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The basic diophantine questions
Let f (x1, · · · , xn) be a polynomial with integral coefficients.
Can we decide if the equation

f (x1, · · · , xn) = 0

has integral solutions (xi ∈ Z) rational solutions (xi ∈ Q) ?

For homogeneous equations, one asks for primitive solutions and
then there is just one problem.

In the language of schemes, one has a scheme X over Z, resp. over
Q. One wants to decide if the set of integral points X (Z), resp.
the set of rational points X (Q), is nonempty.



There are immediate conditions to be satisfied.
The equation x2 + y2 − 3z2 = 0 has no nontrivial solutions, as
may be seen either by congruences modulo 9 or by congruences
modulo 4.
No congruence must be in the way. We know since Hensel that
this condition translates as : for any prime p, the set X (Zp), resp.
the set X (Qp), is not empty, where Zp is the ring of p-adic
integers and Qp is its fraction field, the field of p-adics.
There must also exist real points, i.e. X (R) 6= ∅.



For a given separated scheme of finite type over Z, resp. over Q,
the inclusions

X (Z) ⊂
∏
p

X (Zp) ⊂ X (AQ)

X (Q) ⊂ X (AQ) ⊂
∏
p

X (Qp)

summarize all the possible congruence conditions.
For p = ∞,we have set Z∞ = Q∞ = R.
The set X (AQ), the space of adèles consits of families of local
points which are integral for almost all p. If X/Q is projective,
this is just

∏
p X (Qp).

Whether the middle and right sets are not empty can be decided in
a finite amount of time.



Legendre’s theorem

Theorem (Legendre, 1785) Let q(x , y , z) be an integral quadratic
form. If q(x , y , z) = 0 has nontrivial solutions in each Zp,
including R, then it has a nontrivial solution in Z.
Proof : geometry of numbers. One gets an upper estimate for the
size of a solution.

The various proofs do not use the full hypothesis. For instance one
may forget the hypothesis X (R) 6= ∅. It turns out to be imposed
by the hypothesis X (Zp) 6= ∅ for all finite p.



The law of quadratic reciprocity (theorema fundamentale)

Let p 6= 2 be an odd prime, a ∈ Z prime to p,
Recall the Legendre symbol (a/p) = ±1 :
(a/p) = 1 iff a is a square mod. p.

Let p, q be odd primes. Then

(p/q)(q/p) = (−1)(p−1)/2.(q−1)/2

Conjectured by Euler and by Legendre (1785). Proved by Gauß
(1796).



The Hasse principle for quadratic forms

Theorem (Minkowski; Hasse 1920) Let n ≥ 2. Let q(x1, · · · , xn)
be an integral quadratic form. If

q(x1, · · · , xn) = 0

has nontrivial solutions in all Zp, also in R, then it has a nontrivial
solution in Z.
In Hasse’s proof, the main ingredient occurs when passing from the
case of 3 variables to the case of 4 variables. Hasse combines
Dirichlet’s theorem on primes in an arithmetic progression with the
law of quadratic reciprocity.



As for local-global principles for integral points, here are some
celebrated cases.

A prime congruent to 1 modulo 4 is a sum of two squares of
integers (Fermat).

Let n be an integer. If the equation n = x2 + y2 + z2 has solutions
in R and in Z2, then it has a solution in Z (Legendre, Gauß)

Let n be an integer. The equation n = x2 + y2 + z2 + t2 has a
solution in integers if n > 0 (Lagrange)



Basic question : Are there such local-global theorems (“Hasse
principles’), or appropriate substitutes, for other classes of
schemes ?

Here are classical results in this direction.



The Hasse principle for rational points holds for :

Projective homogeneous spaces of connected linear algebraic
groups (Eichler, Landherr, Kneser, Harder).

Projective hypersurfaces Fd(x0, · · · , xn) = 0 with n big with
respect to d and singular locus not too big : circle method
(Hardy-Littlewood, Birch, Heath-Brown, Hooley ...)

