Quadrics over function fields in one (and more) variable(s) over a \mathfrak{p}-adic field

J.-L. Colliot-Thélène

CNRS, Université Paris-Sud, z.Z. HIM
Hausdorff Institut für Mathematik
Trimester zum Thema Diophantische Gleichungen
Endtagung, 23. bis 29. April 2009

Theorem (Parimala and Suresh 2007)
Let K be a \mathfrak{p}-adic field, $p=\operatorname{char}(\mathbb{F}) \neq 2$. Let F be a function field in one variable over K. A quadratic form in $n>8$ variables over F has a nontrivial zero.
$n>8$ best possible
natural conjecture by analogy to $K=\mathbb{F}((t))$
There is also a natural conjecture for function fields in s variables over K.

History, up to April 2009
Before 1987: not even known if isotropy for $n>n_{0}$ $n>26$ Merkurjev preprint1997 (use of Merkurjev 1982 and Saltman 1997)
$n>22$ Hoffmann and van Geel 1998 (use of Merkurjev 1982 and Saltman 1997)
$n>10$ Parimala and Suresh 1998 (use of Kato's results in higher class field theory)
$n>8$ Parimala and Suresh preprint2007 (use of recent results by Saltman on algebras of prime index)

Other methods giving $n>8$
T. Wooley. New circle method, announced 2007; should also say something for $n \geq 5$; should give results for (diagonal) forms of arbitrary degree.
D. Harbater, J. Hartmann, D. Krashen preprint2008 (patching techniques); CT, Parimala, Suresh preprint2008 (builds upon HHK; new results for $n \leq 8$). Method gives results for homogeneous spaces of rational linear algebraic groups
D. Leep April 2009. Use of results by Heath-Brown; gives results for quadrics over higher dimensional function fields over K and for any prime p (also $p=2$).
I. The cohomological method

Merkurjev
Hoffmann-van Geel
Parimala-Suresh 1
Parimala-Suresh 2

Let k be a field, $\operatorname{char}(k) \neq 2$. In 1934, E. Witt put the isomorphy classes of all (nondegenerate) quadratic forms over k into a single abelian group $W(k)$, actually a ring. The class of a diagonal form $a_{1} x_{1}^{2}+\cdots+a_{n} x_{n}^{2}$ is denoted $<a_{1}, \ldots, a_{n}>$. The class
$H=<1,-1>$ is trivial.
Two quadratic forms of the same rank are isomorphic if and only if they have the same class in $W(k)$ (Witt's cancellation theorem). In particular: if a quadratic form q of rank n has the same Witt class as a quadratic form of rank $m<n$, then q has a nontrivial zero.

There is a "fundamental ideal" $l k \subset W k$ of forms of even rank. We have $W k / I k=Z / 2$, then $I k / I^{2} k=k^{*} / k^{* 2}=H^{1}(k, \mathbf{Z} / 2)$. The quotients $I^{n} k / I^{n+1} k$ and their relation to the Galois cohomology groups $H^{n}(k, \mathbf{Z} / 2)$ have been the object of much study (Pfister, Arason, Merkurjev, Rost, Voevodsky).

The general idea here is : start with a form q. There is a quadratic form q_{1} of rank at most 2 with discriminant $\pm a$ such that $q \perp-q_{1}$ has even rank and trivial signed discriminant, hence belongs to $I^{2} k$. There is a map (Clifford, Hasse, Witt) $I^{2} k \rightarrow \operatorname{Br}(k)[2]=H^{2}(k, \mathbf{Z} / 2)$.
There is map $I^{3} k \rightarrow H^{3}(k, \mathbf{Z} / 2)$.
Suppose
$\left(B_{2}\right)$ Any class in $\operatorname{Br}(k)[2]$ can be represented by a quadratic form in $I^{2} k$ of rank at most N_{2}.
We then get a form q_{2} of rank at most N_{2} such that $q \perp-q_{1} \perp-q_{2}$ is in $I^{2} k$ and has trivial image in $\operatorname{Br}(k)[2]$.

