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Abstract

We consider noisy observations of a distribution with unknown support. In the decon-
volution model, it has been proved recently [19] that, under very mild assumptions, it is
possible to solve the deconvolution problem without knowing the noise distribution and
with no sample of the noise. We first give general settings where the theory applies and
provide classes of supports that can be recovered in this context. We then exhibit classes
of distributions over which we prove adaptive minimax rates (up to a loglog factor) for
the estimation of the support in Hausdorff distance. Moreover, for the class of distribu-
tions with compact support, we provide estimators of the unknown (in general singular)
distribution and prove maximum rates in Wasserstein distance. We also prove an almost
matching lower bound on the associated minimax risk.

1 Introduction

1.1 Context and aim

It is a common observation that high dimensional data has a low intrinsic dimension. The
computational geometry point of view gave rise to a number of interesting algorithms (see [6]
and references therein) for the reconstruction of a non linear shape from a point cloud, and in
the statistical community, past years have seen increasing interest for manifold estimation. The
case of non noisy data, that is when the observations are sampled on the unknown manifold,
is by now relatively well understood. When the loss is measured using the Hausdorff distance,
minimax rates for manifold estimation are known and have been proved recently. The rates
depend on the intrinsic dimension of the manifold and differ when the manifold has a boundary
or does not have a boundary, due to the particular way points accumulate near boundaries
(see [1] for the most recent results, together with an overview of the subject and references).

When considering the estimation of a distribution with unknown non linear low dimen-
sional support, one has to choose a loss function. The Wasserstein distance allows to compare
distributions that can be mutually singular, and is thus useful to compare distributions having
possibly different supports. Moreover, approximating an unknown probability distribution u
by a good estimator {1 with respect to the Wasserstein metric allows to infer the topology
of the support of p, see [10]. When using non noisy data, one can look at [16] and [27] for
the most recent results and for an overview of the references. However, despite these fruitful
developments, geometric inference from noisy data remains a theoretical and practical widely
open problem.

In this paper, we are interested in the estimation of possibly low dimensional supports,
and of distributions supported on such supports, when the observations are corrupted with
unknown noise. We aim at giving a new contribution on the type of noise which can affect the
data without preventing to build consistent estimators of the support and of the law of the
noisy signal.

1.2 Previous works: estimation of the support with noisy data

Some of the geometric ideas that have been developed to handle non noisy data can be applied,
or adapted, to handle noisy data and build estimators with controlled risk. These works



generally consider a noise that is normal to the unknown manifold, in which case the amplitude
of the noise has to be bounded by the reach of the manifold (the reach is some regularity
parameter of a manifold, see [17] for a precise definition). The upper bound on the risk contains
a term depending on the amplitude of noise. Thus, the upper bound on the estimation risk is
meaningful only when the bound on the noise is small, and the estimator is consistent when
the noise tends to 0 with the amount of data tending to infinity. See [2], [1], [14], [18], see
also [28] in which the noise can be non orthogonal to the manifold. In [3], the noise is not
normal to the manifold but the data is uniformly sampled on a tubular neighborhood of the
unknown manifold, which allows to take advantage of the fact that the manifold lies in the
middle of the observations. The magnitude of the noise also has to be upper bounded by the
reach. When the noise is not assumed very small, results are known in the specific setting of
clutter noise, see [21], that is the situation where a proportion of data is uniformly sampled
from a known compact set, and the remaining data is noiseless. The authors propose a clever
idea to remove noise by comparing the way the empirical data concentrate near any regular
shape, and they find a consistent estimator with upper bounded risk.

When we accept to consider noise with known distribution, a popular model for noisy data
is the deconvolution model, in which the low dimensional data are corrupted with independent
additive noise. In such models, all estimation procedures are roughly based on the fact that it
is possible to get an estimator of the characteristic function of the non noisy data by dividing
an estimator of the characteristic function of the noisy data by that (known) of the noise. In
the deconvolution setting, the authors of [21] consider data corrupted with Gaussian noise, and
propose as estimator of the manifold an upper level set of an estimator of a kernel smooth-
ing density of the unknown distribution. With the Hausdorff loss, the authors prove that
their estimator achieves a maximum risk (over some class of distributions) upper bounded by
(vIogn) =19 for any positive §, and prove a lower bound of order (logn)~!*° for the minimax
risk. Taking an upper level set of an estimated density had been earlier proposed to estimate a
support based on non noisy data in [11]. In the context of full dimensional convex support and
with additive Gaussian noise, [7] proposes an estimation procedure using convexity ideas. The
authors prove an upper bound of order loglogn/+/logn and a lower bound of order (log n)_Q/T
for the minimax Hausdorff risk, for any 7 € (0,1). Earlier work with known noise and with full
dimensional support is [25], where the author first builds an estimator of the unknown density
using deconvolution ideas, then samples from this estimated density and takes a union of balls
centered on the sampled points, such as in [15].

1.3 Previous works: estimation of the distribution with noisy data

The case of unknown but small (and orthogonal to the unknown manifold) noise is handled
in [16], the author proposes a kernel estimator and proves that it is minimax. The rate depends
on the upper bound of the noise. Non parametric Bayesian methods have been explored in [5]
for observations on a tubular neighborhood of the unknown manifold, that is again for bounded
noise.

In the deconvolution problem, with known Gaussian noise, the authors of [13] prove match-
ing upper and lower bounds for the minimax risk of the estimation of the unknown distribution
using the Wasserstein distance. Results for other known noises, but limited to one dimensional
observations, can be found in [12].

1.4 Contribution and main results

In this work, we consider the deconvolution problem with totally unknown noise. It has been

proved recently [19] that, under very mild assumptions, it is possible to solve the deconvolution

problem without knowing the noise distribution and with no sample of the noise. In [19], the

authors consider the density estimation problem. Here, we are faced with the more general

situation where the underlying non noisy data may have a distribution with a lower dimensional

support than the ambient space, thus having no density with respect to Lebesgue measure.
Our main contributions are as follows.



o We first give general settings where the identifiability theory of [19] applies. We exhibit
simple geometric properties of a support so that, whatever the distribution on such
an (unknown) support (provided it does not have too heavy tails), the deconvolution
problem can be solved without any knowledge regarding the noise, see Theorem 2. We
also prove that these geometric properties almost always hold, in some sense developed
in Section 2.4.

e We then exhibit classes of distributions over which we prove adaptive minimax rates (up
to a log log factor) for the estimation of the support in Hausdorff distance, see Theorem 4,
Theorem 6 and Theorem 5. Specifically, the minimax risk for the Hausdorff distance is
upper bounded by (loglogn)*/(logn)® for some L, where x € (1/2,1] is a parameter
depending on the tail of the distribution of the signal (k = 1 corresponds to compactly
supported distributions, and k£ = 1/2 to sub-Gaussian distributions), while the minimax
risk is lower bounded by 1/(logn)” if k € (1/2,1) and 1/(logn)'~° if k = 1, § being any
(small) positive number. Adaptation is with respect to .

e We finally consider the estimation of the unknown (in general singular) distribution of the
hidden non noisy data itself when it has a compact support. We prove almost matching
upper and lower bounds of order 1/(logn) for the estimation risk of the distribution in
Wasserstein distance, see Theorem 7 and Theorem 8.

Although we exhibit estimators, let us insist on the fact that our goal is mainly theoretical. We
do not pretend to propose easy to compute estimation procedures, but to give precise answers
about minimax adaptive rates for support and distribution estimation with noisy data in a
very general deconvolution setting, where the noise is unknown and can have any distribution.

1.5 Organisation of the paper

Section 2 is devoted to the identifiability question. We first recall in Section 2.2 the identifiabil-
ity result proved in [19]. We then exhibit in Section 2.3 geometric conditions under which this
identifiability result applies, and the genericity of such conditions is considered in Section 2.4.

We focus on support estimation in Section 3. We first refine an estimation result of the
characteristic function of the signal in 3.1, which is the basic step of any of the estimation
procedures we propose. In Section 3.2, we propose an estimator of the support as an upper-
level set of an estimated density following ideas of [21], the main difference being with the
smoothing kernel we choose. Indeed, with this kernel, no prior knowledge on the intrinsic
dimension is needed to build the estimator. The upper bound on the risk depends on the tail
of the distribution of the signal, and adaptive estimation using Lepski’s method is detailed in
Section 3.4. We prove in Section 3.3 an almost matching lower bound.

Section 4 is devoted to the estimation of the distribution when it is compactly supported.
Lower bounds are proved using the usual two-points method. Here, the points for the lower
bound in [21] and in [13], [12], can not be used because of our tail assumption on the signal.
Detailed proofs are given in Section 6.

1.6 Notations

The Euclidean norm (in any dimension) will be denoted || - ||2, and the operator norm of a
linear operator will be denoted || - ||,p. If A is a subset of RP, we write Diam(A) its diameter
sup{||z —yl|2 | ,y € A}, and for any x € RP, d(z, A) = inf{||x — y||2 | y € A}. For any 1 > 0,
A, will denote the n-offset of A, that is the set of all points z in R” such that d(x, A) < 7. For
any dimension d, any x € R% and r > 0, B(z,r) will denote the Euclidean open ball centered
on x of radius r and B(x,r) the closure of B(x,r) in R%. For k,1 € {1,..., D} with k < [, write
780 the projection 70 : (zy1,...,2p) € RP v (x,...,1;) € RFFFL and 7(k) = glkk),

We shall denote dg (A, A) the Hausdorff distance between A; and Ay subsets of RP. It
is defined as

dH(Al,AQ) = sup |d(I,A1)*d(I,A2)|
r€A1UAs



D

., We write

For any r > 0, we write B, = (—r,r) and for any measurable function f on B
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When f is an integrable function from R to R, we denote by F[f] (resp. F1[f]) the (resp.
inverse) Fourier transform of f defined, for all y € R¢, by
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For any p € [1,+00) and any two probability measures y and v on RP | we write W),(u1, ) the
Wasserstein distance of order p between p and v, that is

1/p
W, —  inf —ylEd
= ot ([ e alitantan)

where TI(u, ) is the set of probability measures on R” x RP that have marginals y and v.

2 The identifiability Theorem and general applications

In this section, we first recall the general identifiability Theorem proved in [19]. We then
provide geometrical conditions on the support of the signal that suffice to obtain identifiability
of the model (2), whatever the distribution of the signal may be. We also show that the
conditions on the signal distribution of the identifiability theorem hold generically.

2.1 Setting

We consider independent and identically distributed observations Y;, ¢ = 1,...,n coming from
the model
Y=X+¢, (1)

in which the signal X and the noise € are independent random variables. We assume that the
observation has dimension at least two, and that its coordinates can be partitioned in such a
way that the corresponding blocks of noise variables are independently distributed, that is

1) 1) 1)

Y = (;2)) = (§(2)> + <§(2)> =X +e¢ 2)
in which YU, X ) ¢ R and Y, X@) 2 e R% | for dy,dy > 1 with di + dy = D, and
we assume that the noise components () and £(?) are independent random variables. We write
G the distribution of X and Mg its support. For i € {1,2}, we write Q) the distribution of
™ so that Q = QM @ Q® is the distribution of ¢.

We shall not make any more assumption on the distribution of the noise e, and we shall
not assume that its distribution is known. Indeed in [19], it is proved that under very mild
conditions on the distribution of the signal X, model (2) is fully identifiable, that is one can
recover GG, and thus its support, and Q from G * Q.

2.2 Identifiability Theorem

Let us introduce the assumptions on the distribution of the signal we shall use. The first one
is about the tail of G. Let p be a positive real number.

A(p) There exists a,b > 0 such that for all A € RP, E [exp (AT X)] < aexp (b]|A[5).

Proposition 1. o A random variable X satisfies A(1) if and only if its support is compact.



o A random variable X satisfies A(p) for p > 1 if and only if there exists constants ¢,d > 0
such that for any t > 0,

P(IX| > t) < CeXp(fdtP/(Pfl))'

The proof of Proposition 1 is detailed in Section 6.1.
Under A(p), the characteristic function of the signal can be extended into the multivariate
analytic function

by:ChxCc — C
(21,22) +— E [exp (iz]—X(l) +Z‘Z;—X(2))} )

The second assumption is a mild dependence assumption (see the discussion after Theorem 2.1
in [19]).

(Adep) For any zp € C%, z + ®x(20,2) is not the null function and for any zg € C%,
z— ®x(z,20) is not the null function.

Obviously, if no centering constraint is put on the signal or on the noise, it is possible to
translate the signal by a fixed vector m € R” and the noise by —m without changing the
observation. The model can thus be identifiable only up to translation.

Theorem 1 (from [19]). If the distribution of the signal satisfies A(p) and (Adep), then the
distribution of the signal and the distribution of the noise can be recovered from the distribution
of the observations up to translation.

The proof of this theorem is based on recovering ®x. The arguments show that knowing
the characteristic function of the observations in a neighborhood of the origin allows to recover
® x in a neighborhood of the origin, and then over the whole multidimensional complex plane.
Similarly, our estimators for the distribution of the signal or its support will start with the
estimation of ®x, which is detailed in Section 3.1.

The end of the section is devoted to some geometric understanding of assumption (Adep).
We first provide simple but useful properties.

Proposition 2. The following holds.

(i) Let U andV independent random variables satisfying A(p). Then U andV satisfy (Adep)
if and only if U +V satisfies (Adep).

(€]
(ii) Let U = (g(2)> be a random wariable such that UM € RM and U?) € R%=. Let

4 4 A 0\ (UM
A€ GL4,(C), B e GL4,(C), my € C** and my € C*. Define V = o B)\y® +

$1>. Then U satisfies A(p) if and only if V satisfies A(p). Moreover, U satisfies A(p)
2

and (Adep) if and only if V satisfies A(p) and (Adep).
(i) Let U and U be two independent random variables in R™ and R% respectively that
satisfy A(p) for some p = 1, then U = <g§;;> satisfies (Adep) if and only if U and
U® are Gaussian or Dirac random variables.

The proof of Proposition 2 is detailed in section 6.2.

Point (i) of Proposition 2 makes it possible to transfer a proof of (Adep) for a support
with full dimension D to a support with dimension d < D. Indeed, if U is a random variable
with support of dimension d < D, by introducing an independent random variable V' with
support of full dimension D, proving that U 4+ V' (whose support has full dimension) satisfies
(Adep) ensures that U satisfies (Adep) as well. For instance, Theorem 2 below shows that a



random variable having support the centered Euclidean ball with radius 7 > 0 satisfies A(1)
and (Adep). Thus geometric conditions such as those proposed in Section 2.3 can be transposed
from one dimension to another.

