Unramified third cohomology and integral Hodge conjecture
 (Joint work with Claire Voisin)
 Jean-Louis Colliot-Thélène (CNRS et Université Paris-Sud)
 KIAS
 Seoul
 8th September, 2010

Let X / \mathbb{C} be a smooth, projective variety and $d=\operatorname{dim}(X)$. Let $H_{B}^{i}(X, R(j)):=H_{B}^{2 i}(X(\mathbb{C}), R(j))$, where $R=\mathbb{Z}, \mathbb{Q}, \mathbb{C}$ or \mathbb{Q} / \mathbb{Z}, and $R(j)=R \otimes\left(\mathbb{Z} .(2 \pi \sqrt{-1})^{\otimes i}\right)$.
For any $i \geq 0$, there is a cycle map with values in Betti cohomology

$$
c^{i}: C H^{i}(X) \rightarrow H_{B}^{2 i}(X, \mathbb{Z}(i))
$$

Let $H_{a l g}^{2 i}(X, \mathbb{Z}) \subset H_{B}^{2 i}(X, \mathbb{Z}(i))$ denote the image of this map. Using the embedding $H_{B}^{2 i}(X, \mathbb{Q}) \subset H_{B}^{2 i}(X, \mathbb{C}(i))$ one defines the subgroup $H_{H d g}^{2 i}(X, \mathbb{Q})$ of classes of type (i, i).

One defines the group $H_{H d g}^{2 i}(X, \mathbb{Z}) \subset H_{B}^{2 i}(X, \mathbb{Z}(i))$ as the inverse image of $H_{H d g}^{2 i}(X, \mathbb{Q})$ in $H_{B}^{2 i}(X, \mathbb{Z}(i))$.
One then has $H_{a l g}^{2 i}(X, \mathbb{Z}) \subset H_{H d g}^{2 i}(X, \mathbb{Z}) \subset H_{B}^{2 i}(X, \mathbb{Z}(i))$
The Hodge conjecture predicts that the quotient $H_{H d g}^{2 i}(X, \mathbb{Z}) / H_{a l g}^{2 i}(X, \mathbb{Z})$ is finite.
Trivial remark : the embedding

$$
Z^{2 i}(X):=H_{H d g}^{2 i}(X, \mathbb{Z}) / H_{a l g}^{2 i}(X, \mathbb{Z}) \subset H_{B}^{2 i}(X, \mathbb{Z}(i)) / H_{a l g}^{2 i}(X, \mathbb{Z})
$$

induces an isomorphism on torsion subgroups.

We know :
For $i=0,1, d$, we have $Z^{2 i}(X)=0$.
For $i=1$: Lefschetz's theorem on class of type $(1,1)$.
In this case one has an embedding $N S(X) \subset H_{B}^{2}(X, \mathbb{Z}(1))$, and it induces an isomorphism $N S(X)\{$ tor $\} \stackrel{\simeq}{\rightrightarrows} H_{B}^{2}(X, \mathbb{Z}(1))\{$ tor $\}$.
For $i=d-1$, the group $Z^{2 d-2}(X)$ is finite (follows from the hard Lefschetz theorem and the case $d=1$).
For $i=2$, if there exists a proper map $f: V \rightarrow X$, from a 3-dimensional variety V such that the induced homomorphism $f_{*}: \mathrm{CH}_{0}(V) \rightarrow \mathrm{CH}_{0}(X)$ is onto, then
$Z^{4}(X)=H_{H d g}^{4}(X, \mathbb{Z}) / H_{\text {alg }}^{4}(X, \mathbb{Z})$ is finite (Bloch-Srinivas).

One knows that the integral Hodge conjecture does not hold in general. There are examples with $Z^{4}(X)=H_{H d g}^{4}(X, \mathbb{Z}) / H_{a l g}^{4}(X, \mathbb{Z}) \neq 0$.
More precisely : there are examples (Atiyah-Hirzebruch) for which the finite group $Z^{4}(X)\{$ tors $\} \neq 0$.

