Modeling and forecasting of railway operation variables and passenger flows for dense traffic areas

PhD Defence Rémi COULAUD supervised by Gilles STOLTZ and Christine KERIBIN

30th November 2022

Dwell time modelling

Short-term forecasting

Passenger's movements on board

Conclusion

ransilien 🚥

3.4M passengers/day, more than 6 200 trains/day

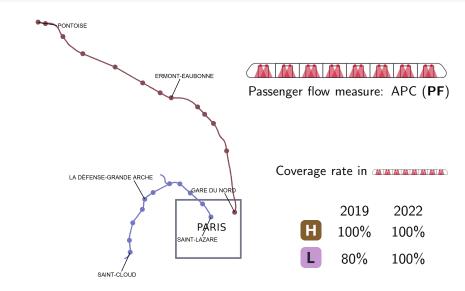
Dwell time modelling

Short-term forecasting

Passenger's movements on board

Conclusion 000

Perimeter and data



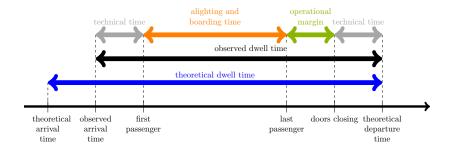
Dwell time modelling

Short-term forecasting

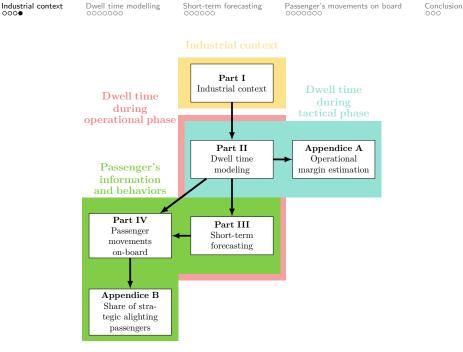
Passenger's movements on board

Conclusion 000

Dwell time for commuter trains



- theoretical times are fixed 2 years in advance
- 20-30% of the total travel time is spent at stops



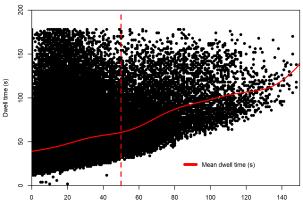
Short-term forecasting

Passenger's movements on board 0000000

Conclusion

Passenger impact on dwell time in a railway context

Lam *et al.* [10] build a metro dwell time regression model using only passenger flow variables (**PF**)



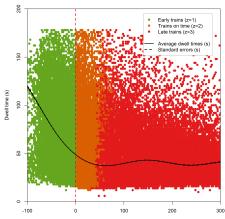
Short-term forecasting

Passenger's movements on board 0000000

Conclusion

Arrival delay effect on dwell time in a railway context

Kecman & Goverde [9] build a random forests using only railway operation variables $({\bf RO})$



Dwell time modelling

Short-term forecasting

Passenger's movements on board 0000000

Conclusion

A unique data set with accurate PF + RO + M variables

	Variable	Domain	Notation
	Observed dwell time	$\{0, 2,, 180\}$	$Y^{ m obs}=d^{ m obs}-a^{ m obs}$
	Boarding numbers	$\{0,1,\ldots\}$	В
\mathbf{PF}	Alighting numbers	$\{0, 1, \ldots\}$	A
	Train crowding	[0, 2]	$C = L/\mathrm{cap}$
\mathbf{M}	Critical door affluence	$\{0, 1, \ldots\}$	М
	Theoretical dwell time	$\{0, 10,, 180\}$	$Y^{\rm theo} = d^{\rm theo} - a^{\rm theo}$
RO	Arrival delay	[-600, 600]	$\Delta a = a^{\rm obs} - a^{\rm theo}$
	Туре	$\{\text{simple, double}\}$	Т

Only Palmqvist et al. [13] and Cornet et al. [2] have access to RO+PF

Dwell time modelling

Short-term forecasting

Passenger's movements on board 0000000

Conclusion

Global performance: mean absolute errors (MAE)

Lines		L			H			
Variables	PF	RO	RO+PF+M	\mathbf{PF}	RO	RO+PF+M		
1. LM: with interactions	13.3	8.8	8.3	12.2	8.8	8.3		
2. Random forests	13.7	8.4	8.0	12.5	8.5	8.0		