Point (ii) shows that the fact that A(p) and (Adep) hold is not modified by linear trans-
formations of each component of the signal.

Finally, Point (iii) shows that to verify (Adep), outside of trivial cases, the two signal
components cannot be independent. Even further, combined with Point (i), this shows that it
is not possible to write the signal as the sum of two independent signals where one of them has
independent components: such independent sub-signals with independent components must
be part of the noise.

2.3 Sufficient geometrical conditions for (Adep) to hold

In [9], the authors prove that (Adep) holds for random variables supported on a sphere. In
such a context, they prove that the radius of the sphere can be estimated at almost parametric
rate. Here we give much more general conditions on the support of a random variable that are
sufficient for (Adep) to hold.

We define the following assumptions (H1) and (H2).

(H1) For any A > 0, there exists Ay C R% and Ba C R% such that P(X(?) € Ax) > 0,
lima o Diam(Ba) = 0 and P(X™) € Bo | X € Ap) = 1.

(H2) For any A > 0, there exists Ax C R% and Ba C R% such that P(X() € AA) > 0,
lima 0 Diam(Ba) = 0 and P(X®) € BA | XM € Ap) = 1.

It is showed in Theorem 2 that these assumptions are sufficient to ensure identifiability provided
that A(p) is satisfied.

Theorem 2. Assume that the distribution of X satisfies A(p), (H1) and (H2). Then X
satisfies A(p) and (Adep).

The proof of Theorem 2 is detailed in Section 6.3.

One can interpret the assumptions (H1) and (H2) geometrically as shown in Figure 1. In
essence, it means that there exists a slice (along the first dy, resp. last da, coordinates, with
base Aa) such that the random variable belongs to this slice with positive probability and such
that on this slice, the support of the distribution is contained in an orthogonal slice (along the
last do, resp. first dy, coordinates) of diameter smaller than A.

R R

A

R

Figure 1: Left : Assumption (H1). Right : Assumption (H2).
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A reformulation of (H1) and (H2) based on the support of the signal is as follows. Let
Ai(A,e) = {M C RP | There exists = = (1, 22) € M
such that Diam (w(lzdl) [M N (R% x B(m,s))]) < A}
and
Az(A,e) = {M C RP | There exists z = (x1,22) € M

such that Diam <7r(d1+1:D) l./\/l N (B(z1,e) x R%)

><A}.

Proposition 3. Let M € (Naso Ueso A1(A,€)) N (Naso Ueso A2(A,€)). Then any random
variable with support M satisfies (H1) and (H2).

The proof of the following proposition is straightforward.

We now propose sets of compact subsets of RP for which Proposition 3 holds. Define the
sets By and By as

By = {M c RP compact |3z; € RY, Card(({z1} x RZ)n M) =1},

and
By = {M C RP compact | 3o € R%, Card((R® x {z2}) N M) = 1}.

Proposition 4. Let M be a subset of RP such that M € B1 N Bs. If X is a random variable
with support M, then X satisfies A(1), (H1) and (H2).

The proof of Proposition 4 is detailed in Section 6.4.

For instance, any closed Euclidean ball, and more generally any strictly convex compact
set in R? is in B; N Bs. To see this, consider the points of the set with maximal first (resp.
last) coordinate: they are unique by strict convexity, which ensures that the set is in B (resp.
Bs). The same holds for the boundary of any strictly convex compact set.

2.4 Genericity

The main purpose of this subsection is to show that hypotheses (H1) and (H2) are verified
generically.

First, we show that while the set of supports satisfying Proposition 3 is dense in the set of
closed sets of RP, its complement is also dense.

Proposition 5. The set (Naso Ueso A1(A,€)) ) (Naso Ueso A2(A,€)) and its complement
are dense in the set of closed subsets of RP endowed with the Hausdorff distance.

The proof of Proposition 5 is detailed in Section 6.5.

This result shows that any support M can be altered by a small perturbation to produce
both supports that satisfy (H1) and (H2) and supports that satisfy neither. A fortiori, the
same is true for (Adep), as on one hand (H1), (H2) and A(p) ensure (Adep) by Theorem 2 and
on the other hand a small perturbation of the signal is enough to no longer satisfy (Adep) by
Point (i) of Proposition 2.

Therefore, we need a stronger notion than topological density to assess the genericity of
(H1) and (H2). Similarly to how “almost everywhere” (with respect to the Lebesgue measure)
is a strong indication of genericity in R”, we construct a random and small perturbation of
RP such that any compact set is almost surely transformed into a compact set in By N Bs.

More precisely, for any ¢ > 0, we define a (random) continuous bijection f : RY? —s RP
such that almost surely, |f(z) — z| < ¢ for all z € RP, and such that if M is compact, then
f(M) is in By N By almost surely. This random bijection does not depend on which support



M is considered, and can for instance be seen as a modeling of the imperfections of “realistic”
supports, or as a way to introduce a Bayesian prior on the support. In that sense, compact
supports are almost surely in B; N Bs, and thus compactly supported random variables almost
surely satisfy (Adep).

There is no canonical way to define a random perturbation of RP. Our approach is to tile
the space with simplices, then add a small perturbation to each vertex of the tiling, keeping
the transformation linear inside each simplex.

Simplicial tiling of RP. Let us recall a few definitions about simplicial complexes. For any
k €{0,...,D}, a k-simplex of R” is the convex hull of (k + 1) affinely independent points of
RP. A simplicial complex P is a set of simplices such that every face of a simplex from P is
also in P, and the non-empty intersection of any two simplices F;, Fy € P is a face of both
Fy and Fs. P is a homogeneous simplicial D-complex if each simplex of dimension less than
D of P is the face of a D-simplex of of P. For any simplex F', we write relint(F') its relative
interior. Finally, a homogeneous simplicial D-complex P is called a simplicial tiling of A ¢ RP
if the relative interior of its simplices form a partition of A. Note that the facets of P, that
is, its D-simplices, do not necessarily form a partition of A: two facets can have a non-empty
intersection when they share a face.

First, consider a finite simplicial tiling of the hypercube [0,1]”, and extend it to R” by
mirroring it along the hyperplanes orthogonal to the canonical axes crossing them at integer
coordinates. Formally, for any k = (ki,...,kp) € ZP, the hypercube HZD:l[kzi, k; + 1] contains
the tiling of [0, 1]P, mirrored along axis i if and only if k; is odd. The faces of the hypercubes
defined in this way match, as each pair of hypercubes sharing a face are mirrors of each other
with respect to that face. Thus, the resulting tiling P is a simplicial tiling of R”.

Let (z,,)nen be the sequence of vertices of the simplicial tiling P (i.e. its O-simplices). We
identify each simplex F' € P with the set of its 0-dimensional faces {z;};cr, and write Fy in
that case. Note that the set I is unique for any given simplex F' and characterizes F.

Perturbation of the tiling. Fix a small r > 0. Let (g, )nen be a sequence of i.i.d. uniform
variables on [—7,7]P, and define P¢ the simplicial complex defined by

P ={{z; +eitier : {xi}ier € P}

Note that since the original tiling of [0, 1]¥ was finite, there exists ry > 0 such that for any
(en)nen € ([=r0,70]P)Y, the vertices of any simplex in P are still affinely independent after
being moved according to & and any two simplices F, F’ € P sharing a face F" (resp. with no
intersection) are transformed into two simplices of P¢ that share exactly the transformation
of F"" (resp. with no intersection), so that P¢ is indeed a simplicial complex. Finally, P¢ still
covers RP (as seen when moving each vertex in [—1,2]” one after the other along a continuous
path, showing that no hole is created in the covering of [0, 1]” at any point in time), so for any
r € (0,70], P¢ is almost surely a simplicial tiling of RP.

Since the relative interiors of the simplices of P define a partition of RP, for each z €
RP, there exists exactly one face F; € P such that z € relint(F;). Writing z = >_,.; o
(for a € (0,1]! such that Y, ;o; = 1), we define the image of z by the perturbation as
f5(2) = > ;cr @il + ;). In other words, each simplex is deformed according to the linear
transformation given by the perturbation of its vertices.

The mapping f° is a (random) bijective and continuous transformation of R” that is
“small”, in the sense that almost surely, sup,cpo ||z — fe(2)|| < 7.

Note that the transformation f¢ can be made with arbitrarily small granularity: the same

approach works when considering tilings of [0,d]” for any § > 0 instead of [0,1]” (up to

changing r). We may also iterate several random independent transformations f¢ Moo f‘E(m)

for m > 1, and the transformation of M will still almost surely belong to By N Bs.

Theorem 3. Let r € (0,79] with 1o as above, € = (ep)nen be a sequence of i.4.d. uniform r.v.
on [-r,7]P, § >0, and f¢ be the bijective transformation of RY defined above.
Then for any (random) continuous mapping G : RP — RP that is independent of ¢, the

mapping F : z — 5f5($) satisfies: for any compact set M C RP | F(M) € B; N By a.s..



The proof of Theorem 3 is detailed in Section 6.6.

This shows that for any compact set M € RP | a small change into the set F'(M) where F
is a transformation of R” of the type described in the Theorem almost surely results in a set
in Bl N Bg.

3 Estimation of the support

As explained after Theorem 1, the estimation of the characteristic function of the signal will
be the first step to derive efficient estimators. In Section 3.1, we describe the estimator of the
characteristic function used in all our procedures, and we give its properties. In Section 3.2, we
provide an estimator of the support of the signal when p is known, and prove an upper bound
for the maximum risk in Hausdorff distance. In Section 3.3, we prove a lower bound which
shows that our estimator is minimax up to some power of loglogn for all p € (1,2) and up to
any small power of logn for p = 1. Section 3.4 is devoted to the construction of an adaptive
estimator of the support for unknown p.

3.1 Estimation of the characteristic function

We shall need sets of multivariate analytic functions for which A(p) and (Adep) hold. For
any S > 0, let T, ¢ be the subset of multivariate analytic functions from CP? to C defined as
follows.

T,s= {(,zb analytic s.t. Vz € R?, ¢(2) = ¢(—2),$(0) = 1 and Vi € NP \ {0},

9(0) |< gllill }

d . = . 3
| G A

where ||i]|; = Zle iq. If the distribution of X satisfies A(p), then there exists S such that
®x € T, g, and the converse also holds, see Lemma 3.1 in [19].

Let ®_) be the characteristic function of ¢, i = 1,2, and define for all ¢ € T, s and any
v >0,

M(¢;v|®x) :/d1 0 |(t1, t2)@x (t1,0)@x (0, t2) =P (t1, t2)d(t1,0)H(0, 12) [P (1) Peca) (t2) [P dty dbs.
B,' xB,

It follows from the proof of Theorem 1, see [19], that for any v > 0, if ¢ € T, g satisfies

(Adep), then M(¢;v|®x) = 0 if and only if ¢ = &x (up to translation). The estimator of

the characteristic function of the signal can then be defined as a minimizer of an empirical

estimator M,, of M. Fix some ves > 0, and define M,, for any ¢ as follows

My(9) Z/Bd1 " [@(t1, £2)dn(t1,0)n (0, t2) = n(t1, t2)d(t1, 0)H(0, t2)*dtrdts,

Vest Vest

where for all (t1,t2) € R% x Rz,

~ 1 n
Oltrte) = — > exp {it] ) +it] vP}.
=1

Define now, for all m € N, the set C,,[X1,...,Xp] of multivariate polynomials in D vari-
ables with total degree m and coefficients in C, simply written C,,[X] in the following.
If ¢ is an analytic function defined in a neighborhood of 0 in CP written as ¢ : =

D : .
ipyenp Ci [[a—q 24, define its truncation on C,[X] as

D
T : x> Z CiHI'fl“.

(i1,..,p)END ¢ ||i]1<m  a=1

.....

Let H be a subset of functions CP — CP such that all elements of H satisfy (Adep) and such
that the set of the restrictions to [—Vest, Vest)” of functions in H is closed in L?([~Vest, Vest]”)-
We are now ready to define our estimator of ®x:



For any integer m and any p > 1, let (/I;n,m,p be a (up to 1/n) measurable minimizer of the
functional ¢ — M, (T,¢) over T, s NH.

For good choices of m, @nym’p is a consistent estimator of ®x in L?([~v,v]?) at almost para-
metric rate. The constants will depend on the signal through p and S, and on the noise through
its second moment and the following quantity:

e, = inf{|®.)(t)], t € [~v,V]D} Ainf{|® 2 (2)], t € [~v, 1]} (3)

Note that for any noise distribution, for small enough v, ¢, is a positive real number. For any
v >0, c(v) >0, E>0,define QP)(v,c(v), E) the set of distributions Q = ®?=1Qj on RP
such that ¢, > ¢(v) and [, [|2]|2dQ(z) < E.

Proposition 6 (Variant of Proposition 1 in [9]). For all pg < 2, v € (0,Vest], S, c(v), E,C >0
and §,6',6"” € (0,1) with &' > 6, there exist positive constants ¢ and ng such that the following
holds: let p € [1,po], for all ®x € T,sNH and Q € QP)(v,c(v), E), for all n > ng and
x € [1,n'7%"], with probability at least 1 — 2",

N ) T 175//
i 1/351 x BL2 [®nm.pr (1) = Px (D)t < ¢ (W) '

; _logn logn

p'Elp,pol, mERp 5250 Clioginen

Moreover, the same result holds when replacing &)n,m,p/ by Tm<f>n,m,p/.

Note that the constants ¢ and ny do not depend on the distribution of X or €. The proof
of Proposition 6 is based on results in [9] and [19] and is detailed in Section 6.7. For sake of

simplicity, we denote ®,, , the estimator ®,, ,, , in which m = [4 log’ign]. Note that this is a

valid choice of m for any p € [1,2).

3.2 Estimation of the support: upper bound

We are now ready to provide an estimator of the support of the signal. The idea is the following.
Define g a probability density which is the convolution of G, the unknown distribution of the
signal X, with a kernel W, ; defined later, in which h is a bandwidth parameter. Then, the
multiplication of the estimator of the characteristic function of the signal with the Fourier
transform of the kernel will give a good estimator g, of g. When h tends to 0, g becomes
larger on M and tends to 0 outside of it. Thus, by letting h tend to 0 with n and choosing an
appropriate threshold A,, the set of points y for which g,, > A, should be a good estimator of
M. Figure 2 illustrates this idea.

