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The following text is a minor modification of the transparencies that were used in the
conference; please excuse the often telegraphic style.

The main goal of the series of lectures is a presentation (with some proofs) of Jean
Taylor’s celebrated theorem on the regularity of almost minimal sets of dimension 2 in R3,
and a few more recent extensions or perspectives. Some of the results presented below are
work of, or with T. De Pauw, V. Feuvrier A. Lemenant, and T. Toro.

The main references for these lectures are [D4] and [D5] (for the proofs), [D3] (for
some of the questions), and the theses [Feu] and [Le].
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1. AN INTRODUCTION WITH THE PLATEAU PROBLEM

Plateau was indeed interested in soap films. The simplest version of Plateau’s problem
is: describe the soap films E ⊂ R3 bounded by a smooth curve Γ (existence and regularity).

Apparently, a (real life) soap film is composed of two layers of some molecules with a
water-attracting head and a water-repelling tail, which align themselves head to head; the
width of the film is roughly equal to the length of two molecules.

The general idea for a model is to minimize the area of a surface E spanned by Γ, but
different descriptions of “soap films” and the boundary condition exist. We shall mention
four.

A soap bubble would only be slightly different: due to different pessures on both sides,
it does not exactly minimize area, and (in the smooth case), it has constant (instead of
vanishing) mean curvature. And it is a typical example of what will be called an almost
minimal set here.

1.a. Currents and the solution of Plateau’s problem

We start with the most celebrated and successful model, provided by Currents. Work
by Federer, Fleming, De Giorgi, and others.

A d-dimensional current is a continuous linear form on the space of smooth d-forms.
Main example: if S is smooth, oriented surface of dimension d, the current S′ of

integration on S is defined by 〈S′, ω〉 =
∫
S
ω. But we want a much larger class, which

contains limits of objects like S′, so that we get good compactness properties. As usual,
the price to pay is that the general current is not really smooth, and we often need to
prove the regularity of the current solutions of our problems.

Another useful example is the rectifiable current T defined on a d-dimensional rectifi-
able set E such that Hd(E) < +∞, with a measurable orientation τ , and an integer-valued
multiplicity m:

(1) 〈T, ω〉 =
∫
E

m(x) ω(x) · τ(x) dHd(x)

Recall that a rectifiable set of dimension d is a set E such that E ⊂ N ∪
⋃
j∈N

Gj ,

where Hd(N) = 0 and each Gj is a C1 emmbedded submanifold of dimension d. [Or the
Lipschitz image of a subset of Rd; this would yield an equivalent definition.]

See the definition of Hausdorff measure later.
The boundary of a d-dimensional current T is defined by

(2) 〈∂T, ω〉 = 〈T, dω〉 for every (d− 1)-form ω,

were d denotes the exterior derivative. When S is a smooth oriented surface with boundary
Γ, Green says that ∂S′ = Γ′.

The classical way to state the Plateau problem in the current setting is to take a (d−1)-
dimensional current Γ, with ∂Γ = 0, and minimize the mass of T , among d-dimensional
currents T such that ∂T = Γ.

2



The mass Mass(T ) is the operator norm of T , where we put a L∞-norm on forms.
When T is a rectifiable current given by (1),

(3) Mass(T ) =
∫
E

|m(x)| dHd(x)

A normal current is a rectifiable current T such that ∂T is rectifiable too. [This
additional constraint won’t disturb here because we know ∂T .]

The main interest of the setting is the following compactness theorem: if {Tk} is a
sequence of normal currents of dimension d, with supports in a fixed compact set in Rn,
and such that Mass(Tk) + Mass(∂Tk) ≤ M for some fixed M < +∞, then there is a
subsequence that converges (in some weak norm) to some normal current T . Moreover,
Mass(T ) ≤ lim infk→+∞Mass(Tk) and Mass(∂T ) ≤ lim infk→+∞Mass(∂Tk).

Important consequence: the existence of normal currents T that solve ∂T = Γ and
minimize Mass(T ).

Here we get a set E, the “support” of T , which is merey rectifiable a priori but then
there are very strong regularity results for minimizers, and in particular E is a smooth
submanifold when d < 7.

A great success for weak solutions and Geometric Measure Theory.

1.b. Size minimizers
Unfortunately, this is not a great model for soap films. See pictures from Ken Brakke’s

web page: http://www.susqu.edu/brakke/
So we want to describe minimal sets differently. If we want to keep the currents

setting, we should minimize the size of solutions of ∂T = S, where

(4) Size(T ) = Hd
(
{x ∈ E ; m(x) 6= 0}

)
when T is given by (1).

Here Hd denotes the d-dimensional Hausdorff measure (think about surface measure,
but Hd(E) is also defined when E is not smooth). It is defined by

(5) Hd(E) = lim
δ→0

Hd
δ (E)

where

(6) Hd
δ (E) = cd inf

{∑
j∈N

diam(Dj)d
}
,

and the infimum is taken over all coverings of E by a countable collection {Dj} of sets,
with diam(Dj) ≤ δ for all j. We choose the normalizing constant cd so that Hd coincides
with the Lebesgue measure on the subsets of Rd.

When we try to minimize size, it is interesting to glue together two pieces of E when
we can, because we don’t pay for larger multiplicities. For instance, when d = 1, the
union of two parallel segments that lie very close to each other minimizes the mass, but a
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size minimizer with the same boundary (two points marked − on one side and two points
marked + on the other side) is composed of a long central segment with multiplicity 2,
connected to the four ends by two pairs of short line segments with multiplicity 1 that
make 120◦ angles with the central segment.

Similarly, when d = 2 and the boundary Γ is composed of two parallel circles that lie
close to each other and have the same orientation, the mass-minimizing current corresponds
to the union of the two parallel disks bounded by the circles, while the size-minimizer is
easly guessed to be composed of a central disk, connected to the two circles by two small
sections of catenoids. Again the three pieces make 120◦ angles along the circle where they
meet.

Bad news: in this setting, no general existence theorem is known, even when d = 2,
n = 3, and Γ comes from a smooth curve!

The difficulty is that we have no bounds on the masses, so the compactness theorem
above does not apply.

Also, some soap films are not orientable (Möbius bands), and the problem ∂T = Γ
does not always fit. Various ad hoc solutions to this exist, but no general scheme.

Note that we could also want to minimize various intermediate “norms” between mass
and size, for instance where we integrate some power α ∈ [0, 1] of the multiplicity m(x)
(α = 1 corresponds to mass, and α = 0 to size). This arises for instance with optimal
irrigation networks. There are existence theorems in this context, proved in particular by
T. De Pauw and R. Hardt.

1.c. Directly with sets
Return to d = 2, n = 3, and E is a surface spanned by the curve Γ. We want to

minimize H2(E), but the difficulty is the definition of “spanned”.
For Reifenberg (1960), E is a compact set that contains Γ, and the boundary condition

is stated in terms of Čech homology on some commutative group G. We require the
inclusion i : Γ→ E to induce a trivial homomorphism from H1(Γ, G) to H1(E,G).

Then we minimize the area H2(E) under these constraints.
Reifenberg proves the existence of minimizers when G = Z2 or G = R/Z. Beautiful

proof by hands, minimizing sequence, and haircuts. He also obtains higher-dimensional
results, I think.

Very recently, De Pauw obtained the 2-dimensional case when G = Z (with currents).
The equivalence with the size minimizing problem is not clear, but the infimum is the

same [De Pauw].
Let me propose a third definition, where we minimize H2(E) among all compact sets

E obtained by deformation of an initial candidate E0 with a sliding boundary condition.
[Think about a rubber shower curtain.]

A deformation of E0 with sliding boundary condition is a set E = ϕ1(E), where
ϕt : E0 → R3, 0 ≤ t ≤ 1 is a one-parameter family of functions such that:

(7) (x, t)→ ϕt(x) is continuous: E0 × [0, 1]→ R3,

(8) ϕ0(x) = x for x ∈ E0,

4



(9) ϕt(x) ∈ Γ when x ∈ Γ,

(10) ϕ1 is Lipschitz.

