EASY QUANTUM ACTIONS ?

Amaury Freslon, Frank TAipe \& Simeng Wang

Département de Mathématiques d'Orsay

September 12, 2022

Introducing the main character

Introducing the main character

- $C(\mathbb{G})$ unital C^{*}-algebra;
- $\Delta: C(\mathbb{G}) \rightarrow C(\mathbb{G}) \otimes C(\mathbb{G})$;
- $\Delta \circ(\mathrm{id} \otimes \Delta)=(\mathrm{id} \otimes \Delta) \circ \Delta$;
- $\overline{\operatorname{Span}}\{\Delta(C(\mathbb{G}))(1 \otimes C(\mathbb{G}))\}=C(\mathbb{G}) \otimes C(\mathbb{G})$.

Definition

An action of \mathbb{G} on A is a $*$-homomorphism $\alpha: A \rightarrow A \otimes C(\mathbb{G})$ such that
(1) $(\alpha \otimes \mathrm{id}) \circ \alpha=(\mathrm{id} \otimes \Delta) \circ \alpha$;
(2) $\operatorname{Span}\{\alpha(A)(1 \otimes C(\mathbb{G}))\}=A \otimes C(\mathbb{G})$.

Introducing the main character

- $C(\mathbb{G})$ unital C^{*}-algebra;
- $\Delta: C(\mathbb{G}) \rightarrow C(\mathbb{G}) \otimes C(\mathbb{G})$;
- $\Delta \circ(\mathrm{id} \otimes \Delta)=(\mathrm{id} \otimes \Delta) \circ \Delta$;
- $\overline{\operatorname{Span}}\{\Delta(C(\mathbb{G}))(1 \otimes C(\mathbb{G})\}=C(\mathbb{G}) \otimes C(\mathbb{G})$.

Definition

An action of \mathbb{G} on A is a $*$-homomorphism $\alpha: A \rightarrow A \otimes C(\mathbb{G})$ such that
(1) $(\alpha \otimes \mathrm{id}) \circ \alpha=(\mathrm{id} \otimes \Delta) \circ \alpha$;
(2) $\operatorname{Span}\{\alpha(A)(1 \otimes C(\mathbb{G}))\}=A \otimes C(\mathbb{G})$.

- The action is ergodic if $A^{\alpha}=\{x \in A \mid \alpha(x)=x \otimes 1\}=\mathbb{C} .1_{A}$
- Classically, ergodic \Leftrightarrow minimal.

Plot twist : it's about categories !

Theorem (TANNAKA-KREIN-WORONOWICZ)

A CQG is a unitary tensor functor $\mathscr{F}: \operatorname{Rep} \rightarrow \operatorname{Hilb}_{f}$, where Rep is a rigid C^{*}-tensor category.

Plot twist : it's about categories !

Theorem (TANNAKA-KREIN-WORONOWICZ)
A CQG is a unitary tensor functor $\mathscr{F}: \operatorname{Rep} \rightarrow \mathrm{Hilb}_{f}$, where Rep is a rigid C^{*}-tensor category.

Question : Understand (ergodic) actions as additional structure/functor on Rep.
Answers (Pinzari-Roberts, Neshveyev, De Commer-Yamashita, Hataishi-Yamashita) :

Plot twist : it's about categories !

Theorem (TANNAKA-KREIN-WORONOWICZ)

A CQG is a unitary tensor functor $\mathscr{F}: \operatorname{Rep} \rightarrow \mathrm{Hilb}_{f}$, where Rep is a rigid C^{*}-tensor category.

Question : Understand (ergodic) actions as additional structure/functor on Rep.
Answers (Pinzari-Roberts, Neshveyev, De Commer-Yamashita, Hataishi-Yamashita) :
Let $\alpha: A \rightarrow A \otimes C(\mathbb{G})$ be an ergodic action :

- Unique invariant state $\omega \rightsquigarrow$ unitary representation $L^{2}(A, \omega)$;

Plot twist : it's about categories !

Theorem (TANNAKA-KREIN-WORONOWICZ)

A CQG is a unitary tensor functor $\mathscr{F}: \operatorname{Rep} \rightarrow \mathrm{Hilb}_{f}$, where Rep is a rigid C^{*}-tensor category.