The Hasse principle for integral points holds for :

Representation of an integer by an indefinite integral quadratic
form in at least 4 variables (Eichler, Kneser)

Representation of an integer by certains integral forms
Fd(x0, · · · , xn) with n big with respect to the degree d
(Waring’s problem, circle method).



But many examples show that the “Hasse principle” in general
does not hold. Most textbooks stop here.



Counterexamples to the Hasse principle for rational points

Norm form equations NormK/Q(ξ) = c (Hasse, Witt),
more generally, homogeneous spaces of connected linear algebraic
groups (Serre).

Curves of genus 1 (homogeneous spaces of elliptic curves)
2y2 = x4 − 17 (Reichard, Lind)

(Geometrically) rational surfaces :

Surfaces with a pencil of conics a(t)x2 + b(t)y2 + c(t)z2 = 0, for
example (Iskovskikh) x2 + y2 + (3− t2)(2− t2)z2 = 0.

Cubic surfaces (Swinnerton-Dyer 1962), diagonal cubic surfaces
(Cassels–Guy 1966) 5x3 + 9y3 + 10z3 + 12t3 = 0.



Counterexamples to the Hasse principle for integral points

Classical question : given an integral binary quadratic form q(x , y)
and an integer n, is there a systematic method to decide if the
equation n = q(x , y) has a solution with x , y ∈ Z ?



Congruences in general do not suffice, as the following examples
reveal.

23 = x(x + 7y)

1 = 4x2 + 25y2

1 = 4x2 − 475y2

which also reads

(1− 2x)(1 + 2x) = −25.19y2



The proof that there are no integral solutions in the first two cases
is elementary : use divisibility arguments and size arguments,
together with the fact that the only units in Z are ±1.
For an equation of the shape n = l(x , y).m(x , y), l and m linear,
there is a finite process to decide existence of an integral solution.
This uses Z× = ±1. What about the analogous probem over a
number field ?
What about equations n = q(x , y) when q is irreducible ?
Here is a striking theorem (described in Cox’s book Primes of the
form x2 + ny2).
For q prime congruent to 1 mod. 3, the equation q = x2 + 27y2,
which has solutions in all Zp, has solutions in Z if and only if 2 is a
cube in the finite field Fq (conjectured by Euler, proved by Gauß).



Around 1970, there were quite a few counterexamples to the Hasse
principle in the literature. If you looked at these, you could see
that at some point in the proof that there are no rational points,
the law of quadratic reciprocity, or sometimes a higher reciprocity
law, was used. In 1970, Manin showed how to put (nearly) all the
known counterexamples into a common framework.

Let me describe the Brauer–Manin obstruction to the Hasse
principle.



The Brauer group of a field
Let k be a field, let k be a separable closure of k.
Assume char(k) 6= 2. Let a, b ∈ k∗. Imposing the relations

i2 = a, j2 = b, ij = −ji

yield a 4-dimension k-algebra A = (a, b)k over k. It is a “twisted
form” of the 2× 2 matrices :

A⊗ k ' M2(k).

For k = R, a = b = −1, these are the Hamilton quaternions.



Quite generally, a finite dimensional k-algebra is called a central
simple algebra (Hyperkomplexensystem) if there exists an integer
n ≥ 1 such that

A⊗k k ' Mn(k).

The tensor product of two central simple k-algebras is a central
simple k-algebra.
Two such k-algebras are called equivalent if there exist integers
r , s ≥ 1 such that Mr (A) ' Ms(B). Tensor product gives the set
of equivalence classes of central simple k-algebras an abelian group
structure. This is the Brauer group Br(k) of k (R. Brauer, A. A.
Albert).



Class field theory
Local class field theory

Br(Qp) ' Q/Z.

Br(R) = Z/2

The fundamental exact sequence of global class field theory

0 → Br(Q) →
⊕
p∪∞

Br(Qp) → Q/Z → 0.

The formula
∑

p(a, b)p = 0 contains as a special case the law of
quadratic recriprocity.