[We require (10) for safety and to follow the tradition of Almgren, but no bound on the
Lipschitz constant is attached, and we may even be allowed to drop (10) altogether.]

Here are possible advantages of this notion. First, we do not need to orient E, or
choose a group. The definition could also be more flexible. That is, different choices of
E0 could lead to different solutions, so the choice of E0 could be more precise than the
selection of an algebraic class for instance.

But no existence result is know yet. Also, we still do not account for unrealistic
deformations that would extend the film too far: some real films could be deformed into a
point, but with a long homotopy.

It would also be nice to know which condition fits best the limit, when the width of
the tubes tends to 0, of a Plateau problem with a tubular boundary.

Incidentally, all these definitions make sense in a much wider context (but then even
less is known).

We now leave the Plateau problem with the conclusion that it is not solved.

2. ALMOST MINIMAL SETS

We shall focus more on the regularity properties of potential solutions away from
the boundary. This includes J. Taylor’s theorem.

Regularity near the boundary will possibly be a much more complicated matter, which
(to my knowledge) was essentially not studied. I’ll try to do this in the future, but with
no guarantee of success.

Note that studying the regularity of solutions is both interesting in itself, and because
this may be an important ingredient in proofs of existence. We’ll try to give a hint of this
in Section 8.

We shall start with a definition of local minimal and almost-minimal sets, and then
give general regularity properties that hold in all dimensions. Taylor’s theorem will be
disccussed later.

2.a. Definitions
I think that the following definition gives a good local description of soap films and

bubbles, and is also satisfied by the closed support of size-minimizing currents.
We work inside an open set U ⊂ Rn, to make the definition local and avoid boundary

problems; regularity near the boundary would be more complicated.
We use a small gauge function h : R+ → R+ to account for perturbations (small

additional forces, for instance, or gently unhomogeneous space). Feel free to take h = 0
(for minimal sets).

We consider closed sets E ⊂ U with locally finite Hd-measure and (to simplify slightly)
define competitors F for E only in compact balls B ⊂ U .

A competitor for E in B is a set F = ϕ(E), where ϕ : U → U is Lipschitz (but no
bounds required), with
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(1) ϕ(y) = y for y ∈ U \B, and ϕ(B) ⊂ B.

This is a minor variation of Almgren’s notion of competitor. Observe that F is a
continuous deformation of E in U , because F = ϕ1(E), where ϕt(y) = tϕ(y) + (1 − t)y,
and thus ϕt(B) ⊂ B. Note that ϕ1 is not required to be injective.

Definition. Fix a gauge function h : (0,+∞) → [0,+∞), with lim
r→0

h(r) = 0. An

almost minimal set of dimension d in U , with gauge function h, is a closed set E, with
Hd(E ∩B) < +∞ for every closed ball B ⊂ U , such that

(2) Hd(E ∩B) ≤ Hd(F ∩B) + rdh(r)

whenever B is a closed ball, B ⊂ U , r is its radius, and F is a competitor for E in B.

Remarks.

• The definition of competitors is as important as the accounting. In the standard definitin
we also allow competitors in compact sets K ⊂ U (not necessarily balls).
• Here we are allowed to merge pieces of E .
• This is very similar to Almgren and Taylor’s definitions, even though the accounting in
(2) is a little different.
• Some other definitions are equivalent. Some are probably not. See [D4].
• See below for a slightly larger set of competitors and hence a more restrictive notion of
almost-minimal sets of codimension 1, based on the definition of global minimizers for the
Mumford-Shah functional.

Simple examples.

• A line, a Y (three half lines in a plane, with 120◦ angles).
• But not two lines (even perpendicular), because Y junctions are more performant. Also
it is not too hard to see that a cross is not a mass minimizer either (∂T = S is not the
same as a connectedness condition, and incidentally mass minimizers fo ∂T = S, where
S is a sum of two Dirac masses minus two other Dirac masses, would manage not to be
supported by crossing segments).
• Exercise: what is the shortest connected set that contains three given points on the
circle?
• A plane, a Y (i.e., a product of Y ⊂ R2 by a perpendicular line, or in other words
a union of three half planes that make 120◦ angles along their common boundary) are
2-dimensional minimal sets.
• Less trivial: let T ⊂ R3 be the (closed positive) cone of dimension 2 over the union of the
edges of a regular tetrahedron centered at the origin; thus T has six faces that meet by sets
of three along four half lines (the spine). Then T is a minimal set. The minimality of T was
proved by J. Taylor (with an argument like the proof in Section 5, or by Morgan-Lawlor
(with a calibration).
• Catenoids (or other minimal surfaces), with d = 2, n = 3, h(r) = 0 for r small, but h(r)
we need to take h(r) large for r large.
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• Expected: soap films and bubbles, minimizers of functional with a main term like Hd(E),
and under topological constraints that allows deformations; see below.

Reduction (= cleaning).
For E ⊂ Rn closed, with locally finite Hd measure, denote by E∗ the closed support

of E. That is,

(3) E∗ =
{
x ∈ E ; Hd(E ∩B(x, r)) > 0 for all r > 0

}
.

We say that E is reduced when E = E∗.
If E is almost minimal, then E∗ is almost minimal, with the same gauge h, because

Hd(E \ E∗) = 0. So it is safe to focus on reduced sets.
This simplifies things; otherwise we would get uglier statements because if E is almost

minimal, then E ∪ Z is also almost minimal for any closed Z such that Hd(Z) = 0.
But we should keep in mind that E∗ \E can play a role in some topological problems.
At any rate, from now on all our sets will be reduced.

2.b. Cones and Minimal sets in U = R3

By minimal set of dimension d in Rn, we just mean an almost minimal set, with
U = Rn and h(r) = 0. We don’t expect so many of them to exist, because only few
asymptotic behaviours at ∞ are allowed.

By minimal cone, we just mean a minimal set which is a (positive) cone. Minimal
cone are very important; they arise as blow-up limits of almost minimal sets, and hopefully
they are much simpler (see later). For instance, you see them in soap films and bubbles.
Maybe in some other examples in nature (honeycombs clearly, radiolaria less obviously).

When d = 1 and n = 2, the nonempty (reduced) minimal sets are the lines and unions
Y of three half lines with the same endpoint, that make 120◦ angles at that point. Proof
by hand.

Same thing when d = 1 and n > 2. The spine of a T (four half lines leaving from a
point with maximal equal angles) is not minimal.

When d = 2, n = 3, the nonempty (reduced) minimal cones are: the planes, and the
cones Y and T as above.

Ernest Lamarle, Jean Taylor and A. Heppes proved that there is no other (reduced)
minimal cone of dimension 2 in R3. Idea: the intersection with the unit sphere sort of
minimizes length, it is a union of arcs of great circles that meet only with 120◦ angles;
make a list and eliminate the ones that are not minimal. For instance, a great circle is the
intersection of ∂B(0, 1) with a 2-plane through 0.

See Ken Brakke’s home page for pictures of minimal cones and some unlucky candi-
dates (like the cone over the edges of a cube):

http://www.susqu.edu/brakke/

Question: is there a list of minimal cones of dimension 2 in R4 ?
So far, I have a first description (as a union of faces that meet with 120◦ angles, or the
cone over a net of great circles), but not very precise, and very few examples. [Such as the
union of two orthogonal planes or the product two Y -sets.]
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Question: are there other minimal sets of dimension 2 in R3 ?
This is unlikely, but I don’t know a proof. At least, here is a partial result (to which we
shall return later later).

A MS-competitor for E ⊂ Rn in the closed ball B is another closed set F such that
F coincides with E on Rn \B and

(4)
F separates x from y whenever x, y ∈ Rn \ (E ∩B)

lie in different connected components of Rn \ (E ∩B).

A MS-minimal set is a closed set E ⊂ Rn such that

(5) Hn−1(E ∩B) ≤ Hn−1(F ∩B)

whenever B is a closed ball and F is a MS-competitor for E in B.
MS-minimal sets arise naturally in the study of the Mumford-Shah functional: they

are the sets E such that the pair (0, E) is a global Mumford-Shah minimizer in Rn.
Almgren competitors for E are MS-competitors, hence MS-minimal sets are Almgren

minimal sets.
It turns out that every nonempty MS-minimal set in R3 is a minimal cone, i.e., a plane,

a Y, or a T. This should have been known, but I did not find it. A proof will be sketched
below, which looks like the argument of J. Taylor for the minimality of T.