• Variables: $PF \ll RO \le RO + PF + M$

Perimeter: line L is more challenging than line H

Dwell time modelling

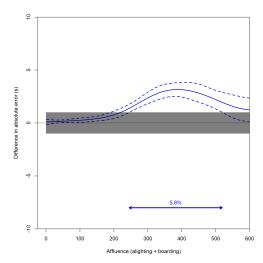
Short-term forecasting

Passenger's movements on board

Conclusion

Local performance

Difference in absolute error: $|Y - \hat{Y}_{RO}| - |Y - \hat{Y}_{RO+PF+M}|$



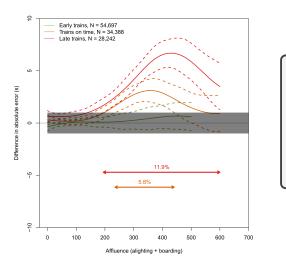
Dwell time modelling

Short-term forecasting

Passenger's movements on board

Conclusion

Local performance by punctuality regimes



A passenger flow effect on late trains which confirms Pedersen *et al.* [14] and Medeossi & Nash [12] intuitions

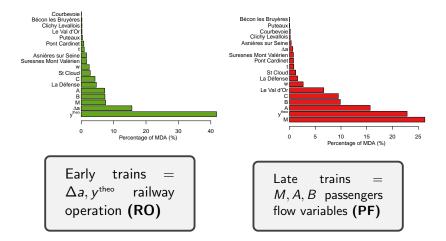
Dwell time modelling

Short-term forecasting

Passenger's movements on board 0000000

Conclusion 000

Variables importance



Dwell time modelling

Short-term forecasting •00000 Passenger's movements on board

Conclusion 000

$\mathsf{Modelling} \to \mathsf{forecasting}$

$$\hat{Y}_{t+1} = \hat{f}(\underbrace{A_{t+1}, B_{t+1}, C_{t+1}, \Delta A_{t+1}}_{\text{not known at } t+1}, \underbrace{Y_{t+1}^{\text{theo}}, T_{t+1}, \ldots}_{\text{known at } t+1})$$

Strategy : Forecast A_{t+1} , B_{t+1} , C_{t+1} and ΔA_{t+1} with an auto-regressive strategy + plug in

also used to forecast Y_{t+1}

Dwell time modelling

Short-term forecasting ○●○○○○ Passenger's movements on board 0000000

Conclusion 000

Real-time information

Real-time crowding and delay information require forecasting

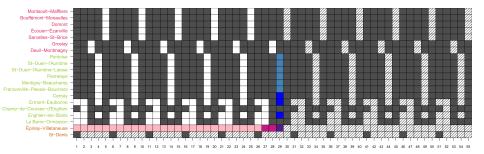
Dwell time modelling

Short-term forecasting 00000

Passenger's movements on board

Conclusion

Bi-autoregressive and non-stationary model



Inspired from Corman & Kecman [1], Bayesian forecasting model using the recent past along the train ride and the recent past at the station

$$x_{k,s} = \beta_{k,s}^{0,0} + \sum_{p=1}^{P} \beta_{k,s}^{p,0} x_{k-p,s} + \sum_{q=1}^{Q} \beta_{k,s}^{0,q} x_{k,s-q} + \varepsilon_{k,s}$$
14/27

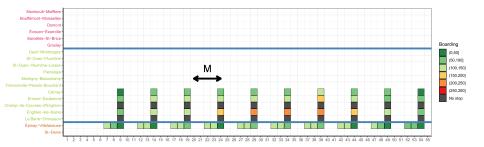
Dwell time modelling

Short-term forecasting $000 \bullet 00$

Passenger's movements on board

Conclusion

Pattern and stationary model



$$x_{k,s} = \beta_{k[M],s}^{0,0} + \sum_{p=1}^{P} \beta_{k[M],s}^{p,0} x_{k-p,s} + \sum_{q=1}^{Q} \beta_{k[M],s}^{0,q} x_{k,s-q} + \varepsilon_{k,s}$$

Pattern models are in between Li *et al.* [11] too frugal dwell time models and Corman & Kecman [1] too complex delays models

Dwell time modelling

Short-term forecasting

Passenger's movements on board 0000000

Conclusion

Global performance: mean absolute errors (MAE)

Models			Railway Operation (RO)		Passenger Flow (PF)		
Name	L-shape	Number of parameters	Y ^{obs} [s]	∆ <i>A</i> [s]	A [pas]	B [pas]	L [pas]
Non-	P=Q=0	337	9.7	35.8	10	21	69
stationary	P=Q=1	956	9.5	16.1	9	18	20
Semi-	P=Q=1	417	9.3	18.6	10	19	23
	P=Q=2	455	9.2	18.1	9	19	23
stationary	P=Q=3	482	9.2	18.1	9	18	23
	P=Q=1	80	9.3	16.2	10	21	27
Stationary	P=Q=2	118	9.2	15.8	8	20	27
	P=Q=3	145	9.2	15.9	8	20	27
For ΔA and L : $(P = Q \ge 1) \gg (P = Q = 0)$							