Merkurjev 1982 proved the deep theorem that the kernel of the map $I^{2} k \rightarrow \operatorname{Br}(k)[2]$ is the ideal $I^{3} k$.
Suppose
(cd3) The 2-cohomological dimension of k is at most 3.
A result of Arason-Elman-Jacob 1986 then ensures $I^{4} k=0$ and that $I^{3} k \rightarrow H^{3}(k, \mathbf{Z} / 2)$ is an isomorphism.

Then suppose
$\left(B_{3}\right)$ any class in $H^{3}(k, \mathbf{Z} / 2)$ can be represented by a quadratic form in $I^{3} k$ of rank at most N_{3}.
Then we find a quadratic form q_{3} of rank at most N_{3} such that $q \perp-q_{0} \perp-q_{1} \perp-q_{2} \perp-q_{3}$ is trivial in $W(k)$. By Witt simplification, this implies that if the rank of q is at least $2+N_{2}+N_{3}+1$, then the quadratic form q is isotropic. We thus get a universal upper bound for the dimension of an isotropic quadratic form.

Using the fact that a Pfister form $<1,-a_{1}>\otimes \cdots \otimes<1,-a_{n}>$ is sent to the cup-product $\left(a_{1}\right) \cup \cdots \cup\left(a_{n}\right) \in H^{n}(k, \mathbf{Z} / 2)$, to prove statements B_{2} and B_{3} it is enough to establish that elements in $H^{2}(k, \mathbf{Z} / 2)$ and in $H^{3}(k, \mathbf{Z} / 2)$ are expressible as sums of a bounded number of symbols $\left(a_{1}\right) \cup \cdots \cup\left(a_{n}\right)$.

This is where the arithmetic of function fields in one variable over a \mathfrak{p}-adic field comes in.
First of all, it is a classical result that a function field F in one variable over a \mathfrak{p}-adic field has cohomological dimension 3. What about B_{2} and B_{3} ?

A key result here is :
Theorem (D. Saltman, 1997)
Let $I \neq p$ be prime numbers. Let K be a \mathfrak{p}-adic field which contains the l-th roots of 1 . Let F be a function field in one variable over K. Given a finite set of central simple algebras each of exponent I in the Brauer group of F, there exist two rational functions $f, g \in F$ such that the field extension $F\left(f^{1 / I}, g^{1 / I}\right)$ splits each of these algebras.
This leads to : for $p \neq 2$, any element in $H^{2}(F, \mathbf{Z} / 2)$ is the sum of two symbols, and one may take $N_{2}=8$.

The idea of Saltman's paper is to kill off the ramification of an algebra of exponent $/$ by extracting $/$-th roots (Motto : ramification gobbles up ramification) then use the classical theorem

Theorem (Lichtenbaum 1969, building on Tate; Grothendieck 1969, using M. Artin).
Let A be the ring of integers of a \mathfrak{p}-adic field K. Let Y / A be a regular, flat, proper relative curve over A. Then the Brauer group of Y is trivial.

As for B_{3} for $H^{3}(F, \mathbf{Z} / 2)$ and F as above, Merkurjev and Hoffmann-van Geel proved that any element is the sum of at most 4 elementary symbols. This immediately leads to the rough bound $N_{3}=32$.

The paper Parimala-Suresh 1998 used $H_{n r}^{3}(F, \mathbf{Z} / 2)=0$ for F as above (with $p \neq 2$) (Kato 1986, analogue for H^{3} of the Tate-Lichtenbaum result for H^{2}) to show that for such an F any class in $H^{3}(F, \mathbf{Z} / 2)$ is represented by just one symbol. Hence B_{3} holds with $N_{3}=8$.

Thus any form in $n>18$ variables has a zero.
With more care and the same algebraic and arithmetic tools, Parimala and Suresh could show (1998) that this holds for $n>10$.

Building upon work of Saltman 2007 on the ramification pattern of central simple algebras of prime index over F, they finally reached $n>8$.
II. The patching method
(D. Harbater)
D. Harbater and J. Hartmann
D. Harbater, J. Hartmann and D. Krashen (HHK)

CT-Parimala-Suresh (CTPS) (builds upon HHK)

Here A is a complete discrete valuation ring, K its field of fractions, k its residue field (arbitrary).
$F=K(X)$ the function field of a smooth, projective, geometrically connected curve over K.
Ω the set of all discrete rank one valuations on F; such valuations either are trivial on K or induce (a multiple of) the given valuation on K.
To each place $v \in \Omega$ one associates the completion F_{v}.