We now define the class over which we will prove an upper bound for the maximum risk in
Hausdorff distance.

For any compact set K of RP, and for any positive constants a, d and ry, we define
Stic(a,d,r9) as the set of positive measures G such that for all x € K, for all r < ro,
G(B(z,r)) = ar?. The distributions in Stx(a,d,ro) are called (a,d)-standard. It is commonly
used for inferring topological information, see for instance [6].

Remark 1. e If a measure pu (for instance the d-dimensional Hausdorff measure on a
manifold) is (a,d’)-standard for some positive constants a and d', and if G admits a
density g with respect to p such that g is lower bounded by ¢ > 0, then G is (ac,d’')-
standard.

e We do not make any assumptions on the reach of the support of G (see [17]) since it
is not necessary here, although it provides a convenient way to check the (a,d)-standard
assumption: if M is a Riemannian manifold of dimension d with reach(M) = Tmin > 0,
then the d-dimensional Hausdorff measure restricted to M is (a,d)-standard for some
a >0 (see Lemma 32 of [21]).

10



Figure 2: In red, the support of the signal distribution M, the blue hatched area represents
the set {g > A\, + |7 — Gnlloo } and the gray area represents the set {g < A — |7 — Gnlloo > SO
that the estimator of the support lies in between the gray and the blue areas.

As in [19], it will be convenient to use k = 1/p. We denote L(x, S, H) the set of distributions
G such that, if X is a random variable with distribution G, then ®x € HN Ty, 5.

When £k < 1 and G € L(k,S,H), the support of G is not compact. Since we allow the
support to be a non-compact set, we define a truncated loss function as in [21]. For any K
compact subset of R and for any S7, Sy subsets of R”, the truncated loss function is

Hic(S1, 82) = dr (1 N K, S2 N K).

We now introduce the kernel we shall use for our construction. For any A > 0, define, for
all y e R,
1 1

ua(y) = exp {_ 1-29)4 (1+2y)4 } 1,4 @)

and
1

(4) = JFua *ual(z)de’

Ya(y) = I(A) F ua * ual(y) with I

We shall extend 1/~J 4 to RP as an isotropic function. For y € R”, we write
B 1
JFHua * ual(llzll2)dz

For h > 0 and x € RP, we write ¢4 ,(z) = h~Pea(x/h), hence F[ipa 4](t) = Flpa](th). The
following properties of 14 and F[y4] hold

Ya(y) = I(A) F~ ua xual(llyll2) with I(A)

(I) The support of F[ia] is the unit ball {y € RY : ||ly|l2 < 1}.
(IT) ¥4 > 0 and Flipa] = 0.
(ITII) There exist constants c4 > 0 and d4 > 0 such that for all x € {y € R : ||y|l2 < ca},
Ya(z) = da.

11



(IV) t4 and 1) 4 5, are probability densities on R”.

(V) (Lemma in [30]) For all A > 0, there exists 84 > 0 such that

_A
lim exp {Ballt];"" }a(t) =0 (4)
[ltll2—o00
(VI) It holds
I(A
lYanllz = hT/gH“A*UAH% (5)

Fix A > 0 and define the convoluted density of the signal, g by

Yy € R, glu) = (5)7 [ e IFDAl ) @x (B0,

which may be rewritten using usual Fourier calculus, for all y € R”, as

90) = an s O = 15 [ walZ a0,

The density g is a kernel smoothing of the distribution G. The bandwidth parameter h will be
chosen appropriately in Theorem 4 below. R

We now construct an estimator of g by truncating ®,, ;.. depending on . Adaptation with
respect to x is handled in Section 3.4. For some integer m, > 0 to be chosen later, let

1
2

D
Wy € R?, Guny) = ( ) [T F A 0) T B0

Since for all t € RP, T, @n’l/ﬁ(—t) =T, (f)n’l/,i(t), the function g, . is real valued. Finally,
define an estimator of the support of the signal as the upper level set

MI{ = {y € RD | /.dn,n(y) > An,m};
for some A, . The main theorem of this section gives an upper bound of the maximum risk.
Theorem 4. Let k € (1/2,1], a >0 ,d < D, 1o > 0. For c;, 2 exp (2D +2) and ¢ € (0,1),
define my, and h as
1 1
m, = —L(n) , h=c,Sm."
4x log log(n)

and A, . depending whether d < D ord=D as

¢
1
)\nn: 7 3
’ (h)

1
Ank = ZacgdA.

o ifd< D,

e ifd=D,

Then for any ko € (1/2,1], v € (0,ves), ¢(v) > 0, E >0 S > 0, there exists ng and C > 0
such that for all n = ny,

= log(log(n))"*+ &
sup sup E(crgyen [Hx(Ma, My)] € O3 .
k€[ro,1] GEStk (a,d,ro)NL(K,S,H) og(n)

QeQP) (ve(v),E)
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Remark 2. o We prove in the next section a nearly matching lower bound. Thus, the
minimaz rate of convergence of the support in truncated Hausdorff distance depends on k,
that is on the way the distribution of the signal behaves at infinity. This rate deteriorates
when the distribution of the signal has heavier tails. Indeed, since the distribution of the
noise is unknown, taking into account distant observation points to build the estimator
of the support becomes more difficult.

o When d < D, thanks to the use of the kernel ¥4, our estimator does not require the
knowledge of d, which has to be compared with the estimator in [21] where prior knowledge
of d is needed.

o In [21], the upper bound on the rate is of order 1/\/logn. Here we get a bound of order
1/(logn)" depending on the tail of the distribution of the signal. We do not need to know
the distribution of the noise, contrarily to [21] where the distribution of the noise is used
in the construction of the estimator, as usual in the classical deconvolution litterature.

o [t may be seen from the proof of Theorem 4 that the choice Ay, . = %achA is valid for
any d. However, this requires the knowledge of a.

e Note that there are two truncation steps: the first one in the construction of &)7L,1/,€
(chosen at the end of Section 3) and the second one in the definition of G, ... This second

truncation is necessary to control the error of &Jn}l/n on Bﬁh (see Lemma 3, compared to
the error on BP in Proposition 6), and the degree m,, in the second truncation is always

smaller than the degree m used in the construction of ®, 1.

The proof of Theorem 4 is detailed in section 6.11. As in [21], the idea is to lower bound g
on the support Mg when the bandwidth parameter A becomes small, and to upper bound it on
every points further than a small distance (depending on h) from that support, see Lemma 1
and 2 below.

Lemma 1. Assume G € Sti(a,d, 1), then for any h < ro/ca,
1\ D
ot ctan (1)
where c4 and dy are defined in property (III) of ¥4.
The proof of Lemma 1 is detailed in Section 6.8.

Lemma 2. For any Cy > 0, there exists hg > 0 depending only on C1, D and A such that for
any h < hyg,

sup {g(y) |y €K, dly, Mg) > h [BD log (i)] A} <C.
A

The proof of Lemma 2 is detailed in Section 6.9.
The last ingredient is to control the difference between the convoluted density and its
estimator, defined as I'n x = [[gnx — Glloc = supyerp [gn.x(y) — g(y)|. We first relate it to

||Tm,<(/§n,l//-c - (PXH2,1/h~

Lemma 3. Let h >0 and m > 0. For any A > 0,

UA * U ~
Pn,m < I(A)HAhDi/QA”QHTmh@n,I/K - ¢X||2,1/h~

The proof of Lemma 3 is detailed in Section 6.10. The parameters m,, and h are chosen so

that I',, , tends to O with high probability, and the threshold A, , is chosen using Lemmas 1
and 2.

13



3.3 Lower bound

The aim of this subsection is to prove a lower bound for the minimax risk of the estimation
of Mg using the distance Hy as loss function. The proof of Theorem 5 is based on Le Cam’s
two-points method, see [31], one of the most widespread technique to derive lower bounds.
Note that we can not use the lower bound proved in [21] since the two distributions they use
for the signal X in their two-points proof have Gaussian tails, for which k = 1/2.

Theorem 5. For any x € (1/2,1], there exists S, > 0, a, > 0 and H} a set of complex
functions satisfying (Adep) such that the set of the restrictions of its elements to [—v,v]P is
closed in Lo([—v,v]|P) for any v > 0, and such that for all S > S., a < ax, d>1,0<1ry <1,
E >0 and v € (0,Ves| such that c(v) > 0, there exists C > 0 depending only on a, D, S, E

and v, and there exists ng, such that for all n > ny,

— C
inf sup E(gsgyon [He (Mg, M)] =
M GeStr(ard,ro)NL(k,S,H2) SR ] log(n)"

QeQP) (v,c(v),E)

; (6)

and for any § € (0,1), there exists C > 0 depending only on a, D, S, E, v and §, and there
exists ng, such that for all n > ny,

— C
inf sup Egoyen [He( Mg, M)] > —————, 7
M GeStx(ard,ro)NL(1,5,H) ©@er| ] log(n)!+o @)

QeQP) (v,e(v),E)

where the infimum in (6) and (7) is taken over all possible estimators M of Mg.

Remark 3. e The lower bound in Theorem 5 almost matches the upper bound for the
mazimum risk of our estimator in Theorem 4. Thus our work identifies the main factor
in the minimax rate for the estimation of the support in Hausdorff loss.

o In [21], the lower bound does not match the upper bound by a larger power in the rate
(almost twice).

o The sets of supports we consider are not the same as that considered in [21]. In [21], the
authors assume that the support is a reqular manifold with lower bounded reach. We do
not assume regularity, we only assume that the distribution of the signal is (a, d)-standard.

As usual for the two-points method, the idea is to find two distributions having support as
far as possible in Hy-distance, and a noise such that the joint distributions of the observations
have total variation distance upper bounded by some C < 1.

Let us introduce the two distributions used in the two-points method, as well as the closed
set HY. The rest of the proof of Theorem 5 is detailed in Section 6.17.

We shall consider the noise as in [19], with independent identically distributed coordinates
having density ¢ defined as

1+ cos(cx)
(72 — (ca)2)?

for some ¢ > 0, where ¢, is such that ¢ is a probability density, and with characteristic function

cos|m— |+ —sin |7 1_c<i<e-
c T

Cc C

g:xeRr— ¢y

Flg] - t ¢y Kl—

Let us now define the two distributions to apply the two-points method. For any x € (1/2,1],
we first choose a density function f, according to the following Lemma.

Lemma 4. For any x € (1/2,1), p > 1, there exists a continuous density function f,, : R = R
in Ly(R), positive everywhere, and positive constants A, B such that for all u € R,

\F[f)(u)| < Aexp(=Blul*) and |F[f.]'(u)] < Aexp(—Blu|*).

14



For any § € (0,1), there exists a continuous compactly supported density function fy : [—1,1] —
R positive everywhere such that

IFLA)(u)] < Aexp(=Blul’) and |F[f1]'(w)| < Aexp(~Blul’).

The proof of Lemma 4 is detailed in Section 6.12.
Then, inspired by [21], for all v € (0,1], define g, : R - Rand g, : R - RP~ forallz € R
as

o) =cos (1) and g,(0) = 0,000,000

Let My(7y) = {(u,vg,(w)) : w € R}, Mi(y) = {(u, —vg,(u)) : v € R}, and for o # 0, define the
matrix A, € RP*P by

a 0 |0 ... O
a a/2(0 ... 0
A, =] 0 0 | 0
0 0 |0 ... «

For any x € (1/2,1], let U(x) be the random variable in R having density f, defined in
Lemma 4 and let So(k) = (U(k),v9+(U(k))), Si(k) = (U(k), —v9+(U(k))). For i € {0,1}, we
shall denote T;(x) the distribution of S;(k). Finally we define X;(xk) = A,S:(x), i = 0,1 and
G;(k) the distribution of X; (k).

To obtain the lower bound, the parameter v will be chosen as large as possible while making
sure that the joint distributions of the observations have total variation distance smaller than
some C' < 1.

Let us comment on dimensionality. The distributions used here are distributions with
support of dimension 1. This is not an issue since the d in the definition of Sti(a,d,rg) is
an upper bound on the dimension of the support. We could also have used supports with
dimension d by adding to X;(x) an independent uniform distribution on a ball of a linear space
of dimension d.

Lemma 5. For any i € {0,1} and k € (1/2,1], X;(r) satisfies A(1/k).
The proof of Lemma 5 is detailed in Section 6.13.

Lemma 6. Let o > 0. There exists ag > 0 such that for i € {0,1}, for anyd > 1, 19 < 1 and
a < ag, Gi(k) € Sti(a,d, ).

The proof of Lemma, 6 is detailed in Section 6.14.
The support of G;(k) is Ay M; (), and the following lemma follows easily from the fact that
for i € {0,1}, Ao M;(v) = vAM;(1).

Lemma 7. For any v >0, and a > 0,
Hic(AaMo(7), AaMi (7)) = vHic(AaMo(1), Aa Mi(1)). (8)

We finally exhibit a set of complex functions H* such that all of its elements satisfy (Adep)
and such that the set of the restrictions of its elements to [—v, v]” is closed in La([—v,v]P) for
any v > 0.

We first define a class of such sets of complex functions, then choose H} as one in that
class. Let (AS))A>0 and (B(Al))A>o be families of subsets of R and (A(AZ))A>0 and (B(A?))A>0
be families of subsets of RP~! such that

i) For all A > 0, Diam B(2) < A and Diam B(l) <A,
A A

(ii) The topological frontiers 6A(Al) and 8A(Az) in R are negligible with respect to the Lebesgue
measure.
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For k € (1/2,1], S > 0, M > 0 and (ca)a>o a family of positive constants, let
H(k, S, M, (ca, AR, BY, AR BY) as0)

be the set of functions ¢ : CP — C in Y, s such that there exists a random variable X
satisfying A(1/k) such that ¢ = ®x and such that the following holds. Write X () the first
coordinate of X and X the vector of the last D — 1 coordinates of X.

(iii) For all A >0, PIXM € AV > cp and PIX® € BY|x® e AV = 1.
(iv) For all A >0, P[X® € AQ] > cp and PIX® € BU|Xx® € AQ] = 1.

(v) All the coordinates of X (?) are null except the first one, and X (Y and the first coordinate
of X® admit a continuous density with respect to Lebesgue measure which is upper
bounded by M.

Lemma 8. For any v > 0, the set H(k,S, M, (cA7A(Al),B(Al)7A(A2),B(AQ))A>O) is closed in
Ly([-v,v]P). Moreover, all elements of H(M, (cA,A(Al),B(Al),A(Az),B(AQ))Aw) satisfy (Adep).

