-dimensional Ahlfors regular set, µ be an Ahlfors regular
measure on E. Fix some Q0 ∈ D(E) and some sequence of non-negative numbers
{aQ}Q∈D(Q0) such that the corresponding m(a) satisfies

(10.3) m(D(Q0)) ≤ (a0 + b0) µ(Q0), for some a0 ≥ 0, b0 > 0.

Fix some K ≥ 1 and construct a (maximal) family F of pairwise disjoint cubes
obtained by subdividing Q0 and stopping when

(10.4) either a(Q)2 > 2b0 or Ja(Q) =
∑

k(Q0)≤k≤k(Q)

a(Rk(Q))2 ≥ 2Kb0,

(at which point we assign Q ∈ F ). Then

(10.5) ‖mF ‖CMD(Q0) ≤ 4Kb0,
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and

(10.6) µ(B) ≤
a0 + b0

a0 + 2b0
µ(Q0),

where B is the union of cubes Q j ∈ F such that m(a,Dshort
Q j

) > a0µ(Q j).

The Lemma is analogous to Lemma 7.2 in [HM]. However, we have to slightly
change the stopping time region being constructed and carefully track emerging
constants as ultimately only for very special stopping time regions will we be able
to use the results of Sections 3-9.
Proof. If a(Q0)2 ≥ 2b0 then the result is trivial for the following reason. We stop
immediately with Q0, so F = {Q0}, The left-hand side of (10.5) is simply equal to
0, and

m(a,Dshort
Q0

) = m(a,DQ0) − a(Q0)2µ(Q0) ≤ (a0 + b0)µ(Q0) − 2b0µ(Q0)

= (a0 − b0)µ(Q0) < a0µ(Q0),

so that B = ø.
Therefore, it is safe to assume from now on that a(Q0)2 < 2b0 and so F , {Q0}.

As usual, we write F = {Q j} j, where the Q j are thus disjoint (by maximality) cubes
Q j ∈ D(Q0). Then

(10.7)
∑
Q j∈F

(m(a,Dshort
Q j

) + Ja(Q j) µ(Q j))

=
∑
Q j∈F

m(a,DQ j) −
∑
Q j∈F

a(Q j)2 µ(Q j) +
∑
Q j∈F

∑
k(Q0)≤k≤k(Q j)

a(Rk(Q j))2µ(Q j)

=
∑
Q j∈F

m(a,DQ j) +
∑
Q j∈F

∑
R∈D(Q0): Q j⊂R,Q j,R

a(R)2µ(Q j)

=
∑
Q j∈F

m(a,DQ j) +
∑

Q∈DQ0\
⋃

Q j∈F
DQ j

a(Q)2µ(Q)
∑

Q j∈F : Q j⊂Q,Q j,R

µ(Q j)
µ(Q)

≤
∑
Q j∈F

m(a,DQ j) +
∑

Q∈DQ0\
⋃

Q j∈F
DQ j

a(Q)2µ(Q) ≤ m(a,DQ0)

where we used the fact that Q j are disjoint for the last line. Let FB := {Q j ∈ F :
m(a,Dshort

Q j
) > a0µ(Q j)}. Now,

(10.8) (a0 + 2b0) µ(B) = (a0 + 2b0)
∑

Q j∈FB

µ(Q j) = a0

∑
Q j∈FB

µ(Q j) + 2b0

∑
Q j∈FB

µ(Q j)
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<
∑

Q j∈FB

m(a,Dshort
Q j

) +
∑

Q j∈FB

Ja(Q j) µ(Q j),

where we used the definition of FB and the fact that Q j is a stopping cube, hence,
either Ja(Q j) ≥ 2Kb0 ≥ 2b0 or Ja(Q j) ≥ a(Q j)2 ≥ 2b0, so that in any case Ja(Q j) ≥
2b0. Next, using (10.7) and (10.3), the last expression in (10.8) is bounded from
above by

(10.9)
∑

Q j∈FB

(
m(a,Dshort

Q j
) + Ja(Q j) µ(Q j)

)
≤ m(a,DQ0) ≤ (a0 + b0) µ(Q0),

and (10.8)–(10.9) yields (10.6).
Turning to (10.5), we observe that the latter amounts to showing that for every

Q ∈ D(Q0), ∑
Q′∈D(Q)\

⋃
Q j∈F

DQ j

a(Q′)2 µ(Q′)
µ(Q)

≤ 4Kb0.