- Stationary ≥ non-stationary for (RO)
- Semi-stationary \approx non-stationary for (PF)

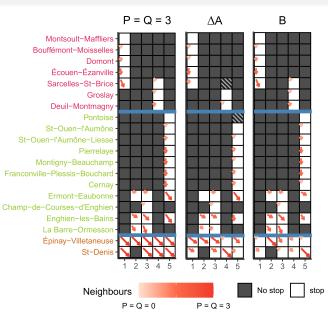
Dwell time modelling

Short-term forecasting 00000●

Passenger's movements on board 0000000

Conclusion

Neighbourhood automatic selection



- Stop specific
 L-shape
 neighbourhood
- B needs a shallower neighbourhood than ΔA

Dwell time modelling

Short-term forecasting

Passenger's movements on board • 000000 Conclusion

Real-time crowding information (RTCI)

RTCI on station screen based on APC (alighting and boarding passengers)

100m open gangway units

Dwell time modelling

Short-term forecasting

Passenger's movements on board

Alighting and

distribution

imbalance at

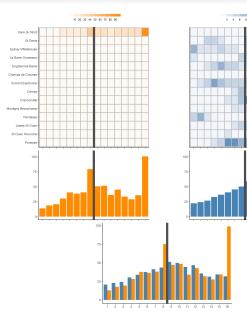
the trip scale

boarding

Conclusion

19/27

From station scale to trip scale



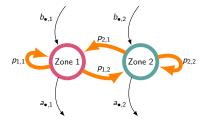
Dwell time modelling

Short-term forecasting

Passenger's movements on board

Conclusion 000

Zone definition and notations



Notation	Description
	· · · · · · · · · · · · · · · · · · ·
<i>p</i> _{<i>i</i>,<i>j</i>}	probability to board zone <i>i</i> to move to zone <i>j</i>
b _{●,i}	number of passengers boarding zone <i>i</i>
a _{∙,i}	number of passengers alighting from zone <i>i</i>

Dwell time modelling

Short-term forecasting

Passenger's movements on board

Conclusion 000

Models

Minimum least square (MLS)

$$\underset{\boldsymbol{P}}{\operatorname{argmin}} \quad \sum_{(k,d)\in\mathcal{N}} \left\| \boldsymbol{a}_{\bullet}^{k,d} - \boldsymbol{b}_{\bullet}^{k,d} \boldsymbol{P} \right\|_{2}^{2}$$

Maximum likelihood estimation (MLE)

$$\underset{\boldsymbol{P}}{\operatorname{argmax}} \quad \sum_{(k,d)\in\mathcal{N}}\sum_{j=1}^{l}a_{\bullet,j}^{k,d}\log\left(\sum_{i=1}^{l}r_{\bullet,i}^{k,d}p_{i,j}\right)$$

under the constraint of **P** being stochastic

Dwell time modelling

Short-term forecasting

Passenger's movements on board 0000000

Conclusion 000

Global performance

	Front	Back
Models	MAE [pas]	MAE [pas]
Without movement	10.9	17.5
$\widehat{oldsymbol{ heta}}_{ ext{MLS}}$	6	8.5
$\widehat{oldsymbol{ heta}}_{ ext{MLE}}$	6	8.5

Without movement
$$\ll \widehat{oldsymbol{P}}_{\mathrm{MLS}} = \widehat{oldsymbol{P}}_{\mathrm{MLE}}$$

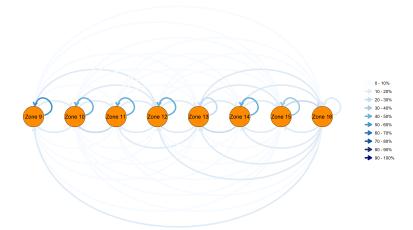
Dwell time modelling

Short-term forecasting 000000

Passenger's movements on board 0000000

Conclusion 000

Transition matrix



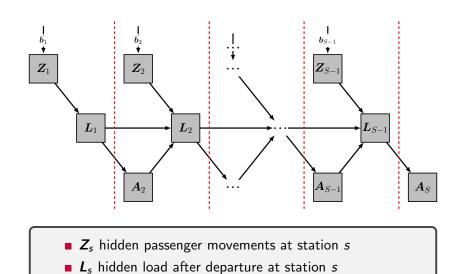
Dwell time modelling

Short-term forecasting

Passenger's movements on board

Conclusion 000

Models: station scale



Short-term forecasting

Passenger's movements on board

Main contributions

Dwell time modelling:

Rémi Coulaud, Christine Keribin, and Gilles Stoltz. Modeling dwell time in a data-rich railway environment: with operations and passenger flows data. Re-submitted *Transportation Research Part C* (TRC) after corrections. Preprint accessible here hal.archives-ouvertes.fr/hal-03651835/, 2022

Rémi Coulaud and Martine Grangé. Modélisation de l'impact des flux voyageurs sur les temps d'échange pour la simulation des marges d'exploitation : une application à la ligne N de transilien. In 4èmes Rencontres Francophones Transport Mobilité (RFTM), 2022

Short-term forecasting:

Rémi Coulaud, Christine Keribin, and Gilles Stoltz. One-station-ahead forecasting of dwell time, arrival delay and passenger flows on trains equipped with automatic passenger counting (apc) device. In 13th World Congress on Rail Research (WCRR), 2022

Passenger's movement on board:

Rémi Coulaud and Mathilde Vimont. How to use APC data to model passenger movement on-board? An application to Paris suburban train network. In 8th International Symposium On Transport Network Reliability (INSTR), 2021

Rémi Coulaud, Valentine Mazon, Laura Sanchis, and Oded Cats. Share of strategic alighting passengers combining automatic passenger counting and OpenStreeMap. In Conference on Advanced Systems in Public Transport (CASPT), 2022

Short-term forecasting 000000

Passenger's movements on board

Perspectives

Dwell time during tactical phase:

- Propose an extended definition of critical door
- Develop a method to compute theoretical dwell time margins

Dwell time during operational phase:

- Forecast dwell time with a plug-in strategy
- Test wider forecasting ranges (s + 2, s + 3, s + 4, ...)
- Write a literature review on short-term crowding forecasting

Passenger's information and behaviour:

Test the station scale model

Dwell time modelling

Short-term forecasting 000000

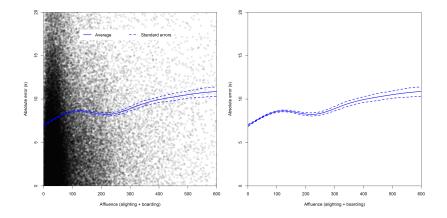
Passenger's movements on board

Conclusion ○○●

Thank you

Dwell time modeling •000000	Dwell time margins 0	Short-term forecasting 00	Passenger's movements on board	SAP 00000	References

Conditional mean



Variable importance: mean decrease accuracy

- Bootstrap data with replacement into T data sets
- Compute a random forest based on each of these T bootstrapped data sets
- Randomly permuting the values of the variable of interest
- Compute on out-of-bag observations the difference of average squared error between permuted and original data

$$\frac{\text{MDA}_j}{\sum_{i=1}^{p} \text{MDA}_i}$$

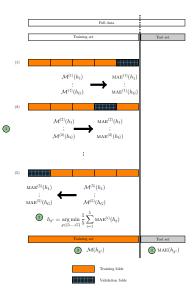
Dwell time margins

Short-term forecasting

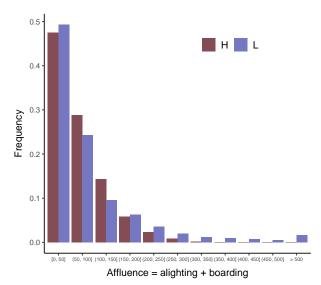
Passenger's movements on board 0000000000

SAP References

Cross-validation strategy

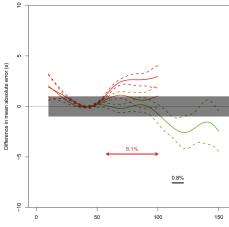


Line L v.s. line H



4/28

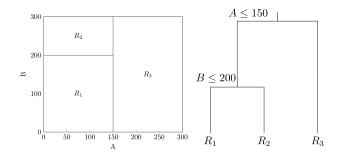
Line H - local performance by regimes



Dwell time (s)

References

Dwell time modeling 00000€0	Dwell time margins 0	Short-term forecasting	Passenger's movements on board	SAP 00000	References
Pagrossion	troo				

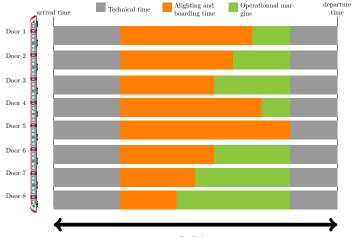


- Only alighting and boarding passengers number to explain dwell time
- Three different dwell times for three different regions and two splits

