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1. Introduction

The continuous increase of passengers in Île-de-France transportation network attracts attention on non-
uniform passenger distribution among coaches which reduces both passenger comfort and carrying ca-
pacity. The COVID-19 epidemic increases even more this need for precise information on passenger
load inside trains (Tirachini & Cats 2020), especially if we consider the relatively high impact of pas-
senger information on on-board crowding distribution (Zhang et al. 2017). Yet, allowing passengers to
choose a boarding coach with respect to crowding can be done only if reliable on-board load information
is available.

Numerous tools exist to estimate on-board crowding. Most of the literature relies on weight mea-
surement in the air suspension system of the rolling stocks that allows a direct load measure (Jenelius
2019, Peftitsi et al. 2020). In some papers, the load measure is also obtained through infra-red or video
sensors positioned on top of the train doors, as it is the case in Munich (Khomchuk et al. 2018). Though
Automatic Passenger Counting (APC) gives an indirect measure of on-board crowding at a large scale
(i.e, consist or train scale), it is difficult to get a reliable estimation at a smaller scale (i.e, coach scale)
without taking into account passenger movement on-board.

In our case, passengers can board each coach through doors equipped with infra-red APC systems
counting the number of alighting and boarding passengers at each stop. Within a consist (see Figure 2),
coaches communicate to allow passengers to spread more uniformly between coaches. To our knowl-
edge, few research studies have been led in such a context. Indeed, a large part of transportation literature
studies the motivation behind boarding a specific coach as in Kim et al. (2014) or behind waiting for
trains at a specific position along the platform (Hänseler et al. 2020). Schöttl et al. (2019) got closer
to our problem and analysed the passenger seating strategy, yet not studying how to model their move-
ments between coaches. There is also a large part of the pedestrian literature which took over quite
similar issues, especially to understand alighting and boarding times thanks to either experimentation
(Daamen et al. 2008) or automate cellular model (Seriani & Fujiyama 2019).
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Figure 1: Illustration of the problem for a consist with two coaches

We propose to discretize a consist through a graphical model where each node represents a coach and
each link between nodes is pondered by the probability to board one node and alight from the other node
(see Figure 1). It naturally leads us to model passenger movement from one coach to another through a
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multinomial probability distribution. Our model finds itself right in the middle of microscopic pedestrian
simulation for platform-train or station pedestrian movement (Tang et al. 2017, Seriani & Fujiyama
2019) and macroscopic passenger movement in a transportation network through Origin-Destination
matrix estimation (Van Zuylen & Willumsen 1980, Kuusinen et al. 2015).

2. Problem formulation

We recall that all doors of each consist are equipped with APC systems measuring the number of alight-
ing and boarding passengers. For each coach i = {1, . . . , C}, with C the maximum number of coaches
per consist, let us define bk,si and ak,si the number of boarding and alighting passengers from coach i at
station s for trip k1. We write the number of boarding and alighting passengers for trip k at station s as
follows: bk,s =

∑C
i=1 b

k,s
i and ak,s =

∑C
i=1 a

k,s
i .

Sk is the set of all stations during a trip k. Based on the conservation flow property of Kuusinen
et al. (2015) our data-set is corrected such that there is no measurement error at the consist scale at the
end of trip k: ∑

s∈Sk

bk,s =
∑
s∈Sk

ak,s. (1)

We also define the cumulative quantities by trip for coach i: bki =
∑

s∈Sk
bk,si and aki =

∑
s∈Sk

ak,si ,
(see Table 1). The random variable Xi,j is the number of passengers boarding coach i and alighting
from coach j. Seemingly, pi,j is the probability for passengers to board coach i and alight from coach
j. We interpret X margins as follows:

• Xi,· = (Xi,1, . . . , Xi,C) corresponds to the destination coaches (alighting coaches) vector for
passengers that boarded coach i;

• X·,j = (X1,j , . . . , XC,j) corresponds to the origin coaches (boarding coaches) vector for passen-
gers that alighted from coach j.