Note that ®x € H(x, S, M, (ca, A(Al), B(Al), A(A2)7 B(AQ))A>O) implies that X satisfies (H1) and
(H2) so that the second part of the Lemma is a consequence of Theorem 2. The remaining of
the proof of Lemma 8 is detailed in Section 6.15.

Lemma 9. For any k € (1/2,1], there exist S, M > 0, (ca)a>o a sequence of positive
constants, and (A(Al),B(Al),A(AQ),B(AQ))A>O a sequence of sets such that for i € {0,1}, ®x, ) €

H(Hﬂ Sﬁa Ma (CAvA(Al)a B(Al)7A(AQ)7 B(AQ))A>0)'

The proof of Lemma 9 is detailed in Section 6.16.

3.4 Adaptation to unknown x

We now propose a data-driven model selection procedure to select x such that the resulting
estimator has the right rate of convergence. As usual, the idea is to perform a bias-variance
trade off. Although we have an upper bound for the variance term, the bias is not easily
accessible. We will use Goldenshluger and Lepski’s method, see [22]. The variance bound is
given as follows:

Fix some ko > 1/2. The bias proxy is defined as

B,(k) =0V sup (H;c(./(/l\m./(/l\,g/) — O'n(/@/)) :

K’ €[Kko,kK]
The estimator of k is now given by
Fn € arg min { B, (k) + op(k), & € [ko, 1]},

and the estimator of the support of the signal is M\E The following theorem states that this
estimator is rate adaptive.

Theorem 6. For any ko € (1/2,1], v € (0,ves), c(v) >0, E>0S5 >0, a>0,d< D, there
exists ¢, > 0 such that

1 r —
limsup sup sup og(n) a7 Eawqyon [He(Ma, Mz, )] < +oo.
n—+00 kelro,1] GEStx (a,d)NL(x,S, 1) log(log(n))*+ A~

QeQP) (v,e(v),E)

The proof of Theorem 6 is detailed in Section 6.18.
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4 Estimation of the distribution of the signal

In this section, we assume that the support Mg of G is a compact subset of RP. To estimate
G, we shall consider the probability density g defined in Section 3.2 and define the probability
distribution Py, , on RP such that, for any O borelian set of R,

Py (0) = /O G(y)dy.

This probability distribution can be considered as a convoluted approximation of G with kernel
VU 4 and smoothing parameter h,. We then estimate Py, , using the estimation of g defined
in Section 3.2 for Kk = 1, g, := gn,1. Since g, can be non positive, we use g, = max{0,g,}
and renormalize it to get a probability distribution. We shall also estimate Py, , with a
probability distribution having support on a (small) enlargement of the estimated support M
restricted to the closed euclidean ball B(0, R,,), for some radius R,, that grows to infinity with
n. Thus we fix some 7 > 0 and define ﬁnm such that, for any O borelian set of RP,

~ 1
Pon(0) = [ Gidy=a [ G
f(f/l\ﬂB(O,Rn))n gn (y)dy ON(MNB(0,R,.))y ON(MNB(0,Ry))y

4.1 Upper bound for the Wasserstein risk

The aim of this subsection is to give an upper bound of the Wasserstein maximum risk for the
estimation of G.

Theorem 7. For all v € (0,ves), ¢(v) >0, E>0,5S >0,n>0,a>0,7r90>0,d< D,
define my,, h, and X\, as in Theorem /J for k = 1. Assume that lim,,_, o R, = +0o0 and that
there exists § € (0,%) such that R, < exp(n'/2=%). Then there exist ng and C > 0 such that
for all n > nyg,

~ loglog(n)
sup E(gugyon [Wa(G, Pyy)] < 02081
GEStr(a,d,ro)NL(1,S,H) (@) ! log(n)
QeQP) (v,c(v),E)
The proof of Theorem 7 is detailed in Section 6.19. Note that the magnitude of 1 does not
appear to be crucial when looking at the proof, at least in an asymptotic perspective.

Remark 4. o The lower bound in Theorem 8 almost matches the upper bound for the
mazimum risk of our estimator in Theorem 7. Thus our work identifies the main factor
in the minimax rate for the estimation of the distribution in Wasserstein loss.

o Comparison with earlier results in the deconvolution setting [13] or [12] with known noise
is not easy since the classes of signals they consider is much different than the ones we
consider.

4.2 Lower bound for the Wasserstein risk

The aim of this subsection is to establish a lower bound for the minimax Wasserstein risk of
order p for any p > 1. Again, we can not use previous lower bounds proved in [13] or [12] since
they use in the two-points method signals with distributions having too heavy tails.

Theorem 8. For any p > 1, there exists S1 > 0, a1 > 0 and H] a set of complex functions
satisfying (Adep) such that the set of the restrictions of its elements to [—v,v]P is closed in
Ly([-v,v]P) for any v > 0, and such that for all S > S, a<a;,d>1,0<r0 <1, E>0
and v € (0,Vest] such that c(v) > 0, there exists C > 0 depending only on a, D, S, E and v,
and there exists ng, such that for all n > ng,

= 1
inf sup E gy [W,(G, P,)] =2 C———,
P, GeStx(a,d,r)NL(1,5,H5) (@ Wil ] log(n)1+o
QeQP) (v,e(v),E)

where the infimum is taken on all possible estimate }3” of G.
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As for Theorem 5, we use Le Cam’s two-points method with the same two distribu-
tions Go(1) and G1(1). The proof essentially consists in showing that there exists a con-
stant C' > 0 independent of v such that W,(Go(1),G1(1)) > CHx(Mo(7), Mi(v)), that is
W,(Go(1),G1(1)) > Cv for a constant C' > 0. Once such an equality is established, the lower
bound follows from taking v as for Theorem 5.

The rest of the proof is detailed in Section 6.20.
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6 Proofs

6.1 Proof of Proposition 1

Case p = 1. It is clear that any compactly supported distribution satisfies A(1). Conversely,
if E[e™X)] < aexp(b||A|]), then for any p > 0, we get, for any b’ > b, if we denote (e;)1<;j<p
the canonical basis of R,

P(IX| > Db') < p_P(1X;| > V)

NE

1

<.
Il

I
WE

{P(X; > 0V) +P(X; < )}

<.
Il

Il
WE

{P({pej, X) > pb') + P(—(uej, X) = pub')}

<.
I
—

A
NE

{]E[exp(<u€j7X>)}  Elexp(—(ue;, X))]

by Markov i lit
exp(t' 1) (b 1) } v Markov inequality

1

<.
Il

aexp(bp)
xp(Ujs) wrreo

Do
S

and hence || X|| < Db almost surely.

Case p > 1. Assume that for any A € R, E[e}*)] < aexp(b||A|?) for some a,b > 0. Then
by using the same directional method as for p = 1, we get that for any p,t > 0,

B(IX|| > ) < 2Dacxp(b” — )
. =
= 2Daexp (— (%) o (1 — pf%w tpp1> by taking u = (btp> ’ .

Observe that since p > 1, (1 — p7%> > 0 to get the result.

Now, assume that for any ¢ > 0, P(||X|| > t) < cexp(—dt?/(?=1) for some ¢, d > 0, then by
the Cauchy-Schwarz inequality, for any A € R,

E[GO\’X)] < E[GI\AI\I\X\I].
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Then, using that for any nonnegative random variable Y, E[Y] = [ >0 P(Y > t)dt,
Ee™¥)] < 1 +/ PPN > 4t
t>1

<! +/ P([|X]| = s)|[Allexp(||Alls)ds  with ¢ = ellls

=

<1+ ¢||A exp(—ds7T + ||A||s)ds
s=0
<1+ CH)\HP/ exp(||A|P(=ds'7 T + s'))ds’  with s = || A[|”~".
520

Note that —ds' 71 + s’ < l("p;dl)p_1 for any s’ > 0, and P Y < —s' when s’ > (%)p_l.
In particular,

hs)

2\p—1

Ele™] <1+ CII/\||p/ exp([[A[|°(=ds' 7T + s))ds’ + C||A||’J/ exp([| AP (—ds'#"T + 5'))ds’
1

5'=0 s'>(3)r-

2\ e (AL (o =1\ 2\
< Pl = L L _ el Z
< 1+l <d) exp( ) ( d ) + cexp Il (d) ,

which proves that A(p) holds.

6.2 Proof of Proposition 2
First, note that if U and V are independent random variables satisfying A(p) then U + V
satisfies also A(p) with the same constant p.
(i) If U and V are independent, then for all (z;,22) € C% x C%,
Py v (21, 22) = Pu(z1, 22) Py (21, 22). (9)

Assume first that U and V satisfy (Adep). Suppose that there exists zo € C% such that
for all z € C¥2, &1,y (20,2) = 0. Then for all z € C%,

Dy (20,2)Py(20,2) = 0.

If Z((Jl)(zo) = {2z € C®=|®x(2,2) = 0} and Z‘(/l)(zo) = {z € C%|®y(z,2) = 0},
Zé,l)(zo) U Z‘(/l)(zo) = C%. Since ®y(z0,-) and Py (zp,-) are not the null functions,
Corollary 10 of [23], p. 9, implies that Z((Jl)(zo)UZ‘(,l)(zo) has zero 2ds-Lebesgue measure,

which contradicts the fact that Z(Ul)(zo) U Z‘(,l)(zo) = C%. If instead we suppose that
there exists zp € C% such that for all z € C%, b4y (z,20) = 0, analogous arguments
lead to a contradiction. Thus U + V satisfies (Adep).

Assume now that U + V satisfies (Adep). Then (9) implies that ®y(z1,-), v (z1, ),
Dy (-, 22), Py (-, 22) can not be the null function, so that U and V both satisfy (Adep).

(ii) Assume that U satisfies A(p) with constants a and b. Then, for any A € RP,

Efexp(\'V)] =E {e"p (AT <51 g) (ZE;) o (ZW

4 0\ m
<oe (o2 (5 B) [+ 1e| (22)].)
A 0 ’ P mi
com L vl
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Since p > 1, | A]|2 < [|A||5 for [[A]l2 = 1, so that if U satisfies A(p) with constants a and b,
| v

Gl ) mas| G B)[ 1)

-1

The converse follows from applying the direct proof to V with — (AO BO—1) <:Zl>
2

A7t 0

and < 0 B_1>'

Now, for all (z;,2) € Ch x C,

then V satisfies A(p) with constants a exp (‘

2

m
Dy (21, 22) = exp ()\T (m;

))CDU(ATzl7 BTz,)

and

By (21, 22) = exp (—/\T (Aol Bol> (m1>)<l>v((A_1)Tzl,(B_l)TZQ),

ma
so that U verifies (Adep) if and only if V' verifies (Adep).

(iii) Since UM and U® are independent, for all z; € C% and z, € C%, ®py(z1,20) =
Oy (21)Py@ (22). Thus if UM and UP) are deterministic or Gaussian random variables,
U satisfies (Adep). Conversely, if U satisfies (Adep), then neither ®;;a1) nor @2 have
any zero. By Hadamard’s Theorem together with A(p), reasoning variable by variable we
obtain that ®;;1) = exp(P1) and @2y = exp(P2) for some polynomials P; and P, with
degree bounded by p in each variable. Now, for j = 1,2, for any A € R% | t s &0 (tN)
is the characteristic of the random variable (A, X()) and writes exp(P;(t)\)). But by
Marcinkiewicz’s theorem 2bis in [24], this implies that ¢t — P;(¢)) is of degree at most
two. Since this is true for any A, we get that P, and P, are polynomials with total
degree at most two. Thus the polynomials P; and P, are of the form (A, X) — %XTBX
for some symmetric matrix B since characteristic functions are equal to 1 at zero and
Oy (—2) = Oy (2) for all z € RY. Therefore the distribution of Uy (resp. Us) is a (possibly
singular) Gaussian distribution.

6.3 Proof of Theorem 2

Consider a random variable X satisfying A(p). Theorem 2 is a direct consequence of the
following Lemma. Indeed, for any zp € C% and z € C%,

E [exp (zzo x® 4 zzTX(Q)ﬂ E [E [exp (inX(l)) |X(2)} exp (@'ZT)(@))} )

Usual arguments for multivariate analytic functions show that z +— Efexp(izg XV +izT X(3))]
is the null function if and only if Eexp(izg X(V)) | X (@] is zero Py -a.s. Likewise, for any
29 € C%, 2+ Elexp(iz " XM +iz) X@))] is the null function if and only if Eexp(izo T X)) | X (1]
is zero Py 1)-a.s.

Lemma 10. Assume (H1) and (H2). Then, for all z € C%, Elexp (iz" X)) | X®)] is not
Py -a.s. the null random variable and for all z € C%, Elexp (iz' X)) | XM] is not Py -
a.s. the null random variable

Proof of Lemma 10 To begin with, by Proposition 2, we may assume without loss of
generality that 0 € Ba in (H1) and (H2) (up to translation of X).

Let z € C™ be such that Efexp (iz' X(1)|X®)] is Py(-a.s. the null random variable.
Then for any A > 0, if we denote A a set given by (H1), Efexp (iz" XW)| XP1|xerc4, =0
Pxf) a.s., and taking the real part of this equation shows that

Elcos(Re(z) T X M) exp (—Im(z)TX(l))|X(2)]1|X(2>€AA =0 Pyeas. (10)

20



Using (H1), we can fix A > 0 small enough such that if * € Ba, cos(Re(z) z) > 0.
But for such A, Equation (10) can not hold since P(X™") € BA|X® € Apn) = 1. Thus
Elexp (iz" XM)| X @] is not Py 2 -a.s. the null random variable.

The proof of the other part of Lemma 10 is analogous using (H2).

6.4 Proof of Proposition 4

Let M be a compact subset of RP. Let us first prove that the function u — Diam({u} x
R N M) is upper semi-continuous.

Let u € R%. Since M is compact, there exists sequences u,, — u and x,, ¥, in ({u,} x
R N M) such that ||z, — y,|lz = Diam({u,} x R% N M) and lim, . o [|[Zn — Ynll2 =
lim sup,,_,,, Diam({v} x R% N M). Moreover, we may assume that there exists z, y in ({u} x
R N M) such that x,, — x and y,, — y. Taking the limit along those sequences shows that
Diam({u} x R N M) > ||z — y|| = limsup,_,, Diam({v} x R% N M), proving the claimed
upper-semi continuity.