Question : Understand (ergodic) actions as additional structure/functor on Rep.
Answers (Pinzari-Roberts, Neshveyev, De Commer-Yamashita, Hataishi-Yamashita) :
Let $\alpha: A \rightarrow A \otimes C(\mathbb{G})$ be an ergodic action :

- Unique invariant state $\omega \rightsquigarrow$ unitary representation $L^{2}(A, \omega)$;
- Isotypical decomposition $L^{2}(A, \omega)=\bigoplus_{x \in \operatorname{Irr}(\mathbb{G})} \mathscr{A}_{x}$;

Plot twist : it's about categories !

Theorem (TANNAKA-KREIN-WORONOWICZ)

A CQG is a unitary tensor functor $\mathscr{F}: \operatorname{Rep} \rightarrow \mathrm{Hilb}_{f}$, where Rep is a rigid C^{*}-tensor category.

Question : Understand (ergodic) actions as additional structure/functor on Rep.
Answers (Pinzari-Roberts, Neshveyev, De Commer-Yamashita, Hataishi-Yamashita) :
Let $\alpha: A \rightarrow A \otimes C(\mathbb{G})$ be an ergodic action :

- Unique invariant state $\omega \rightsquigarrow$ unitary representation $L^{2}(A, \omega)$;
- Isotypical decomposition $L^{2}(A, \omega)=\bigoplus_{x \in \operatorname{Irr}(\mathbb{G})} \mathscr{A}_{x}$;
- $T \in \operatorname{Mor}_{G}(x, y) \rightsquigarrow \widetilde{T}: \mathscr{A}_{x} \rightarrow \mathscr{A}_{y}$;

Plot twist : it's about categories !

Theorem (TANNAKA-KREIN-WORONOWICZ)

A CQG is a unitary tensor functor $\mathscr{F}: \operatorname{Rep} \rightarrow \mathrm{Hilb}_{f}$, where Rep is a rigid C^{*}-tensor category.

Question : Understand (ergodic) actions as additional structure/functor on Rep.
Answers (Pinzari-Roberts, Neshveyev, De Commer-Yamashita, Hataishi-Yamashita) :
Let $\alpha: A \rightarrow A \otimes C(\mathbb{G})$ be an ergodic action :

- Unique invariant state $\omega \rightsquigarrow$ unitary representation $L^{2}(A, \omega)$;
- Isotypical decomposition $L^{2}(A, \omega)=\bigoplus_{x \in \operatorname{Irr}(\mathbb{G})} \mathscr{A}_{x}$;
- $T \in \operatorname{Mor}_{G}(x, y) \rightsquigarrow \widetilde{T}: \mathscr{A}_{x} \rightarrow \mathscr{A}_{y}$;
- $\mathscr{A}_{x \otimes y} \hookrightarrow \mathscr{A}_{x} \otimes \mathscr{A}_{y}$ isometrically.

Plot twist : it's about categories !

Theorem (TANNAKA-KREIN-WORONOWICZ)

A CQG is a unitary tensor functor $\mathscr{F}: \operatorname{Rep} \rightarrow \mathrm{Hilb}_{f}$, where Rep is a rigid C^{*}-tensor category.

Question : Understand (ergodic) actions as additional structure/functor on Rep.
Answers (Pinzari-Roberts, Neshveyev, De Commer-Yamashita, Hataishi-Yamashita) :
Let $\alpha: A \rightarrow A \otimes C(\mathbb{G})$ be an ergodic action :

- Unique invariant state $\omega \rightsquigarrow$ unitary representation $L^{2}(A, \omega)$;
- Isotypical decomposition $L^{2}(A, \omega)=\bigoplus_{x \in \operatorname{Irr}(\mathbb{G})} \mathscr{A}_{x}$;
- $T \in \operatorname{Mor}_{G}(x, y) \rightsquigarrow \widetilde{T}: \mathscr{A}_{x} \rightarrow \mathscr{A}_{y}$;
- $\mathscr{A}_{x \otimes y} \hookrightarrow \mathscr{A}_{x} \otimes \mathscr{A}_{y}$ isometrically.

Plot twist : it's about categories !

Theorem (TANNAKA-KREIN-WORONOWICZ)

A CQG is a unitary tensor functor $\mathscr{F}: \operatorname{Rep} \rightarrow \mathrm{Hilb}_{f}$, where Rep is a rigid C^{*}-tensor category.