Table 1: Notations and variables description

Notation Description

i,j coach number among {1, . . . , C} with C the maximum number of coaches

k a unique trip id defined by the triplet: (consist (lead:1, rear:2), train number, day)

s a station id

bk,si number of passengers boarding coach i for trip k at station s

ak,si number of passengers alighting from coach i for trip k at station s

bki total number of passengers boarding coach i for trip k

aki total number of passengers alighting from coach i for trip k

bk,s number of boarding passengers for trip k at station s

ak,s number of alighting passengers for trip k at station s

Xk
i,j number of shifted passengers i.e, passengers moving from coach i to coach j for trip k

1Defined in Table 1
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We used k in notations for the sake of completeness but we will only use it if needed in the following
paragraphs. Contrary to the models used to estimate OD matrices, passengers move either to the left or
the right side of the consist such that each coach j is accessible when boarding coach i. We suppose that
passenger movement is modelled by a multinomial probability distribution conditionally to the number
of boarding passengers for each door such thatXi,· ∼M(bi, pi,1, · · · , pi,C). The associated distribution
function is defined ∀xi,1, · · · , xi,C ∈ (0, bi) such that ∀i ∈ {1, . . . , C},

∑C
j=1 xi,j = bi:

P(Xi,1 = xi,1, · · · , Xi,C = xi,C |bi) =
bi!

xi,1! · · ·xi,C !
p
xi,1

i,1 · · · p
xi,C

i,C .

We model passenger movement for each coach i such that we obtain a transition matrix given by,
p ∈ RC×C :

p =


p1,1 · · · p1,C

...
. . .

...

pC,1 · · · pC,C

 (2)

It verifies for all i ∈ {1, . . . , C},
∑C

j=1 pi,j = 1 and for all i, j ∈ {1, . . . , C}2 pi,j ∈ [0, 1]. The
conditional expectancy of a single element of a multinomial random variable is E[Xi,j |bi] = bipi,j . Each
observation k ∈ K corresponds to a unique trip. A classical estimator of pi,j is the maximum likelihood
estimator defined as follows, ∀i, j ∈ {1, . . . , C}2:

p̂i,j =
1

K

K∑
k=1

xki,j

bki
.

This equation is used by Krstanoski (2014) to estimate passenger distribution on platform and by
Ben-Akiva et al. (1985) to estimate OD matrices. However in both cases they observed xki,j while in our
case there is no available measure of passenger movement inside consists. To overcome this difficulty,
we generalise the conservation flow property (1) at the coach scale such that the total number of alighting
passengers from coach i for a trip is supposed to be equal to the total number of passengers which moved
to i:

∀j ∈ {1, . . . , C}, aj −
C∑
i=1

xi,j = 0. (3)

This leads us naturally to the following objective function defined by the conditional expectancy of
the Euclidean distance between the total number of alighting passengers a and the random number of
shifted passengers X:

E

 C∑
j=1

(
aj −

C∑
i=1

Xi,j

)2 ∣∣∣∣a, b
 ,

of which an empirical version would be:

1

K

K∑
k=1

C∑
j=1

(
akj −

C∑
i=1

xki,j

)2

.

However, as we cannot observe xki,j , we replace it by its theoretical conditional expectancy bki pi,j . The
number of shifted passengers from coach i to j corresponds to a fixed proportion of the number of
passengers having boarded i. It converts the problem into a general least square model under constraints:
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min
p

1

K

K∑
k=1

C∑
j=1

(
akj −

C∑
i=1

bki pi,j

)2

s.t ∀i, j ∈ {1, . . . , C}2, 0 ≤ pi,j ≤ 1

∀i ∈ {1, . . . , C},
C∑

j=1

pi,j = 1 (4)

We easily find an analytical solution to this problem since it is equivalent to a regression problem
where parameters are optimised under constraints.

To sum up the reasoning behind this model:

• we have observations of the number of boarding and alighting passengers for each door i but we
do not observe passenger movement between communicating coaches;

• we assume that this passenger movement is driven by a multinomial probability distribution and
we verify the generalised conservation flow property (1) at the coach scale;

• passenger movement is simplified as a parametric equation using transition matrix and boarding
passengers by door.

We then introduce an additional assumption based on the willingness of passengers to move from
their boarding coach. Indeed, it is classic to consider that passengers prefer to stay near their boarding
coach (Kim et al. 2014). To take into account this hypothesis on passengers’ behaviour, we add the
following constraint to the optimisation problem (4), ∀i, j ∈ {1, . . . , C}2 we have αi ∈ [0, 1] such that:

pi,j = pi,i × α|i−j|. (5)

α embedded the passengers’ willingness to move. In this case, we loose the convexity of the problem
and thus need to use a non convex optimisation solver.

