Share of Strategic Alighting Passengers combining Automatic Passenger Counting and OpenStreeMap data

Rémi Coulaud ${ }^{1,2}$, Valentine Mazon ${ }^{2}$, Oded Cats ${ }^{3}$

${ }^{1}$ Laboratoire de Mathématiques d'Orsay
${ }^{2}$ SNCF Voyageurs Transilien
${ }^{3}$ Smart Public Transport Lab

November, 10th 2022

Transilien

3.4M passengers/day, more than 6200 trains/day

Two complementary types of information to guide passenger choice

Real-time crowding information on IENA screen to maximize passenger confort

Paris-ci la Sortie du Métro app to minimize walking distance at destination

Platform position strategies

Departure station

Destination station
\downarrow 里 Sortice \downarrow 旦 Sorice

Platform position strategies

```
Strategic boarding
passengers (SBP)
Minimize walking
distance at departure
```

Departure station

1) 胃 Sortic

Platform position strategies

```
Strategic boarding
passengers (SBP)
Minimize walking distance at departure
```

```
    Strategic alighting
    passengers (SAP)
    Minimize walking
distance at destination
```

Departure station

Destination station

Platform position strategies

```
Strategic boarding
passengers (SBP)
Minimize walking distance at departure
```

```
    Strategic alighting
    passengers (SAP)
    Minimize walking
distance at destination
```

Destination station

Strategic confort

passengers (SCP)
Travel in the
least crowded car

Diversity of strategies

Share of strategic alighting passengers (54\% according to [2], [1])

High quality data \rightarrow new research objectives

Openstreetmap high resolution geographic data
\square
Door by door APC data

Objectives :

1. Going from a stated preference (SP) to a reveal preference (RP) method
2. Initiate a research project on passengers strategies at station platforms

Platform main geographical elements

Geographical point

(2.345856, 48.9334)

1. Platform borders
2. J platform exits position, note ($E_{j, s}$)
3. Train stop point

Train doors position

Space between doors : 13.24 m or 9.91 m

1. Deduce train doors position, note $V_{i, s}$ from train stop point
2. Make the hypothesis that train stop point is reliable

Exit attractiveness

Exit attractiveness : ρ

1. Door i minimal distance to an exit :

$$
d_{i, s}^{*}=\min _{j=1, \ldots, J} d\left(V_{i, s}, E_{j, s}\right)
$$

2. Door i belong to an exit attractiveness area of radius ρ if $d_{i, s}^{*} \leq \rho$
3. One same exit attractiveness for all exits

Share of strategic alighting passengers (SAP)

Alighting distribution $\left(a_{1}, \ldots, a_{l}\right)$ and boarding distribution $\left(b_{1}, \ldots, b_{l}\right)$

The share of strategic alighting passengers is:

$$
\begin{equation*}
S_{A P_{\rho}}=\frac{\sum_{i \in \mathcal{I}_{\rho}} a_{i}}{a_{\bullet}} \tag{1}
\end{equation*}
$$

with \mathcal{I}_{ρ} all the door's index less which belong to an exit attractiveness area.

In brief

1. Capture platform exit $E_{j, s}$, platform border and train stop point localization
2. Project trains doors on platform border using train stop point and rolling stock characteristics
3. Compute door minimal distance d^{*} to exit for all doors
4. Set a radius exit attractiveness ρ
5. Compute share of $S A P_{\rho}$

Case study: scope and data

- May to June 2019 on 6 stations
- Trains toward Paris with two units

■ > 30000 observations

Exit platform localization

Exit attractiveness and SAP

Groslay share of SAP is greater than 54\% with $\rho=10 \mathrm{~m}$ while for Deuil $\rho \geq 20 \mathrm{~m}$ or 30 m

Number of alighting passengers impacts on SAP ($\rho=20 \mathrm{~m}$)

\nearrow number of alighting passengers $\Longrightarrow \searrow$ of SAP

Conclusion and perspectives

Conclusion :

- To obtain a 54% share of SAP, we need to change attractiveness radius depending on the platform design
- The number of alighting passengers reduced the opportunity to be strategic
Perspectives:
- Study the share of strategic boarding passengers (SBP) at origin and the strategic comfort passengers (SCP)
■ Confirm these results on other stations/perimeters
■ Develop a theoretical model to better understand SAP, SBP or SCP

Thank you

Bibliographie I

[1] Fatma Elleuch. Transférabilité d'une modélisation-simulation multi-agents: le comportement inter-gares des voyageurs de la SNCF lors des échanges quai-train. PhD thesis, Conservatoire national des arts et metiers-CNAM, 2019.
[2] Hyunmi Kim, Sohee Kwon, Seung Kook Wu, and Keemin Sohn. Why do passengers choose a specific car of a metro train during the morning peak hours? Transportation research part A: policy and practice, 61:249-258, 2014.

Groslay platform for trains toward Paris

Deuil platform for trains toward Paris