Question : Understand (ergodic) actions as additional structure/functor on Rep.
Answers (Pinzari-Roberts, Neshveyev, De Commer-Yamashita, Hataishi-Yamashita) :
Let $\alpha: A \rightarrow A \otimes C(\mathbb{G})$ be an ergodic action :

- Unique invariant state $\omega \rightsquigarrow$ unitary representation $L^{2}(A, \omega)$;
- Isotypical decomposition $L^{2}(A, \omega)=\bigoplus_{x \in \operatorname{Irr}(\mathbb{G})} \mathscr{A}_{x}$;
- $T \in \operatorname{Mor}_{G}(x, y) \rightsquigarrow \widetilde{T}: \mathscr{A}_{x} \rightarrow \mathscr{A}_{y}$;
- $\mathscr{A}_{x \otimes y} \hookrightarrow \mathscr{A}_{x} \otimes \mathscr{A}_{y}$ isometrically.

We need a weird tensor functor ...

Take it easy

Idea : Start with a simpler yet interesting setting :

- (\mathbb{G}, u) OCMQG, i.e. $u=\bar{u}$ and $\overline{\left\langle u_{i j} \mid 1 \leqslant i, j \leqslant N\right\rangle}=C(\mathbb{G})$;
- $\operatorname{Mor}_{\mathbb{G}}\left(u^{\otimes k}, u^{\otimes \ell}\right)$ generate $\operatorname{Rep}(\mathbb{G})$;
- Tensor functor given by one Hilbert space H;

Take it easy

Idea : Start with a simpler yet interesting setting :

- (\mathbb{G}, u) OCMQG, i.e. $u=\bar{u}$ and $\overline{\left\langle u_{i j} \mid 1 \leqslant i, j \leqslant N\right\rangle}=C(\mathbb{G})$;
- $\operatorname{Mor}_{\mathbb{G}}\left(u^{\otimes k}, u^{\otimes \ell}\right)$ generate $\operatorname{Rep}(\mathbb{G})$;
- Tensor functor given by one Hilbert space H;

Theorem (F.-TAIPE-WANG)

Let (\mathbb{G}, u) be an OCMQG and $\left(H_{n}\right)_{n \in \mathbb{N}}$ Hilbert spaces with maps

$$
\varphi_{k, \ell}: \operatorname{Mor}_{\mathbb{G}}\left(u^{\otimes k}, u^{\otimes \ell}\right) \rightarrow \mathscr{B}\left(H_{k}, H_{\ell}\right)
$$

Assume that there exist $\imath_{k, \ell}: H_{k} \otimes H_{\ell} \hookrightarrow H_{k+\ell}$ such that

Take it easy

Idea : Start with a simpler yet interesting setting :

- (\mathbb{G}, u) OCMQG, i.e. $u=\bar{u}$ and $\overline{\left\langle u_{i j} \mid 1 \leqslant i, j \leqslant N\right\rangle}=C(\mathbb{G})$;
- $\operatorname{Mor}_{\mathbb{G}}\left(u^{\otimes k}, u^{\otimes \ell}\right)$ generate $\operatorname{Rep}(\mathbb{G})$;
- Tensor functor given by one Hilbert space H;

Theorem (F.-TAIPE-WANG)

Let (\mathbb{G}, u) be an OCMQG and $\left(H_{n}\right)_{n \in \mathbb{N}}$ Hilbert spaces with maps

$$
\varphi_{k, \ell}: \operatorname{Mor}_{\mathbb{G}}\left(u^{\otimes k}, u^{\otimes \ell}\right) \rightarrow \mathscr{B}\left(H_{k}, H_{\ell}\right)
$$

Assume that there exist $\iota_{k, \ell}: H_{k} \otimes H_{\ell} \hookrightarrow H_{k+\ell}$ such that
(1) $\iota_{k+\ell, m} \circ\left(\iota_{k, \ell} \otimes \mathrm{id}_{H_{m}}\right)=\iota_{k, \ell, m}=\iota_{k, \ell+m} \circ\left(\mathrm{id}_{H_{k}} \otimes \iota_{\ell, m}\right)$;

Take it easy

Idea : Start with a simpler yet interesting setting :

- (\mathbb{G}, u) OCMQG, i.e. $u=\bar{u}$ and $\overline{\left\langle u_{i j} \mid 1 \leqslant i, j \leqslant N\right\rangle}=C(\mathbb{G})$;
- $\operatorname{Mor}_{\mathbb{G}}\left(u^{\otimes k}, u^{\otimes \ell}\right)$ generate $\operatorname{Rep}(\mathbb{G})$;
- Tensor functor given by one Hilbert space H;

