Modelling passenger movement within trains of Paris suburban network

Rémi Coulaud ${ }^{1,2}$, Mathilde Vimont ${ }^{2}$, Joshua Wolff ${ }^{2}$
${ }^{1}$ Laboratoire de Mathématiques d'Orsay
${ }^{2}$ SNCF Mobilités/Transilien
18 June 2021

Passenger distribution's impacts on railway operations

Figure: Transilien "Hector" testing and Zhang et al. (2017) Swedish experimentation
Figure: Critical door and dwell time

How Transilien measures trains load (I)?

CMIMNMNMNMNMN

Figure: From APC measure of alighting (a) and boarding (b) passengers by door ${ }^{1}$

Conservation flow property for train k at station S

$$
I_{k, S}=\sum_{s=1}^{S} b_{k, s}-a_{k, s}
$$

One issue when replicating it at the coach scale: communicating coaches

[^0]
Boarding and alighting flow: a solution?

Boarding and alighting flow: a solution?

Step 1: Brian boards coach 3

Boarding and alighting flow: a solution?

Step 2: where is Brian?

Boarding and alighting flow: a solution?

Step 3: Brian alights from coach 1

サ1

Boarding and alighting flow: a solution?

How to obtain load by coach?

Boarding and alighting flow: a solution?

How to obtain load by coach?

To simplify the problem, we consider:

1. alighting and boarding passengers density, not individual trajectory
2. alighting and boarding passengers at the trip scale, not at the station scale

From station scale to trip scale

From station scale to trip scale

State of the art

Figure: From macro to micro modelling

	Variables	Space	Data	Model	Scale
Krstanoski (2014)	boarding	platform	video	multinomial distribution	by zone (doors)
Seriani \& Fujiyama (2019)	boarding	PTI	laboratory	multinomial distribution	by zone (layers around door)
Wang et al. (2011)	occupancy	building	no data	Markov chain	by zone (room)
Shelat et al. (2020)	occupancy	building	no data	Markov chain	by zone (room)
Zhang et al. (2008)	alighting and boarding	PTI	survey	cellular automate model	microscopic

To sum up
No exact similar problem in transportation literature but we take inspiration from Krstanoski (2014)

Methods: zone definition and notations

Notation	Description
$p_{i, j}$	proportion of passengers boarding coach i and alighting from coach j
$X_{i, j}$	shifted passengers boarding coach i and alighting from coach j
b_{i}	passengers boarding coach i
a_{i}	passengers alighting from coach i

Methods: goal and hypotheses

Goal: match boarding to alighting distribution among coaches through shifted passengers $X_{i, j}$

Hypotheses:

Methods: goal and hypotheses

Goal: match boarding to alighting distribution among coaches through shifted passengers $X_{i, j}$

Hypotheses:

1. Passenger movement between coaches is parametric:

$$
X_{i, \cdot} \sim \mathcal{M}\left(b_{i}, p_{i, 1}, \ldots, p_{i, 8}\right)
$$

Methods: goal and hypotheses

Goal: match boarding to alighting distribution among coaches through shifted passengers $X_{i, j}$

Hypotheses:

1. Passenger movement between coaches is parametric:

$$
X_{i, \cdot} \sim \mathcal{M}\left(b_{i}, p_{i, 1}, \ldots, p_{i, 8}\right)
$$

2. Shifted passengers between coaches i and j is:

$$
X_{i, j}=b_{i} p_{i, j}
$$

Optimisation problem: a least square problem under

 constraintsThe ideal problem we want to solve:

$$
\begin{equation*}
\min \frac{1}{K} \sum_{k=1}^{K} \sum_{j=1}^{8}\left(a_{j}^{k}-\sum_{i=1}^{8} x_{i, j}^{k}\right)^{2} \tag{1}
\end{equation*}
$$

Optimisation problem: a least square problem under

 constraintsThe problem we can solve with plug in hypothesis 2 :

$$
\begin{array}{ll}
\min _{p} & \frac{1}{K} \sum_{k=1}^{K} \sum_{j=1}^{8}\left(a_{j}^{k}-\sum_{i=1}^{8} b_{i}^{k} p_{i, j}\right)^{2} \\
\text { s.t } & \forall i, j, 0 \leq p_{i, j} \leq 1 \\
& \forall i, \sum_{j=1}^{8} p_{i, j}=1 \tag{1}
\end{array}
$$

Optimisation problem: a least square problem under constraints

The problem we can solve with plug in hypothesis 2 :

$$
\begin{array}{ll}
\min _{p} & \frac{1}{K} \sum_{k=1}^{K} \sum_{j=1}^{8}\left(a_{j}^{k}-\sum_{i=1}^{8} b_{i}^{k} p_{i, j}\right)^{2} \\
\text { s.t } & \forall i, j, 0 \leq p_{i, j} \leq 1 \\
& \forall i, \sum_{j=1}^{8} p_{i, j}=1 \tag{1}
\end{array}
$$

Parameters interpretation as an adjacency matrix:

$$
p=\left(\begin{array}{ccc}
p_{8,1} & \cdots & p_{8,8} \\
\vdots & \therefore & \vdots \\
p_{1,1} & \cdots & p_{1,8}
\end{array}\right)
$$

Data from 09/2020 to 04/2021 on lines H and L

Benchmark models: from no movement to uniform movement, where does the reality stand?