A conic x2 − ay2 − bt2 = 0 over a field k (char.(k) 6= 2) has a
rational point if and only if the class of the “associated”
quaternion algebra (a, b)k ∈ Br(k) vanishes.

Legendre’s theorem in this context : If for each prime p (finite or
infinite) (a, b)p ∈ Z/2 ⊂ Br(Qp) vanishes, then
(a, b) = 0 ∈ Br(Q).

From
∑

p(a, b)p = 0 we see that the vanishing of (a, b)p for all p
(finite or infinite) except possibly one is enough to guarantee the
vanishing of all (a, b)p and of (a, b) = 0 ∈ Br(Q).



The Brauer group of a scheme
A field k determines a scheme Spec(k).
On an algebraic variety and more generally over a scheme X ,
vector bundles are the analogues of vector spaces over a field.
Azumaya algebras over a scheme X are the natural generalisations
of central simple agebras over a field.
One may introduce an equivalence relation on the Azumaya
algebras over a given scheme X , analogous to the one we described
earlier. Tensor product gives the equivalence classes the structure
of an abelian group, the Brauer group Br(X ) of X .
The construction is functorial in X . If X is a scheme over a ring R,
there is a natural pairing X (R)× Br(X ) → Br(R).



The Brauer-Manin condition

Theorem (Manin, 1970). Let X be a projective variety over Q.
Let X (AQ)Br(X ) ⊂ X (AQ) =

∏
p X (Qp) denote the left kernel of

the (well defined) pairing

X (AQ)× Br(X ) → Q/Z

({Mp}, α) 7→
∑
p

evA(Mp).

Then
X (Q) ⊂ X (AQ)Br(X ) ⊂ X (AQ).

The middle set is referred to as the Brauer-Manin set of X .



The integral version received attention only recently.

Theorem Let X be a separated Z-scheme of finite type. Let
(
∏

p X (Zp))
Br(XQ) ⊂

∏
p X (Zp) be the left kernel of the (well

defined) pairing ∏
p

X (Zp)× Br(XQ) → Q/Z

({Mp}, α) 7→
∑
p

evA(Mp).

Then
X (Z) ⊂ (

∏
p

X (Zp))
Br(XQ) ⊂

∏
p

X (Zp).

Note that we pair with Br(XQ). A more obvious pairing would
have been with Br(X ), but it would give less information.



After some work, it turned out that all the counterexamples to the
Hasse principle for rational points known until 1970, and indeed
until 1999, could be explained by the Brauer-Manin obstruction.

One then started looking for classes of smooth, projective,
geometrically connected algebraic varieties over Q for which the
Brauer-Manin obstruction “is the only one”, that is, for any variety
X in such a class, one has

X (AQ)Br(X ) 6= ∅ =⇒ X (Q) 6= ∅

Note the subsidiary question : It is easy to check whether
X (AQ) 6= ∅, but what about decision procedures for
X (AQ)Br(X ) 6= ∅ ?



The implication X (AQ)Br(X ) 6= ∅ =⇒ X (Q) 6= ∅ has been
established for X birational to

– a homogeneous space of a connected linear algebraic groups, if
all geometric isotropy groups are connected (Sansuc 1981; Borovoi
1996)

– a conic bundle over P1 with at most 4 singular geometric fibres,
for example y2 − az2 = P(x) with P(x) of degree 4 (CT, Coray,
Sansuc 1981; CT, Sansuc, Swinnerton-Dyer 1987)

– a smooth intersection of two quadrics in Pn, n ≥ 8 (CT, Sansuc,
Swinnerton-Dyer 1987)



The proofs involve several techniques :

– Fibration method (reduction to subvarieties)

– Descent method (reduction to the total space of a torsor over
the given variety)

– Systematic use of class field theory (Tate-Nakayama).
In particular, the exactness of the sequence
0 → Br(Q) →

⊕
p∪∞Br(Qp) → Q/Z → 0 is fully used

(whereas to produce counterexamples one need only know that this
is a complex.)