Theorem (CTPS 2008) Assume char $(k) \neq 2$. Let $q\left(x_{1}, \ldots, x_{n}\right)$ be a quadratic form in $n \geq 3$ variables over F. If it has a nontrivial zero in each F_{v}, then it has a nontrivial zero in F.

Let k be a finite field, i.e. let K be a \mathfrak{p}-adic field.
For $n>8$ the local conditions are always fulfilled. One then recovers the Parimala-Suresh result (already recovered in HHK). For $n=2$ the theorem does not hold. An element in F may be a square in all F_{v} but not in F.
For $n=3,4$ it is enough to impose solutions in the F_{v} for v trivial on K. Consequence of Lichtenbaum's theorem.
For $n=6,7,8$ consideration of the valuations trivial on K in general is not enough.

Idea of proof. The first part is HHK's argument.
There exists a connected, regular, flat model \mathcal{X} / A of X / K, such that $q=<a_{1}, \ldots, a_{n}>$ with the $a_{i} \in F^{*}$ and such that the components of the special fibre \mathcal{X}_{s} and the components of the divisors of the a_{i} 's define a strict normal crossings divisor Δ on \mathcal{X} One then produces a finite set S of closed points of \mathcal{X}_{s} which contains all singular points of Δ, and there is a "nice" morphism from $f: \mathcal{X} \rightarrow \mathbf{P}_{A}^{1}$ such that S is the inverse image of the ∞-point on \mathbf{P}_{k}^{1}.

Then the support of $\mathcal{X}_{s} \backslash S$ is a finite union of smooth connected curves U/k.
For each U one lets $R_{U} \subset F$ be the ring of functions which are regular on U. One may arrange that $U \subset \operatorname{Spec} R_{U}$ is defined by one equation $s_{U} \in R_{U}$.
One then lets \hat{R}_{U} be the completion of R_{U} with respect to the ideal $\left(s_{U}\right)$ (or π_{R}). This has a residue ring $k[U]$, a Dedekind domain. One lets F_{U} be the fraction field of \hat{R}_{U}. For $P \in S$, one lets $\hat{R}_{P}=\hat{O}_{\mathcal{X}, P}$. This is a local ring of dimension 2 . One lets F_{P} be the fraction field of \hat{R}_{P}.

Theorem (Harbater, Hartmann, Krashen)
For a system $\{U\}, S$ as above (with $n \geq 3$), if $q=0$ has nontrivial solutions in all F_{U} and F_{P} then it has a nontrivial solution in F.

It then remains to show:
If $q=0$ has nontrivial solutions in all completions F_{v} for $v \in \Omega$, then it has solutions in the F_{U} 's and the F_{P} 's.

The fields F_{U}
We have

$$
q \simeq<b_{1}, \ldots, b_{n}, s_{u} \cdot c_{1}, \ldots, s_{u} \cdot c_{m}>
$$

with all b_{i} and $c_{i} \in R_{U}^{*}$.
The hypothesis that there is a point in the DVR R_{v} of F associated to the generic point of U and a known theorem of Springer together imply that one of $\left.<b_{1}, \ldots, b_{n}\right\rangle$ or $\left\langle c_{1}, \ldots, c_{m}\right\rangle$ has a solution in the residue field of R_{v}, which is the fraction field of $k[U]$. Using the fact that the b_{i}, c_{i} are units in R_{U}, and the fact that $k[U]$ is Dedekind, and a variant of Hensel's lemma, one gets that q has a nontrivial solution in R_{U}, hence in F_{U}.

The fields F_{P}
Here one looks at the local ring of \mathcal{X} at a point P of S. The normal crossing divisors assumption implies that q may be written as $q=q_{1} \perp x q_{2} \perp y q_{3} \perp x y q_{4}$ where x, y span the maximal ideal of R_{P} and the q_{j} are regular quadratic forms over R_{P}. One then uses Springer's theorem and Hensel's lemma. The DVR involved are those attached to the components of Δ passing through S. Ultimately one shows that one of the q_{i} has a nontrivial zero over the residue field at P, hence over the complete local ring, hence over its fraction field F_{P}.