Passenger's movements on board 0000000000

SAP References

An illustration of critical door effect

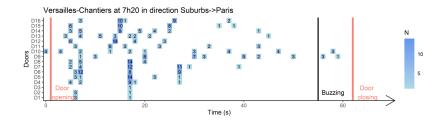


Dwell time

Passenger's movements on board 0000000000

SAP References

Very accurate automatic passenger counting data

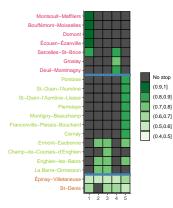


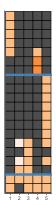
Short-term forecasting

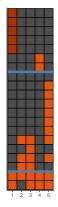
Passenger's movements on board 0000000000

SAP References

Consistency of the neighbourhood order





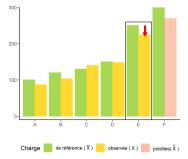


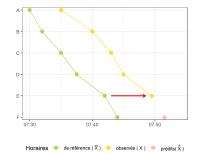
 $\underset{O \bullet}{\mathsf{Short-term forecasting}}$

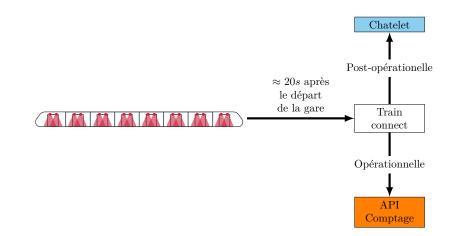
Passenger's movements on board 0000000000

SAP References

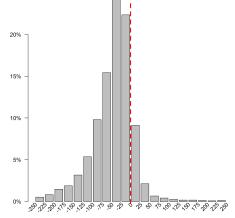
SNCF forecasting model







Dwell time modeling	Dwell time margins 0	Short-term forecasting	Passenger's movements on board ○●○○○○○○○○	SAP 00000	References



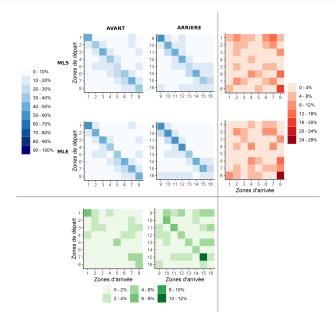
Dwell time margins

Short-term forecasting

Passenger's movements on board

SAP References

Transition matrices comparisons



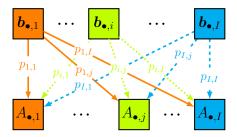
Dwell time margins

Short-term forecasting

Passenger's movements on board

SAP References

Probabilistic model at the trip scale - I



We define :

$$\boldsymbol{U}_{ullet,i} \sim \mathcal{M}(b_{ullet,i},p_{i,1},\ldots,p_{i,I}).$$

Then, we define:

$$\boldsymbol{A}_{ullet} = \sum_{j=1}^{l} \boldsymbol{U}_{ullet,j}.$$

Probabilistic model at the trip scale - II

Approximation

The random law of \mathbf{A}_{\bullet} is approached by: $\mathcal{M}(b_{\bullet,\bullet}, \pi_{\bullet,1}, \dots, \pi_{\bullet,I})$ with $\pi_{\bullet,j} = \sum_{i=1}^{I} r_{\bullet,i} p_{i,j}$ where $r_{\bullet,i} = b_{\bullet,i} / b_{\bullet,\bullet}$.

The probability distribution of the alighting numbers is :

$$\mathbb{P}(\boldsymbol{A}_{\bullet} = \boldsymbol{a}_{\bullet}; \boldsymbol{b}_{\bullet}) = \prod_{j=1}^{l} \frac{\boldsymbol{b}_{\bullet,\bullet}!}{\boldsymbol{a}_{\bullet,j}!} \left(\sum_{i=1}^{l} r_{\bullet,i} p_{i,j}\right)^{\boldsymbol{a}_{\bullet,j}}$$

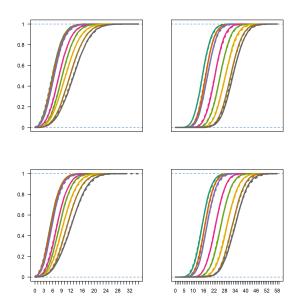
Dwell time margins

Short-term forecasting

Passenger's movements on board

SAP References

Approximation quality



Probabilistic model at the station scale - hypothesis

 (A_0) Trips are repeated according to day d and train k. For a trip (k, d):

 (A_{1a}) Passenger movements conditionally to boarding follow :

$$\boldsymbol{W}^{k,d}_{s} \sim \mathcal{M}(\boldsymbol{b}^{k,d}_{s,ullet},\pi^{k,d}_{s,1},\ldots,\pi^{k,d}_{s,I}), \ \ s=1,\ldots,S-1,$$

where $\pi_{s,i}^{k,d} = \sum_{i=1}^{l} r_{s,i}^{k,d} p_{s,i,i}$ with $r_{s,i}^{k,d} = b_{s,i}^{k,d} / b_{s,\bullet}^{k,d}$.