– use of the existing stock of varieties which satisfy the Hasse
principle



If one is willing to grant certain standard – but very difficult –
conjectures, then there are many more classes of varieties for which
one may prove the implication X (AQ)Br(X ) 6= ∅ =⇒ X (Q) 6= ∅.

Under the finiteness of Tate-Shafarevich groups :

Curves of genus 1 (Manin 1970)

Curves of arbitrary genus whose Jacobian has only finitely many
rational points (Scharashkin)

Many diagonal cubic surfaces over Q (Swinnerton-Dyer 2000)

Under the Bouniakowsky-Dickson-Schinzel hypothesis :
Conic bundles over P1 with an arbitrary number of singular fibres
(CT–Sansuc, Serre, Swinnerton-Dyer) (Proof : Generalisation of
Hasse’s argument to prove the Hasse principle for quadratic forms
in 4 variables from the case of 3 variables)



Under both conjectures :

Certain surfaces with a fibration over P1 whose generic fibre is a
curve of genus 1, including some K3 surfaces (CT, Skorobogatov,
Swinnerton-Dyer 1998, ...)

Most smooth intersections of two quadrics in P4

Hasse principle for smooth intersections of two quadrics in
Pn, n ≥ 5
(Wittenberg 2007)



Numerical support for X (AQ)Br(X ) 6= ∅ =⇒ X (Q) 6= ∅ exist for :

– Diagonal cubic surfaces (CT, Kanevsky, Sansuc 1987; ...)

– Curves y2 = f6(x) (Bruin and Stoll 2008)
[For curves of genus at least 2 over a global field of positive
characteristic, the implication above has been established by
Poonen and Voloch (2008) under very minor restrictions.]

– Some Shimura curves (Skorobogatov, ...)

– Some K3-surfaces, in particular diagonal ones (Swinnerton-Dyer,
Bright)



However : There exist projective varieties X over Q for which
X (AQ)Br(X ) 6= ∅ but X (Q) = ∅.

– Skorobogatov (1999) (a twisted bielliptic surface)
The technique has been analyzed (Harari, Skorobogatov,
Demarche)
In Brief : One takes into account Galois unramified covers whose
Galois group need not be commutative, and one involves the
Brauer group of the covering spaces). Such covers are also of
interest in the analysis of rational points on curves (Stoll).

– Poonen (2009) (new type, not covered by the previous analysis)



In the rest of the talk, I shall discuss integral points



The integral Brauer-Manin obstruction : a family of examples

Let n,m, k be positive integers, (n,m) = 1. Let X = Xm,n,k be the
scheme over Z defined by

m2x2 + n2ky2 − nz2 = 1

or
(1 + nky)(1− nky) = m2x2 − nz2.

F. Xu and R. Schulze-Pillot studied the integral solutions, i.e. the
points of X (Z). Let us apply the Brauer–Manin method.
One checks that

∏
p∪∞ X (Zp) 6= ∅.



Let UQ ⊂ XQ be the Zariski open set 1 + nky 6= 0.
Algebraic fact : The (Azumaya) quaternion algebra
(1 + nky , n) ∈ Br(UQ) extends to A ∈ Br(XQ), and spans
Br(XQ)/Br(Q).
For p 6= 2, the image of evA : X (Zp) → Br(Qp) ⊂ Q/Z vanishes.
For p = 2, the image of this map coincides with {1/2} ⊂ Q/Z if
and only if
(i) 2 divides m exactly and n ≡ 5 (8)
or
(ii) 4 divides m and n ≡ 3 or 5 (8)
In case (i) and (ii) we thus conclude : (

∏
p Xm,n,k(Zp))

Br(XQ) = ∅,
hence Xm,n,k(Z) = ∅.



Using genus theory, F. Xu and R. Schulze-Pillot (2004) proved :

Theorem In all other case Xm,n,k(Z) 6= ∅.

Is this a special case of a general theorem ?