Questions which we want to ask:
Is there a systematic method to compute the finite group $Z^{4}(X)\{$ tors $\} ?$
Are there classes of varieties for which $Z^{4}(X)\{$ tors $\}=0$? [C. Voisin for instance proves this for rational varieties.]
If X is rationally simply connected (in the sens of Kollár, Miyaoka, Mori and Campana), is the finite group $Z^{4}(X)=0$? (question raised by C. Voisin, 2004)

Using methods and results from algebraic K-theory, we shall partially answer these questions.

Bloch-Ogus-Theory and Betti-Cohomology (1974)
Let X be a complex variety. Let $X_{c l}$ denote the classical topology on $X(\mathbb{C})$. There is a morphism of sites $h: X_{c l} \rightarrow X_{\text {Zar }}$. An abelian group A defines a constant sheaf A on $X(\mathbb{C})$. For $i \in \mathbb{N}$, the sheaf

$$
\mathcal{H}^{i}(A):=R^{i} h_{*} A
$$

on $X_{Z a r}$ is the sheaf associated to the presheaf $U \mapsto H_{B}^{i}(U, A)$.
We have the spectral sequence

$$
E_{2}^{p q}=H^{p}\left(X_{Z a r}, \mathcal{H}^{q}(A)\right) \Longrightarrow H_{B}^{n}(X, A)
$$

Let $i_{D}: D \hookrightarrow X$ be a closed integral subvariety, let $\mathbb{C}(D)$ be its function field.
Let

$$
H^{i}(\mathbb{C}(D), A):=\lim _{U \subset \vec{D}, \cup \neq \emptyset} H^{i}(U(\mathbb{C}), A)
$$

This defines a constant sheaf on D, which itself defines the sheaf $i_{D_{*}} H^{i}(\mathbb{C}(D), A)$ on $X_{Z a r}$.
For $E \subset D$ of codimension 1, there is a residue map

$$
H^{i}(\mathbb{C}(D), A) \rightarrow H^{i-1}(\mathbb{C}(E), A(-1))
$$

Main theorem of the Bloch-Ogus Theory (Gersten conjecture for étale cohomology)

Let X be a smooth irreducible variety over \mathbb{C}. Then for all $i \in \mathbb{N}$ there is an exact sequence of sheaves
$0 \rightarrow \mathcal{H}_{X}^{i}(A) \rightarrow i_{X *} H^{i}(\mathbb{C}(X), A) \xrightarrow{\partial} \bigoplus_{\substack{D \text { integral } \\ \text { codim } D=1}} i_{D *} H^{i-1}(\mathbb{C}(D), A(-1))$

$$
\xrightarrow{\partial} \ldots \xrightarrow{\partial} \bigoplus_{\substack{D \text { integral } \\ \text { codim } D=i}} i_{D *} A_{D}(-i) \rightarrow 0 .
$$

The maps ∂ are induced by the above mentioned residue maps.

Definition

Let X be complex variety, and A an abelian group. The i-th unramified cohomology group of X with values in A is the group

$$
H_{n r}^{i}(X, A):=H^{0}\left(X, \mathcal{H}^{i}(X, A)\right)
$$

Let X be a smooth, connected, projective variety over \mathbb{C}. The groups $H_{n r}^{1}$ and $H_{n r}^{2}$ were understood (Grothendieck) without Bloch-Ogus theory.

$$
H_{n r}^{2}\left(X, \mu_{n}\right) \simeq \operatorname{Br}(X)[n] \quad \text { birational } \quad \text { invariant }
$$

Exact sequence

$$
\begin{aligned}
0 \rightarrow N S(X) \rightarrow & H_{B}^{2}(X, \mathbb{Z}(1)) \rightarrow H_{n r}^{2}(X, \mathbb{Z}(1)) \rightarrow 0 . \\
& H_{n r}^{2}(X, \mathbb{Z}) \simeq \mathbb{Z}^{\left(b_{2}-\rho\right)} .
\end{aligned}
$$

Exact sequence

$$
0 \rightarrow(\mathbb{Q} / \mathbb{Z})^{\left(b_{2}-\rho\right)} \rightarrow H_{n r}^{2}(X, \mathbb{Q} / \mathbb{Z}) \rightarrow H_{B}^{3}(X, \mathbb{Z})\{\text { tor }\} \rightarrow 0
$$

and $b_{2}-\rho=0$ if and only if $H^{2}\left(X, O_{X}\right)=0$.