Having fixed any such Q, it is convenient to introduce, for any large integer N, the
collection FN of maximal cubes (by inclusion) of

F ∪ {Q′ ∈ D(Q0) : l(Q′) ≤ 10−N−1}

and the corresponding smaller family of cubes

HQ = D(Q) \
⋃

Qk∈FN

DQk =
{

Q′ ∈ D(Q) \
⋃

Q j∈F

DQ j : l(Q′) ≥ 10−N
}
.

Clearly, it is sufficient to prove that for every Q ∈ D(Q0)

(10.10)
∑

Q′∈HQ

a(Q′)2 µ(Q′) ≤ 4Kb0 µ(Q)

uniformly in N. The main difference between F and FN is that the (disjoint by
construction) cubes of FN cover any Q ∈ D(Q0), which implies that

(10.11)
∑

Q′∈HQ

a(Q′)2 µ(Q′) =
∑

Q′∈HQ

∑
Qk∈FN : Qk∈D(Q′)

µ(Qk)
µ(Q′)

a(Q′)2 µ(Q′)

=
∑

Qk∈FN : Qk∈D(Q)

µ(Qk)
∑

Q′∈D(Q): Qk⊂Q′,Qk,Q′
a(Q′)2.

We separately consider the elements of FN which belong to F and those that don’t.
First,

(10.12)
∑

Qk∈FN\F : Qk∈D(Q)

µ(Qk)
∑

Q′∈D(Q): Qk⊂Q′,Qk,Q′
a(Q′)2
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≤
∑

Qk∈FN\F : Qk∈D(Q)

µ(Qk)Ja(Qk) < 2Kb0

∑
Qk∈FN\F : Qk∈D(Q)

µ(Qk) ≤ 2Kb0 µ(Q).

Here in the next-to-the-last inequality we used the fact that by the stopping time
construction Ja(Qk) < 2Kb0 when Qk ∈ FN \ F , for otherwise it would belong to
F . Next consider Qk ∈ FN ∩ F , denote by Q̃k denotes the parent of Qk, observe
that

∑
Q′∈D(Q): Qk⊂Q′,Qk,Q′ a(Q

′)2 ≤ Ja(Q̃k) < 2Kb0 because otherwise Q̃k ∈ F and
this would contradict the maximality of Q. We are also using the fact that Qk , Q0

here. Now

(10.13)
∑

Qk∈FN∩F : Qk∈D(Q)

µ(Qk)
∑

Q′∈D(Q): Qk⊂Q′,Qk,Q′
a(Q′)2

≤
∑

Qk∈FN\F : Qk∈D(Q)

µ(Qk)Ja(Q̃k) < 2Kb0

∑
Qk∈FN\F : Qk∈D(Q)

µ(Qk) ≤ 2Kb0 µ(Q),

This finishes the proof of (10.5) and Lemma 10.2 follows. �

The next result is the main extrapolation step, analogous to Lemma 8.5 from
[HM]. We have to state it differently, however, because once again we can only
afford to work with very special stopping time regions.

Lemma 10.14. Let E be a d-dimensional Ahlfors regular set and µ be an Ahlfors
regular measure on E. Fix some Q0 ∈ D(E) and a dyadically doubling Borel
measure ω on Q0. Assume that there is some sequence of non-negative numbers
{aQ}Q∈D(Q0) such that the corresponding m(a) satisfies

(10.15) ‖m(a)‖CMD(Q0) ≤ L0

for some L0 < ∞. Furthermore, assume that there exists b0 ≥ 0 such that for
some K ≥ 1, and any a0 ∈ [0, L0] the stopping time region from the statement of
Lemma 10.2, built according to (10.4), satisfies the property that the projection of
ω on F within Q0, defined by (9.70), is A∞D (Q0) with respect to µ. Finally, assume
that whenever m(a,D(Q)) = 0 we have that ω is A∞D (Q) with respect to µ.

Then ω is A∞D (Q0) with respect to µ.

Proof. The proof can be carried out closely following that of Lemma 8.5 from
[HM]. There the authors have a seemingly stronger hypothesis that there exists
γ ≥ 0 such that for every Q ∈ D(Q0) and family of pairwise disjoint dyadic cubes
F = {Q j} j ⊂ D(Q) such that ‖mF ‖CMQ ≤ γ the projection of ω on F within Q0,
defined by (9.70), is A∞D (Q0) with respect to µ. The actual proof, however, relies
only on the stopping time regions built in their analogue of our Lemma 10.2.