Are there classes of schemes X of finite type over Z for which

(
∏
p

X (Zp))
Br(XQ) 6= ∅ =⇒ X (Z) 6= ∅

holds ?



Modest start : P1 minus a point

A nearly trivial result :

Let a, b, c ∈ Z not all zero. If the Z-curve X defined by
ax + by = c has solutions in all Zp, then it has solutions in Z.

Here XQ ' P1
Q \ {∞}. Hence Br(XQ)/Br(Q) = 0 creates no

obstruction !

The strong approximation theorem (here : the chinese remainder
theorem) yields the much more precise result :

X (Z) is dense in
∏

p<∞ X (Zp)

(Note that the real completion is omitted.)



Harder : P1 minus two points

The Z-curve X defined by

2x − 5y = 1, xt = 1

has solutions in all Zp but not in Z.
Here XQ ' P1

Q \ {0,∞}. Hence Br(XQ)/Br(Q) = H1(Q, Q/Z).

There is a Brauer-Manin obstruction attached to (x , 5) ∈ Br(XQ).



In a not completely immediate fashion, class field theory yields

Theorem (Harari 2008) Let X be a separated Z-scheme of finite
type. If XQ becomes isomorphic to P1 minus two points over an
algebraic closure of Q, then

(
∏
p

X (Zp))
Br(XQ) 6= ∅ =⇒ X (Z) 6= ∅.

This holds in particular for equations

a = q(x , y)

with a ∈ Z and q(x , y) an integral binary quadratic form.



Difficulty for application : the quotient Br(XQ)/Br(Q) is infinite !

For a given X/Z given by a = q(x , y), it is thus not clear how to
decide whether or not (

∏
p X (Zp))

Br(XQ) 6= ∅.

There are nevertheless partial results in this direction
(Wei, Xu) which generalize results such as Gauß’s result on
p = x2 + 27y2 (a result which Cox explains from the point of view
of class field theory and complex multiplication).



The situation improves if one looks at the problem of
representation of an integer by a (Q-nondegenerate) integral
quadratic form in n ≥ 3 variables, if one moreover assumes
that q is indefinite over R.

Let X be the Z-scheme defined by a = q(x1, . . . , xn).

Forn ≥ 4, Br(XQ)/Br(Q)) = 0.

For n = 3, Br(XQ)/Br(Q) ⊂ Z/2.



Theorem Let q(x1, · · · , xn) be an integral quadratic form of
rank n, indefinite over R, and let a ∈ Z, a 6= 0. Let X/Z be the
Z-scheme defined by q(x1, · · · , xn) = a. Assume

∏
p X (Zp) 6= ∅.

(a) If n ≥ 4, then X (Z) 6= ∅.
(b) Assume n = 3 and −a · det(q) not a square. Then
Br(XQ)/Br(Q) = Z/2. Let A ∈ Br(XQ) generate this quotient.
Then X (Z) 6= ∅ if and only if the map∏

p

X (Zp) → Q/Z

{Mp} 7→
∑
p

evA(Mp)

contains 0 in its image.



Theorem (a) goes back to the 1950’s (Eichler, Kneser, Watson).
Theorem (b) is a variant (CT/Xu 2009) of a result of Borovoi et
Rudnick (1995).
The main points of the proof of (b) are :
– strong approximation for the spinor group of an indefinite
quadratic form
– representation of an affine quadric q = a over Q, with a
Q-rational point, as a quotient G/T , where G is the spinor group
of q and T is a 1-dimensional algebraic torus over Q.



In the case n = 3, one may produce the algebra A. Let M be a
Q-point on

q(x , y , z) = a.

(Denis Simon has an algorithm to find such a point). Let
l(x , y , z) = 0 be the equation for the tangent plane to the affine
quadric XQ at the point M.
As A one may take the quaternion algebra

A = (l(x , y , z),−a · det(q)).

This yields an alternative proof to the theorem of F. Xu and
Schulze-Pillot, thanks to a method which may applied in a
mechanical way to any equation a = q(x , y , z) with q indefinite.