Theorem (F.-TAIPE-WANG)

Let (\mathbb{G}, u) be an $O C M Q G$ and $\left(H_{n}\right)_{n \in \mathbb{N}}$ Hilbert spaces with maps

$$
\varphi_{k, \ell}: \operatorname{Mor}_{\mathbb{G}}\left(u^{\otimes k}, u^{\otimes \ell}\right) \rightarrow \mathscr{B}\left(H_{k}, H_{\ell}\right)
$$

Assume that there exist $\imath_{k, \ell}: H_{k} \otimes H_{\ell} \hookrightarrow H_{k+\ell}$ such that
(1) $\iota_{k+\ell, m} \circ\left(\iota_{k, \ell} \otimes \mathrm{id}_{H_{m}}\right)=\iota_{k, \ell, m}=\iota_{k, \ell+m} \circ\left(\mathrm{id}_{H_{k}} \otimes \iota_{\ell, m}\right)$;
(2) $P_{k+\ell, m} \circ P_{k, \ell+m}=P_{k, \ell, m}$.

Take it easy

Idea : Start with a simpler yet interesting setting :

- (\mathbb{G}, u) OCMQG, i.e. $u=\bar{u}$ and $\overline{\left\langle u_{i j} \mid 1 \leqslant i, j \leqslant N\right\rangle}=C(\mathbb{G})$;
- $\operatorname{Mor}_{\mathbb{G}}\left(u^{\otimes k}, u^{\otimes \ell}\right)$ generate $\operatorname{Rep}(\mathbb{G})$;
- Tensor functor given by one Hilbert space H;

Theorem (F.-TAIPE-WANG)

Let (\mathbb{G}, u) be an $O C M Q G$ and $\left(H_{n}\right)_{n \in \mathbb{N}}$ Hilbert spaces with maps

$$
\varphi_{k, \ell}: \operatorname{Mor}_{G}\left(u^{\otimes k}, u^{\otimes \ell}\right) \rightarrow \mathscr{B}\left(H_{k}, H_{\ell}\right)
$$

Assume that there exist $\imath_{k, \ell}: H_{k} \otimes H_{\ell} \hookrightarrow H_{k+\ell}$ such that
(1) $\iota_{k+\ell, m} \circ\left(\iota_{k, \ell} \otimes \mathrm{id}_{H_{m}}\right)=\iota_{k, \ell, m}=\iota_{k, \ell+m} \circ\left(\mathrm{id}_{H_{k}} \otimes \iota_{\ell, m}\right)$;
(2) $P_{k+\ell, m} \circ P_{k, \ell+m}=P_{k, \ell, m}$.

Then, this is the restriction of \mathscr{F}_{α} for some ergodic action α of \mathbb{G}.

Take it easy

- Let p be a partition of a finite set, for instance $p=\{\{1,2,4\},\{3,6\},\{5\}\}$.

Take it easy

- Let p be a partition of a finite set, for instance $p=\{\{1,2,4\},\{3,6\},\{5\}\}$.
- We can draw it as

- We then define an operator $T_{p}:\left(\mathbb{C}^{N}\right)^{\otimes 3} \rightarrow\left(\mathbb{C}^{N}\right)^{\otimes 3}$ by the formula

$$
T_{p}\left(e_{i_{1}} \otimes e_{i_{2}} \otimes e_{i_{3}}\right)=\delta_{i_{1}, i_{2}} \sum_{j_{2}=1}^{N} e_{i_{3}} \otimes e_{j_{2}} \otimes e_{i_{1}} .
$$

Take it easy

- Let p be a partition of a finite set, for instance $p=\{\{1,2,4\},\{3,6\},\{5\}\}$.
- We can draw it as

- We then define an operator $T_{p}:\left(\mathbb{C}^{N}\right)^{\otimes 3} \rightarrow\left(\mathbb{C}^{N}\right)^{\otimes 3}$ by the formula

$$
T_{p}\left(e_{i_{1}} \otimes e_{i_{2}} \otimes e_{i_{3}}\right)=\delta_{i_{1}, i_{2}} \sum_{j_{2}=1}^{N} e_{i_{3}} \otimes e_{j_{2}} \otimes e_{i_{1}}
$$

Theorem (Jones, Martin)

Set $V=\mathbb{C}^{N}$ with the permutation representation of S_{N}. Then, for any k, ℓ,

$$
\operatorname{Mor}_{S_{N}}\left(V^{\otimes k}, V^{\otimes \ell}\right)=\operatorname{Span}\left\{T_{p} \mid p \in P(k, \ell)\right\}
$$

where $P(k, \ell)$ is the set of partitions of $\{1, \cdots, k+\ell\}$.