Now, since M is compact, there exists R > 0 such that M C B(0, R). If moreover M € B,
there exists x; € R% such that Diam({z;} x R% N M) = 0. Using the upper semi-continuity
shows that that M € N,>1.42(1/n, R). Likewise, if M € Ba, there exists xo € R% such that
Diam(R% x {22} N M) =0 and M € N,,>1.41(1/n, R).

The end of the proof follows from Proposition 3 and the fact that any random variable with
compact support satisfies A(1).

6.5 Proof of Proposition 5

First, let us show that the set A := (Naso Ueso A1(A,€)) ) (Naso Ueso A2(A, €)) is dense.

Let § > 0 and let M be a closed subset of RP, we show that there exists a closed M’ in
Naso(A1(A,8) NAx(A,6)) (and thus in A) such that dg (M, M) < 8.

Let z = (21, 22) € M with z; = 714 (2) and 2o = 7(@1+1P) (), M’ is defined by cutting
the space in half through z orthogonally to the space of the first d; cooordinates and spreading
the two halves apart, connecting them by a single segment to ensure it is in A2(A, §), then cut
and connect again orthogonally to the (d; + 1)-th axis to be in A (A, ).

Formally, define M’ as the union of:

{yly = (y1.92) € M7 (y1) <7 (21) and 70 (y2) < 79 (22)},
{(yl + 46(1a 0) cey 0),y2) ‘y = (y17y2) € Maﬂ-(l) (yl) 2 77(1)(21) and Tr(l) (y2) < 7T(1) (22)}a
{(y17y2 + 46(1707 s 70)) ‘y = (y17y2) € Maﬂ-(l) (yl) < 77(1)('21) and Tr(l) <y2) = 7T(1) (22)}7

{(y)1+45(1,0, o, 0),42+45(1,0,...,0)) |y = (y1,92) € M, 7D (y1) = 7D (21) and 7V (o) >
7‘-(1 (22)}7

e the segments between z and (21440(1,0,...,0), 22) and between z and (21, 20+40(1,0,...,0)).

An illustration of this construction is given in Figure 3.

By construction, the Hausdorff distance between this set M’ and M is smaller than 85 (the
points in the first four sets have moved at most 89 and the segments are at distance at most 8§ of
z). M’ is also closed, and taking z = (21 +26(1,0,...,0), 22) and o = (21, 22 +26(1,0,...,0))
in the definition of 4;(A, ) and A3(A,d) is enough to check that M’ € A;(A, ) N Ax(A, )
for any A > 0.

To show that the complement of A is dense, let M be a closed subset of RP and n > 0,
and let M’ = {z +y|x € M,y € [-n,n]”}. Then H(M, M) < nv/D by construction, and
for any A < 2nand e > 0, M’ ¢ A;(A,¢), and thus M’ € AL,

Note that if M is the support of a random variable X, then M’ is the support of X + Y,
where Y is a uniform random variable on [—n,7]? that is independent of X. In that case, by
Proposition 2 (i), X + Y is a small perturbation of X that does not satisfy (Adep).
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1)

Figure 3: Transforming M into a set M’ € B; N By

6.6 Proof of Theorem 3

Let M be a compact set of R”. Since ¢ and G are independent, and thus f¢ and G(M) are
independent, writing pg the distribution of G(M):

P(F(M) € By N By) = /]P’ (#°(%) € Bi 1 Ba) dnclo) = 1.

provided that for any compact set M’ € RP, f¢(M’) € By N By as..

Thus, it suffices to show that for any compact set M € R” | almost surely, f¢(M) is in the
set By from Proposition 4. The proof for By is identical.

We will show that Card(arg max,¢ p= () 71 (2)) = 1, where 7(1)(2) is the first coordinate of
z. First, since M is compact and f¢ is continuous, f¢(M) is compact, therefore the supremum
of 71 is reached at least at one point.

Lemma 11. The two following properties hold almost surely.

1. Let F}, F’ € P be two different simplices, then at least one of the two following points
holds:

® SUDge fe(M)Nrelint(F)) W(l)(x) # SUPge fe (M)Nrelint(F,) W(l)(fﬂ)
o 1) does not reach its mazimum on f¢(M) N relint(F}) or does not reach its maxi-
mum on f(M) N relint(F7).
2. Let F} € P¢, then the supremum of 7 on f¢(M) Nrelint(F}) is reached at at most one
point of relint(F7).

A consequence of this lemma is that almost surely, the maximizer of (1) on (M) is
unique, as all maximizers of 7(!) on (M) belong to the relative interior of one simplex of
P<, which shows that f(M) is almost surely in B;.

Proof of Lemma 11. The following functions will be of use in the proof. For any finite J C N
such that F, = {z; +¢;}ies € P, for any j € J and « € (0,1], let

Uq,j 1 € € R — sup {a(ﬂ(l)(xj) +e)+ Z apM (z), + £), where
keJ\{j}

z=ax;+ Z apxy € M, ay € (0,1] anda—kZak = 1}.
keJ\{7} k

In other words, u,, is the supremum of 7() on the slice of f¢(M) N relint(F’) that gives
weight o to the vertex (x; +¢;). To simplify the notations, let wy, : 2 — ay, be the “weight”
functions. It is straightforward to check that
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1. the function u,_ ;s is linear with slope a,
2. SUPge fe (M)Nrelint(FY) W(l)(x) = SUPq¢(0,1] ua,J(W(l)(Ej)),

3. the function h : 7 (g;) — SUD¢ f (AM)relint(F/) 7 (z) (all coordinates of all €, other
than 7 (e;) being fixed) is convex,

4. if the supremum of 7(!) on the closure of f¢(M) N relint(F}) is reached at some point
z € F, when 71 (g;) = e, then w;(z) is a sub-gradient of h at e,

5. since the number of points where the sub-gradient of a convex function on R is not unique
is at most countable, almost surely (whether all coordinates of all €5, other than w(l)(aj)
are fixed or not), h has a unique sub-gradient at 7} (¢;).

Let us now prove the first point of the lemma. Let F} = {x; +¢;}icr and F; = {z;+¢;}ics
be two different simplices of P¢, and let j € J\ I (by exchanging the two simplices, we may
assume without loss of generality that J is not a subset of I).

Consider the following, conditionally to (£,,)n.; and 72P)(g;). Assume that h(7(M(g;)) =
SUD,¢ f (AM)Nrelint(F)) 7 (z) (otherwise we are in the first case of the first point of the 1emma).
We may assume without loss of generality (by point 5 above) that the sub-gradient of h at
() (g;) is unique. Two cases are possible:

e the sub-gradient of h at 7V (g;) is 0. Then 71 does not reach its maximum on f&(M)N
relint(F), since if 2 is a maximizer of 7(*), then w;(z) = 0 by point 4,

e the sub-gradient of h at 7(!) (g5) is positive, so there exists a single point e such that
h(e) = SuP,e e (Mynrelint(F)) T r(1 )( ). Since 71 (g;) is uniform on [, 7] by construction,
we almost surely have (1) (¢j) # e, and thus this second case almost surely never happens.

For the second point of the lemma, by points 4 and 5, if the set of maximizers of 7(1) on

fe(M) Nrelint(F%) is a non-empty set Z, then for any j € J, almost surely, w; is constant

on Z. Since every point z € F'; is characterized by the vector (w;(2));es, this shows that Z
contains a single point, which concludes the proof. O

6.7 Proof of Proposition 6

For any v > 0 and h € L?([~v,v]P) (vesp. L°°([—v,v]P)), write ||hll2., (vesp. ||h]lco.) its L2
(resp. L) norm.

Let pg € [1,2). Let us start with some preliminary results.

From [9], Section 7.1, for all v > 0, there exists b > 0, n > 0, ¢py > 0 and ¢z > 0 such that,
writing €(u) = b/ loglog(1/u), the following properties hold for any p’ € [1, po].

e Forall ¢ € T, g and for all h € L?([—v,v]P) such that ¢ + h € T,y g and ||h]|2,, < n,

M(¢+ hiv|o) = cl|hll5 "), (11)

e For all n > 1, writing Zn(t,¢) VI (D (t) — d(t)P 1y (t1)P.2) (t2)), one has for all
¢ €Y,y sand h € L?([—v,v]P) such that ¢ + h € T g,

Zn'7 00, Vest € 2, Ves
M0~ MG1 o 6)~ (V1) M 65 v )]  eag L22Eo0 ot e,
(12)

e For all z € [1,n],

P(1Z0n (s x) oo e = c2v/T) <77 (13)
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Moreover, from Lemma H.3 of [20], there exists a constant ¢ > 0 such that for all p’ € [1, pg],
m = p'Dand ¢ € Ty g,

| — Tl oowiss < €7 (SViest)™m ™™/ +P

Let p’ € [1, po] and assume that m > 2p’ lolg‘;)lgogn,

then this equation becomes || — T @] co,veee =

O(n=2ton(1)) " where 0, (1) denotes a sequence tending to 0 when n tends to infinity. In
particular, there exists ng such that for all n > ny,

1
sup sup sup sup ||¢ — T2,y < — (14)
P’ €[1,p0] vE(O,Vest] mz2p/ lolg‘?lgog" ISR OIS n
and 1
sup sup sup |Mn(¢) — My (Tmo)| < cll¢ — Tm¢||oo,uest < - (15)
PEMpol m>2p Jogn $€T n

for some ¢ > 0 that depends only on vest, po and S, using that supgey, 19l oo, veee < +00.

Finally, following the proof of equation (25) of Section A.3 of [19], for any v’ > v, m > 1 and
¢ € CplX]

/

‘ N

2w < mPP2(A=)"TP2 g5, (16)

such that ®x € T, ¢ NH. By definition, for
any m > 1 and p’ € [p, po], Prm,p is such that @, , v € T g NH and

1]

Let us now prove the proposition. Let p € [1, pg

y— X

~ 1
( m.p') ¢eT1prflysm7-t (Tm¢) + n

1

< inf M, (T, —

st M Tnd) +

1
g Mn(TnL(I)X) + E
and thus, by (15),

A 3
sup sup MTL(q)’ﬂ,’"L,p/) < Mn((I)X) + E (17)

1
p'Elppo] mz2p ot

Therefore, by (12)7 fOI‘ any v S (Oa Vest]y Wfitiﬂg hm7p’ = (,fn,m,p’ - (bX7

M (o3 V1) < M (Rt Vest | 0 )
Zn(-,® v
< CM” n( ) X)”(X% st Hh
vn
Let us show that we may apply (11). Combining (17) with Lemma A.1 of [19] shows that for

any d > 0, there exist ¢, > 0 and ng (which do not depend on p) such that for all n > ng, with
probability at least 1 — 4e™ ",

L=€e(rm, o 12,10t )

3
m,p’ ||2,uest + ﬁ (18)

sup sup M(@n’m,px; Vest | Px) < 4.

p'E€lppo] m>2p g

In addition, since Y,, s NH is compact in L?([—Vest, Vest|P), & + M(¢; vest|Px) is continu-
ous on Lz([*ycstal/cst]D)a and M(¢v Vcst‘(I)X) =0 lmphes ¢ = ¢ for all (rb €HN TPO»S by
Theorem 1, there exists 6 > 0 such that

inf M(¢7 Vest|(pX) > 4.
PEY o, sNH st [[p=Px 2,005, =7
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Therefore, there exist ¢, > 0 and ny (which do not depend on p) such that for all n > ng, with
probability at least 1 — 4e= "™,

sup sup o |2, < 10, (19)
p'€lp;pol m>2p101;1gﬁ

which is what we need to apply (11).
Fix now v € (0,Vest), ¢(v) > 0 and E > 0 such that Q € QP)(v,¢(v), E). In particular,
¢, = ¢(v) > 0. Then, by (11) and (18),

1P prll2, hanpr

24+2€e([| Ry, o ll2,0) < 2 max CM”Zn(.’(PX)”OOﬂ/ost
= e(v)t Vn

;1 logn logn
loglogn’ ™~ loglogn

1- 6(Hhm p’“2 Vest) 3

] in the following series of inequalities

By (14) and (16), assuming m € [2p
(for some fixed C' > 2p’),

3
Ao 2,00 < 2max (|| Tinhm,pr [|2,000 5 ﬁ) by (14)
2 Vest m+L2 3
< 2max | [|Tinhm,pll2,m? (4 > )2 o by (16)
Im L 4%« L
< 4max <||hmp om® (42t ym+2 ()™t ) by (14)
v n
e(1/n) 1
<n max ( ||Am,pr 2,05 — (21)

up to increasing the constant b in the definition of u +— €(u), which can be done without loss of
generality. Together with (20) and (13), one gets for all z € [1, ¢,;n] (assuming ¢, < 1 without
loss of generality), with probability at least 1 —4e™“"™ — e~ > 1 — 5e~® (on the event where

1Z (-, @)oo, < 2/ and (19) holds) that for all o’ € [p, po] and m € [2p/ 28— C 80—,

/ I\ U o l2ves)
ol 1) < cmae (, [ Znet/m (llhm,p'||2,u v ) '
n n n

for some constant ¢ > 0 that does not depend on p, p’ or m. Since € is increasing, recalling
that ||, ||2,0,, < 77 on the event considered, by (21),

oy < fmelln o am ) a5 )t g < 07,
TP ISl ) () always,

< 2¢(1/n) if ||hm,p/||2,v < nizé(l/n)a
e(n) always,

< [e(n) or 2¢(1/n)]

for n large enough (depending on b), up to decreasing 7, where for compactness of notations,
[A or B] means min(A, B) if ||k, |2, < n72€1/™) and A otherwise in the following. Gath-
ering the two previous equations shows that either

T

1+3[5(77) or 2¢(1/n)]
| 12,0 < i—2e(i/m)

or
||hm o ||2+2 €(n) or 25(1/")]

n'
Therefore, assuming 3e(n) < 1 without loss of generality, ||hm |2, < n=¢1/n) ag soon as
x < n'10(/) /2 and thus, up to changing the constant ¢, for n large enough and for all
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z € [1,n'=10¢(/n) /2] with probability at least 1 — 4e=™ — e~*, for all p’ € [p,po] and

; logn logn
m e [2'0 Ioglogn’cvloglogn}7

1—6¢€(1/n)
2, < <L> :
||hm,p ||2,l/ ¢ nl—?e(l/n)
Finally, note that 4e=“"e ntTOem 0, so that the probability that the last equation holds
is larger than 1 — 2e™" for n large enough, which concludes the proof for the version with
<I>n7m,p The version for T,, <I>n m,p follows from this and (14).

