Modelling passenger movement within trains of Paris suburban network

Rémi $\operatorname{COULAUD}^{1, 2}$, Mathilde VIMONT^2 , Joshua WOLFF^2

¹Laboratoire de Mathématiques d'Orsay ²SNCF Mobilités/Transilien

18 June 2021

Context	Problem statement	Methodology	Application	Conclusion
•	0000	000	000000	00

Passenger distribution's impacts on railway operations

Figure: Critical door and dwell time

Figure: Transilien "Hector" testing and Zhang et al. (2017) Swedish experimentation

Context	Problem statement
0	0000

Methodology

How Transilien measures trains load (I)?

Figure: From APC measure of alighting (a) and boarding (b) passengers by ${\rm door}^1$

Conservation flow property for train k at station S

$$I_{k,S} = \sum_{s=1}^{S} b_{k,s} - a_{k,s}$$

One issue when replicating it at the coach scale: communicating coaches

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

Step 1: Brian boards coach 3

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

Step 2: where is Brian?

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

Step 3: Brian alights from coach 1

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

How to obtain load by coach?

Context	Problem statement	Methodology	Application	Conclusio
0	0000	000	000000	00

How to obtain load by coach?

To simplify the problem, we consider:

- alighting and boarding passengers density, not individual trajectory
- 2. alighting and boarding passengers at the trip scale, not at the station scale

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

From station scale to trip scale

(b) Alighting passengers

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

From station scale to trip scale

Context	Problem statement	Methodology	Application	Conclusion
0	000●	000	000000	00

State of the art

Figure: From macro to micro modelling

	Variables	Space	Data	Model	Scale
Krstanoski (2014)	boarding	platform	video	multinomial distribution	by zone (doors)
Seriani & Fujiyama (2019)	boarding	PTI	laboratory	multinomial distribution	by zone (layers around door)
Wang et al. (2011)	occupancy	building	no data	Markov chain	by zone (room)
Shelat et al. (2020)	occupancy	building	no data	Markov chain	by zone (room)
Zhang et al. (2008)	alighting and boarding	PTI	survey	cellular automate model	microscopic

To sum up

No exact similar problem in transportation literature but we take inspiration from Krstanoski (2014)

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

Methods: zone definition and notations

Notation	Description
$p_{i,j}$	proportion of passengers boarding coach i and alighting from coach \bar{j}
$X_{i,j}$	shifted passengers boarding coach i and a lighting from coach j
b_i	passengers boarding coach i
a_i	passengers alighting from coach i

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

Methods: goal and hypotheses

Hypotheses:

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

Methods: goal and hypotheses

Hypotheses:

1. Passenger movement between coaches is parametric:

$$X_{i,\cdot} \sim \mathcal{M}(b_i, p_{i,1}, \ldots, p_{i,8})$$

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

Methods: goal and hypotheses

Hypotheses:

1. Passenger movement between coaches is parametric:

$$X_{i,\cdot} \sim \mathcal{M}(b_i, p_{i,1}, \ldots, p_{i,8})$$

2. Shifted passengers between coaches *i* and *j* is:

$$X_{i,j} = b_i p_{i,j}$$

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

Optimisation problem: a **least square** problem under constraints

The ideal problem we want to solve:

min
$$\frac{1}{K} \sum_{k=1}^{K} \sum_{j=1}^{8} \left(a_{j}^{k} - \sum_{i=1}^{8} X_{i,j}^{k} \right)^{2}$$

(1)

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

Optimisation problem: a **least square** problem under constraints

The problem we can solve with plug in hypothesis 2:

$$\min_{p} \quad \frac{1}{K} \sum_{k=1}^{K} \sum_{j=1}^{8} \left(a_{j}^{k} - \sum_{i=1}^{8} b_{i}^{k} p_{i,j} \right)^{2}$$
s.t. $\forall i, j, \ 0 \le p_{i,j} \le 1$
 $\forall i, \sum_{j=1}^{8} p_{i,j} = 1$
(1)

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

Optimisation problem: a **least square** problem under constraints

The problem we can solve with plug in hypothesis 2:

$$\begin{array}{ll} \min_{p} & \frac{1}{K} \sum_{k=1}^{K} \sum_{j=1}^{8} \left(a_{j}^{k} - \sum_{i=1}^{8} b_{i}^{k} p_{i,j} \right)^{2} \\ \text{s.t.} & \forall i, j, \ 0 \le p_{i,j} \le 1 \\ & \forall i, \sum_{j=1}^{8} p_{i,j} = 1 \end{array} \tag{1}$$

Parameters interpretation as an adjacency matrix:

$$p = \begin{pmatrix} p_{8,1} & \cdots & p_{8,8} \\ \vdots & \ddots & \vdots \\ p_{1,1} & \cdots & p_{1,8} \end{pmatrix}$$

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	00000	00

Data from 09/2020 to 04/2021 on lines H and L

	S	N trips	Mean crowding factor ²
L	16	13,927	18 %
Н	14	12,803	22 %

 $^{2}\mathsf{Load}$ divided by the seating capacity

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	00000	00

Benchmark models: from no movement to uniform movement, where does the reality stand?