- (A_{1b}) Passenger movements at the different stations $W_s^{k,d}$, $s = 1, \ldots, S 1$, are independent to boarding and other passenger movement's at other stations $s' \neq s$.
- (A_{2a}) The probability distribution of alighting numbers of zone i at station s conditionally to the past is only dependent of the load entering station s:

$$\mathbb{P}\Big(A_{s,i}^{k,d} \middle| a_{2:(s-1),i}^{k,d}, z_{1:(s-1),i}^{k,d}\Big) = \mathbb{P}\Big(A_{s,i}^{k,d} \middle| \ell_{s-1,i}^{k,d}\Big), \ s = 2, \dots, S$$

(A_{2b}) The alighting numbers of zone *i* at station *s* conditionally to load $\ell_{s-1,i}^{k,d}$ leaving station s - 1 follow a binomial distribution :

$$A_{s,i}^{k,d} \sim \mathcal{B}(\ell_{s-1,i}^{k,d}, \alpha_{s,i}), \ s = 2, \dots, S-1.$$

 (A_{2c}) For all stations s, the vector of alighting numbers $A_s^{k,d}$ for this station is independent conditionally to the load $\ell_s^{k,d}$.

Probabilistic model at the station scale - Log-likelihood

$$\mathbb{P}\left(\boldsymbol{a}_{2:S}, \boldsymbol{w}_{1:(S-1)}; \boldsymbol{b}_{1:(S-1)}, \boldsymbol{\theta}\right)$$

$$= \prod_{s=2}^{S} \underbrace{\left(\prod_{i=1}^{l} \binom{\ell_{s-1,i}}{a_{s,i}} (\alpha_{s,i})^{a_{s,i}} (1-\alpha_{s,i})^{(\ell_{s-1,i}-a_{s,i})}\right)}_{\mathbb{P}(\boldsymbol{a}_{s}|\boldsymbol{\ell}_{s-1};\boldsymbol{\theta})}$$

$$\underbrace{\left(\prod_{i=1}^{l} \frac{(\boldsymbol{b}_{s-1,\bullet}!)}{(w_{s-1,i}!)} (\pi_{s-1,i})^{w_{s-1,i}}\right)}_{\mathbb{P}(\boldsymbol{w}_{s-1};\boldsymbol{b}_{s-1},\boldsymbol{\theta})}.$$
(1)

Dwell time modeling Dwell time margins Short-term forecasting OCOCOCOCO

Proof Log-likelihood - I

At the terminal station S, we have :

$$\mathbb{P}\left(\boldsymbol{a}_{2:S}, \boldsymbol{w}_{1:(S-1)}; \boldsymbol{b}_{1:(S-1)}, \boldsymbol{\theta}\right)$$

$$= \mathbb{P}\left(\left|\underbrace{\boldsymbol{a}_{5}}_{\text{Station S}}\right| \left|\underbrace{\boldsymbol{a}_{2:(S-1)}, \boldsymbol{w}_{1:(S-1)}}_{\text{values until station S-1}}; \boldsymbol{b}_{1:(S-1)}, \boldsymbol{\theta}\right)$$

$$\mathbb{P}\left(\boldsymbol{a}_{2:(S-1)}, \boldsymbol{w}_{1:(S-1)}; \boldsymbol{b}_{1:(S-1)}, \boldsymbol{\theta}\right).$$

Then, we have :

$$\mathbb{P}\Big(\boldsymbol{a}_{2:(S-1)}, \boldsymbol{w}_{1:(S-1)}; \boldsymbol{b}_{1:(S-1)}, \boldsymbol{\theta}\Big) \\ = \mathbb{P}\Big(\boldsymbol{a}_{2:(S-1)}, \boldsymbol{w}_{1:(S-2)}; \boldsymbol{b}_{1:(S-1)}, \boldsymbol{\theta}\Big) \times \mathbb{P}\Big(\boldsymbol{w}_{S-1}; \boldsymbol{b}_{1:(S-1)}, \boldsymbol{\theta}\Big),$$

simplified with hypothesis (A_{1b}) :

$$\mathbb{P}\Big(oldsymbol{w}_{S-1};oldsymbol{b}_{1:(S-1)},oldsymbol{ heta}\Big)=\mathbb{P}\Big(oldsymbol{w}_{S-1};oldsymbol{b}_{S-1},oldsymbol{ heta}\Big).$$

References

Dwell time modeling Dwell time margins Occords of time modeling Occords of time margins Occords of tim