6.8 Proof of Lemma 1
Let y € Mg NK. By property (III) of ¢ 4,

e hD/w(”y 1 actu

1 " (Ily uf

D
h lu—ylla<cah h

daG*(B(y,cah))

)dG (u)

WV

>hD
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6.9 Proof of Lemma 2
Recall the definition of g: for all y € RP,

30) = 55 [ valP ).

Let C; > 0 and € > 0. By Property (V) of ¢4 and (4), there exists T > 0 (depending on
A and C}) such that for any t > T, ¥4(t) < C1 exp(—FatA/A+D), Take y € RP such that
d(y, M¢g) > (ﬁ%)%hlog(%)%7 then for all v € Mg, w > (ﬁgllog(h—i))%, therefore
there exists hg > 0 depending only on e, D, A and T (thus C; such that A < hy implies
@ > T and thus

wA( Hy ; UH) <O eXp{_ﬁA( ||y ; UH )A/(A+1)}

1
< Crexp {~log(7-)}
= C1h°,
and finally g(y) < Cl(%)D ~¢ since G is a probability distribution. Lemma 2 follows by taking
e=D.
6.10 Proof of Lemma 3
For y € RP,

Bu0) = 90) = ()P [ € VFWA)E0) (T B s(8) — B (0t

Since Flpa](th) is 0 for ||t||2 > 1/h,

Gon) = 30) = <217T>D [T T, B n6) = () s e

W (T @t e — @x) L a1/ ()
= J"_l[fh/fA,h]] 5 F (T, @t e — P31 ooyl () (22)
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By Young’s convolution inequality,
[ = Glloo < IF T FWan 2l F ™ (T @r1fn — @x)L a1 /nlll2-
Finally, using Parseval’s equality and the fact that F~1[F[ta 4]] = tan,

[Gn.s = Glloo < 1Yanll21Tim, Pn1/n = Pxll2,1/m;

and use (5) to conclude the proof.

6.11 Proof of Theorem 4

Let ko € (1/2,1], v € (0,Vest], ¢(v) > 0, E > 0, S > 0 and C > 0. Let x € [Ko,1],
Qe 9P) (v, c(v), E) and G € Stx(a,d, o) N L(k, S, H).

Using inequalities analogous to (28)-(29) p.17 of [19], we get that for all K’ € [ko, ] and all
integer m,

||Tm(£n,1/n’ —&x

1 o -
3a/n SAU(R) +4mP (24 2—) 2P <2V(V) + 11w — <I>x||§,y>, (23)

where
U(h) — ch—D—2m—2/n’S2mm—2n'm+2D eXp(Qli/(S/h)l/K/)
and V(v) = C(Sy)zm+2/”/m72“/m+2D.

Thus, applying Lemma 3 and using h = chSm;,“'7 there exists C' > 0 such that on the event
where (23) holds:

’

FQ < C(chs)—QD—QnLN/ _Q/H,mi/[)(nl+1)+252m”/eXp(Q,KJ/C;l/K mﬁ/)

n,r X

K mz; m.,_.s m,.s ! —2k'm s =
+ Cmf/(“ )(2 + me o +D ((Su)2 w2/ mﬁ/z wF2D | @1/ — <I>X|§’V>. (24)

The first term of the upper bound is upper bounded as follows.

—2D— —2/k’ 2D(K'+1)+2 1
(ChS) 2D—2m, 1 —2/k m., (s"+1)+ SQmH /

" exp(2K'c), '{/mﬁz)

= §72D=2/%" oxp {(=2D — 2my — 2/K")1og(cp) + (2D(K' + 1) + 2)log(m,) + 2/4021/“/771,{/}
< Cexp {(—2log(cn) + 1)my + 2(D(k" + 1) + 1) log(mue) } (25)
< Cexp{(—2log(cn) + 3+ 2D(K + 1))m }, (26)

for another constant C' > 0, where inequality (25) holds because 2/{0,11/ " > 1 and inequality (26)
holds because log(m,) < m,. The second term of the upper bound is upper bounded by

’ K: A Y s
mp U (2 4 2 B2 D (G2t 2wy BRI - a2,
ChSV K ’ »
<C mKD,(lJrQH/)(Qm/mN/)Q“,mH’ (2,%/)_2“/’”"’ (ChSV)_ZmK’_D

x ((Su)zm“’“/“/m;% " 1 — @xll%)
< C(exp {(—2 log(cp) + (3D + 2/1’))m,4}

+ (2/{’m,€/)2"/m*’»’ exp {(—2log(ch) + D(1 +26"))me } HEI\)n,l/H/ — (I>X||§’l,>
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for another constant C' > 0. Putting all together, we get that for yet another constant C' > 0,
I? . < Cmax <exp {(—2log(ch) +3+2D(K" +1))m, }, exp {(—2 log(en) + (3D + 2/@’))m,§,}7
(2;§’mﬁ,)2"lmﬁ’ exp {(—2log(ch) +D(1+ 2/1'))m,i/}|<f>n’1/n/ — <I>X||%’V>.

Choosing ¢, > exp {2D + 2} and m, = 1 1olgofgogn for some « € (0,1), it follows that

2. <Ce ™ [1 V2B, — <1>X||§7V] . (27)

By Proposition 6, taking = logn and 4,” such that (1 —§)(1 — ¢"”) > 1/2, we obtain that
with probability at least 1 — 2/n, for all ¥’ < &, Fi,n’ < Ce ™ —= (. Note that we could
also take z = n'/2=%" for any 6" > 0 and still have F%,n/ < Ce ™« with probability at least

1 —2e™*, up to changing the constant C, by picking ¢ and 4" small enough in Proposition 6.
Now, by Lemma 1, for any h < (ro/ca) A1,

inf 0oy ot > inf q —T /
yeiuf G (y) = yeﬂlglcmg(y) Rk

1\ P
> chAa (h) — Iy

S chdaa 1 bd
-2 h
c’j’dAa

as soon as I'y v < 457, and this lower bound is strictly larger than A, , for any d. This

d —
implies that on the event where I';, v < CAgAa, MecN K C Mg NK. Next,

sup G (y) < sup 9(y) + T
ALl At
YeR d(y,Ma)2h[ £ log(+)] yeK.d(y,Ma)>h| £ log(+)] #
d d
Choosing C; = CAldﬁAa and applying Lemma 2 we get that, on the event where Iy, v < CAfIGAa,
sup 9(y) <20

At
yGIC,d(y,Mg)>h[%log(%)] A

for n large enough, and this upper bound is strictly less than A, .- for any d. This implies that

D N~
y:y €K, dly,Mg) >h|—1log| - NM, =@.
Ba h

We may now take h as in the statement of the Theorem. As a result, we have proved that:
for all kg € (1/2,1], S > 0,a > 0d < D, v € (0,Vest], ¢(v) > 0 and E > 0, there exists
¢’ > 0 and ng such that for all n > ng, for all k € [ko,1], G € Stx(a,d,r9) N L(K,S,H) and
Q € Q9D(v,¢(v), E), with (G x Q)®"-probability at least 1 — 2,

log(n)* N ,
sup ; H, M 7Mn’ g c. 08
K E€[Ko,K] log(log(n))n +% }C( G ) ( )

—

Using the fact that Hyx (Mg, M) is uniformly upper bounded, the theorem follows.
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6.12 Proof of Lemma 4

Case k # 1. This case is based on [26]. In the following, we will note constants that can
change with upper case A, B and C. In [26], Theorem 2, the author defines for any positive
constants p > 0, ¢ > 1 and a > 0 a function (g , 4, such that for z € R,

Copnal) = —i / 2 exp(=? — qaz?2)dz,
C

where C is a curve in the complex plane so that the maximum of |2# exp(z? — gaz?z)| for z € C
is attained on the positive real line. The author shows that ¢, , . and (jg%a are integrable
functions.

The author uses the saddle-point integration method to show that there exist A > 0 and
B > 0 which depend on ¢, ¢ and a such that

| FlCapal ()] < Aexp(—Baatt). (29)
Finally, for x € (1/2,1), fix p > 0, a > 0, and define

fﬁ = CfnRe[C2n£1,y,a]2 * Uy,

where u; : ¢ € R+ exp(—1—5=2)1|(~1/2,1/2)(z) and ¢y, is a constant that ensures that f, is a
density.

Let us first prove that there exist A > 0 and B > 0 positive constants such that | F[Re[(y,,q]%] (£)] <
Aexp(—BJt|'/*).

[ F[Re[C PIO] = [FRel¢ 1 ol * FIRe[C 1, W]I(1)]

<A / exp(—Blz — y|/* — Bly[Y*)dy
R

1
1@

- / exp(~Blz — y[V/* — Bly|V")dy
ly—z|>|z|/2

+ / exp(~Blz — y[V* — Bly|Y*)dy
ly—z|<|z|/2
< Aexp(—Blz|"/*%). (30)

Finally, for all ¢ € R, using that |Flu](¢)] < [Jull1.1,

IFIAI®)] = [FRe[C_v, JH@)] [Flua] 2)]
< Aexp(—Blz|7).

For z € R, Flfx(2z)] = Flz — zf.(x)] and

zfe(z) =cp,v*Re[(_2 Vﬂya]z(x)Jrcfmul*f(ac),

2k—1

where v : 2 € R — zuy(z) and € : £ € R — zRe[(_1 12(z).

2r—1 M a

Following the same proof as Theorem 2 of [26], there exists A > 0 and B > 0 such that for
all t € R, [Flz = aRel(_1_, J(t)]| < Aexp(—Bl|t|'/*), so that, following the proof of (30),
|FIC)|(t) < Aexp(—Blt|'/*). Hence, there exists A > 0 and B > 0 such that |F[f.]'(t)| <
Aexp(—BJt|'/*).

Finally, note that f, is continuous as a convolution of an integrable function with a smooth
function, and that for all x € R, f.(z) > 0 since Re[¢ and u are not the null function
almost everywhere.

L ial
2r—1 M0
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Case v = 1. Let § € (0,1) and define f; : © € R = cp (v *u_ )(x), where ¢y, is a

5
constant that ensures that f; is a probability density.

There exist A > 0 and B > 0 such that F[f;](z) < Aexp(—B|z|°), see Lemma in [30].
Moreover, F[f1]'(z) = QCflf[u%](x)}"[utla}’(x) < Az — xu%(x)ﬂl exp(—B|z|%).

1 1—

Finally, note that f; is continuous and does not vanish on its support.

6.13 Proof of Lemma 5

First, by Lemma 4, for any x € (1/2,1], U(k) satisfies A(1/k).
Let i € {0,1}. For any A = (\1,...,Ap) € RP,

Elexp(ATX;(r))] =E [exp <(OM1 + %Az) Uls) + (*WMZ% o (Uiﬁ))ﬂ

kil [exp ((a)\l + %)\2) U(m))} . (31)

Since U (k) satisfies A(1/k), there exist positive constants A > 0 and B > 0 such that for all
A= (A1,...,Ap) € RD, Elexp(ATX;(x))] < Aexp(B|A|=). Applying this in (31),

)

for some other constants A" and B’ since 1 < &, so that X;(k) satisfies A(1/k).

Elexp(AT Xi(k))] < Aexp (7(;|)\2| +B ‘ (a)\l + %)\2)

< A exp(B'[A[¥)

6.14 Proof of Lemma 6
The proof is done in five steps.
1. We show that vg, is 1-lipschitz.

2. For i € {0,1} and k € (%, 1], we compute the density p; of T;(k) with respect to the

1-dimensional Hausdorff measure gy and we show that for any compact set IC, there
exists b(k, ) > 0 such that, for all u € M;(y) N K, |pi(u)| = b(k, K).

3. We show that for ¢ € {0,1}, pg (- N M;(7)) is in Stx(2,d,r0).
4. We deduce that for i € {0,1} and d > 1, T; is in Stxc(2b(k, K),d, o).
5. Finally, we show that for ¢ € {0,1}, d > 1 and a small enough, G;(k) € Sti(a,d, o).

Proof of 1 For all z € R, |77, (z)| = [sin(£)| < 1, which implies that g, is 1-Lipschitz.

Proof of 2 Let us first compute the density p; of T;(x) with respect to pg. For i € {0,1},
denote (; : @ € R — (z,(—1)’vg,(z)). Let B be an open subset of R”. For any « € (3,1],

T)(8) = PIG(U ) € B = U ) € 8] = | Ly e

Let J¢ : v € R+ /14 +2g,(u)? be the Jacobian of (;. By the Area Formula (see equation
(2.47) in [4]),

Sk = f’i(u) S(u)du = M u
(5] = /gi—l(s) JGi(u) Teilu)du = /Bﬂ]wi(y) JCi(W(l)(u))d’uH( )

We then have that for all z € RP,

fe(m ()
pi(x) = W”Mi(w)(x)'
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Since f, is continuous and does not vanish on its support, for any compact set IC, M;(~v) N K
is a compact subset of the support of f,. Thus, since f, is continuous and does not vanish on
its support, for any compact set K, there exists ¢(x, ) > 0 such that for all u € M;(y) N K,
fr(w) > c(k,K). Moreover, for i € {0,1}, J¢i(u) < v/2. Therefore, for all x € M;(y) N K,

) c(k,K)
pilo)] > 5.

Proof of 3 Recall that the 1-dimensional Hausdorff measure pyr is defined as the limit
lim,)_,o g1, where for any set Z

= inf {ZDiam(Ai) X C UAi and Vi, Diam(A;) < 77} .

ieN
For any z € M;(vy), there exists zp € R such that z = (zo, (—1)"vg,(z0)) and, for any r > 0,

B(z,r) N Mi(v) 2 {(z, (=1)"794(2)), = € B(wo,r)}

since |z — xo| < r implies [[ygy(z) = vgy(20)|[oo < 7.
Let (A;)ien be a covering of {(z, (—1)* 'ygy(x)),x € B(wo,7)}, and B; = 7(M(A;), then B;
is a covering of B(zg,r). For all n > 0,

1 ({(z, (=1)'vg,(2)), 2 € Blwo,)}) > py(Blzo, 7)),
thus pp (B(z,7) N M;(7)) = pu(B(zo,r)) = 2r. If ro < 1, then for any r < ro,
pa(B(z,m) N M;(7)) = 20,

which proves 3.