2.c. General regularity properties
Here is a rapid survey on the general regularity properties of almost-minimal sets.

These will be less precise than J. Taylor’s theorem, but they hold in all dimensions and
codimensions (and they will be needed for the proof).

In what follows, E is a reduced almost minimal set of dimension d in U ⊂ Rn, with
gauge function h. The constants C will depend on h, n, and d, but not on E or U .

Local Ahlfors-regularity
Almgren and D.-Semmes: there exists C ≥ 1 such that

(6) C−1rd ≤ Hd(E ∩B(x, r)) ≤ Crd

whenever

(7) x ∈ E and r ∈ (0, 1) are such that B(x, 2r) ⊂ U.

Thus this is just a size condition. The hard part is the lower bound (if E is too thin,
we can deform it to an even smaller set). This property is very useful in estimates; its proof
uses comparisons with competitors obtained by applying Federer-Fleming projections onto
d-dimensional skeletta of dyadic cubes.

Local uniform rectifiability
Some uniform way of saying that E is almost as smooth as a Lipschitz graph. In fact,

E is locally uniformly rectifiable, with big pieces of Lipschitz graphs [D.-Semmes], which
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means that there exists C ≥ 1 such that, when (7) holds, we can find a C-Lipschitz graph
G of dimension d such that

(8) Hd(E ∩G ∩B(x, r)) ≥ C−1rd.

A C-Lipschitz graph is just the graph of some C-Lipschitz function A defined on a
d-plane V and with values in V ⊥.

The statement forgets many things that we know, like the fact that E does not have
holes. But it implies various other (weak) regularity properties, and it is used in the
following.

2.d. Uniform concentration and stability under limits
The following “uniform concentration property” holds for E. It was introduced by Dal

Maso, Morel, and Solimini [DMS] in the slightly different context of the Mumford-Shah
functional, to get the lowersemicontinuity of Hd along some minimizing sequences and
prove existence results.

For each ε > 0, there is a constant C ≥ 1 such that for each (x, r) ∈ E × (0, 1) such
that (7) holds, we can find y ∈ E and t > 0 such that

(9) t ≥ C−1r , B(y, t) ⊂ B(x, r) , and

(10) Hd(E ∩B(y, t)) ≥ (1− ε)Hd(P ∩B(y, t))

for any d-plane P through y. [Thus E is (1− ε)-concentrated in B(y, t).] It is important
that C depends only on h, n, and d.

The property is obtained [D1] as a simple consequence of uniform rectifiability, and
gives the following result.

Theorem [D1]. Let {Ek} be a sequence of reduced almost minimal sets in U , with the
same gauge function h. Suppose that {Ek} converges to the closed set E locally in U .
Then

(11) Hd(E ∩ V ) ≤ lim inf
k→+∞

Hd(Ek ∩ V ) for every open set V ⊂ U ,

and

(12) E is a reduced almost minimal set, with gauge function h.

We say that the sequence {Ek} converges to E locally in the open set Uwhen

(13) lim
k→+∞

dx,r(E,Ek) = 0 for every ball B(x, r) ⊂⊂ U ,

where we set

(14)
dx,r(E,Ek) = r−1 sup

{
dist(y,E) ; y ∈ Ek ∩B(x, r)

}
+ r−1 sup

{
dist(y,Ek) ; y ∈ E ∩B(x, r)

}
.
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Comments.
• The main part is (11), which follows directly from (10) by a covering argument [DMS].
Then (12) follows by constructing appropriate competitors.
• (11) would fail for general sets : dotted lines can converge to lines.
• Converging subsequences are easy to find, so this looks like a nice way to start proofs of
existence for minimizers of functionals with a main surface term, and this was the point
of [DMS] in the context of the Mumford-Shah functional. Unfortunately problems arise
when we need to check that the limits are still acceptable competitors.
• This theorem will help with blow-up and blow-in limits, and for various proofs by con-
tradiction and compactness.

We can also hope that it will be used as a replacement for the compactness theorem
for normal currents that was mentioned above.

2.e. Quasiminimal sets
It may be useful to consider the larger class of quasiminimal sets (introduced by

Almgren and called “restricted sets”).
As before, E is a closed set in U , with Hd(E ∩ B) < +∞ for every compact ball

B ⊂ U . We still compare E with sets F = ϕ(E), where ϕ is Lipschitz and such that if

(14) Wϕ =
{
x ∈ Rn ; ϕ(x) 6= x

}
,

then Wϕ ∪ ϕ(Wϕ) ⊂⊂ U , but the accounting will be different.
We say that E is a quasiminimal set with constants M and scale δ0 if, whenever

ϕ : U → U is as above and diam(Wϕ ∪ ϕ(Wϕ) ≤ δ0,

(15) Hd(E ∩Wϕ) ≤MHd(ϕ(E ∩Wϕ)).

We may even add an error term like h(δ)δd , where δ = diam(Wϕ ∪ ϕ(Wϕ)).

Examples:
• the image of an almost-minimal set under a bilipschitz mapping;
• a minimizer of a fonctional like

∫
E
g(x)dHd(x), where we only know that C−1 ≤ g(x) ≤ C

everywhere.

The advantage of this notion is a greater flexibility, and the fact that the theorems
above extend to quasiminimal sets (but take r < δ0 and let C depend on M as well).

3. JEAN TAYLOR’S THEOREM (1976)

3.a. A statement

Theorem [Ta]. Let E be a reduced local almost minimal set of dimension 2 in some open
set U ⊂ R3, with gauge function h(r) = Crα (α > 0). Then for each x ∈ E, there is a ball
B(x, r) where E is the C1-diffeomorphic image of a plane, a Y, or a T.

Comments.
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• The conclusion means that there is a minimal cone T through x (but not necessarily
centered at x) and a C1-diffeomorphism Φ defined on B(x, 2r), say, and with values in R3,
such that |Φ(z) − z| ≤ 10−3r, and so that E ∩ B(x, r) = Φ(T ) ∩ B(x, r). We also control
||DΦ− Id||.

But the simplest description is that near B(x, r), E is composed of C1 faces, which
meet along C1 arcs with 120◦ angles and the same combinatorics as T .
• Recall that the singularies above occur in real soap films.
• Alas, the result does not give a concrete way to estimate r.

• Some (Dini) constraint on h is needed, but h(r) = Crα is not meant to be optimal.

• You can get more regularity than this, especially if h is very small or vanishing and in
the regions where E is C1-diffeomorphic to a plane.

• The bi-Hölder (as opposed to C1) local equivalence to a minimal cone is easier to get,
and extends to 2-dimensional almost minimal set in Rn [D4]. For the full C1 equivalence,
something like epiperimetry seems to be required and, when n > 3, I can only prove it
under some nondegeneracy condition. That is, I assume that some blow-up limit X of E
at x has the following full length property. See [D5].

Write K = X ∩ ∂B(0, 1) as a union of great circles or arcs of great circles. Cut them
in 2 or 3 when needed, to make them less than 9π/10 long. Call V the set of vertices
where the different arcs meet. Consider any ϕ : V → ∂B(0, 1), with supx∈V |ϕ(x) − x|
small. When γ is an arc of K with endpoints x and y ∈ V , call ϕ∗(γ) the geodesic from
ϕ(x) to ϕ(y). Set ϕ∗(K) = ∪γ ϕ∗(γ) and call ϕ∗(X) the cone over ϕ∗(K). We require
the existence of c > 0 such that, whenever ϕ is such that H1(ϕ∗(K)) > H1(K), there is a
deformation X̃ of ϕ∗(X) in B(0, 1) such that

H2(X̃ ∩B(0, 1)) ≤ H2(ϕ∗(X) ∩B(0, 1))− c[H1(ϕ∗(K))−H1(K)].