Take it easy

Definition

A category of partitions is a set \mathscr{C} of partitions containing | which is stable under

TANNAKA-KREIN-WORONOWICZ : Given \mathscr{C}, there exists a unique OCMQG $\mathfrak{G}_{N}(\mathscr{C})$ such that

$$
\operatorname{Mor}_{\mathbb{G}_{N}(\mathscr{C})}\left(\left(\mathbb{C}^{N}\right)^{\otimes k},\left(\mathbb{C}^{N}\right)^{\otimes \ell}\right)=\operatorname{Span}\left\{T_{p} \mid p \in \mathscr{C}(k, \ell)\right\} .
$$

Easy actions

Easy actions

Definition

A module of projective partitions over \mathscr{C} is a set \mathscr{P} of partition, writing $\mathscr{P}_{k}=\mathscr{P} \cap P(k, k)$,
(1) For all $p \in \mathscr{P}, p \circ p=p=p^{*}$;
(2) $\mathscr{P}_{k} \odot \mathscr{P}_{l} \subset \mathscr{P}_{k+l}$ for all $k, l \in \mathbb{N}$;
(For any $r \in \mathscr{C}(k, l)$ and $p \in \mathscr{P}_{k}$, $r p r^{*} \in \mathscr{P}_{l}$;
(1) For any $k \in \mathbb{N}$ and $p \in \mathscr{P}_{k}, \bar{p} \in \mathscr{P}_{k}$.

Easy actions

Definition

A module of projective partitions over \mathscr{C} is a set \mathscr{P} of partition, writing $\mathscr{P}_{k}=\mathscr{P} \cap P(k, k)$,
(1) For all $p \in \mathscr{P}, p \circ p=p=p^{*}$;
(2) $\mathscr{P}_{k} \odot \mathscr{P}_{l} \subset \mathscr{P}_{k+l}$ for all $k, l \in \mathbb{N}$;
(3) For any $r \in \mathscr{C}(k, l)$ and $p \in \mathscr{P}_{k}$, $r p r^{*} \in \mathscr{P}_{l}$;

(a) For any $k \in \mathbb{N}$ and $p \in \mathscr{P}_{k}, \bar{p} \in \mathscr{P}_{k}$.

Theorem (F.-TAIPE-WANG)

Let \mathscr{C} be a category of partitions, let \mathscr{P} be a module of projective partitions over \mathscr{C} and let N be an integer. Then, the spaces

$$
K_{n}^{\mathscr{P}}=\operatorname{Span}\left\{T_{p}\left(e_{1}^{\otimes n}\right) \mid p \in \mathscr{P}_{n}\right\} \subset\left(\mathbb{C}^{N}\right)^{\otimes n}
$$

and the maps $\varphi_{k, \ell}(r): T_{p}\left(e_{1}^{\otimes k}\right) \mapsto T_{r p r}\left(e_{1}^{\otimes \ell}\right)$ satisfy the assumptions of the Theorem.

The non-crossing case

Definition

A partition is non-crossing if it can be drawn without letting the strings cross.

The non-crossing case

Definition

A partition is non-crossing if it can be drawn without letting the strings cross.

Theorem (F.-TAIPE-WANG)

If \mathscr{C} is non-crossing and $\mathscr{P}=\operatorname{Proj}_{\mathscr{C}}=\left\{p \in \mathscr{C} \mid p \circ p=p=p^{*}\right\}$, then the previous action is the standard action on the first column space.

Examples: $O_{N}^{+} \curvearrowright S_{+}^{N-1, \mathbb{R}} ; S_{N}^{+} \curvearrowright \mathbb{C}^{N} ; H_{N}^{+} \curvearrowright \mathbb{C}^{2 N}$.