Proof of 4 Let z; € M;(y) N K and 19 < 1. Then for all r < ro,

Ti(B(wi, )N Mi(7)) =/B( _— )pi(u)dﬂH(u) > b(k, ) (B(wi, 1) N My (7)) = 2b(k, K)r

Proof of 5 For i € {0,1}, let x; € A, M;(v) NK, 19 < 1, and take K such that ATIK C K.
For all r < rg,

Gi(K)(B(xi, 7)) = P[AaSi(k) € B(xi, )] = P {Si(":) €B (Aal% A:”pﬂ

2b(k, AZ1K)
2 - &« 7
[ Aallop
2b(k, K)
" afAllep

so that for some ag depending on a and all a < ag, G;(rk)(B(z4,7)) > ar?.

6.15 Proof of Lemma 8

Let (¢n)n be a sequence in H*(k,S, (cA,A(Al),B(Al),A(Az),B(Az))A>0) and ¢* € Lo([-v,v]P)
such that ||¢, — ¢*|2,, — 0. For each n, there exists a random variable X,, such that ¢ =
®x . Without loss of generality, we can assume that ¢, converges almost everywhere to
¢* on [—v,v]P. Since Y, s is closed in La([-v,v]P), ¢* € T, 5. Let us show that ¢* is
the characteristic function of some random variable X*. Let N > 1, (tx)i<ksn C R¢ and
()\k)lgng C (CD, then

N

N
Z *(tk — t) Mehy = hm Z Gn(te — 1) Ay = 0.

k=1 * i=1
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Since ¢* is continuous and ¢*(0) = 1, according to Bochner’s Theorem, there exists X*
such that ¢* = ®x«. Applying the Identity Theorem component-wise shows that for every
t € RP, ¢,(t) — ®x-(t), so that X,, converges in distribution to X*. Now, we have to show
that ®x. € H*(k, S, M, (ca, ALY, B, AR B as0).

Convergence in distribution of random vectors implies convergence in distribution of each
coordinate, thus all the coordinates of X*(2) are null except the first one. Moreover, by
Theorem 1 of [29], X* satisfies (v). Let us prove that X™* satisfies (iii) using the Portmanteau
Theorem. Since A(Al) is closed,

P[(X*)D € AD] > limsupP[x() € AV > ca,

and

Px* € AV x B®
PI(X*)® e BO|(x)D e AV = [ A X% & ]
Pl(X*)1) € AQ]
< limsupP[X,, € A(Al) X Bg)}
lim P[(X,,)® € AV
P[X, € AV x BY)

> limsup =1

P[(X,)®) € AY]

since P[(X*)V) 8A(Al)] =0

Let us prove that ®x» satisfies (iv). Since A(AZ) is closed,
P[(X*)® € AQ] > limsupP[X? € AQ] > ca.
Moreover,

P[x* € BY) x A?®)]
P[(X*)) € A@)]
S limsupP[X,, € By O 5 A(z)]
lim P[(X,)® € A
P[X, € BY x AQ)]
P(X,)® € AY)

P € BYIX)® € AT =

since P[(X,)® € 0A%] =0

> limsup

Therefore, ®x« € H*(x, S, M, (cA,jél(Al),B(Al),A(Az)7 (2 ))A>0).

6.16 Proof of Lemma 9

Let us write m; ,(z) = (z 4+ (=1)"v% cos(35),0,...,0), so that X;(r) = (aU(k), mi(aU(k)).
For i € {0,1}, let w; ,  be the density of the first coordinate of m; (aU(x)), then

1 x
M, = sup {Wiky(®)V = fu(=)}
€R,v€[0,1],i€{0,1} a" o

is an upper bound of the density of X;(x)") and of the first coordinate of X; (k) with respect
to the Lebesgue measure. Let us show that M, is finite. First, note that m;, is one-to-one
from R to R x {0}P~2 and m;,} is Lipschitz with Lipschitz constant upper bounded by 1/2.
One can easily check that for all z € R,

(mm)l(:v,O,... 1

,0)
Q ) (mm)’l(mﬁ (z,0,...,0))

where (m;)1(z) is the first coordinate of m; (x). Since (m; )} is lower bounded by 1/2,
M,, < sup,cp = f(%), which is finite.

wi,m,'y(x) = éfm (
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For any A > 0, define the sets:

AV Z[-A,A] and B(A2):B(O,(%+2)A>H(RX{O}D’2),

AQ = [-A A} x {0}°2 and B = B(0,A)NR.
Define ca 5o = PlaU(k) € A(Al)} ANinfep0.1),ie 0,13 Plmiq (U (k) € Af)], and let us prove that

CA ko0 > 0.

First, PlaU(k) € A(Al)] > 0 since the density of aU (k) is positive everywhere on its support.
Then, for i € {0,1},

Plm; - (aU(k)) € AD] =P (ol (x gvcos (Ui"‘)) € [—A,A])

>P(aU(k) € [-A/2,A/2], cos <U§“)) € [A/ya,A/ya])

A A A
Uk { %0’ 90 ] N [arccos (a) T — aI‘CCOb(a):l) ,
which is positive.

It is clear that the sets satisfy (i) and (ii). It remains to prove that X;(x) satisfies (iii) and
(iv).
For any A > 0 define B(A)z L= i(Ag)). Then

>P

(o0

>P <aU [—A/2,A/2], (—1) %'ycos (U(j)> € [—A/Q,A/2])
(e
(00

. 1
Dlam(B(A?L,Y) = sup |z-—y]
z,yGIB(A1>Z Y
= sup |m; j(x) —m, (y)l

x,yeA(z)

1
5 sup flz—y[<A
:p,yeAf

N

Thus, BY) ¢ BY, and

P[(Xi(x) V) € BU(Xi(1)® € AR > P[(X(r)) D € BY),|(Xi(r))? € AQ)] = 1

Similarly, define B(Az,)m (A(l)) {(z+ (-1)ivg cos(55):0,...,0) , @ € [-A, Al}, then
e x e y
_1)in 2 L) (21D i
x+ ( )72cos(a7) y—( )72cos<a7)‘
< 2A + 72 cos (m) — cos (y)‘
2 ay ay
e
< (= .
<(5+2)a

Thus, BY), < BY), and

i,y

Diam(Bfﬁ)m) = sup
a:,yeA(Al>

P[(Xi(#)® € B (Xi(k)V € AV] > P[(X(r))? € BY,_|(Xi(r)) D € AJ] =1

6.17 Proof of Theorem 5

In the following, we will write A, B, C' (with upper case letters) positive constants that can
change from line to line. As in [19] and [21], we use the upper bound:

1(Go(k) * Q)*™ — (G1(k) * Q)¥"|lrv <1 — (1 —[[(Go(k) * Q) — (G1(k) * Q)l7v)"
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where || - — - |7y denotes the total variation distance. Using Le Cam’s two-points method,
the minimax rate will be lower bounded by H(AaMo(7y), AaMi(7)), that is 7, (see Lemma 7)
provided that there exists a constant C' > 0 such that [|(Go(k) * Q)®" — (G1(k) * Q)®"||rv <
C < 1, so that we only need to find C' > 0 such that

s1Q

[, MG + Q@) = d(Ga () + Q)

N

Since @ has a density g over R”, Go(x) * Q and G1 (k) * Q also have a density over RP. We
first prove that for ¢ € {0, 1},

/fo d(Gilr) * Q) (z)| dx < +o0. (32)
. dx
j=1
Indeed,

D 2 D

2 | d(Gi(r) * Q) d(Gi(k) * Q) >

j=1 o0 J=1

First, HﬂH < [lgll2 < oo. Moreover, for k € {1,..., D}, writing X;(x)* and el* for

the k-th coordinate of X;(x) and ¢,

/ f[ 22 1d(Ci(x) * Q

r)EL 4 elfDy2)

H',:]b

= E[(Xi(x)M) + M2 (X;(r)2) 4 €2 H E[(c!*)? (33)

We have that (X; (k)2 +el2)2 < a?(X;(k)1)2 + 29X, (k) 42X, (k) el + (1 +7) (e21)2 442,
using (33) and the fact that 6[2] is independent of all other variables and that, for k € {1,2},
X[ Vis independent of £[¥], we finally get that Ik H] L 23 1d(Gi(k) * Q)(x)] is upper bounded by

product and sum of expectation of ((l/])2 )ieq1,....p}, (Xi(k )2, (X (k)1)3 and (X, (k)M
which are all finite thanks to Lemma 4.
By the Cauchy-Schwarz inequality,

/RD |[d(Go(r) * Q)(2) — d(G1(k) * Q) ()]

< P72 (/f[

By Parseval’s identity, for all n € {0,1}?,

D
[ =
J
RP 55

A(Gol) = Gr(x) Q)
dx

, 1/2
da:) . (34)

2

do= [ (H a"7> (w)] - FIGH (W) (D FIQI(1)| dt

A(Golw) = Cr(k) <)
dx

2

D
- /[ " (_H@fj) (F[Go(#)] = FIG1(=)]) () FQI(H)] dt,

since F[Q] and for n € {0,1}7, 9" F[Q)] are supported on [—c, c]”. Moreover, they are bounded
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functions, so that there exists a constant C' (depending only on d) such that

D 2
/ |[d(Go(k) * Q)(z) — d(G1(k) * <C ) / (Hafj) (k)] = FlG1(w)])(#)| dt
RP nefo,1yp /=ed? L\ =
2
Z / ( 6”;‘) (t — F[So] — FIS1)(A )| dt.
n€{0,1}D c,c]P —

Using the change of variable u = Al ¢, and noticing that {A[t; ¢t € [—¢, P} C [~ (1+a)c, (1+
a)c]P, there exists a constant C' > 0 depending on d and a such that
(H 37“) F[S1])(u)

Forallt = (t1,...,tp) € RP, fori € {0,1}, F[Ti|(t) = F[T;](t1,t2), where T; is the distribution
of the 2 first coordinates of S;(x) under T;. There exists a constant C' > 0 such that

2

|, 1(Go() < Q@) = d(Ga) + (o) < © .

-/[(1+f¥)07(1+0¢)C]D

ne{0,1}P

/RD |[d(Go(r) * Q)(x) — d(G1(r) * Q) ()]

2
<c ¥ / H op FIRD@®)| . (35)
nefo,1)2 [—(1+4a)c,(1+a)c]?
Following the same approach as [21], we get that for all t = (t1,t2) € R?,
(f[TO] /{eztlquwtzg.y o ztlufi'ytzg.y(u)}fn(u)du
=21 [ " sin(tany (1) ()i
1)k g2k tly2h+1
itiu ~2k+1
~2i [« z BT (u) ()
Since > p” [p lt2] (2;:1%“ |g2F+ 1 ()| fr (u)du is finite, we can switch integral and sum thanks
to Fubini Theorem, so that
- 2 (—D)kegE Ty / g2kl
FlTo] — F|T1))(t) = 2i thvg o
(FITo] - FIT )0 Z:j B L (u) ()
i l)kt2k+1 2k+1
mk(tl)a
= (2k +1)!
with for all u € R,
mi(w) = FIG*F £ (u) = (Flg) * Flg) * . Flg] «FIf.)) (w). (36)
2k+1 times
Since . )
Flx — cos(%)] = 55,% + 55%,
for all uw € R,

(Flg) = Flg] * ... * Flg))(u) = J-"[cos(;)] %Lk ]-'[cos(;)]

2k+1 times

2k+1 times
B (1>2k‘+12k‘z~‘r1 <2k+1>5
9 s ] a;»s

J
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where a; = (2§ — 2k — 1) /7. By (36),

() = (;) S (2’“; 1>f[fn](u ~ay).

j=0
Therefore,
2 — 2%k — 1
sup [me(] < sup  |FA (t - ) \
lt|<e [t]<e,0<5<2k+1 v
and 27 —2k —1
swp ()| < s |FU (t - ’) ] |
ltl<c Jt|<e,0<5<2k+1 v

Assume first that « € (1/2,1). For v that satisfies v <
constants A, B independent of 7 and k such that

26, by Lemma 4, there exist two

FIf] (t - M’H)‘ < Aexp(—By~?)

sup
[t|<e,0<i<2k+1 v
and o
AN (t B j__> ‘ < Aexp(=By7%).
[t|<c,0<5<2k+1 y
Thus, 1
|S]\Jp |mg(t)| < Aexp(—By~#), (37)
t|<e
and 1
sup |my,(t)| < Aexp(—By~ =). (38)
ltl<c

For all n € {0,1}2, and t € [—c, ],

o | (g7 ; o [ o (DG
jl;[lat; (]:[To]—]-"[Tl])(t):gé‘t; 21223 @k T D) mi(t1)
thk 2k+1 o) kt2k+1 2k+1
—227722 0 my(t1) + 2i(1 — 1) Z 2k+1’y O my(t1),
k=0
so that

2
L | (FIT] - FIT)@®)
j=1
t 2k A2k+1 t 2k+1 2k+1
Z | 2' O (1) |+22||2k+1)8;711mk(t1)|.

By (37) and (38), there exists a constant C' > 0 which depends only on d and A such that

H 0, — FIS1])(t) < Cexp(—By™) ‘Slllp (v cosh([ta2|v) + Sinh(ltﬂ)> :
to g(}
For v small enough, there exists a constant C; > 0 which depends only on d, A > 0 and C > 0

such that
2

17 | (FITo] - FIT)(1)| < Cexp(~By+).

j=1
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Finally, using (35), there exist constants C' > 0 and B > 0 which depend only on d such that
/D |d(Go(k) * Q)(x) — d(Gh (k) * Q)(w)| < Cexp(—By™¥).
R

Taking v = ¢,(logn) ™" with ¢y < Bf shows that there exists C' > 0 such that

|, 1(Galt) = @) = d(Gr () + Qo) <

n

Let us now consider the case xk = 1. For v that satisfies v < 2%, by Lemma 4, for all
0 € (0,1), there exist two constants A > 0, B > 0 independent of v and k such that

25 —2k—1
sup Ffi] (t - J)‘ < Aexp(—By™0),
[t|<e,0€5<2k4+1 Y
and ) o
| — —1
sup FlH] (t - ‘7)‘ < Aexp(—By™0).
[t|<e,0<5<2k+1 aé

Thus, there exists constants A > 0 and B > 0 independent of v and k such that

sup Imu,(t)] < Aexp(—By~?), (39)
t|<ce
and
sup Imj,(t)] < Aexp(—By~?). (40)
t|<c

Doing the same computation as in the case x € (1/2,1) shows that for all n € {0,1}? and
t€[—ed,

2

[Io" ) (Flho] - FI @)

j=1
e e 0 |ty |2 142k H1

<2 g latma()] 423 P ok me()l
k=0 ' k=0 :

By (39) and (40), there exist constants C' > 0 and B > 0 which depend only on d such that

2
[To7 | (FITo] = FIT))(#) < Cexp(=By~°) sup (7 cosh([t2]v) + Sinh(|t2|7)>~

j=1 [t2|<c

For « small enough, there exists a constant C' > 0 which depends only on d such that
2

[1o7 ) (FITo) = FIT)(1)| < Cexp(=Br™).

j=1
Finally, using (35), there exists a constant C' > 0 which depends only on d such that

/D |d(Go (k) * Q)(x) — d(G1(r) * Q)(2)| < Cexp(—=By~").
R

Taking v = ¢, (log n)*% with ¢y < B 5+7 shows that there exists C' > 0 such that

|, H(Gal) = @) (G ) < Q)(o)] < -

n
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6.18 Proof of Theorem 6

Fix ko € (1/2,1], 8 >0,a>0d < D, v € (0, Vest], ¢(v) > 0 E > 0. Using the end of the proof
of Theorem 4, there exists ng and ¢ such that for all k € [k, 1], all G € Stx(a,d) N L(k, S, H)
and all Q € QW (v, c(v), E), with (G * Q)®"-probability at least 1 — 2, (28) holds. Let us now
choose ¢, = ¢’ and consider the event where (28) holds. By the triangular inequality, for any
K € [ko, 1],

—

Hix(Mag,Mz,) < He(Mg, -K/l\n) + HKZ(M\/*W M\E,,)

<
< oK) + Hic (M, Mz,).

