Method 00000 Results 0000 Perspectives

Share of Strategic Alighting Passengers combining Automatic Passenger Counting and OpenStreeMap data

Rémi $\operatorname{COULAUD}^{1,2}$, Valentine MAZON^2 , Oded CATS^3

¹Laboratoire de Mathématiques d'Orsay ²SNCF Voyageurs Transilien ³Smart Public Transport Lab

November, 10th 2022

Method 00000 Results 0000 Perspectives 0

ransilien 🗫

3.4M passengers/day, more than 6 200 trains/day

Introduction	
0000	

Perspectives 0

Two complementary types of information to guide passenger choice

Real-time crowding information on IENA screen to maximize passenger confort Paris-ci la Sortie du Métro app to minimize walking distance at destination

Method 00000 Results 0000 Perspectives 0

Platform position strategies

Departure station

Destination station

Results 0000 Perspectives 0

Platform position strategies

Strategic boarding passengers (SBP)

Minimize walking

distance at departure

Departure station

Results 0000 Perspectives

Platform position strategies

Strategic boarding passengers (SBP)

Minimize walking

distance at departure

Strategic alighting passengers (SAP) Minimize walking distance at destination

Departure station

Destination station

Results 0000 Perspectives

Platform position strategies

Strategic boarding passengers (SBP) Minimize walking

distance at departure

Strategic alighting passengers (SAP) Minimize walking distance at destination

Departure station

Destination station

Strategic confort passengers (SCP) Travel in the

least crowded car

Introduction	
00000	

Results

Perspectives 0

Diversity of strategies

Introduction	Method	Results	Perspectives
0000●	00000	0000	0

High quality data \rightarrow new research objectives

Openstreetmap high resolution geographic data

Door by door APC data

Objectives :

- 1. Going from a stated preference (SP) to a reveal preference (RP) method
- 2. Initiate a research project on passengers strategies at station platforms

Method •0000 Results

Perspectives

Platform main geographical elements

Geographical point (2.345856, 48.9334)

1. Platform borders

- J platform exits position, note (*E_{j,s}*)
- 3. Train stop point

Method 00000 Results

Perspectives

Train doors position

Space between doors : 13.24m or 9.91m

- Deduce train doors position, note V_{i,s} from train stop point
- 2. Make the hypothesis that train stop point is reliable

Results

Perspectives

Exit attractiveness

Exit attractiveness : ρ

1. Door *i* minimal distance to an exit :

$$d_{i,s}^* = \min_{j=1,\ldots,J} d(V_{i,s}, E_{j,s})$$

- 2. Door *i* belong to an exit attractiveness area of radius ρ if $d^*_{i,s} \leq \rho$
- 3. One same exit attractiveness for all exits

Alighting distribution (a_1, \ldots, a_l) and boarding distribution (b_1, \ldots, b_l)

The share of strategic alighting passengers is :

$$SAP_{\rho} = rac{\sum_{i \in \mathcal{I}_{\rho}} a_i}{a_{\bullet}},$$
 (1)

with \mathcal{I}_{ρ} all the door's index less which belong to an exit attractiveness area.

Introduction	Method	Results	Perspectives
00000	○○○○●	0000	O
In brief			

- 1. Capture platform exit $E_{j,s}$, platform border and train stop point localization
- 2. Project trains doors on platform border using train stop point and rolling stock characteristics
- 3. Compute door minimal distance d^* to exit for all doors
- 4. Set a radius exit attractiveness ρ
- **5**. Compute share of SAP_{ρ}

Method 00000 Results ●000 Perspectives

Case study: scope and data

Introduction
00000

Results 0●00 Perspectives 0

Exit platform localization

Nearest door for each exit

Introduction
00000

Results 00●0 Perspectives

Exit attractiveness and SAP

Introduction	Method	Results	Perspectives
00000	00000	000●	0

Number of alighting passengers impacts on SAP (ρ =20m)

 \nearrow number of alighting passengers $\Longrightarrow \searrow$ of SAP

Introduction
00000

Results

Conclusion and perspectives

Conclusion :

- To obtain a 54% share of SAP, we need to change attractiveness radius depending on the platform design
- The number of alighting passengers reduced the opportunity to be strategic

Perspectives :

- Study the share of strategic boarding passengers (SBP) at origin and the strategic comfort passengers (SCP)
- Confirm these results on other stations/perimeters
- Develop a theoretical model to better understand SAP, SBP or SCP

Thank you

Bibliographie I

- Fatma Elleuch. Transférabilité d'une modélisation-simulation multi-agents: le comportement inter-gares des voyageurs de la SNCF lors des échanges quai-train. PhD thesis, Conservatoire national des arts et metiers-CNAM, 2019.
- [2] Hyunmi Kim, Sohee Kwon, Seung Kook Wu, and Keemin Sohn. Why do passengers choose a specific car of a metro train during the morning peak hours? *Transportation research part A: policy and practice*, 61:249–258, 2014.

Groslay platform for trains toward Paris

Deuil platform for trains toward Paris