Takin' action

Takin' action

- $S_{N}^{+}=\mathbb{G}_{N}(N C)$;
- $X_{N}=N$ points $\rightsquigarrow C\left(X_{N}\right)=\mathbb{C}^{N}$;
- $\alpha_{N}\left(e_{i}\right)=\sum_{j=1}^{N} e_{j} \otimes u_{i j}$ ergodic action on X_{N}.

Takin' action

- $S_{N}^{+}=\mathbb{G}_{N}(N C)$;
- $X_{N}=N$ points $\rightsquigarrow C\left(X_{N}\right)=\mathbb{C}^{N}$;
- $\alpha_{N}\left(e_{i}\right)=\sum_{j=1}^{N} e_{j} \otimes u_{i j}$ ergodic action on X_{N}.

Theorem (Sh. WANG)

The action α_{N} is universal.

Action from 2012

Question : Can S_{N}^{+}act non-trivially on a connected space?

Action from 2012

Question : Can S_{N}^{+}act non-trivially on a connected space?

Action from 2012

Question : Can S_{N}^{+}act non-trivially on a connected space?

Theorem (HUANG)

Let Y be a connected compact space and $Z \subset Y$ a non-empty proper closed subset. Then, S_{N}^{+}acts non-trivially on $Y^{\amalg^{N} / Z}$.

Question : Can S_{N}^{+}act ergodically on a connected space?

Action from 2012

Question : Can S_{N}^{+}act non-trivially on a connected space?

Theorem (HuANG)

Let Y be a connected compact space and $Z \subset Y$ a non-empty proper closed subset. Then, S_{N}^{+}acts non-trivially on $Y^{\amalg^{N} / Z}$.

Question : Can S_{N}^{+}act ergodically on a connected space?

Theorem (F.-TAIPE-WANG)

No.

Behind the scene : the proof

Behind the scene : the proof

Ingredients for the proof (BANICA) :

- $\operatorname{Irr}\left(S_{N}^{+}\right)=\mathbb{N}$;
- $\rho_{0}=$ trivial ;
- $u=\rho_{0} \oplus \rho_{1}$;

Behind the scene : the proof

Ingredients for the proof (BANICA) :

- $\operatorname{Irr}\left(S_{N}^{+}\right)=\mathbb{N}$;
- $\rho_{0}=$ trivial ;
- $u=\rho_{0} \oplus \rho_{1}$;
- $\rho_{1} \otimes \rho_{n}=\rho_{n-1} \oplus \rho_{n} \oplus \rho_{n+1}$

Behind the scene : the proof

Ingredients for the proof (BANICA) :

- $\operatorname{Irr}\left(S_{N}^{+}\right)=\mathbb{N}$;
- $\rho_{0}=$ trivial ;
- $u=\rho_{0} \oplus \rho_{1}$;
- $\rho_{1} \otimes \rho_{n}=\rho_{n-1} \oplus \rho_{n} \oplus \rho_{n+1} \rightsquigarrow \rho_{n} \subset \rho_{k} \otimes \rho_{k}$ has multiplicity one!

Behind the scene : the proof

Ingredients for the proof (BANICA) :

- $\operatorname{Irr}\left(S_{N}^{+}\right)=\mathbb{N}$;
- $\rho_{0}=$ trivial ;
- $u=\rho_{0} \oplus \rho_{1}$;
- $\rho_{1} \otimes \rho_{n}=\rho_{n-1} \oplus \rho_{n} \oplus \rho_{n+1} \rightsquigarrow \rho_{n} \subset \rho_{k} \otimes \rho_{k}$ has multiplicity one !

Lemma

If $\mathscr{F}_{\alpha}\left(P_{n}^{k, k}\right) \neq 0$, then

$$
H_{n} \subset \operatorname{Sym}\left(H_{k} \otimes H_{k}\right) \cup \operatorname{ASym}\left(H_{k} \otimes H_{k}\right)
$$

Behind the scene : the proof

Proof of the Theorem :

(1) Set $k_{0}=\min \left\{k \mid A_{k} \neq\{0\}\right\}$;
(2) Prove that $H_{n} \subset \operatorname{Sym}\left(H_{k} \otimes H_{k}\right) \cup \operatorname{ASym}\left(H_{k} \otimes H_{k}\right)$ does not hold for $n>2$ (feat. M. Weber);

Behind the scene : the proof

Proof of the Theorem :