Now, using the definition of B, (), if k < K, then

—_

Hi (M, Mz,) < Bp(Rn) + on(k)

n

while if k¥ > K,,, then

—~

H’C(MI{; M\k\n) < Bn("{) + Un(k\n)

so that in all cases,

P U

H]C(MImM/F; )

n

< Bu(Bn) + on(k) + Bu(k) + on(kn)
< 2Bp(k) + 20, (k)

using the definition of %,,, and therefore
Hic(Mg, M) < 2By (k) + 300 (k).

By the triangular inequality and the definition of B,,(-),

Bu(r) <0V sup { He(Mi, Ma) + He(Ma, M) — o () }

K/ €[ko,K]
< H;C(./(/l\m./\/lc) +0V sup {H;C(./\/lg,./(/l\,if) — an(/@')}
K’ €[ko,K]
< op(K).

Thus, for all k € [Ko,1], all G € Stx(a,d) N L(x,S,H) and all Q € Q¥ (v,c(v), E), with
(G * Q)®"-probability at least 1 — 2,

o~

Hx (Mg, Mz,) < 5on(k),

—~

and using the fact that Hx (Mg, Mz) < sup, ,/cxc d(z,2') on the event of probability at most
2/n where this doesn’t hold, Theorem 6 follows.

6.19 Proof of Theorem 7

We shall need two technical lemmas. The following one is easily proved following the arguments
at the end of the proof of Theorem 4.

Lemma 12. Let G be a probability measure with compact support Mg. Assume G € St (a,d,ro)
for some constants a >0, d > 0 and ro > 0. Recall that T, :==T'y 1 = ||§n — §lloc- Then

(1) For any Cy > 0 and ¢ > 0, there exists hg > 0 such that if hy, < hg, on the event where

1
Ci1+T, <\, < aCflL‘dA(hf)D_d —I,,

n

it holds .
Mg CcMcC (Mg)e.
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(2) For m,,, hy, A\, chosen as in Theorem 4, for all Cy € (0,acda) and §' > 0, there eists
C > 0 and ng = 0 such that for all n > ng, with probability at least 1 — 2exp(—n1/2_5/),

1
Fi < Ce™™Mn and Ci1+T,< A\ < acijqu(hf)D_d -T,.

n

and in particular, for all ¢ > 0 and §' > 0, there exists ny > 0 such that for all n = ng,
with, probability at least 1 — 2 exp(—n'/279"),

Mg C M C (Mg)e.
In particular, since R, — +00 and Mg is compact, up to increasing ng, on this event,

Me € M B(0,R,) C (Mg)e.

In the rest of the proof of the Theorem, we lighten the notation MnB (0, Ry,) into M
(equivalently, we redefine the estimator M as the intersection of the estimator of Section 3.2
with the closed euclidean ball of radius R,,).

Lemma 13. Let G be a probability measure with compact support M¢g. Assume G € St (a,d,ro)
for some constants a > 0, d > 0 and rg > 0. Then for any o > 0 and ¢ > 0, there exists
C(a,c) > 0 such that, on the event where

MG C M\ C (MG)C7

it holds

1911, o 70y, < Cla, )y and /RD\(A | z]|?|g(x)|dz < C(a, c)hS.

c

Proof. By definition,

) | ly — 2
T F—— / / b ( dydG(z).
Ly (RP\(M).) hr[L) veMe JyerP\ (M), hy,

By (4), for any A > 0, there exists C' > 0 such that for any x € Mg and y € RP \ (/\//Y)C,

ly — |2 |y — ||/ A+ d(y, M)A/ (A1)
Ya (hn < Cexp —BAW <Cexp|—pa L ATATT) .

Since Mg C M, for all y € RP \ (M\)C, d(y, Mg) > ¢, so for any o > 0, there exists a constant
C > 0 such that

d(y MG)A/(A+1)) B hP+a
Cexp | — ! < C- n ]
(- ) < i

Moreover, since Mg is compact, Diam(M) is finite, so that on the event where Mg C M,

1 1
———dy < / —————dy < 00.
/RD\W)C d(y, Mg)P+e RP\(M). d(y, Ma)PHe

D+«
</RD (CV(||Z/|D§&H1(MG)/2)> Ty

Therefore, for all ¢ > 0 and « > 0, there exists C' depending on A, D, ¢, a and Diam(M)
such that

19112, o (7)) < Chin-

The proof that the same holds for fRD\(ﬂ) |z||?g(z)dx is similar. O

c
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Let G € St (a,d, o) be such that if X ~ G, then &x € HNYT; . We use a bias-variance
decomposition of W5(G, P, ,) as

~

WQ(Gvﬁnm) < W2(G>PIZJA,h) + W2(P1/JA,h7Pnﬂ7)-
The proof is done is several steps :

(1) We first show that there exists C' > 0 depending only on A and D such that the bias
satisfies
Wa(G, Py, ) < Chy,.

(2) We prove that for any « > 1, on the event where

Mg C M C (Mg).,
there exists C’ > 0 such that

Wo(Py, o s Poy) < C'(hS +T,).
(3) We show that the choice of the parameters m,,, h, and A, gives the result.

Proof of (1) Let Y, be a random variable with density 14 5, and independent of X, so that
the distribution of X + Y, is Py, , . Then, by definition of Ws,

W3(G, Py, ) SE(IX +Yy = X[3) = E(|Yy3) = b, /RD [l 94,1 (u)du.

Proof of (2) If v and u are probability measures on R” having respective densities f and g
with respect to the Lebesgue measure, Lemma 1 in [8] ensures that

W3 (v, 1) < 2 min /RD lz = al? f(z) — g(x)]dz. (41)

a€R

This entails

WPy Prn) <2 iy [ o =alla(o) = e, @)1 g7, (o)l d

<2 lelPlo) —eathsre [ el @

In (M)

For S compact subset of RP, write Mg = sup,cg ||z[*> and Vol(S) for the Lebesgue measure
of S. Then

Ja

|cn — 1]

n

lel?19(x) — cadi (2)lde < Mg, /( o [5E@) — gldr 20 g,

n

" len — 1
< M(/\//T)"VOI((M)U)Fn + QM(/T/I\) .

n Cn,

We also have

cn, — 1 1 _ g
M == - 1‘ = /A @t (y) —g(y))dy —/ _ g(y)dy
Cn Cn (M), RP\ (M),
< lgn — §||L1((/\7)n) + ||§||L1(RD\(/‘7)n)'

Using Holder’s inequality,

—

H/g\n - gHLl((/\’/Y)n) < V01(<M)77)Fn~
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By Lemma 13, for any « > 0, there exist C' such that

/( P13(0) — i (@)lde < 40 gy VOI(M), T+ 2M gy CHE. (43

n

For any ¢ > 0, when M C (Mg)e, one has (-M\)n C (M@)nte- This inclusion entails M

Mme),,,. and Vol((M),) < Vol((Mg)y+c). Therefore, for any ¢ > 0,

(R S

/(ﬁ) lz1%|5(2) — engiy (2)lde < AM (a1, VOU(ME)nte)Tn + 2M(atg),, Chy (44)

n

Again by Lemma 13, on the event where Mg C M C (Ma)n,
[, el < c'n. (45
RP\(M)n

Finally, using (42), (44) and (45), for any « > 1, there exists C' > 0 such that

W22(P¢A,h," ) Pn,n) < C(hg + Fn)

Proof of (3) Using (1) and (2), for sequences h,,, m,, and X, satisfying the assumptions of
Theorem 7, on the event where Mg C M C (Mg),, for any a > 2, there exists C' > 0 such
that

Wa(G, Pyy) < Chy + /RS +T,) <2C(hy, + VIh).
We may assume h,, < 1 for all n without loss of generality. As stated in Lemma 12, for any §’ >
0, there exist C’ and ng such that for all n > ng, with probability at least 1 — 2 exp(—n1/2’5 ),
VT, < C'e™™n/* and Mg C M C (Mg),, and therefore

Wa(G, Py ) < Cmt

on this event, up to changing the constant C'.

On the event of probability at most 2exp(—n'/279") where this doesn’t hold, since the
support of Py« is a subset of B(0, Ry,), Wa(G, Pp.y+) < 2R,

Therefore, taking ¢’ < & where § is as defined in the statement of the Theorem, there exists
C > 0 such that for n > ny,

E(Gagyon [Wa(G, B ype)] < Oy,

which concludes the proof.

6.20 Proof of Theorem 8
Let P, be an estimator of G. According to [31],
sup Ecsen [Wp(G, P)] >

GeStx(a,d,ro)NL(1,S,H)
QeQP) (v,c(v),E)

Wp(Go(k), G1 (%)) (1= Go(#)*Q)—=Gr(k)*Q]l1)"-

N

‘We have shown in Theorem 5 that there exists a constant C > 0 such that

[Gok) * @ ~ Ga(r) » Qllrv <

taking « of the form clog(n)~'=% for any 6 > 0 and ¢ small enough, which implies that the

minimax risk is lower bounded by W,(Go(k), G1(k)). We show that there exists a constant
¢ > 0 and ng > 0 such that for n > ng

W,(Go(r), 1 (k) > c.
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Let U, be the set of u € R such that [cos(%)[ > 1/2, that is Uy, = Uz kmy — T kry + 3.
For each k € Z, let Iy, := [kny — 5, kmy + 7). Let us also define, for any two sets A and B
of R%, d(A, B) = infycayen ||z — y2. We first show that

3

AMo(7) 1 Uy X BE), Mi() 2 (75 A )

Let z € My(y) N (U, x RP~1) and y € M; (7). There exists k € Z such that € My(y) N (U, N
I ) x RP=H) If y € Ij, , x RP~1 (that is, if the first coordinate of z and y are in the same
interval I -), then

lz = yll2 = d(Mo(y) N ((Uy N i) x RPTH, Mi(7) 0 (T x RPT).

All points of Mo(7) are of the form (au,oau + 5ycos(%),0,. .. 0)" and the distance between
(qu, au+ Gy cos(%), 0,...,0)T and the diagonal defined by D,, := {(au, au,0,...,0)T : u € R}
is 4%/5'” cos(%)|. Since the sets Mo(y) N (Uy N I 5) X RP-1) and M;(y) N (I x RP71) are
on opposite sides of the diagonal D,

d(Mo(v) N0 ((Uy N Ik y) X RPTH, My(7) 0 (T x RPTY) > d(Mo () N (U N Iyy) x RPTY), Da)

74\/5%

so that ||z —ylls = 7757 If now y ¢ I, X RP-1L,

d(Mo(7) N (Uy N Iiy) x RPTH, Mi(9) 0 (RN Tiy) X RPTY) > d(Uy N Loy R\ Tk )

-
6 )
so that ||z —yl2 > %, and thus d(Mo(y) N (U, x RP~1), Mi(v)) = ')/(4"‘—\/§ Ng)-
Now, let us show that W,(Go(1),G1(1)) > 7(8%/5 A {5). Let m be a transport plan between

Go(l) and G1(1), then

/ o~ ylBdn(z.) > ) I — ylZdr(z,v)
Mo (v) x M1 () Mo (7)N(Uy xRP=1) x M; (v)
> d(Mo(7) 1 Uy x RP™), My ()P w(Mo(3) 1 0y x BP=) x My (7))
A(Mo(3) 1 0y x BP=1), My (7)) Go(1)(Mo(y) 1 1y x BP1))
A(Mo(3) 1 Uy x BP=), My (7)) BU(L) € 4

since G1(1) has support M1 () and by definition of Go(1). Therefore, by taking the infimum
on all transport plans between Go(1) and G4 (1),

X AT
42 6

U(1) admit a density f; with respect to Lebesgue measure that is supported on [—1,1] and

W,(Go(1), G1(1)) > A JEIU(1) € U,)'77.
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continuous. Let us write w one of its modulus of continuity. We have

PO )= [ Aol (@)ds

[7111]

= / fi(x)dx
[kmy— % 7k-rr'y+7r—3”']

2
( / filkry)de + Zlw(my/ 3))
[kmy— % kmy+ 1] 3

2 3 or
> o3l htkmndet 2T u(my3)
kel=1/(rp) 1/ () © ¢ oy =Ty 5] 7

2 3 (2w
3 / % z Hil@)de + T (37“(777/3) + W’Yw(wv/?))
ke[—1/(mv),1/(7v)] [kﬂ"y—i,kﬂ'y-i,-%] v

i/{l’” fi(z)de +3 <§w(m/3) + w(M/Q))

ke[=1/(77),1/(77)]

N

ke[=1/(rv),1/(mv)]

N

N

N

2
2 dz =
v—0 3 /[_1,1] fl(x) .

Therefore, there exists ng such that for all n > ng, W,(Go(1),G1(1)) = v(2% A 55).

Wl N
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