To briefly conclude, we will compare three models:

1. A free movement model based on equation (4);

2. A constrained movement model based on equations (4) and (5);

3. A naive model, also called no-movement model, based on the identity transition matrix, which
corresponds to a situation where all passengers stay in their boarding coach.

3. Case study

We applied this methodology framework to lines H and L of the Paris suburban train network (France).
On those lines, trains are composed of two consists, each separated in either seven (line L) or eight (line
H) connected coaches (see Figure 2).

(a) Line L

(b) Line H

Figure 2: Consist models for line L and H. Each coach is defined by a door (in purple)

Regarding line H, we only considered trains running on its western section, composed of 14 stations
located between Paris Gare du Nord and Pontoise. Similarly, we only considered trains running on the

4



southern section of line L, composed of 16 stations located between Paris Saint-Lazare and Versailles-
Rive-Droite (see Figure 3).

Figure 3: Geographic representation of line and line . Main stations of the considered sections are
highlighted

We used APC data available for each coach at each train stop and aggregated the countings by trip.
We respectively have data from the 1st of September 2018 to the 31st of August 2019 for the train data-
set (line H ≈ 21,000 trips vs. line L ≈ 21,600 trips), and from the 1st of September 2019 to the 30th

of November 2019 for the test data-set (line H ≈ 5,100 trips vs. line L ≈ 8,100 trips). This leads to a
train/test ratio of 80/20. A sample data-set can be found in Table 5.

Transition probabilities are estimated on the train data-set, then we use the test data-set to evaluate
models’ performances. To estimate these probabilities, we also wanted to take stations’ layout into
consideration, as it has been shown to have an impact on passengers choices regarding boarding and
alighting coaches (Kim et al. 2014, Fang et al. 2019). But as our objective function is defined at the
trip scale, we hardly can take into consideration stations’ layout as such in the optimisation problem.
We partly overcame this issue by separating each data-set according to train ways of circulation (even:
from suburb to Paris, odd: from Paris to suburb) and consist position (rear or lead consist) to estimate
transition probabilities. Indeed, passengers’ behaviour may differ between consists since they may be
located differently relatively to platforms’ entrances and exits. Similarly, passengers circulating on
one way do not board and alight at the same stations and thus may behave differently within the train
compared to the other way.

4. Results and conclusions

In this section, we present three main preliminary results:

• On-board passenger movement models decrease the difference between total alighting passengers
and shifted passengers by coach;

• Passengers on both H and L lines rarely move by more than one or two coaches, which justifies
the simpler constrained movement model;

• Some specific behaviours are revealed through the analysis of transition matrices.
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Global performances and on-board behaviour

Naive, free and constrained movement models are evaluated through their objective function value
(4) which is the difference between total alighting passengers (a) and total shifted passengers (p̂b). We
relied on the root of this quantity (i.e, RMSE) for ease of interpretation. They are gathered in Table 2.

Firstly, both movement models perform better than the naive model for the two lines, though the
free movement model is the best, with an error divided by two for line H (8.33 vs. 19.56) and almost
by three for line L (7.63 vs. 21.31). The improved performances of the free movement model compared
to the constrained one are consistent with the more numerous parameters it relies on, thus allowing it to
better fit the data.

Table 2: Performances of the three passenger movement models studied

RMSE

Models Line H Line L

Free movement 8.33 7.63

Constrained movement (α) 8.61 8.13

Naı̈ve 19.56 21.31

We observe that performances of free and constrained movement models are very similar, with
an error difference of only 0.28 and 0.50 for lines H and L respectively. The transition probabilities
estimated through the free movement model also highlight that the probabilities of moving near the
boarding coach (i.e, staying in the boarding coach or switching to one of the neighbour coaches) are
high, with a probability averaged over all coaches comprised between 0.69 and 0.87 (see Table 3). This
illustrates the passengers willingness to stay relatively close to their boarding coach.

Table 3: Probabilities of moving near the boarding coach (i.e staying in the boarding coach or switching
to one of the neighbour coaches). To recall the circulation way, even: from suburb to Paris and odd:
from Paris to suburb.