(1) Set $k_{0}=\min \left\{k \mid A_{k} \neq\{0\}\right\}$;
(2) Prove that $H_{n} \subset \operatorname{Sym}\left(H_{k} \otimes H_{k}\right) \cup \operatorname{ASym}\left(H_{k} \otimes H_{k}\right)$ does not hold for $n>2$ (feat. M. Weber);

- Conclude that $A_{k_{0}} . A_{k_{0}} \subset A_{0}$ if $k_{0}>1$ and $A_{k_{0}} . A_{k_{0}} \subset A_{0} \oplus A_{1}$ otherwise ;

Behind the scene : the proof

Proof of the Theorem :

(1) Set $k_{0}=\min \left\{k \mid A_{k} \neq\{0\}\right\}$;
(2) Prove that $H_{n} \subset \operatorname{Sym}\left(H_{k} \otimes H_{k}\right) \cup \operatorname{ASym}\left(H_{k} \otimes H_{k}\right)$ does not hold for $n>2$ (feat. M. Weber);
(0) Conclude that $A_{k_{0}} . A_{k_{0}} \subset A_{0}$ if $k_{0}>1$ and $A_{k_{0}} . A_{k_{0}} \subset A_{0} \oplus A_{1}$ otherwise ;
(9) In any case, $B=A_{0} \oplus A_{k_{0}}$ is a sub-C*-algebra ;

Behind the scene : the proof

Proof of the Theorem :

(1) Set $k_{0}=\min \left\{k \mid A_{k} \neq\{0\}\right\}$;
(2) Prove that $H_{n} \subset \operatorname{Sym}\left(H_{k} \otimes H_{k}\right) \cup \operatorname{ASym}\left(H_{k} \otimes H_{k}\right)$ does not hold for $n>2$ (feat. M. Weber);
(Conclude that $A_{k_{0}} . A_{k_{0}} \subset A_{0}$ if $k_{0}>1$ and $A_{k_{0}} . A_{k_{0}} \subset A_{0} \oplus A_{1}$ otherwise ;
(1) In any case, $B=A_{0} \oplus A_{k_{0}}$ is a sub-C*-algebra ;

- Observe that B is finite-dimensional ...

Behind the scene : the proof

Proof of the Theorem :

(1) Set $k_{0}=\min \left\{k \mid A_{k} \neq\{0\}\right\}$;
(2) Prove that $H_{n} \subset \operatorname{Sym}\left(H_{k} \otimes H_{k}\right) \cup \operatorname{ASym}\left(H_{k} \otimes H_{k}\right)$ does not hold for $n>2$ (feat. M. Weber);
(0) Conclude that $A_{k_{0}} . A_{k_{0}} \subset A_{0}$ if $k_{0}>1$ and $A_{k_{0}} . A_{k_{0}} \subset A_{0} \oplus A_{1}$ otherwise ;
(1) In any case, $B=A_{0} \oplus A_{k_{0}}$ is a sub-C*-algebra;

- Observe that B is finite-dimensional ...
- ... hence has a non-trivial projection !

Post-credit scene

moriom hertum asceciariow of aminea	
IF YOU HAD LEFT THIS THEATRE WHEN THESE CREDITS BEGAN, YOU'D BE HOME NOW.	
COPYMICMT © 1 1ssi EY Twentieth ceimuny fox film coaponation all miahts nestaved	
TWEMTIETH CENTUAY FOX FILM CORPORAIION IS THE AUTMOR OF TMIS MOIION PICTUAE FOR PURPOSES OF COPVAIGHI AND OTHER LAWS.	
the events, characteas, and fiams depicied in this photoplay ARE FICTITIOUS. ANY SIMILARITY TO ACTUAL PERSONS, LVING OR DEAD.	

Post-credit scene

Some open questions :

- Can S_{N}^{+}act ergodically on a space which is not totally disconnected?
- Can S_{N}^{+}act ergodically on a space which is infinite?
- Can S_{N}^{+}act at all on a space which is not of Huang type?

Post-credit scene

Some open questions :

- Can S_{N}^{+}act ergodically on a space which is not totally disconnected?
- Can S_{N}^{+}act ergodically on a space which is infinite?
- Can S_{N}^{+}act at all on a space which is not of HUANG type ?

What about other quantum groups ?

- H_{N}^{+}: same status as S_{N}^{+};
- O_{N}^{+}: does not act non-trivially on any classical space !