Remark: the theorem holds if one replaces Ω by the set of rank one discrete valuations associated to points of codimension 1 on arbitrary connected, regular, flat, proper models \mathcal{X} / A of X / K.

The HHK theorem more generally handles the case of homogeneous spaces Z / F of connected linear algebraic groups G / F such that :
(a) The underlying F-variety of G is F-rational, i.e. birational to affine space. [Very unlikely that one can dispense with this condition.] The group $S O(q)$ is F-rational.
(b) For any overfield L / F, the action of $G(L)$ on $Z(L)$ is transitive. Here there are two basic examples:
(b1) The variety Z / F is projective (as the quadrics considered above)
(b2) Z is a principal homogeneous space of G.

Under the two assumptions
(a) The underlying F-variety of G is F-rational.
(b2) Z is a principal homogeneous space of G.
a local-global theorem with respect to places of Ω is given in [CTPS].
When applied to $G=P G L_{n}$, it implies
The natural map $\operatorname{Br} F \rightarrow \prod_{v \in \Omega} \mathrm{Br} F_{v}$ is injective.
If k is finite field, this is closely related to Lichtenbaum's theorem; in that case one may then restrict attention to valuations on F which are trivial on K.

A few words on the papers HH and HHK .

The "nice" map $\mathcal{X} \rightarrow \mathbf{P}_{A}^{1}$ enables one to reduce the patching problem to the very special case where $\mathcal{X}=\mathbf{P}_{A}^{1}$, the set S consists of the ∞-point on \mathbf{P}_{k}^{1} and there is just one U, namely $U=\mathbf{A}_{k}^{1}$ the complement of ∞ in \mathbf{P}_{k}^{1}.
We have already seen the fields F_{U} and F_{P}.
There is third character. This is the field of fractions of the completion of the DVR defined by the U on the completion of the local ring of \mathbf{P}_{A}^{1} at P.
There are obvious inclusions $F_{U} \subset F_{P, U}$ and $F_{P} \subset F_{P, U}$. One has $F=F_{P} \cap F_{U} \subset F_{P, U}$.

We are given a point $M_{P} \in Z\left(F_{P}\right)$ and a point $M_{U} \in Z\left(F_{U}\right)$. By hypothesis (b) there exists an element $g \in G\left(F_{P, U}\right)$ such that $g . M_{P}=M_{U} \in Z\left(F_{P, U}\right)$.
If one manages to write $g=g_{U} \cdot g_{P}$ with $g_{P} \in G\left(F_{P}\right)$ and $g_{U} \in G\left(F_{U}\right)$ then one finds $g_{P} \cdot M_{P}=g_{U}^{-1} \cdot M_{U} \in Z\left(F_{P}\right) \cap Z\left(F_{U}\right)=Z(F)$, hence $Z(F) \neq \emptyset$.
Consider the very special case $A=k[[t]]$. For G an F-rational group, the equality $G\left(F_{P, U}\right)=G\left(F_{U}\right) \cdot G\left(F_{P}\right)$ is related to the equality

$$
k((x))[[t]]=k[1 / x][[t]]+k[[x, t]] .
$$

III. The revival of C_{i}-fields

Let $i \geq 0$.
A field k is called a C_{i}-field if for each degree d every homogeneous form over k of degree $d>0$ in $n>d^{i}$ variables has a nontrivial zero.
This implies (Lang, Nagata) : for each degree d and each integer r every system of r forms of degree d in $n>r . d^{i}$ variables has a nontrivial zero. (Proof involves introducing various other degrees.)
Definition: for a fixed integer d, a field k is called $C_{i}(d)$ if for each integer r every system of r forms of degree d in $n>r . d^{i}$ variables has a nontrivial zero.

A field is C_{0} if and only if is algebraically closed.
A finite field is C_{1} (Chevalley)
A function field in s variables over a $C_{i}(d)$ field is $C_{i+s}(d)$ (Tsen, Lang, Nagata for C_{i}; proof for $C_{i}(d)$ similar (Pfister, Leep). (Proof by discussing finite degree extensions and purely transcendental extension in one variable)

If K is C_{i} then $K((t))$ is C_{i+1} (Greenberg)
If \mathbb{F} is a finite field, a function field in s variables over the local
field $\mathbb{F}((t))$ is a C_{2+s}-field.
This raises the question : does the same hold for a function field in s variables over a p-adic field ?
NO, even for $s=0$.
A p-adic field of characteristic zero is not a C_{2} field, it is not a C_{n} field for any n (Terjanian, ...)