References

Proof Log-likelihood - II

We apply Bayes rules to the left :

$$\mathbb{P}\left(\boldsymbol{a}_{2:(S-1)}, \boldsymbol{w}_{1:(S-2)}; \boldsymbol{b}_{1:(S-1)}, \boldsymbol{\theta}\right)$$

$$= \mathbb{P}\left(\underbrace{\boldsymbol{a}_{5-1}}_{\text{Station S-1}} \middle| \underbrace{\boldsymbol{a}_{2:(S-2)}, \boldsymbol{w}_{1:(S-2)}}_{\text{Until station S-2}}; \boldsymbol{b}_{1:(S-2)}, \boldsymbol{\theta}\right)$$

$$\mathbb{P}\left(\boldsymbol{a}_{2:(S-2)}, \boldsymbol{w}_{1:(S-2)}; \boldsymbol{b}_{1:(S-1)}, \boldsymbol{\theta}\right).$$

Plug in the right term :

$$\mathbb{P}\left(\boldsymbol{a}_{2:(S-1)}, \boldsymbol{w}_{1:(S-1)}; \boldsymbol{b}_{1:(S-1)}, \boldsymbol{\theta}\right)$$

$$= \mathbb{P}\left(\underbrace{\boldsymbol{a}_{S-1}}_{\text{Station S-1}} \middle| \underbrace{\boldsymbol{a}_{2:(S-2)}, \boldsymbol{w}_{1:(S-2)}}_{\text{Until station S-2}}; \boldsymbol{b}_{1:(S-2)}, \boldsymbol{\theta}\right)$$

$$\times \mathbb{P}\left(\boldsymbol{w}_{S-1}; \boldsymbol{b}_{1:(S-1)}, \boldsymbol{\theta}\right) \times \mathbb{P}\left(\boldsymbol{a}_{2:(S-2)}, \boldsymbol{w}_{1:(S-2)}; \boldsymbol{b}_{1:(S-1)}, \boldsymbol{\theta}\right).$$
20/28

Dwell time margins

Short-term forecasting

Passenger's movements on board 000000000● SAP References

Proof Log-likelihood - III

Using load ℓ_{s-1} at station s and hypothesis (A_{2a}) :

$$\mathbb{P}\Big(\boldsymbol{a}_{s}\Big|\boldsymbol{w}_{1:(s-1)};\boldsymbol{b}_{1:(s-1)},\boldsymbol{\theta}\Big)=\mathbb{P}\Big(\boldsymbol{a}_{s}\Big|\boldsymbol{\ell}_{s-1};\boldsymbol{\theta}\Big).$$

With (A_{2c}) , we obtain :

$$\mathbb{P}\Big(\boldsymbol{a}_{s}\Big|\boldsymbol{\ell}_{s-1};\boldsymbol{\theta}\Big)=\prod_{i=1}^{I}\mathbb{P}\Big(\boldsymbol{a}_{s,i}\Big|\boldsymbol{\ell}_{s-1,i};\boldsymbol{\theta}\Big).$$

To sum up :

$$\mathbb{P}\left(\boldsymbol{a}_{2:S}, \boldsymbol{w}_{1:(S-1)}; \boldsymbol{b}_{1:(S-1)}, \boldsymbol{\theta}\right)$$
$$= \prod_{s=2}^{S} \left(\prod_{i=1}^{I} \mathbb{P}\left(\boldsymbol{a}_{s,i} \middle| \ell_{s-1,i}; \boldsymbol{\theta}\right)\right) \mathbb{P}\left(\boldsymbol{w}_{s-1}; \boldsymbol{b}_{s-1}, \boldsymbol{\theta}\right)$$

Dwell time margins

Short-term forecasting

Passenger's movements on board

SAP References

Platform position strategies

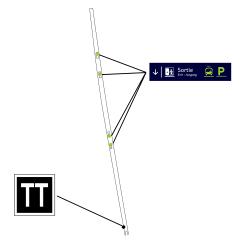
Strategic alighting passengers (SAP) Minimize walking distance at destination

Departure station

Destination station

Strategic confort passengers (SCP) Travel in the least crowded car

Platform main geographical elements



Geographical point (2.345856, 48.9334)

1. Platform borders

- J platform exits position, note (*E_{j,s}*)
- 3. Train stop point

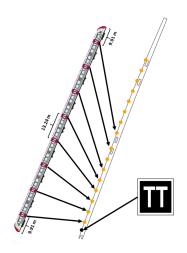
Dwell time margins

Short-term forecasting

Passenger's movements on board 0000000000

SAP References

Train doors position



Space between doors : 13.24m or 9.91m

- Deduce train doors position, note V_{i,s} from train stop point
- 2. Make the hypothesis that train stop point is reliable