Note that the minimal cones in R3 and the known minimal cones on Rn have the full
length property. But the list of minimal cone is not known when n > 3.

Personal motivations
The theorem is a very nice regularity result in itself, but here are other reasons why I was
interested in understanding a (new) proof.
- Checking that every MS-minimal set in R3 is a cone;
- Getting an extension of Ambrosio, Fusco, and Pallara’s theorem on Mumford-Shah min-
imal segmentations in R3, where knowing the proof seemed necessary. This is now a
theorem of A. Lemenant (see below);
- Getting an extension to higher ambient dimensions;
- Getting existence results for Plateau-Like problems. [First examples by V. Feuvrier, but
no boundary yet; see below.]

Next we want to describe the main ingredients for the proof. We already mentionned
the general regularity properties that lead to the limiting theorem above. The next ingre-
dient is a standard of Geometric Measure Theory.

11



3.b. Monotonicity of density

Theorem. Let E be a minimal set of dimension d in U ⊂ Rn. Set

(1) θ(x, r) = r−dHd(E ∩B(x, r))

for x ∈ E and r > 0 such that B(x, r) ⊂ U . Then for each x,

(2) θ(x, ·) is nondecreasing.

Idea of proof. Observe that r → Hd(E ∩ B(x, r)) is nondecreasing, so it is the integral
of its derivative (seen as a Stiljes measure), which is no less than its almost-everywhere
derivative. Thus it is enough to check that

(3) r−d
∂

∂r

(
Hd(E ∩B(0, r)

)
≥ d r−d−1Hd(E ∩B(0, r))

almost everywhere. But

(4)
∂

∂r

(
Hd(E ∩B(0, r)

)
≥ Hd−1(E ∩ ∂B(0, r))

(think about C1 surfaces, for which we could check (4) first)), so it is enough to show that

(5) Hd(E ∩B(0, r)) ≤ r

d
Hd−1(E ∩ ∂B(0, r)).

But

(6)
r

d
Hd−1(E ∩ ∂B(0, r)) = Hd(Γ ∩B(0, r)),

where Γ denotes the cone over E ∩ ∂B(0, r)).
Now [Γ ∩ B(0, r)] ∪ E \ B(0, r)] is not directly a competitor for E, but we can ap-

proximate it by Lipschitz deformations of E in B(0, r) [Choose a radial deformation that
expands a lot near ∂B(0, r) and contracts most of B(0, r) to the origin.] The comparison
yields (5) and the monotonicity of θ.

Comments and extensions

• This is a classical and easy argument, but always very useful. Many results in Geometric
Measure Theory depend on the existence of a suitable monotonicity formula.

• If E is merely almost minimal but h is small enough, θ is almost nondecreasing, i.e.,

θ(x, r) exp
{
C

∫ r

0

h(2t)
dt

t

}
is nondecreasing.

• If θ is constant, E coincides with a minimal cone in B(0, 1). [This requires an unpleasant
bit of additional work however.]
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• Here is a simple consequence obtained by a typical compactness argument. For each
small δ > 0, we can find ε > 0 such that, if x ∈ E, B(x, 2r) ⊂ U , h(2r) ≤ ε, and

(7) θ(x, 2r) ≤ lim
t→0

θ(x, t) + ε

then there is a minimal cone Z centered at x such that

(8) dx,r(E,Z) ≤ δ

and

(9)
∣∣Hd(E ∩B(y, t))−Hd(Z ∩B(y, t))

∣∣ ≤ Cδrd.
Idea of proof. Fix δ > 0. Suppose not. Assume that for ε = 2−k there is an almost
minimal set Ek and a pair (xk, rk) that satisfies the hypotheses but not the conclusion.

By dilation invariance, we can assume that xk = 0, rk = 1, and Uk ⊃ B(0, 2).

If needed, replace {Ek} with a subsequence that converges in B = B(0, 19/10) to some
limit E.

By the limiting theorem and because hk(2tk) ≤ 2−k, E is minimal in B.

By the lowersemicontinuity of Hd,

(10) Hd(E ∩B(y, t)) ≤ lim inf
k→+∞

Hd(Ek ∩B(y, t))

for B(y, t) ⊂ B. By the proof of the limiting theorem,

(11) Hd(E ∩B(y, t)) ≥ lim sup
k→+∞

Hd(Ek ∩B(y, t))

when B(y, t) ⊂ B. If not, we could use the limit E to construct a better competitor.

By the almost-constant density condition (7), the density θE(0, t) is constant on (0, 18/10).

By the equality case in monotonicity, E coincides with a minimal cone Z in B(0, 18/10).

Thus (8) holds for k large, and (9) fails.

Finally (10), (11), and a uniformity argument imply (9) for k large (a contradiction). QED.

3.c. Blow-up limits

By almost monotonicity, there exists

(12) d(x) = lim
r→0

θ(x, r)

and when E is a minimal set in Rn, d∞ = lim
r→+∞

θ(r). Note that C−1 ≤ d(x) ≤ d∞ ≤ C

(for x ∈ E), by local Ahlfors-regularity.
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A blow-up limit of E at x is any set F = lim
k→+∞

1
rk

[E − x], for a sequence {rk} that

tends to 0. There may be more than one blow-up limits of E at a given x (for instance, if
E slowly spiral around x), but this does not happen when J. Taylor’s theorem holds.

Every blow-up limit of E is a minimal cone with density d(x). Indeed, by the limiting
theorem, F is a minimal set and its density ρ−dHd(F ∩ B(0, ρ)) is constant and equal to
d(x). Hence F is a minimal cone.

Similarly, if E is minimal in Rn and F is a blow-in limit of E (make {rk} tend to +∞
above), then F is a minimal cone with constant density d∞.

3.d. An extension of Reifenberg’s topological disk theorem
The following extension of Reifenberg’s topological disk theorem will be useful to get

the final parameterization. [Joint work [DDT] with T. de Pauw and T. Toro.]
For every small τ > 0, we can find ε0 > 0 such that the following happens.
Let E ⊂ R3 be a closed set, with 0 ∈ E. Suppose that for each x ∈ E ∩ B(0, 2) and

r ∈ (0, 2], we can find a minimal cone Z = Z(x, r) (a plane, a Y or a T, not necessarily
centered at x) such that

(13) dx,r(E,Z) ≤ ε0.

Then there is a minimal cone Z0 and a bi-Hölder homeomorphism f : B(0, 1) →
f(B(0, 1)) such that

|f(x)− x| ≤ τ for x ∈ B(0, 1),

(1− τ)|x− y|1+τ ≤ |f(x)− f(y)| ≤ (1 + τ)|x− y|1−τ for x, y ∈ B(0, 1),

E ∩B(0, 1− τ) ⊂ f(Z0 ∩B(0, 1)) ⊂ E ∩B(0, 1 + τ).

Comments.
When all the cones Z are planes, we get the well known theorem of Reifenberg.
The main case is when Z(0, 2) is centered at 0. Then we can take Z0 = Z(0, 2).
Same sort of proof here as in the Reifenberg case, but with three layers: identify the
“spine” of E, show that it is Reifenberg-flat, construct f first on the spine of Z0, and then
extend to Z0 and to R3. Do all this scale by scale (from large ones to small ones); each
time push fk(Z0) in the direction of E, using the minimal cones Z and a partition of 1.
Some coherence between the various Z(x, r) is forced by (13).
When dx,r(E,Z) tends to 0 with some definite faster speed, we get a better (for instance
C1) parameterization.
Not surprising but useful: global metric and topological information is derived from ap-
proximate information at all scales and locations. [Compare with John and Nirenberg’s
thorem and results of Cheeger and Colding.]
So, in order to find the parameterization promised by (the bi-Hölder version of) J. Taylor’s
theorem, we just need to find the good cones Z(y, t) for y close to x and t small.

First lines of the proof in the Reifenberg case.
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We shall get a map f : Z0 → E, obtained by composing successive mappings gk that
push points in the direction of E.

For each scale 2−k, k ≥ 0, we select a collection of points zj , j ∈ Jk, in E, with
|zi − zj | ≥ 2−k−3 for i 6= j, and E ∩B(0, 2) ⊂ ∪jB(zj , 2−k−2).

