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3.4M passengers/day, more than 6 200 trains/day
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Perimeter and data

Passenger flow measure: APC (PF)

2019 2022

100% 100%

80% 100%

Coverage rate in
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Dwell time for commuter trains
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arrival
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time

first
passenger

last
passenger

doors closing
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alighting and
boarding timetechnical time technical time

operational
margin

theoretical
arrival
time

theoretical dwell time

theoretical times are fixed 2 years in advance

20-30% of the total travel time is spent at stops
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Passenger impact on dwell time in a railway context

Lam et al. [10] build a metro dwell time regression model using
only passenger flow variables (PF)
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Arrival delay effect on dwell time in a railway context

Kecman & Goverde [9] build a random forests using only railway
operation variables (RO)
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A unique data set with accurate PF + RO + M variables

Variable Domain Notation

Observed dwell time {0, 2, ..., 180} Y obs = dobs − aobs

PF

Boarding numbers {0, 1, . . .} B

Alighting numbers {0, 1, . . .} A

Train crowding [0, 2] C = L/cap

M Critical door affluence {0, 1, . . .} M

RO

Theoretical dwell time {0, 10, ..., 180} Y theo = dtheo − atheo

Arrival delay [−600, 600] ∆a = aobs − atheo

Type {simple, double} T

Only Palmqvist et al. [13] and Cornet et al. [2] have access to RO+PF
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Global performance: mean absolute errors (MAE)

Lines

Variables PF RO RO+PF+M PF RO RO+PF+M

1. LM: with interactions 13.3 8.8 8.3 12.2 8.8 8.3

2. Random forests 13.7 8.4 8.0 12.5 8.5 8.0

Variables: PF ≪ RO ≤ RO+PF+M

Perimeter: line L is more challenging than line H
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Local performance

Difference in absolute error: |Y − ŶRO | − |Y − ŶRO+PF+M |
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Local performance by punctuality regimes

A passenger flow
effect on late
trains which
confirms Pedersen
et al. [14] and
Medeossi & Nash
[12] intuitions
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Variables importance
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Modelling → forecasting

Ŷt+1 = f̂ (At+1,Bt+1,Ct+1,∆At+1︸ ︷︷ ︸
not known at t+1

,Y theo
t+1,Tt+1, . . .︸ ︷︷ ︸
known at t+1

)

Strategy : Forecast At+1, Bt+1, Ct+1 and ∆At+1 with an
auto-regressive strategy + plug in

also used to forecast Yt+1
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Real-time information

Real-time crowding and delay information require forecasting
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Bi-autoregressive and non-stationary model

Inspired from Corman & Kecman [1], Bayesian forecasting
model using the recent past along the train ride and the recent
past at the station

xk,s = β0,0
k,s +

P∑

p=1

βp,0
k,s xk−p,s +

Q∑

q=1

β0,q
k,s xk,s−q + εk,s
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Pattern and stationary model

xk,s = β0,0
k[M],s +

P∑

p=1

βp,0
k[M],sxk−p,s +

Q∑

q=1

β0,q
k[M],sxk,s−q + εk,s

Pattern models are in between Li et al. [11] too frugal dwell time
models and Corman & Kecman [1] too complex delays models
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Global performance: mean absolute errors (MAE)

Models
Railway
Operation
(RO)

Passenger Flow (PF)

Name L-shape
Number of
parameters

Y obs

[s]
∆A
[s]

A
[pas]

B
[pas]

L
[pas]

P = Q = 0 337 9.7 35.8 10 21 69Non-

stationary P = Q = 1 956 9.5 16.1 9 18 20

P = Q = 1 417 9.3 18.6 10 19 23

P = Q = 2 455 9.2 18.1 9 19 23
Semi-

stationary
P = Q = 3 482 9.2 18.1 9 18 23

P = Q = 1 80 9.3 16.2 10 21 27

P = Q = 2 118 9.2 15.8 8 20 27Stationary

P = Q = 3 145 9.2 15.9 8 20 27

For ∆A and L: (P = Q ≥ 1) ≫ (P = Q = 0)

Stationary ≥ non-stationary for (RO)

Semi-stationary ≈ non-stationary for (PF)
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Neighbourhood automatic selection