The above results on the representation of an integer by an
integral quadratic form admit of the following generalization.
Let X be a Z-scheme such that XQ ' G/H with G and H
connected linear algebraic groups over Q. Under a noncompacity
assumption at infinity for the derived group of G , one has the
following theorem (2005/2009)

(
∏
p

X (Zp))
Br(XQ) 6= ∅ =⇒ X (Z) 6= ∅.

(CT/Xu, Harari, Demarche, Borovoi/Demarche)



And when there is no homogenous space structure ?



The equation a = x3 + y3 + z3, with a ∈ Z nonzero.

There are solutions with x , y , z ∈ Q.

For a = 9n ± 4 with n ∈ Z, there are no solutions with x , y , z ∈ Z.

Famous open question : if a is not of the shape 9n ± 4, is there a
solution with x , y , z ∈ Z ?

Open already for a = 33.



Theorem (CT/Wittenberg 2009) Let Xa be the Z-scheme defined
by x3 + y3 + z3 = a, with a 6= 0. If a 6= 9n ± 4, then

(
∏
p

Xa(Zp))
Br(Xa,Q) 6= ∅.

In other words, no reciprocity law whatsoever will prevent this
equation from having an integral solution.



To prove such a result, one must compute Br(Xa,Q)/Br(Q).
Let X c

a,Q ⊂ P3
Q be the cubic surface with homogeneous equation

x3 + y3 + z3 = at3. Let E be the elliptic curve over Q with
equation x3 + y3 + z3 = 0. This is the complement of Xa,Q in X c

a,Q.
There is a localisation exact sequence

0 → Br(X c
a,Q) → Br(Xa,Q) → H1(E , Q/Z).

The last group classifies abelian unramified covers of E .
We may assume that a is not a cube. An algebraic computation
yields Br(X c

a,Q)/Br(Q) = Z/3, with an explicit generator
β ∈ Br(X c

a,Q), of order 3.



An algebraic argument shows that the image of
Br(Xa,Q) → H1(E , Q/Z) consist of classes which vanish at each of
the points (1,−1, 0), (0, 1,−1), (1, 0,−1).

One then uses arithmetic for the elliptic curve E over Q
(knowledge of all isogeneous curves) to show that such a class in
H1(E , Q/Z) is zero. Thus Br(X c

a,Q) = Br(Xa,Q).

One then shows that for any a ∈ Z not a cube and not of the
shape 9n ± 4, there exists a prime p such that β takes three
distinct values on Xa(Zp).
Thus

(
∏
p

Xa(Zp))
Br(Xa,Q) = (

∏
p

Xa(Zp))
β 6= ∅



It is an open question whether any integer a may be written as
x3 + y3 + 2z3, with x , y , z ∈ Z.

Theorem (CT/Wittenberg 2009)
Let Ya be the Z-scheme defined by x3 + y3 + 2z3 = a, with a 6= 0.
Then

(
∏
p

Ya(Zp))
Br(Xa,Q) 6= ∅.

In other words, no reciprocity law whatsoever will prevent this
equation from having an integral solution.



The proof here is more delicate : the restriction map
Br(Y c

a,Q) → Br(Ya,Q) is not onto. We have
Br(Ya,Q)/Br(Q) ' Z/3⊕ Z/2.



Hyperbolic curves

P1 minus three points

Conjecture (Harari and Voloch 2009)
Let X be a Z-scheme such that XQ is isomorphic to P1 minus at
least three points.
If

∏
p X (Zp))

Br(Xa,Q) is not empty, then X (Z) 6= ∅.



There is a slightly more general version of the conjecture. It is then
related to a question of T. Skolem on exponential equations
(1937).
Let S be a finite set of prime numbers pi , i = 1, · · · , n. Let
R ⊂ Q× be the subgroup generated by the pi .
Let a1, a2, a3 be elements in R.
Skolem’s conjecture :
The equation

∑3
i=1 aixi = 0 has solutions with xi ∈ R if and only

if for all integer m prime to S , the equation
∑3

i=1 aixi = 0 mod m
has a solution with all xi ∈ R.



