
Flexion update 1.

Jean Ecalle

This first Flexion Update and those soon to follow are meant to flesh out,
justify, expand or complement various items in the general Survey titled

The Flexion Structure and Dimorphy: Flexion Units, Singulators,
Generators, and the Enumeration of Multizeta Irreducibles.

The Survey1 in question is systematically referred to as [FLEX].
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1 Essential parity of bialternals.

This section is devoted to establishing the decomposition2

ARIal/al = ARIȧl/ȧl ⊕ ARIal/al (1.1)

of the space ARI al/al of all bialternals into:
(i) a large, regular part ARI al/al , consisting of even bimoulds and stable un-
der the ari-bracket.
(ii) a small, exceptional part ARI ȧl/ȧl := BIMU 1,odd , consisting of odd bi-
moulds of length one and endowed with a bilinear mapping oddari into
ARI al/al .

Everything rests on the following statement.

Proposition 1.1 (Parity of bialternals).
Any bialternal bimould A• purely of length r > 1 is an even function of its
double index sequence, i.e. Aw ≡ A−w.

Proof: Alternality implies invariance under mantar := −anti .pari . Bialter-
nality, therefore, implies invariance under neg.push, with:

neg.push := mantar.swap.mantar.swap

= anti.swap.anti.swap

2See [FLEX] §2.7
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The push operator, we recall, is idempotent of order r + 1 when acting on
BIMU r, i.e. on bimoulds of length r.

Let us assume that Aw is odd in w, and show that this implies Aw ≡ 0.
For an even length r, this follows at once from the neg.push-invariance:

Aw = (neg.push)r+1.Aw = negr+1.pushr+1.Aw = neg.Aw = −Aw (1.2)

For an odd length, the argument is more roundabout. Note first that for
Aw, which we assumed to be odd in w, invariance under neg.push amounts
to invariance under -push. Here again, it turns out that the absence of
non-trivial solution does not require the full bialternality of A•, but only
its alternality and invariance under -push. So let us prove this stronger
statement:

Lemma 1.1 (Alternality and push-invariance).
No non-vanishing bimould A• purely of length r > 1 can be simultaneously
alternal and invariant under −push.

Proof: Here again, the statement is obvious for r even. So let us consider
an odd length of the form r = 2 t + 1 ≥ 3.

Since we shall subject Aw to two linear operators, pus and push, respec-
tively of order r and r + 1 when restricted to BIMU r, and since pus (resp.
push) reduces to a circular permutation in the ‘short’ (resp ‘long’) bimould
notation, we shall make use of both. Let us recall the conversion rule:

A[w∗0 ],w∗1 ,...,w∗r (long)←→ Aw1,...,wr (short) (1.3)

with the dual conditions on upper and lower indices:

u∗0 = −(u1 + . . . ur) , u∗i = ui ∀i ≥ 1
v∗0 arbitrary , v∗i − v∗0 = vj ∀i ≥ 1

To show that A• = 0, we start with the elementary alternality relation:

0 =
∑

w∈sha(w′,w′′)

Aw with w′ = (w1, . . . , w2t) and w′ = (w2t+1) (1.4)

which reads:
0 =

∑
1≤j≤2 t+1

Aw1,...,wj−1,w2t+1,wj ,...,w2t (1.5)

Due to the invariance of A• under -push, this may be rewritten as:

0 =
∑

1≤j≤2 t+1

(−1)j(pushj.A)w1,...,wj−1,w2t+1,wj ,...,w2t (1.6)
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In the ‘long’ notation (of greater relevance here) this becomes:

0 =
∑

1≤j≤2 t+1

(−1)j(pushj.A)[w0],w1,...,wj−1,w2t+1,wj ,...,w2t (1.7)

=
∑

1≤j≤2 t+1

(−1)jA[w2t+1],wj ,...,w2t,w0,w1,...,wj−1 (1.8)

Under the exchange w0 ↔ w2t+1, the last identity becomes:

0=
∑

1≤j≤2 t+1

(−1)jA[w0],wj ,...,w2t,w2t+1,w1,...,wj−1 =
∑

1≤j≤2 t+1

(−1)jA[w0],wj ,...,w2t+1,w1,...,wj−1

Or again, reverting to the short notation:

0 =
∑

1≤j≤2 t+1

(−1)jAwj ,...,w2t+1,w1,...,wj−1 (1.9)

On the other hand, alternality implies pus-neutrality3
∑

pusjA• ≡ 0, which
reads:

0 =
∑

1≤j≤2 t+1

Awj ,...,w2t+1,w1,...,wj−1 (1.10)

From (1.9) and (1.10) we get by addition:

0 =
∑

0≤k≤t

Aw2k+1,...,w2t+1,w1,...,w2k (1.11)

and by subtraction:

0 =
∑

1≤k≤t

Aw2k,...,w2t+1,w1,...,w2k−1 (1.12)

Under the change (w2, w3, . . . , w2t+1, w1) → (w1, w2, . . . , w2t+1), (1.12) be-
comes:

0 =
∑

1≤k≤t

Aw2k+1,...,w2t+1,w1,...,w2k (1.13)

Subtracting (1.13) from (1.11), we end up with Aw1,..,wr ≡ 0. �.