Then we construct a partition of 1 near E ∩ B(0, 2), composed of smooth functions
θj , j ∈ Jk, such that supp(θj) ⊂ B(zj , 2−k−1) and

∑
j θj = 1 near E ∩B(0, 2).

For each j ∈ Jk, set Pj = Z(zj , 2−k) (the good plane), and denote by πj the orthogonal
projection onto Pj . Then set

(14) gk(x) = x+
∑
j∈Jk

θj(x) [πj(x)− x].

The goal of this map is to push points in the direction of E (because E lies close to
the Pj). We should observe that
- Pi is close to Pj when supp(θi) meets supp(θj) (because both planes are close to E)
- gk(x)− x is not too large, because θj is supported near zj . It is even smaller if we know
that x lies close to E.

Next we define fk on Z0 by

(15) f0(x) = x and fk+1 = gk ◦ fk for k ≥ 0.

We should check by induction that fk(x) lies within Cε02−k of E for x ∈ Z0 ∩ B(0, 3/2),
then that {fk} converges uniformly to a mapping f : Z0 ∩B(0, 3/2)→ E.

The slightly unpleasant part is to check that f is bi-Hölder. Also we should extend f
to a map defined in B(0, 1), and take care of the cones Z(x, r) that are not planes.

End of the description of the tool kit.

4. A PROOF OF JEAN TAYLOR’S THEOREM

Recall that we are given an almost minimal set E ⊂ U and a point x0 ∈ E, and we
want to find r0 > 0 such that E is bi-Hölder equivalent to a minimal cone (centered at x)
in B(x0, r0).

We may assume that x0 = 0. We want to apply the extension of Reifenberg’s theorem,
so it is enough to find minimal cones Z(x, r), when x ∈ B(0, 2r0) and 0 < r ≤ 2r0, such
that dx,r(E,Z) ≤ ε0.

We whall assume that E is minimal (to simplify).

4.a. Regularity of E near a P -point

We start with the simplest special case when 0 is a P -point, i.e., when d(0) = π.
Recall that θ(y, t) = t−2H2(E ∩B(y, t)) for y ∈ E and t > 0.
Pick ε > 0 very small, and choose r0 so that θ(0, 16r0) ≤ d(0) + ε.
By almost-constant density, E is very close to a plane in B(0, 8r0) (as in (3.8) and

(3.9)). In particular, θ(x, 4r0) ≤ d(0) + τ for x ∈ B(0, 2r0), where τ > 0 is as small as we
want.
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By monotonicity, θ(x, r) ≤ d(0) + τ for x ∈ B(0, 2r0) and 0 < r ≤ 4r0.
Thus every x ∈ E ∩B(0, 2r0) is of type P .
And, for x ∈ E ∩B(0, 2r0), θ(x, ·) is almost-constant on (0, 4r0].
If τ is chosen small enough, almost-constant density implies that for x ∈ E∩B(0, 2r0)

and 0 < r ≤ 2r0, E is ε0-close to a minimal cone (in fact, a plane) in B(x, r).
The standard Reifenberg theorem applies, and E ∩B(0, r0) is bi-Hölder equivalent to

a disk, as needed.

Here we got lucky because the density was already close to its absolute minimum.
If the origin is a Y -point, we get that E is close to a Y, and θ(x, r) ≤ π + τ for points
that are far from the spine of the Y. For the other points x, we cannot apply the almost
constant-density principle as easily, so we need the next section.

4.b. Existence of Y -points

Still assume that E is minimal (to simplify).

Existence Lemma. Suppose that there is a cone Y of type Y, centered at 0, such that
d0,4(E, Y ) ≤ ε. Then (if ε small enough) E ∩B(0, 1) contains at least a Y -point.

We assume not, and will get a contradiction by topology. First we check that

(16) θ(x, 1) ≤ 3π
2

+ τ for x ∈ B(0, 2) and 0 < r ≤ 1,

with τ > 0 as small as we want.
The proof (that we vaguely sketch here) is by compactness, as for the almost constant-

density principle near (3.7): suppose not, find a sequence {Ek} that converges to a Y in
B(0, 4) but for which (16) fails. Then use the lower semicontinuity of Hausdorff measure
and the proof of the limiting theorem to get an estimate like (3.11) and a contradiction.

Choose τ so that 3π
2 + τ < d+, where d+ denotes the density of a cone of type T.

By monotonicity, d(x) < d+ for x ∈ E ∩B(0, 2) so x is never a T -point.
Since there is no Y -point, x is a P -point, and E is bi-Hölder equivalent to a plane

near x.
We may assume that the spine of Y is the vertical axis.
Call S the unit circle in the horizontal plane through 0, and denote by a1, a2, a3 the

points of S ∩ Y .
Since E is close to a plane near ai, we can apply the proof of regularity for P -points,

and get the bi-Hölder equivalence of E to a plane in B(ai, 10−1). Then we can modify
S slightly, to get a simple arc γ that crosses E exactly three times (one near each ai),
transversally in bi-Hölder coordinates.

Since E is bi-Hölder equivalent to a plane near every x ∈ E ∩B(0, 2), we can deform
γ into a point (inside B(0, 2)), and the number of intersections of γ with E only jumps by
multiples of ±2. [In the detailed argument, it is easier to discretize and get transversality.]

But we started with 3 intersections, (odd) and end with 0 (even); this contradiction
proves the lemma. �
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A modification of this degree argument even works for 2-dimensional sets in Rn.

4.c. Regularity near Y - and T -points
Once we have the existence lemma, it is possible to prove the regularity of E near a

Y -point or a T -point roughly as we did for the P -points.
The existence lemma is useful, because we find many balls where the density is close

to 3π/2 and E looks like a Y, and we can apply the constant density argument as soon as
we know that they are centered at a Y -point. [Think about balls centered near the spine
of Y.]

We do not have an existence lemma for T -points (as above), but for J. Taylor’s theo-
rem, we do not need one, essentially because the only T -point nearby is already given to
us. See the section about minimal sets though.

For higher-dimensional analogues, we could be in trouble here.

When 0 is a T -point, we would get the bi-Hölder equivalence of E to a cone of type
T near 0 roughly as follows.

First assume that θ(0, Cr0) is close to d+, and use the constant density argument to
control E in all the balls centered at 0.

Use this control and the existence lemma to obtain lots of Y -points y (along the spines
of the approximationg cones of type T), and balls B(y, C−1|y|) centered on them where
the density of E is close to 3π/2.

By monotonicity, this stays true for smaller balls centered at y.
By the constant density argument, we control E in these smaller balls centered at y.
Next we use some previous ball (centered at 0 or a y) to control B(x,C−1d) when

x ∈ E and d is its distance to the set of Y -points.
Finally use the constant density argument to control the smaller balls centered at x.
And check that this is enough to control E in every small ball, and apply the extension

of Reifenberg’s Topological Disk Theorem to get a parameterization. �

5. MS-MINIMAL SETS IN R3

We turn to applications, and start with the fact that

(1) every reduced MS-minimal set in R3 is a minimal cone.

Recall that a MS-minimal set in R3 is a closed set E ⊂ R3, with locally finite H2-
measure, such that

H2(E ∩B) ≤ H2(F ∩B)

whenever B is a closed ball and F is a MS-competitor for E in B. This means that E = F
out of B, and (as in (2.4))

(2)
F separates x from y whenever x, y ∈ Rn \ (E ∩B)

lie in different connected components of Rn \ (E ∩B).

Deformations of E inside B satisfy (2), so every Almgren-competitor is a MS-competitor,
and E is Almgren minimal. The converse may be false, and we don’t know how to prove
that every two-dimensional Almgren-minimal set in R3 is a cone.
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Although I did not find a proof in the literature, there are similar arguments in
[Morgan82] and even [Ta].

For the proof, let E be MS-minimal.
Recall that all blow-in limits of E are cones, with constant density equal to d∞ =

lim
r→+∞

θ(x, r) ∈ {π, 3π
2
, d+} (the limit does not depend on x).