Name	Parameters	Idea
Static	$\left(\begin{array}{ccc}0 & \cdots & 1 \\ \vdots & \cdots & \vdots \\ 1 & \cdots & 0\end{array}\right)$	boarding passengers stay where they board
Least square	\cdots	
optimal proportions		
Uniform	$\left(\begin{array}{ccc}\frac{1}{8} & \cdots & \frac{1}{8} \\ \vdots & \cdots & \vdots \\ \frac{1}{8} & \cdots & \frac{1}{8}\end{array}\right)$	boarding passengers move with equal chance to each coach

$$
\text { Our reference is } a_{i} \text { compare to } \sum_{j=1}^{8} b_{i} p_{i, j}
$$

Performance results

					MAE	
	RMSE	Extreme loads	MAE	Extreme loads		
Static	86	41	1,059	69	35	121
Uniform	71	30	0	55	26	0
Least square	48	21	4	33	15	1

- Need to move boarding passengers
- A simple model is not enough

Estimated parameters and passenger movement

Estimated parameters and passenger movement

1. few movements when boarding

Estimated parameters and passenger movement

1.00
0.75
0.50
0.25
0.00

1. few movements when boarding
2. apart from specific coaches

Estimated parameters are driven by some specific stations

Figure: Gare du Nord

Figure: Paris Saint-Lazare

Crowding factor impacts passenger movement

Figure: Crowding factor impacts passenger movement

Crowding factor impacts passenger movement

Static passengers factor: spf $=\frac{\sum_{i} p_{i, i}}{\sum_{i, j} p_{i, j}} \in(0,1)$

$$
p=\left(\begin{array}{ccc}
p_{8,1} & \cdots & p_{8,8} \\
\vdots & \therefore & \vdots \\
p_{1,1} & \cdots & p_{1,8}
\end{array}\right)
$$

■ $\operatorname{spf}=1$: all passengers stay where they board
■ spf $=0$: all passengers move at least from one coach when they board

Crowding factor impacts passenger movement

Conclusion and perspectives

Conclusion:
■ Passenger movement are important for communicating coaches trains

■ Movements are consistent with intuition: few movements far away apart from specific situations
■ Crowding factor changes passenger movement behaviour within trains

Conclusion and perspectives

Perspectives:

1. How RTCI affect passenger movement within trains
2. Estimated transition matrices for each station departure
3. Cross APC measures with weight measures

Thank you for your attention! Questions?

Bibliography

Krstanoski, N. (2014), 'Modelling passenger distribution on metro station platform', International Journal for Traffic \& Transport Engineering .
Seriani, S. \& Fujiyama, T. (2019), 'Modelling the distribution of passengers waiting to board the train at metro stations', Journal of Rail Transport Planning \& Management .
Shelat, S., Daamen, W., Kaag, B., Duives, D. \& Hoogendoorn, S. (2020), 'A markov-chain activity-based model for pedestrians in office buildings', Collective Dynamics.
Wang, C., Yan, D. \& Jiang, Y. (2011), A novel approach for building occupancy simulation, in 'Building simulation', Springer.
Zhang, Q., Han, B. \& Li, D. (2008), 'Modeling and simulation of passenger alighting and boarding movement in beijing metro stations', Transportation Research Part C: Emerging Technologies .
Zhang, Y., Jenelius, E. \& Kottenhoff, K. (2017), 'Impact of real-time crowding information: a stockholm metro pilot study', Public Transport .

Robust check for scale

		L		H	
		way	line	way	line
Boarding	Simple	28	29.1	22	23.5
		(± 0.5)	(± 0.5)	(± 0.2)	(± 0.3)
	Double	28.2	29.6	22.4	24.3
		(± 0.5)	(± 0.5)	(± 0.2)	(± 0.3)
	Quadruple	$\begin{gathered} 28.4 \\ (\pm 0.5) \end{gathered}$	$\begin{gathered} 30.5 \\ (\pm 0.5) \end{gathered}$	-	-
Alighting	Simple	29.9	40	22.9	24.4
		(± 0.5)	(± 0.5)	(± 0.3)	(± 0.3)
	Double	30.2	39.6	23.1	24.9
		(± 0.5)	(± 0.5)	(± 0.3)	(± 0.3)
	Quadruple	30.4	41.3		
		(± 0.5)	(± 0.5)	-	-

Table: MAE error at the coach scale for different dataset split

Robust check for load effect $(1 / 2)$

Robust check for load effect $(2 / 2)$

Stability of parameters estimation

[^0]: ${ }^{1}$ In our context door $=$ coach