Line H Line L

Consist 1 Consist 2 Consist 1 Consist 2

Even Odd Even Odd Even Odd Even Odd

Coach 1 0.90 0.88 0.70 0.73 1.00 0.94 0.95 1.00

Coach 2 0.73 0.75 0.83 0.90 0.97 0.74 0.91 0.91

Coach 3 0.75 0.75 0.58 0.71 0.85 0.83 0.82 0.90

Coach 4 0.72 0.65 0.79 0.75 0.86 0.72 0.82 0.79

Coach 5 0.72 0.62 0.70 0.74 0.86 0.81 0.81 0.87

Coach 6 0.52 0.85 0.89 0.79 0.95 0.74 0.89 0.93

Coach 7 0.55 0.59 0.90 0.80 0.58 0.48 0.56 0.40

Coach 8 0.59 0.66 0.26 0.27 - - - -

Mean Coach 0.69 0.72 0.71 0.71 0.87 0.75 0.82 0.83
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Specific movement strategies

If we take a closer look at these probabilities, we can spot a singularity affecting the rear coaches
of trains circulating on both lines. Regarding line H, we notice a very low probability of staying near
the 8th coach of the second consist for both ways of circulation (0.26 for odd trains vs. 0.27 for the
others). Figure 4 shows how passengers boarding this coach in trains circulating in the odd way tend
to propagate towards the front of the consist. Indeed, transition probabilities for this coach are uniform
(0.126 ±0.031).

Figure 4: Transition matrices estimated with the free movement model for rear consists circulating on
line H in the odd way

Yet, most of the passengers on this line section board at Paris Gare du Nord station, which is com-
posed of a major platform entrance located near the rear of the train as shown in Figure 5. Passengers
on this section also tend to alight at multiple stations along the trip, each having different layouts when
it comes to platform exits.

Figure 5: Drawing of Paris Gare du Nord platform station

The mean shares of boarding passengers in each coach at Paris Gare du Nord station presented
in Figure 6 clearly show that most passengers board the 8th coach of one of the two consists. Thus,
the singular aforementioned probability could be due to passengers boarding the closest coach to the
entrance platform at Paris Gare du Nord and then propagating themselves in the train, searching either
for an available sit or a place near destination exit. This behaviour would be consistent with the literature
that exists on passenger strategy in choosing boarding and alighting coaches (Kim et al. 2014, Fang et al.
2019). Also, the strong impact of Paris Gare du Nord station layout on estimated transition probabilities
on line H highlights the relevance of trying to go one step further and to find a way of directly including
stations’ layout in the optimisation problem.
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Figure 6: Mean boarding shares in each coach at Paris Gare du Nord station

Local performances

As the free movement model reduces the most the error made on the actual position of passengers
within the train, we went further and studied how this model may correct for inconsistent load ob-
servations during the trip. More precisely, we noticed that not taking into account passenger movement
within the consist led to numerous negative and extreme coach loads2 during the trip, as well as plenty of
non-null coach loads at terminus (i.e, the conservation passenger flow at the coach scale isn’t satisfied).
Those occurrences for both naive and free movement models are gathered in Table 4.

Table 4: Inconsistent coach loads observed during the trips on lines H and L for naive and free movement
models

Line H Line L

Naive
Free

movement
Naive

Free
movement

Before terminus
Negative loads occurrences (%) 10.9 4.8 12.1 5.6

Extreme loads occurrences2 4294 1 3346 231

At terminus Non null loads occurrences (%) 85.0 83.0 83.4 81.3

One of the main improvements provided by the use of the model, is the almost disappearance of
extreme loads for both H and L lines. Regarding line H, it is easily explained by the fact that most of
these extreme loads occur at origin station Paris Gare du Nord for trains circulating in the odd way and
affect the 8th coach of the rear consist. The aforementioned study of transition matrices showed a clear
effect of our model that is, the strong propagation of passengers from this coach to the rest of the consist.
It is also consistent with the platform layout in Paris Gare du Nord.

2Above 120% of the coach capacity which is 138 passengers for line H and 130 passengers for line L
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Figure 7: Distribution of coaches load at terminus for H and L lines

Our model also allows to improve the load estimation by reducing the number of negative coach
loads during the trip by more than two for both lines: 4.8% vs. 10.9% occurrences in line H, and 5.6%
vs. 12.1% occurrences in line L. Also, though the decrease in the number of non-null coach loads
observed at terminus is quite weak (around 2% for both lines), Figure 7 shows that these loads are less
scattered when the free movement model is used. This is consistent with the effect of the model on
extreme loads, since reducing occurrences of extreme loads during the trip relies on homogenising the
load along the consist.
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Appendix

Table 5: First rows of train dataset on line H
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