Stop specific
L-shape
neighbourhood

B needs a
shallower
neighbourhood
than ∆A
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Real-time crowding information (RTCI)

RTCI on station screen
based on APC
(alighting and

boarding passengers)
100m open gangway units
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From station scale to trip scale

Alighting and
boarding
distribution
imbalance at
the trip scale
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Zone definition and notations

Zone 1 Zone 2

b•,1 b•,2

a•,1 a•,2

p1,2

p2,1

p1,1 p2,2

Notation Description

pi ,j probability to board zone i to move to zone j

b•,i number of passengers boarding zone i

a•,i number of passengers alighting from zone i
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Models

Minimum least square (MLS)

argmin
P

∑

(k,d)∈N

∥∥∥ak,d
• − bk,d

• P
∥∥∥
2

2

Maximum likelihood estimation (MLE)

argmax
P

∑

(k,d)∈N

I∑

j=1

ak,d•,j log

(
I∑

i=1

rk,d•,i pi ,j

)

under the constraint of P being stochastic
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Global performance

Front Back

Models mae [pas] mae [pas]

Without
movement

10.9 17.5

P̂MLS 6 8.5

P̂MLE 6 8.5

Without movement ≪ P̂MLS = P̂MLE
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Transition matrix
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Models: station scale

Z1

L1

A2

Z2

L2

...

...

...

ZS−1

LS−1

AS−1 AS

b1 b2 ... bS−1

Zs hidden passenger movements at station s

Ls hidden load after departure at station s
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Main contributions

Dwell time modelling:

Rémi Coulaud, Christine Keribin, and Gilles Stoltz. Modeling dwell time in a data-rich railway environment: with
operations and passenger flows data.
Re-submitted Transportation Research Part C (TRC) after corrections. Preprint accessible here
hal.archives-ouvertes.fr/hal-03651835/, 2022

Rémi Coulaud and Martine Grangé. Modélisation de l’impact des flux voyageurs sur les temps d’échange pour la
simulation des marges d’exploitation : une application à la ligne N de transilien.
In 4èmes Rencontres Francophones Transport Mobilité (RFTM), 2022

Short-term forecasting:

Rémi Coulaud, Christine Keribin, and Gilles Stoltz. One-station-ahead forecasting of dwell time, arrival delay and
passenger flows on trains equipped with automatic passenger counting (apc) device.
In 13th World Congress on Rail Research (WCRR), 2022

Passenger’s movement on board:

Rémi Coulaud and Mathilde Vimont. How to use APC data to model passenger movement on-board? An
application to Paris suburban train network.
In 8th International Symposium On Transport Network Reliability (INSTR), 2021

Rémi Coulaud, Valentine Mazon, Laura Sanchis, and Oded Cats. Share of strategic alighting passengers combining
automatic passenger counting and OpenStreeMap.
In Conference on Advanced Systems in Public Transport (CASPT), 2022

hal.archives-ouvertes.fr/hal-03651835/
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Perspectives

Dwell time during tactical phase:

Propose an extended definition of critical door

Develop a method to compute theoretical dwell time margins

Dwell time during operational phase:

Forecast dwell time with a plug-in strategy

Test wider forecasting ranges (s + 2, s + 3, s + 4, . . .)

Write a literature review on short-term crowding forecasting

Passenger’s information and behaviour:

Test the station scale model
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Thank you
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Conditional mean
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Variable importance: mean decrease accuracy

Bootstrap data with replacement into T data sets

Compute a random forest based on each of these T
bootstrapped data sets

Randomly permuting the values of the variable of interest

Compute on out-of-bag observations the difference of average
squared error between permuted and original data

mdaj
p∑

i=1

mdai
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Cross-validation strategy

Training set

Full data

Test set

(1)

M(1)(h1)
...

M(1)(hG)

mae(1)(h1)
...

mae(1)(hG)

(2)

M(2)(h1)
...

M(2)(hG)

mae(2)(h1)
...

mae(2)(hG)

...

(5)

M(5)(h1)
...