3See [FLEX], §2.4. For a proof, see below, §3.

4



2 Canonical factorisation of bisymmetrals.

This section is devoted to establishing the factorisation4:

GARIas/as = gari
(
GARIȧs/ȧs, GARIas/as

)
(2.1)

of the set GARI as/as of all bisymmetrals into
(i) a large, regular factor GARI as/as consisting of even bimoulds and stable
under the gari product
(ii) a small, exceptional factor GARI ȧs/ȧs consisting of special bimoulds de-
rived from so-called flexion units and alternately odd/even, i.e. invariant
under pari.neg rather than neg.

The proof rests on the construction and properties of the special bisym-
metrals ess•E (see [FLEX] §4.2) and on the following statement:

Proposition 2.1 (Factorisation of bisymmetrals).
Any bisymmetral bimould Sa• and its swappee simultaneously factor as

Sa• = gari(Sal•, Sar•) = gira(Sal•, Sar•) (2.2)

Si• = gari(Sil•, Sir•) = gira(Sil•, Sir•) (2.3)

- with Si• = swap.Sa• , Sil• = swap.Sal• , Sir• = swap.Sar•

- with bisymmetral right factors at once neg- and gush-invariant
- with bisymmetral left factors at once pari.neg- and pari.gush-invariant.
In other words:

Sar•, Sir• ∈ GARIas/as
neg = GARI

as/as
gush =: GARIas/as (2.4)

Sal•, Sil• ∈ GARI
as/as
pari.neg = GARI

as/as
pari.gush (2.5)

The above decompositions are not unique, but two of them stand out, namely
the one in which

Sal• = ess•E with − 1

2
Ew1 = Salw1 =

1

2
(Saw1 − Sa−w1) (2.6)

and the one in which

Sil• = oss•O with − 1

2
Ow1 = Silw1 =

1

2
(Siw1 − Si−w1) (2.7)

These ‘co-canonical’ decompositions involve two conjugate flexion units E and
O and, though distinct, easily translate one into the other under the classical
relation between ess•E and oss•O: see formula (4.63) in §4.2 of [FLEX].

4See [FLEX], §2.8.
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Proof: It rests on the Proposition 1.1 of the preceding section, in conjunction
with the two following lemmas.

Lemma 2.1 (First components of bisymmetrals).
If the length-one component Salw1 of a bisymmetral bimould Sal• is an even
function of w1 = (u1

v1
), it may a priori be anything, but if it is an odd function,

it is necessarily a flexion unit.

Proof: Let u0, u1, u2 be constrained by u0 + u1 + u2 = 0 and let v0, v1, v2

be defined up to a common additive constant. At length 2, the unique
symmetrality relation for Sal• may be written thus:

Sal
( u1

v1:0

,
,

u2
v2:0

)
+ Sal

( u2
v2:0

,
,

u1
v1:0

) ≡ Sal
( u1

v1:0
)
Sal

( u2
v2:0

)
(2.8)

Due to Salw1 being odd, this yields:

Sal
( −u1
−v1:0

,
,
−u2
−v2:0

)
+ Sal

( −u2
−v2:0

,
,
−u1
−v1:0

) ≡ Sal
( u1

v1:0
)
Sal

( u2
v2:0

)
(2.9)

Likewise, the unique symmetrality relation for Sal• may be written as:

Sil
(−v0:2
−u0

,
,

v1:2
u1

)
+ Sil

( v1:2
u1

,
,
−v0:2
−u0

) ≡ Sil
( v1:2

u1
)
Si

(−v0:2
−u0

)

In the ui-variables, this translates into:

Sal
( u1

v1:0

,
,
−u0,1
−v0:2

)
+ Sal

( −u0
−v0:1

,
,

u0,1
v1:2

) ≡ Sal
( u1

v1:2
)
Sal

( −u0
−v0:2

)

or again, due to imparity and to
∑

ui = 0 :

Sal
( u1

v1:0

,
,

u2
v2:0

)
+ Sal

( −u0
−v0:1

,
,
−u2
−v2:1

) ≡ −Sal
( u1

v1:2
)
Sa

( u0
v0:2

)
(2.10)

Let E1 be the identity obtained by adding the three circular permutations
of (2.8) and (2.9), and E2 the identity obtained by adding the six permu-
tations, circular or anticircular, of (2.10). The left-hand sides of E1 and E2

clearly coincide, while their right-hand sides coincide only up to the sign.
Equating these right-hand sides, we find:

4
(
Sal

( u1
v1:0

)
Sal

( u2
v2:0

)
+ Sal

( u2
v2:1

)
Sal

( u0
v0:1

)
+ Sal

( u0
v0:2

)
Sal

( u1
v1:2

)) ≡ 0 (2.11)

which is precisely the symmetrical characterisation of a flexion unit. �.