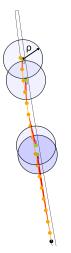
Dwell time margins

Short-term forecasting

Passenger's movements on board 0000000000

SAP References

Exit attractiveness

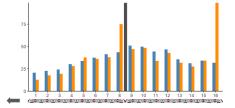


Exit attractiveness : ho

1. Door *i* minimal distance to an exit :

$$d_{i,s}^* = \min_{j=1,\ldots,J} d(V_{i,s}, E_{j,s})$$

- 2. Door *i* belong to an exit attractiveness area of radius ρ if $d^*_{i,s} \leq \rho$
- 3. One same exit attractiveness for all exits



Alighting distribution (a_1, \ldots, a_l) and boarding distribution (b_1, \ldots, b_l)

The share of strategic alighting passengers is :

$$SAP_{\rho} = \frac{\sum_{i \in \mathcal{I}_{\rho}} a_i}{a_{\bullet}},$$
 (2)

with \mathcal{I}_{ρ} all the door's index which belong to an exit attractiveness area.

Dwell time modeling Owell time margins Short-te

Short-term forecasting

Passenger's movements on board 0000000000

SAP References

Bibliography I

- Francesco Corman and Pavle Kecman. Stochastic prediction of train delays in real-time using Bayesian networks. Transportation Research Part C: Emerging Technologies, 95:599–615, 2018.
- [2] Sélim Cornet, Christine Buisson, François Ramond, Paul Bouvarel, and Joaquin Rodriguez. Methods for quantitative assessment of passenger flow influence on train dwell time in dense traffic areas. *Transportation Research Part C: Emerging Technologies*, 106:345–359, 2019.
- [3] Rémi Coulaud and Martine Grangé. Modélisation de l'impact des flux voyageurs sur les temps d'échange pour la simulation des marges d'exploitation : une application à la ligne N de transilien. In 4èmes Rencontres Francophones Transport Mobilité (RFTM), 2022.
- [4] Rémi Coulaud, Christine Keribin, and Gilles Stoltz. Quels modèles pour le temps de stationnement des trains en île de france? In SFdS 2020-52èmes Journées de Statistiques de la Société Française de Statistiques, 2020.
- [5] Rémi Coulaud, Christine Keribin, and Gilles Stoltz. Modeling dwell time in a data-rich railway environment: with operations and passenger flows data. Re-submitted *Transportation Research Part C* (TRC) after corrections. Preprint accessible here hal.archives-ouvertes.fr/hal-03651835/, 2022.
- [6] Rémi Coulaud, Christine Keribin, and Gilles Stoltz. One-station-ahead forecasting of dwell time, arrival delay and passenger flows on trains equipped with automatic passenger counting (apc) device. In 13th World Congress on Rail Research (WCRR), 2022.
- [7] Rémi Coulaud, Valentine Mazon, Laura Sanchis, and Oded Cats. Share of strategic alighting passengers combining automatic passenger counting and OpenStreeMap. In *Conference on Advanced Systems in Public Transport (CASPT)*, 2022.
- [8] Rémi Coulaud and Mathilde Vimont. How to use APC data to model passenger movement on-board? An application to Paris suburban train network. In 8th International Symposium On Transport Network Reliability (INSTR), 2021.
- [9] Pavle Kecman and Rob M.P. Goverde. Predictive modelling of running and dwell times in railway traffic. *Public Transport*, 7(3):295–319, 2015.
- [10] William H.K. Lam, C.Y. Cheung, and Y.F. Poon. A study of train dwelling time at the Hong Kong mass transit railway system. *Journal of Advanced Transportation*, 32(3):285–295, 1998.

Dwell time modeling	Dwell time margins 0	Short-term forecasting	Passenger's movements on board	SAP 00000	References				
Bibliography II									

- [11] Dewei Li, Winnie Daamen, and Rob M.P. Goverde. Estimation of train dwell time at short stops based on track occupation event data: a study at a Dutch railway station. *Journal of Advanced Transportation*, 50(5):877–896, 2016.
- [12] Giorgio Medeossi and Andrew Nash. Reducing delays on high-density railway lines: London-Shenfield case study. Transportation Research Record, 2674(7):193-205, 2020.
- [13] Carl-William Palmqvist, Norio Tomii, and Yasufumi Ochiai. Explaining dwell time delays with passenger counts for some commuter trains in Stockholm and Tokyo. Journal of Rail Transport Planning & Management, 14:100189, 2020.
- [14] Timothy Pedersen, Thomas Nygreen, and Anders Lindfeldt. Analysis of temporal factors influencing minimum dwell time distributions. WIT Transactions on the Built Environment, 181:447–458, 2018.