Solution : Look for substitutes. Replace rational points by zero-cycles of degree 1 .

Definition. A field k is $C_{i}(d)$ for zero-cycles of degree 1, in short $C_{i}^{0}(d)$, if for each integer r and each system of r forms of degree d in $n>r . d^{i}$ variables there are solutions to the system in finite field extensions of k of coprime degree as a whole.
A field k is C_{i} for zero-cycles of degree 1 , in short C_{i}^{0}, if for every d it is $C_{i}^{0}(d)$. For this it is enough that for each degree d any form of degree d in $n>d^{i}$ variables has solutions in finite field extensions of k of coprime degree as a whole.
For simplicity, assume char. $k=0$. The field k is $C_{i}^{0}(d)$ if and only if the the fixed field of each pro-Sylow sugroup of $\operatorname{Gal}(\bar{k} / k)$ is $C_{i}(d)$ (for rational solutions).

There are stability properties à la Lang-Nagata.
Proposition. If a field k is $C_{i}^{0}(d)$, then a function field in s variables over k is $C_{i+s}^{0}(d)$.
(Proof : reduce to $C_{i}(d)$ for fixed fields of Sylow subgroups.)

Conjecture (Kato-Kuzumaki 1986) :
A \mathfrak{p}-adic field is C_{2}^{0}.
(Special case of a more general conjecture on stability of C_{i}^{0}-property for complete DVR's)

Some evidence

Theorem. Let $H\left(x_{0}, \ldots, X_{n}\right)$ be a homogeneous form of degree d in $n+1 \geq d^{2}$ variables over a \mathfrak{p}-adic field K. If the degree of H is prime, then $H=0$ has a nontrivial zero in finite extensions of K of coprime degrees.
Proofs.
Implicit: T. A. Springer (1955) ; Birch and Lewis (1958/59)
Explicit : Kato and Kuzumaki (1986).
The (module theoretic) first and third proofs yield existence of a point in an extension of K of degree $<d$.

Using Kollár's 2006 result that PAC fields of characteristic zero are C_{1} (Ax's conjecture), one proves:

Theorem (CT 2008) Let A be a discrete valuation ring with residue field k of characteristic zero. Let K be the fraction field of A. Let X / A be a regular, proper, flat connected scheme over A. Assume the generic fibre is a smooth hypersurface over K defined by a form of degree d in $n>d^{2}$ variables. Then the special fibre $X \times_{A} k$ has a component of multiplicity one which is geometrically integral over k.
Would that theorem also hold when the residue field k of A is a finite field, then an application of the Lang-Weil estimates would (nearly) yield that \mathfrak{p}-adic fields are C_{2}^{0}.

Observation (CT-Parimala-Suresh 2008) If \mathfrak{p}-adic fields are C_{2}^{0}, then over a function field F in s variables over a \mathfrak{p}-adic field K, any quadratic form in more than 4.2^{s} variables has a nontrivial zero. Indeed, such a field F would be C_{2+s}^{0}. Thus a quadratic form in $n>4.2^{5}$ variables over F would have a point in an extension of odd degree of F. But a theorem of T.A. Springer (1952) (conjectured by Witt 1937) then implies that the form has a zero over F.
Independent observation (D. Leep 2009) If \mathfrak{p}-adic fields are $C_{2}^{0}(2)$, then over a function field F in s variables over a \mathfrak{p}-adic field K, any quadratic form in more than 4.2^{s} variables has a nontrivial zero.

Theorem (Heath-Brown 27th April 2009)
A system of r quadratic forms in more than $4 r$ variables over a \mathfrak{p}-adic field K has a rational solution if the residue field has order at least $(2 r)^{r}$.

Consideration of unramified extensions of K of arbitrary high degree yields that \mathfrak{p}-adic fields are $C_{2}^{0}(2)$.

Combination of the previous arguments gives
Theorem (Leep 2009)
A quadratic form in more than 4.2^{s} variables over a function field in s variables over a \mathfrak{p}-adic field has a nontrivial zero.