Remark 1: On the face of it, the requirement that the length-1 component
be a flexion unit is merely a necessary condition for the existence of a bisym-
metral ‘continuation’. However, the theory of unit-generated bisymmetrals
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ess•E shows this condition to be (miraculously) sufficient.5 This is probably
the best a posteriori justification for singling out this notion of flexion unit,
though by no means the only one.

Remark 2: Had we assumed Sal• to be even, we would have found no
constraints at all on the length-1 component – which was only to be ex-
pected, since the Lie-exponential of that length-1 component is automati-
cally in GARI as/as.

Remark 3: One should not be too exercised over the presence of the factor 4
in (2.11), but rather observe that it vanishes after the change Salw1 = −1

2
Ew1

which, as it happens, the construction of ess•E quite naturally imposes.

Lemma 2.2 (General and even bisymmetrals).
Though not a group, the set GARIas/as of all bialternals is stable under both
gari- and gira-postcomposition by the group GARIas/as of even bisymmetrals,
and the identity holds:

gari(S•1, S•2) ≡ gira(S•1, S•2) ∈ as/as (∀S•1 ∈ as/as , ∀S•2 ∈ as/as) (2.12)

Proof: Here gira stands for the pull-back of gari under the basic involution
swap. Both group laws are related as follows6:

gira(S•1 , S
•
2) = ganit(rash.S•2).gari(S•1 , ras.S•2) (2.13)

with non-linear operators ras, rash defined by:

ras.S•2 = invgari.swap.invgari.swap.S•2 (2.14)

rash.S•2 = mu(push.swap.invmu.swap.S•2 , S
•
2) (2.15)

But since in Lemma 2.1 the right factor S•2 is in GARI as/as and since gari
and gira coincide on GARI as/as (even as ari and ira coincide on ARI al/al),
this implies:

ras.S•2 = invgari.invgira.S•2 = S•2 (2.16)

Likewise, any bimould of as/as type is automatically gush-invariant (even as
any bimould of al/al type is automatically push-invariant). See [FLEX], §2.4.
This in turn implies:

rash.S•2 = 1• and ganit(rash.S•2) = id (2.17)

5See [FLEX], §4.2, §11.9, §11.10.
6see [FLEX], §2.3. This universal identity holds for any factors S•

1 , S•
2 .
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and establishes (2.12). �.

Remark 4. Thus, S•2 is the only factor that really matters when comparing
gari(S•1 , S

•
2) and gira(S•1 , S

•
2). This is less surprising than may appear at

first sight, since the gari and gira products are linear in the left factor and
violently non-linear in the right factor.

We may now return to the proof of Proposition 2.1. To define our left
factor Sal• we set:

Sal•r := ess•E with − 1

2
Ew1 :=

1

2
(Saw1 − Sa−w1) (2.18)

By the general theory of §4.2 in [FLEX], this left factor is not just bisym-
metral, but also invariant under pari.neg. Let us now address the construc-
tion of the right factor Sar •. For each r, we can construct bimould pairs
(Sa•r, sar •r) by the following induction. For r = 1 we set:

Sa•1 := Sa• (2.19)

sar•1 :=
1

2
(Saw1 + Sa−w1) (2.20)

and for r > 1 we set:

Sa•r := gari
(
Sa•, expari(−sar•1), . . . , expari(−sar•r−1)

)
(2.21)

sarw1,...,wr
r := Saw1,...,wr

r − Salw1,...,wr (2.22)

sarw1,...,wl
r := 0 if l 6= r (2.23)

Clearly:

sar•r ∈ BIMUr and Sa•r ≡ Sal• mod ⊕r≤r′ BIMUr′

Let us now check that
(i) each Sal

• is in GARI as/as;
(ii) each sarl

• is in ARI as/as;
(iii) and therefore each expar(± sar•l ) is in GARI as/as.

This obviously holds for l = 1. If it holds for all l < r, then by Lemma 2.1
Sal
• is also in GARI as/as, as the gari-product of an as/as by a string of sev-

eral as/as . As for sarr
•, it is defined as the difference of length-r components

of two bisymmetral bimoulds, Sa•r and Sal•, whose earlier components coin-
cide. It is therefore not just al/al (bialternal) but also, by Lemma 1.1 of
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the preceding section, al/al (bialternal and even), and its Lie exponential is
automatically as/as .

Summing up, we arrive at a factorisation of the announced type (2.2),
with a left factor defined by (2.18) and a right factor defined by

Sar• = lim
r→∞

gari
(
expari(sar•r), . . . , expari(sar•1)

)
(2.24)

The swappee factorisations (2.3) immediately follow, again under (2.13). �
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