If we can find x ∈ E with d(x) = d∞, E is a cone by monotonicity and constant
density. This settles the case when d∞ = π.

Next suppose that d∞ = 3π
2 . Since densities go to the limit, every blow-in limit of E

is a cone of type Y.
Let R be very large, so that E is very close to a Y in B(0, R).
By the existence lemma in Section 4.b, there is a Y -point in B(0, R/4). Hence E is a

cone (as above).
So we can assume that d∞ = d+ and that there is no T -point in E.
Let R be large, and pick a cone T of type T so that d0,2R(E, T ) is very small.
By the regularity theorem, each point of E has a neighborhood where E is bi-Hölder-

equivalent to a plane or a Y.
Set EY =

{
y ∈ E ; d0(y) = 3π

2

}
. Each y ∈ EY has a neighborhood where E is bi-

Hölder equivalent to a Y, with at most three components of R3 \E around. Call H(y) this
set of components.

Notice that near x ∈ E \ EY , E is bi-Hölder equivalent to a plane; so we could
distinguish points of EY topologically.

Near y ∈ EY , EY is a simple curve (bi-Hölder equivalent to a line). This comes from
the equivalence of E to a Y near y.

And H(y) is constant along that curve.
Return to the specific situation of E ∩B(0, 2R) and T .
Call a1, · · · , a4 the four points of ∂B(0, R)∩spine(T). Apply the proof of the regularity

theorem near each ai. We get that E is bi-Hölder equivalent to a Y in B(ai, R/10), say.
And there is exactly one branch γi of EY near ai.
We can also check that EY does not approach the rest of ∂B(0, R) (there are only

P -points there, as we can check with density).
Follow γi as it enters B(0, R). It stays a simple curve (by our local description of EY ),

and it does not stop. Eventually it leaves B(0, R) as some other γj .
Call Hi the constant value of H(y) on γi. So we can find i 6= j so that Hi = Hj .
There are four big apparent components in B(0, 2R) \ E, but are they all different?

By the bi-Hölder description of E near ai , Hi corresponds to the three big apparent
components in B(0, 2R) \ E that get close to ai, and since Hi = Hj , at least two big
components coincide.

Then the definition of MS-competitors allows us to remove the big wall of E between
these two components and save some area. This is impossible, by MS-minimality of E.
Note that this step is easy, but it fails with standard (Almgren) minimal sets!
Remark. With topology alone, we cannot prove that a set that is close to T in B(0, 2R)
cannot be locally equivalent to a plane or a Y: it is not hard to find counterexamples [R.
Hard]. These sets are probably never minimal, but I don’t know a proof.
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This sort of topological trouble will probably prevent us from extending the local
regularity results to higher dimensions. For instance, existence lemmas for a T -point could
be hard to get!

And again we don’t know whether every minimal set in R3 is a cone.

6. C1 REGULARITY AND EPIPERIMETRY
Just a few words about the proof (see [D5] for details). Given a closed set E ⊂ U and

B(x, r) ⊂ U , set

(1) βE(x, r) = infZ dx,r(E,Z),

where the infimum is taken over all minimal cones Z (not necessarily centered at x or 0)
that contain x. [This is a bilateral variant of numbers introduced by P. Jones, but we allow
other minimal cones.]

The biHölder estimate holds as soon as we show that βE(y, t) ≤ ε0 for y ∈ E∩B(x, 2r)
and 0 < t ≤ 2r. For a C1 estimate, we need to show that the βE(y, t) decay at some definite
rate (like a power of t), uniformly in y ∈ B(x, 2r).

Since the βE(y, t) are not so easy to control, we use a different quantity, namely the
density defect

(2)
fx(r) = θ(x, r)− d(x)

=
1
r2
H2(E ∩B(x, r))− lim

t→0

1
t2
H2(E ∩B(x, t)).

Recall that if E is minimal, θ is nondecreasing and fx(r) ≥ 0.
Now we want to shows that fx(r) decay at some definite rate, and for instance that

rf ′x(r) ≥ cfx(r).
Before, we compared with the cone over E ∩ ∂B(x, r) to get that f ′x(r) = θ′(x, r) ≥ 0.

Now we want to assume that f(r) > 0 and find a competitor that is even better than the
cone, and makes us save cr2fx(r).

Most of the proof is the construction of a competitor. [And roughly the same one is
used to show that fx(r) controls βE(x, r/2)].

We assume that x = 0 and r = 1, and (to simplify) that E is minimal.
We may assume that E is close to a minimal cone X in B(0, 2) (by compactness, or

we include this in a scheme). Set K = X ∩ ∂B(0, 1); this is a union of arcs of great circles
gj (contained in 2-planes through 0).

We first use the biHölder equivalence (or some topology) to find a net of curves
γj ⊂ E ∩ ∂B(0, 1), that lie close to the gj and have the same separation properties as the
gj . We may even make them simple and disjoint.

We then replace the γj with small Lipschitz graphs Γj with the same endpoints, and

(3) H1(Γj \ γj) ≤ H1(γj \ Γj) ≤ C∆Lj

where ∆Lj = H1(γj)−H1(ρj) is the amount of extra length compared to the geodesic ρj
with the same endpoint as γj and Γj .
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Denote by Γ̂j the cone over Γj , and set Γ̂ = B(0, 1) ∩
[
∪j Γ̂j

]
.

The main point of the argument is that if ∆Lj > 0, we can replace each Γj with
the graph Gj of a harmonic function with the same boundary values, and save about
∆L =

∑
j ∆Lj in length. [See later.]

The competitor.
We leave E as it is out of B(0, 1).
We replace E with G = ∪jGj in B(0, 1), except that we leave out a very small annulus

A = B(0, 1) \B(0, 1− ε) where we deform continuously E onto a subset of G.

First accounting. We compute what we win in the comparizon against the cone over
E ∩ ∂B(0, 1).

We save cH1(E \ γ), with γ = ∪jγj because it is sent to G. [We will account for A in
the losses.]

We do not loose length when we replace γj with Γj .
We win c∆Lj when we replace Γj with Gj .
We need to add surface to account for A. The area there is roughly the integral of

the length of the trajectories of the points that were moved, i.e.

(4)
Loss ≤ C

∫
E∩∂B(0,1)\Γj

dist(z,Γj) dH1(z)

≤ ηH1(E ∩ ∂B(0, 1) \ Γj) ≤ Cη∆L

with η as small as we want.
Altogether, the loss is compensated by the gain, and we win about c∆L + cH1(E \ γ)

(and observe that H1(γ \ Γ) ≤ C∆L).

More accounting. If E ∩ ∂B(0, 1) = γ = Γ and each Γj is equal to the geodesic ρj , we
appear to win nothing (but if E coincides with a minimal cone on ∂B(0, 1), then f(r) = 0
by direct comparizon.

In addition, the actual computation is slightly different: to get the differential in-
equality with fx, we need to compare d(0) (the density of a cone like x) with 1

2H
1(ρ) (the

density of the cone over the ρj).
If H1(ρ) ≤ 2d(0), the estimate above works.
If H1(ρ) > 2d(0), the estimate is not good enough, but it turns out that some angle

in ρ is wrong (different from 2π/3), and we can save extra length with a modification of
the cone.

This final argument boils down to a simple geometric property of the minimal cones
(a simple version of epiperimetry).

For 2-dimensional minimal cones in Rn, n ≥ 4, I don’t know whether they all have it.

Graphs of harmonic functions. Recall we had a small Lipschitz graph Γj , and the
cone Γ̂j over Γj , which we want to improve.

We may assume that both ends of Γj lie on the horizontal plane.
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Then Γ̂j is a small Lipschitz surface, vaguely triangular, bounded by two segments
and Γj .

By construction, the angle of the sector is ≤ 9π/10.
Γ̂j is the graph of a homogeneous function F defined on a base D, and in first ap-

proximation H2(Γ̂j) ∼ H2(D) +
∫
D
|∇F |2.

We replace F with the harmonic extension H of F∣∣∂D to D, and get a new graph Gj .