M(5)(hG)

mae(5)(h1)
...

mae(5)(hG)

1

Training folds

Validation folds

Training set Test set

2 hg∗ = argmin
g∈{1,...,G}

1

5

5∑

i=1

mae(i)(hg)

3 M(hg∗) 4 mae(hg∗)
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Line L v.s. line H
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Line H - local performance by regimes
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Regression tree

Only alighting and boarding passengers number to
explain dwell time

Three different dwell times for three different regions
and two splits
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An illustration of critical door effect

arrival time
departure

time

Door 1

Door 2

Door 3

Door 4

Door 5

Door 6

Door 7

Door 8

Dwell time

Technical time
Alighting and
boarding time

Operationnal mar-
gins
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Very accurate automatic passenger counting data
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Consistency of the neighbourhood order

St−Denis

Épinay−Villetaneuse

La Barre−Ormesson

Enghien−les−Bains

Champ−de−Courses−d'Enghien

Ermont−Eaubonne

Cernay

Franconville−Plessis−Bouchard

Montigny−Beauchamp

Pierrelaye

St−Ouen−l'Aumône−Liesse

St−Ouen−l'Aumône

Pontoise

Deuil−Montmagny

Groslay

Sarcelles−St−Brice

Écouen−Ézanville

Domont

Bouffémont−Moisselles

Montsoult−Maffliers

1 2 3 4 5

No stop

(0.9,1]

(0.8,0.9]

(0.7,0.8]

(0.6,0.7]

(0.5,0.6]

(0.4,0.5]

1 2 3 4 5 1 2 3 4 5

No stop

(0.9,1]

(0.8,0.9]

(0.7,0.8]

(0.6,0.7]

(0.5,0.6]
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SNCF forecasting model
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Data quality - I

Train
connect

Chatelet

API
Comptage

≈ 20s après
le départ
de la gare

Opérationnelle

Post-opérationelle
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Data quality - II
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Transition matrices comparisons
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Probabilistic model at the trip scale - I

p1,1 p1,jpi,1
pI,1

pI,j

pI,I

b•,1 ... b•,i ... b•,I

A•,1 ... A•,j ... A•,I

p1,I
pi,j pi,I

We define :
U•,i ∼ M(b•,i , pi ,1, . . . , pi ,I ).

Then, we define:

A• =
I∑

j=1

U•,j .
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Probabilistic model at the trip scale - II

Approximation

The random law of A• is approached by: M(b•,•, π•,1, . . . , π•,I )

with π•,j =
∑I

i=1 r•,ipi ,j where r•,i = b•,i/b•,•.

The probability distribution of the alighting numbers is :

P(A• = a•;b•) =
I∏

j=1

b•,•!

a•,j !

(
I∑

i=1

r•,ipi ,j

)a•,j

.
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Approximation quality
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Probabilistic model at the station scale - hypothesis

(A0) Trips are repeated according to day d and train k.

For a trip (k, d) :

(A1a) Passenger movements conditionally to boarding follow :

W k,d
s ∼ M(bk,d

s,• , π
k,d
s,1 , . . . , π

k,d
s,I ), s = 1, . . . , S − 1,

where πk,d
s,j =

∑I
i=1 r

k,d
s,i ps,i,j with r k,ds,i = bk,d

s,i /b
k,d
s,• .

(A1b) Passenger movements at the different stations W k,d
s , s = 1, . . . , S − 1,

are independent to boarding and other passenger movement’s at other
stations s ′ ̸= s.

(A2a) The probability distribution of alighting numbers of zone i at station s
conditionally to the past is only dependant of the load entering station s :

P
(
Ak,d

s,i

∣∣∣ak,d2:(s−1),i , z
k,d
1:(s−1),i

)
= P

(
Ak,d

s,i

∣∣∣ℓk,ds−1,i

)
, s = 2, . . . , S .

(A2b) The alighting numbers of zone i at station s conditionally to load ℓk,ds−1,i

leaving station s − 1 follow a binomial distribution :

Ak,d
s,i ∼ B(ℓk,ds−1,i , αs,i ), s = 2, . . . , S − 1.