In a few words, the proof proceeds by induction argument with a continuous
parameter, with the main hypothesis

(10.16) ∃ ηa ∈ (0, 1), ∃Ca < ∞ : ∀Q ∈ D(Q0) with m(a,DQ) ≤ aµ(Q) we have
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A ⊂ Q,
µ(F)
µ(Q)

≥ 1 − ηa =⇒
ω(F)
ω(Q)

≥
1

Ca
,

referred to as H(a), a ≥ 0.
The induction proceeds in two steps. Step I is that H(0) holds. This is a straight-

forward consequence of one of our assumptions as m(a,DQ) = 0 implies that ω is
A∞D (Q) with respect to µ.

Turning to the induction step, one aims to show that H(a) implies H(a + b0), for
all a ∈ [0, L0] so that the conclusion of the theorem can be reached in k steps where
k is such that kb0 ≥ L0. To this end, we fix 0 ≤ a := a0 ≤ L0 and Q ∈ D(Q0) such
that m(a,DQ) ≤ (a0 + b0)µ(Q). In the notation of [HM] one would take γ = 4Kb0.
Then, using the results of Lemma 10.2, the proof of the induction step follows the
lines of the argument for Lemma 8.5 from [HM], and we omit the details. �

11. Conclusion

At this point we finally collect the results of Sections 3–10 towards the proof of
the Main Theorem.

Theorem 11.1. Let E be a d-dimensional uniformly rectifiable set in Rn, d ≤ n−2,
and µ be a uniformly rectifiable measure on E. Let ω be the harmonic measure
associated to the operator L = − div D−(n−d−1)

µ ∇ in Rn \ E, with

(11.2) Dµ(X) =
{∫

E
|X − y|−d−αdµ(y)

}−1/α
, α > 0.

Then ω is A∞ with respect to µ in the sense of Definition 2.25.

Proof. Our first task is to show that for every fixed Q0 ∈ D(E) the harmonic mea-
sure ω = ωAQ0 is A∞D (Q0) with respect to µ. Once this is established, we recover that
by Harnack inequality we also have ω = ωAQ0 is A∞D (Q′0) with respect to µ for any
Q′0 with l(Q′0) = l(Q0) and dist (Q0,Q′0) ≤ Cl(Q0). And then, using the doubling
property of ω and Harnack inequality once again, we can show that ω is A∞ with
respect to µ in the sense of Definition 2.25 (not only dyadically).

Now, as before, we let {α(Q)}Q ∈ D(E) stand for the Tolsa α numbers and recall
that by Theorem 9.1 and our assumptions there exists L0 < ∞ such that

‖m(α)‖CMD(Q0) ≤ L0,

for any fixed Q0 ∈ D(E). We need to verify the rest of the assumptions of Lemma 10.14.
To this end, recall the statement of Theorem 9.68. Take, as in Theorem 9.68,

M0 > 1 large enough depending on n, d,C0, M > 1 large enough depending on
n, d,C0,M0, and ε0, δ0 > 0 small enough depending on n, d,C0,M0,M, for any
Q0 ∈ D(E) so that the conclusion of the Theorem is verified for Θ = Θε0,δ0(Q0) and
the complementary collection F built in Definition 9.3.
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We can safely assume that δ0 > ε2
0, because we decided to chose ε0 last. We

choose b0 = ε2
0/2 and K = δ0/ε

2
0 so that 2Kb0 = δ0. The stopping time region

from Lemma 10.2 is then the same as the stopping time region from Theorem 9.68
(provided that F , {Q0}) and hence, the desired property that the projection of ω
on F within Q0, defined by (9.70), is A∞D (Q0) with respect to µ, is verified.

If it happens that F = {Q0}, then by definition (9.70) PFω(A) =
µ(A)
µ(Q) ω

AQ0 (Q0) ≈
µ(A), so that the hypothesis of Lemma 10.14 (PFω is A∞D (Q0) with respect to µ) is
trivially valid.

Finally, it remains to consider the casem(a,D(Q)) = 0 which we will reformulate
as m(a,D(Q0)) = 0. Then by definition α(Q) = 0 for all Q ∈ D(Q0) and hence,
Jα(Q) = 0 for all Q ∈ D(Q0). Therefore, for any ε0, δ0 > 0 we have F = ø so that
PFω = ω and Theorem 9.68 then gives the desired result. �
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