Then H2(Gj) ∼ H2(D) +
∫
D
|∇H|2, and

∫
D
|∇H|2 ≤ (1 − η)

∫
D
|∇F |2 by computations

on the Fourier expansion of F∣∣∂D. [The only case of equality would be when F is linear,

which is forbidden by the boundary values.]
So we get significant improvement. In fact,

∫
D
|∇F |2 ≥ c∆L, by Parseval.

7. THE MUMFORD-SHAH FUNCTIONAL
Here we want to explain the connection between J. Taylor’s theorem and regularity

results for the minimal segmentations of the Mumford-Shah functional in R3. We shall
focus on a recent result of Antoine Lemenant.

First define the Mumford-Shah functional in Rn. We are given a simple domain
Ω ⊂ Rn, a bounded function g ∈ L∞(Ω), and we set

(1) Jg(u,K) = Hn−1(K) +
∫

Ω\K
|∇u|2 +

∫
Ω\K
|u− g|2

for (u,K) ∈ A, the set of acceptable pairs (u,K) such that K ⊂ Ω is closed in Ω, and
u ∈W 1,2(Ω \K) has one derivative in L2 on Ω \K.

The functional was introduced by Mumford and Shah (≤ 1989), at least in dimension
n = 2, for image segmentation. It was also considered as a tool for modelling cracks when
n = 3.

In the context of image segmentation, Ω is a screen, g is a given image, and u defines
a segmentation for g. If (u,K) minimizes J , u should give a good compromise between
the following three constraints:
- u− g is small
- u is simple (varies slowly), but may have jumps along a singular set K (which we see as
describing edges in the picture), but
- K is not too complicated.
Comments concerning image segmentation:
- Segmentation 6= compression: it is fine if u and K only give some simplified idea of g.
- We could give different weights to the three terms, but the difference can be scaled out
by multiplying u and g by a constant, and composing with a dilation.
- Lots of variants exist, but often with a term like Hn−1(K).
- This works fine because, as conjectured by Mumford and Shah, K is automatically regular
(instead of just being short) when (u,K) is a minimal pair.
- this gives an automatic and context free algorithm for segmentation. This is good but
then we cannot expect too much from this.

7.a. Regularity statements
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Concerning the mathematics, the interest lies in the interplay between the two main
terms of the functional (Hn−1 and energy). Often the proofs for the Mumford-Shah
functional contain a proof of the (easier) analogous property for almost minimal sets.

The existence of minimal segmentations (minimizers for Jg) is known from Ambrosio
[A] and De Giorgi-Carriero-Leaci [DCL], and uses compactness properties of SBV.

Some regularity properties are known for reduced minimal segmentations. These
typically concern K, because once we know K, studying u is easy.

For instance, K is locally Ahlfors-regular (Dal Maso-Morel-Solimini [DMS] and Carriero-
Leaci [CL]) and uniformly rectifiable [DS2].

When n = 2, Mumford and Shah conjectured that K is a finite union of C1 arcs, that
can only meet with 120◦ angles.

In higher dimensions, the best general regularity result is the following.

Theorem (Ambrosio-Fusco-Pallara [AFP1]). There exists ε0 > 0, depending only
on n, such that if (u,K) is a reduced minimizer for Jg in Ω ⊂ Rn, x ∈ K, r||∇g||2∞ ≤ ε0,
B(x, r) ⊂ Ω,

(2)
∫
B(x,r)\K

|∇u|2 ≤ ε0r
n−1,

and there is a hyperplane P through x such that

(3) dx,r(K,P ) ≤ ε0 ,

then K coincides with a C1 submanifold in B(x, r/2).

It is not so hard to see that for Hn−1-almost every x ∈ K, (2) and (3) hold for
arbitrarily small radii r, so almost every x ∈ K has a neighborhood where K is a C1

submanifold. In fact, the set of points x where this does not happen is of Hausdorff
dimension < n− 1 [Ri].

We could dispense with (2) by a compactness argument, but let us not bother.
In the situation of the theorem, it turns out that u is fairly regular in B(x, r/2), so the

main term of Jg is Hn−1(K), and K tends to be almost-minimal. In effect, the theorem
contains a regularity result for almost minimal sets such that (3) holds.

We want to discuss the following generalization (when n = 3).

Theorem [Lemenant]. There exists ε0 > 0 such that if (u,K) is a reduced minimizer
for Jg in Ω ⊂ R3, x ∈ K, r||∇g||2∞ ≤ ε0, B(x, r) ⊂ Ω, (2) holds, and there is a minimal
cone Z centered at x such that

(4) dx,r(K,Z) ≤ ε0 ,

then K is C1-equivalent to Z in B(x, r/2).

Before we discuss part of the proof, let us say a few words about blow-up limits and
global minimizers.
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7.b. Global Mumford-Shah minimizers

We also have a theorem about limits in this context, and A. Bonnet showed that every
blow-up limit of (u,K) (a reduced minimizer for Jg) is a global Mumford-Shah minimizer
in Rn, with the definition below.

A normalization procedure for u is used (to allow u to go to a limit), but let us skip
the details.

Let A denote the set of admissible pairs (u,K), where K ⊂ Rn is closed, Hn−1(K ∩
B(0, R)) < +∞ for R > 0, u ∈W 1,2

loc (Rn \K), and
∫
B(0,R)\F |∇u(x)|2dx for R > 0.

A competitor for (u,K) ∈ A in the closed ball B is a pair (v,G) ∈ A such that
(v,G) = (u,K) out of B, and (as in (5.2))

(5)
G separates x from y whenever x, y ∈ Rn \ (K ∩B)

lie in different connected components of Rn \ (K ∩B).

A global Mumford-Shah minimizer in Rn is a pair (u,K) ∈ A such that

(6)

Hn−1(K ∩B) +
∫
B\K
|∇u(x)|2dx

≤ Hn−1(G ∩B) +
∫
B\G
|∇v(x)|2dx

for every closed ball B and every competitor for (u,K) in B.
There are notions of almost- and quasi-minimizers in this context too, but let us not

bother. See [D2].
Notice that when u = 0, the pair (0,K) is a global Mumford-Shah minimizer in Rn

precisely when K is a MS-minimal set in Rn (because we can always replace v with 0
above). So, when n = 3, K is a minimal cone.

The interest of global Mumford-Shah minimizers is that they are simpler (no function
g), and knowing them will help us understand the Mumford-Shah minimizers in a domain.

The theorems of Ambrosio-Fusco-Pallara and Lemenant are still valid in this context
of global minimizers (and we don’t need r to be small).

7.c. Comments about the proof

We start from a nice situation (as in (2) and (4)), and want to obtain the decay of
various quantities. We are interested in

(7) βK(x, r) = infZ dx,r(K,Z)

where the infumum is taken over all minimal cones through x. But it is easier to rely on

(8) ω(x, r) = r−2

∫
B(x,r)

|∇u|2.
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There are other quantities, for instance to measure the size of holes (or how well K dis-
connects space), or a gauge function (for almost-minimality) but let us skip them.

The main idea is to fix x and show that ω(x, r) decays like a power when r tends to
0. [This is essentially the only way to make sure it stays small.] Then we use ω(x, r) to
control the other quantities, and make sure that they stay small.

We shall just see various symptomatic cases; the general case is a more complicated
mixture.

Decay for ω(x, r).
Suppose K is a minimal cone, and u is an energy minimizer in Rn \K. Thus ∆u = 0

and ∂u
∂n = 0 on K.
Then ω(x, r) decays like a power. When K = ∅, this is easy, because ∇u is locally

constant and by the way ω(x, r) is normalized. When K is a plane, just use the fact that
u has a harmonic extension on the other side, which is smooth. Thus

∫
B(x,r)

|∇u|2 ≤ Cr3.
When K is another cone, we use spherical harmonics and estimate the first eigenvalue of
the Laplacian on ∂B(0, 1) \K.

Extension by compactness: ω(x, r) decays like a power when K is a generalized
Reifenberg-flat set, which means that β0(x, r) ≤ ε0 for all x ∈ K and r ≤ 1, and where the
constant ε0 is chosen small enough.

Observe that generalized Reifenberg-flat sets separate space well into 2, 3, or 4 com-
ponents (and the decay occurs component by component).