(A2c) For all stations s, the vector of alighting numbers Ak,d
s for this station is

independent conditionally to the load ℓk,ds .
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Probabilistic model at the station scale - Log-likelihood

P
(
a2:S ,w1:(S−1);b1:(S−1),θ

)

=
S∏

s=2

(
I∏

i=1

(
ℓs−1,i

as,i

)
(αs,i )

as,i (1− αs,i )
(ℓs−1,i−as,i )

)

︸ ︷︷ ︸
P(as |ℓs−1;θ)(

I∏

i=1

(bs−1,•!)

(ws−1,i !)
(πs−1,i )

ws−1,i

)

︸ ︷︷ ︸
P(ws−1;bs−1,θ)

. (1)
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Proof Log-likelihood - I

At the terminal station S , we have :

P
(
a2:S ,w1:(S−1);b1:(S−1),θ

)

=P
(

aS︸︷︷︸
Station S

∣∣∣ a2:(S−1),w1:(S−1)︸ ︷︷ ︸
values until station S-1

;b1:(S−1),θ
)

P
(
a2:(S−1),w1:(S−1);b1:(S−1),θ

)
.

Then, we have :

P
(
a2:(S−1),w1:(S−1);b1:(S−1),θ

)

= P
(
a2:(S−1),w1:(S−2);b1:(S−1),θ

)
× P

(
wS−1;b1:(S−1),θ

)
,

simplified with hypothesis (A1b) :

P
(
wS−1;b1:(S−1),θ

)
= P

(
wS−1;bS−1,θ

)
.
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Proof Log-likelihood - II

We apply Bayes rules to the left :

P
(
a2:(S−1),w1:(S−2);b1:(S−1),θ

)

= P
(

aS−1︸︷︷︸
Station S-1

∣∣∣ a2:(S−2),w1:(S−2)︸ ︷︷ ︸
Until station S-2

;b1:(S−2),θ
)

P
(

a2:(S−2),w1:(S−2);b1:(S−1),θ
)
.

Plug in the right term :

P
(
a2:(S−1),w1:(S−1);b1:(S−1),θ

)

= P
(

aS−1︸︷︷︸
Station S-1

∣∣∣ a2:(S−2),w1:(S−2)︸ ︷︷ ︸
Until station S-2

;b1:(S−2),θ
)

× P
(
wS−1;b1:(S−1),θ

)
× P

(
a2:(S−2),w1:(S−2);b1:(S−1),θ

)
.
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Proof Log-likelihood - III

Using load ℓs−1 at station s and hypothesis (A2a) :

P
(
as
∣∣∣w1:(s−1);b1:(s−1),θ

)
= P

(
as
∣∣∣ℓs−1;θ

)
.

With (A2c), we obtain :

P
(
as
∣∣∣ℓs−1;θ

)
=

I∏

i=1

P
(
as,i

∣∣∣ℓs−1,i ;θ
)
.

To sum up :

P
(
a2:S ,w1:(S−1);b1:(S−1),θ

)

=
S∏

s=2

(
I∏

i=1

P
(
as,i

∣∣∣ℓs−1,i ;θ
))

P
(
ws−1;bs−1,θ

)
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Platform position strategies

Departure station Destination station

Strategic boarding

passengers (SBP)

Minimize walking

distance at departure

Strategic alighting

passengers (SAP)

Minimize walking

distance at destination

Strategic confort

passengers (SCP)

Travel in the

least crowded car
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Platform main geographical elements

Geographical point :

(2.345856, 48.9334)

1. Platform borders

2. J platform exits
position, note
(Ej,s)

3. Train stop point
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Train doors position

Space between doors :
13.24m or 9.91m

1. Deduce train
doors position,
note Vi,s from
train stop point

2. Make the
hypothesis that
train stop point
is reliable
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Exit attractiveness

Exit attractiveness : ρ

1. Door i minimal distance to an
exit :

d∗
i,s = min

j=1,...,J
d(Vi,s ,Ej,s)

2. Door i belong to an exit
attractiveness area of radius ρ
if d∗

i,s ≤ ρ

3. One same exit attractiveness
for all exits
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Share of strategic alighting passengers (SAP)

Alighting distribution (a1, . . . , aI ) and boarding distribution (b1, . . . , bI )

The share of strategic alighting passengers is :

SAPρ =

∑
i∈Iρ ai

a•
, (2)

with Iρ all the door’s index which belong to an exit attrac-
tiveness area.
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