Bonus I : The classical (German) language for integral
quadratic forms (Eichler, Kneser), as reviewed in CT/Xu

Let f (x1, . . . , xn) et g(y1, . . . , ym) be integral quadratic forms,
1 ≤ n < m and m ≥ 3.
One looks for linear forms li (x1, . . . , xn), i = 1, . . . ,m such that

g(x1, . . . , xn) = f (l1(x1, . . . , xn), . . . , lm(x1, . . . , xn)).

This defines a scheme X = X (g , f ) over Z. One assumes that it
has points over each Zp and one asks if it has points in Z.

To f and g one classically associates lattices (Gitter) N et M.



Das Gitter N wird von der Klasse des Gitters M dargestellt.

Translation :

X (Z) 6= ∅



Das Gitter N wird von dem Geschlecht des Gitters M dargestellt.

Translation :∏
p X (Zp) 6= ∅



Das Gitter N wird von dem Spinorgeschlecht des Gitters M
dargestellt.

Translation :

(
∏

p X (Zp))
BrXQ 6= ∅



Assume m − n = 2 and −disc(f ).disc(g) not a square.

Ein Gitter N, das zwar von dem Geschlecht von M dargestellt ist,
nicht aber von allen Spinorgschlechtern im Geschlecht von M
dargestellt wird, nennt man eine Spinorausnahme.

Translation :

Let A ∈ BrXQ be a generator of BrXQ/BrQ = Z/2. Then for each
prime p, A takes only one value on X (Zp).



Bonus II : The Iskovskikh counterexample to the Hasse
principle for rational points (1971)



This is a geometrically rational surface which has points in all Qp

and in R but which has no point in Q.

y2 + z2 = (3− x2)(x2 − 2)

Solution with x , y , z ∈ Q ?

u2 + v2 = (3y2 − x2)(x2 − 2y2) 6= 0,

with u, v , x , y ∈ Z, (x , y) = 1, hence (3y2 − x2, x2 − 2y2) = 1
Modulo 4, the pair (3y2 − x2, x2 − 2y2) takes one of the following
values :

(2,−1), (−1, 1), (3, 2)

In R we have 3y2 − x2 > 0, x2 − 2y2 > 0.



u2 + v2 = (3y2 − x2)(x2 − 2y2) 6= 0,

Let p be an odd prime. If p2n+1 exactly divides either 3y2 − x2 or
x2 − 2y2, then p2n+1 divides u2 + v2 exactly, thus −1 is a square
mod. p, thus (first complementary law) p ≡ 1 mod. 4.
Thus the pair (3y2 − x2, x2 − 2y2) takes one the following values
modulo 4 :

(1, 1), (2, 1), (1, 2)

hence none of the previous values

(2,−1), (−1, 1), (3, 2)

Contradiction, X (Q) = ∅.



The Iskovskikh example in the light of the Brauer-Manin
obstruction
(CT,Coray, Sansuc 1981)

Let c ∈ Z, c > 0, c be odd. The equation

y2 + z2 = (c − x2)(x2 − c + 1) 6= 0

defines an open set Uc in a smooth projective surface Xc/Q.
We have

∏
p∪∞ Xc(Qp) 6= ∅.

The Azumaya quaternion algebra (c − x2,−1) ∈ Br(Uc) extends
to an A ∈ Br(Xc).



For p 6= 2, the image of

evA : Xc(Qp) → Br(Qp) ⊂ Q/Z

is zero.
For p = 2, this image is {1/2} ⊂ Q/Z if and only if c ≡ 3(4).
Thus : If c ≡ 3(4), then Xc(AQ)Br(X ) = ∅, hence Xc(Q) = ∅.
The same computation shows : If c ≡ 1(4), then Xc(AQ)Br(X ) 6= ∅.

Theorem If c ≡ 1(4) then Xc(Q) 6= ∅.
(special case of a theorem of CT, Coray and Sansuc, 1981)