But why should K be generalized Reifenberg-flat?

Control on βK(x, r).
Now suppose that ω(x, r) is very small, or even that u is locally constant.
Then K is a locally almost minimal set, and the proof of Jean Taylor’s theorem says

that βK(x, r) decays like a power. The estimates are not good enough to be used like this,
but here is a statement that can be used.

Lemma. There exist ε1 (small) and C ≥ 1 such that, if

(9) βK(x, ρ) ≤ 10ε1 for 2r ≤ ρ ≤ Cr

and K is almost-minimal in B(x,Cr), with a sufficiently small gauge function, then

(10) βK(x, r) ≤ ε1.

This gives a nice way to check that (10) stays true at smaller scales (if ω(x, r) is small
enough).

But it can also be used backwards: if for some reason (10) fails, then K is not almost-
minimal with a small gauge function, and in fact (by a compactness argument) we can find
a deformation K̃ of K in B(x,Cr), with a noticeably smaller area!

Extensions of u.
If we want to use a deformation K̃ of K in a ball B to construct a competitor for

(u,K), we need to be able to associate a function ũ ∈W 1,2
loc (Ω \ K̃), with ũ = u out of B.
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This could be a pain, because we never know in which local component of B \ K̃ a
given point y lies.

But in the complement of a generalized Reifenberg-flat set, this can be done. We
use Whitney cubes and partitions of 1, and brutally define separate extensions of the
restrictions of u to each component.

The additional energy of the extension is dominated by
∫
|∇u|2 (and is often even

smaller).

A stopping time argument.
Then we need to put everything together.
We start from B(0, 1), where (2) and (4) hold, and proceed scale by scale (starting

from the large one). We stop whenever (10) becomes false. That is, we cover the set of
x ∈ E such that (10) fails for some r by essentially maximal balls B(xj , rj) where (10)
fails.

We wish to show that
∑
j r

2
j is small (depending on ω). So we use the lemma, extend

u as before, and get a competitor for (u,K). We do not lose too much energy (if ω was
small enough), and we save η

∑
j r

2
j surface, as needed.

Away from the Bj we still have the decay of ω mentioned above, by a compactness
argument. Except for an additional problem: we may have had some communication
between the components of R3 \ K, through the Bj , and for technical reasons we need
to separate them, by adding all the ∂Bj for which Bj meets some sphere ∂B(0, ρ), with
1/2 ≤ ρ ≤ 2/3.

We can choose ρ by Chebyshev, so the cost is less than C
∑
j r

3
j , which is much smaller

than
∑
j r

2
j . So we get some decay, unless ω is much smaller than

∑
j r

2
j .

We distinguish cases, fix the small lies above, put together various inequalities, and
get the result. The main point of the stopping time is again to be able to use all the
expected estimates before we know for sure that they will hold everywhere.

See Carleson, Jones, Semmes, Léger for other uses of similar stopping time arguments.

8. SIMPLER VARIANTS OF THE PLATEAU PROBLEM
We end with a potential application (my main motivation now). So far the scheme

described below only works in simple special cases.
Fix a simple domain Ω ⊂ Rn (or possibly manifold), preferably closed and with some

holes, and a continuous bounded function g : Ω→ [1,M ], and set

(1) Jg(E) =
∫
E

g(x) dHd(x) for E ⊂ Ω.

Also fix a closed set E0 ⊂ Ω, and call F(E0) the class of continuous deformations of
E0 in Ω.

That is, E ∈ F(E0) if E = ϕ1(E0), where we set ϕt(x) = ϕ(x, t) and ϕ : E0×[0, 1]→ Ω
is continuous, with ϕ(x, 0) = x for x ∈ E0.

We may (or not) require that ϕ1 be Lipschitz (but with no bounds attached).
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We shall try to minimize Jg in the class F(E0), i.e., we try to find E ∈ F(E0) such
that Jg(E) is minimal.

Let us always choose Ω, d, and E0 so that

0 < infE∈F(E0) Jg(E) < +∞.

In particular, we do not choose E0 contractible in Ω.

Example 1: n = 2, d = 1, Ω = R2 \ [B1 ∪ B2] (two disjoint open balls with the same
diameter, say), g = 1, and E0 = ∂B(0, R) (with R large). Two cases occur, depending on
whether the balls are far from each other.

Notice that taking Ω closed is better, because E likes to contain boundary pieces.

Exercise: try to encode F(E0) with a topological condition.

Example 2. [A higher dimensional variant.] Take n = 3, d = 2, and Ω = R3 \ A for
some open solid torus A, g = 1, and E0 = ∂A. Again two cases occur, and sometimes
E∗ 6= E for topological reasons.

Comments.
- We may add smaller terms to Jg.
- In these two examples, the existence of minimizers is perhaps easy to get, even if g 6= 1,
because the codimension is 1 and we can use the compactness properties of BV . This is
less clear in general.
- In all cases the minimizers, if they exist, are almost minimal (with h coming from the
regularity of g). Thus, when d = 2 and n = 3, Jean Taylor’s theorem will apply if g is
Hölder-continuous. [Proof of a variant Almgren-quasiminimality, and of almost-minimality
if g is continuous.]
- Many other classes F could be tried, even in this simple context (separation when d =
n − 1, linking conditions of two types, algebraic topology, etc.). We chose one for which
standard methods seem hard to apply.
- Plateau problems will probably be harder; intermediate problems exist (soap between
walls, manifolds).

Existence results for Jg ?

How can J. Taylor’s result help prove existence results in this context? Partial results
when d = 2, n = 3, and g is Hölder-continuous (so far) by Vincent Feuvrier [Feu].

Try the stupid way, with a minimizing sequence {Ek} in F(E0).
We [= V. Feuvrier] can choose {Ek}, or modify it, so that the Ek are quasi-minimal

sets, with uniform bounds, as follows.
Construct “dyadic nets” Bk adapted to the Ek, with smaller and smaller mesh sizes,

but uniform “regularity” (no small angles, etc.).
Deform Ek into a union Ẽk of 2-faces in Bk that minimizes Jg; the existence of a

minimizer Ẽk comes from the finiteness of the net, the fact Jg(Ẽk) is almost as small as
Jg(Ek) comes from the adaptation of the net to the initial Ek, and the quasiminimality
comes from the minimality of Ẽk and the regularity of the net.
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Let us suppose first that E∗k = Ek. Extract a subsequence, so that {Ek} converges to
some E.

Then Jg(E) ≤ lim infk→+∞ Jg(Ek), by the lowersemicontinuity part of the limiting
result. So it is enough to show that E ∈ F(E0).

By the limiting results, because {Ek} is minimizing, and because g is Hölder-continuous,
E should be almost-minimal with a small gauge function.

By J. Taylor’s theorem, E is locally C1-equivalent to a plane, a Y, or a T. Then there
is a retraction from a neighborhood of E onto E (this is a local property).

So E is a deformation of Ek for k large (or contains such a deformation). Hence E
(or a subset) lies in F(E0).

If E∗k 6= Ek, take E to be a limit of the E∗k , and then simply let E∗k \ Ek follow the
Lipschitz retraction.

This should give existence in some cases that are not given by the more standard
methods with currents [R. Hardt + T. De Pauw].

Rapid list of questions (some of which may take some time to answer)
- Give a list of 2-dimensional minimal cones in R4;
- prove that every minimal set of dimension 2 in R3 is a cone;
- study minimal cones and sets of codimension 1 in R4;
- deal with the boundary regularity (typically, with a sliding boundary condition), and
then solve Plateau problems.
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Henri Poincaré, Analyse non linéaire, Vol 13, N 4 (1996), p. 383-443.

[DS2] G. David and S. Semmes, Uniform rectifiability and quasiminimizing sets of arbitrary
codimension, Memoirs of the A.M.S. Number 687, volume 144, 2000.

[Fe] H. Federer, Geometric measure theory, Grundlehren der Mathematishen Wissenschaften
153, Springer Verlag 1969.

[Feu] V. Feuvrier, Un résultat d’existence pour les ensembles minimaux par optimisation
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