Name	Parameters	Idea
Static	$\begin{pmatrix} 0 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 0 \end{pmatrix}$	boarding passengers stay where they board
Least square		optimal proportions
Uniform	$\begin{pmatrix} \frac{1}{8} & \cdots & \frac{1}{8} \\ \vdots & \vdots & \vdots \\ \frac{1}{8} & \cdots & \frac{1}{8} \end{pmatrix}$	boarding passengers move with equal chance to each coach

Our reference is a_i compare to $\sum_{j=1}^{8} b_j p_{i,j}$

Context O	Problem statement	Methodology 000	Application 000000	Conclusion

Performance results

		F	I			
	MAE	RMSE	Extreme loads	MAE	RMSE	Extreme loads
Static	86	41	1,059	69	35	121
Uniform	71	30	0	55	26	0
Least square	48	21	4	33	15	1

- Need to move boarding passengers
- A simple model is not enough

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

Estimated parameters and passenger movement

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

Estimated parameters and passenger movement

Context O	Problem statement	Methodology 000	Application 000000	Conclusion

Estimated parameters and passenger movement

- 1. few movements when boarding
- 2. apart from specific coaches

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

Estimated parameters are driven by some specific stations

Figure: Gare du Nord

Figure: Paris Saint-Lazare

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

Crowding factor impacts passenger movement

Figure: Crowding factor impacts passenger movement

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

Crowding factor impacts passenger movement

Static passengers factor: spf =
$$\frac{\sum_{i} p_{i,i}}{\sum_{i,j} p_{i,j}} \in (0, 1)$$

$$p = \begin{pmatrix} p_{8,1} & \cdots & p_{8,8} \\ \vdots & \ddots & \vdots \\ p_{1,1} & \cdots & p_{1,8} \end{pmatrix}$$

- \blacksquare spf = 1: all passengers stay where they board
- $\operatorname{spf} = 0$: all passengers move at least from one coach when they board

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	00

Crowding factor impacts passenger movement

Context	Problem statement	Methodology	Application
0	0000	000	000000

Conclusion and perspectives

Conclusion:

- Passenger movement are important for communicating coaches trains
- Movements are consistent with intuition: few movements far away apart from specific situations
- Crowding factor changes passenger movement behaviour within trains

Conclusion

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	•0

Conclusion and perspectives

Perspectives:

- 1. How RTCI affect passenger movement within trains
- 2. Estimated transition matrices for each station departure
- 3. Cross APC measures with weight measures

Context	Problem statement	Methodology	Application	Conclusion
0	0000	000	000000	0•

Thank you for your attention! Questions?

Bibliography

- Krstanoski, N. (2014), 'Modelling passenger distribution on metro station platform', International Journal for Traffic & Transport Engineering.
- Seriani, S. & Fujiyama, T. (2019), 'Modelling the distribution of passengers waiting to board the train at metro stations', *Journal of Rail Transport Planning & Management*.
- Shelat, S., Daamen, W., Kaag, B., Duives, D. & Hoogendoorn, S. (2020), 'A markov-chain activity-based model for pedestrians in office buildings', *Collective Dynamics*.
- Wang, C., Yan, D. & Jiang, Y. (2011), A novel approach for building occupancy simulation, *in* 'Building simulation', Springer.
- Zhang, Q., Han, B. & Li, D. (2008), 'Modeling and simulation of passenger alighting and boarding movement in beijing metro stations', *Transportation Research Part C: Emerging Technologies*.
- Zhang, Y., Jenelius, E. & Kottenhoff, K. (2017), 'Impact of real-time crowding information: a stockholm metro pilot study', *Public Transport*.

Robust check for scale

		L		Н	
		way	line	way	line
Boarding	Simple	28	29.1	22	23.5
		(±0.5)	(±0.5)	(±0.2)	(±0.3)
	Double	28.2	29.6	22.4	24.3
		(±0.5)	(±0.5)	(±0.2)	(±0.3)
	Quadruple	28.4	30.5		-
		(±0.5)	(±0.5)	-	
Alighting	Simple	29.9	40	22.9	24.4
		(±0.5)	(±0.5)	(±0.3)	(±0.3)
	Double	30.2	39.6	23.1	24.9
		(±0.5)	(±0.5)	(±0.3)	(±0.3)
	Quadruple	30.4	41.3		-
		(±0.5)	(±0.5)	-	

Table: MAE error at the coach scale for different dataset split

References

Robust check for load effect (1/2)

References

Robust check for load effect (2/2)

Stability of parameters estimation