The main theorem of Bloch-Ogus theory implies :
Let X be smooth and irreducible. Then

$$
H_{n r}^{i}(X, A)=\operatorname{Ker}\left[H^{i}(\mathbb{C}(X), A) \xrightarrow{\partial} \underset{\begin{array}{c}
D \text { integral } \\
\text { codim } D=1
\end{array}}{\bigoplus} H^{i-1}(\mathbb{C}(D), A(-1))\right]
$$

In particular: If X is smooth and $U \subset X$ open with complement of codimension at least 2, then $H_{n r}^{i}(X, A) \stackrel{\simeq}{\rightrightarrows} H_{n r}^{i}(U, A)$.
Hence: if X and Y are smooth, projective, irreducible and birational to each other, then $H_{n r}^{i}(X, A) \simeq H_{n r}^{i}(Y, A)$. For $i \geq 1$ and $X=\mathbf{P}_{\mathbb{C}}^{n}$, these groups vanish.

Moreover :
If X is smooth, then $H^{r}\left(X_{Z a r}, \mathcal{H}^{i}(A)\right)=0$ for $r>i$.
Let X over \mathbb{C} be smooth, connected, projective. Then

$$
\mathrm{CH}^{i}(X) / n \xrightarrow{\simeq} H_{Z a r}^{i}\left(X, \mathcal{H}^{i}(\mathbb{Z} / n(i))\right)
$$

and

$$
\mathrm{CH}^{i}(X) / \mathrm{alg} \xrightarrow{\simeq} H_{Z a r}^{i}\left(X, \mathcal{H}^{i}(\mathbb{Z}(i))\right) .
$$

Let X over \mathbb{C} be smooth and connected.
Let A be an abelian group.
Exact sequence :

$$
H_{B}^{3}(X(\mathbb{C}), A) \rightarrow H_{n r}^{3}(X, A) \xrightarrow{d_{2}} H^{2}\left(X_{Z a r}, \mathcal{H}_{X}^{2}(A)\right) \rightarrow H_{B}^{4}(X(\mathbb{C}), A)
$$

If X moreover is projective, then exact sequence :

$$
H_{B}^{3}(X, \mathbb{Z}(2)) \rightarrow H_{n r}^{3}(X, \mathbb{Z}(2)) \rightarrow C H^{2}(X) / a \lg \xrightarrow{c^{2}} H_{B}^{4}(X, \mathbb{Z}(2))
$$

Hence (Definition of $\operatorname{Griff}^{2}(X)$)

$$
0 \rightarrow \operatorname{Griff}^{2}(X) \rightarrow C H^{2}(X) / \operatorname{alg} \xrightarrow{c^{2}} H_{B}^{4}(X, \mathbb{Z}(2))
$$

and

$$
H_{B}^{3}(X, \mathbb{Z}(2)) \rightarrow H_{n r}^{3}(X, \mathbb{Z}(2)) \rightarrow \operatorname{Griff}^{2}(X) \rightarrow 0
$$

The Bloch-Kato conjecture
F field, $\operatorname{char}(F)=0$.
Map (Tate) from Milnor K-theory to Galois cohomology :

$$
K_{i}^{M}(F) / n \rightarrow H^{i}\left(F, \mu_{n}^{\otimes i}\right)
$$

Conjecture $B K_{i, n}$: This is an isomorphism.
If this holds for all i and n, then

$$
H^{i+1}\left(F, \mu_{n}^{\otimes i}\right) \hookrightarrow H^{i+1}\left(F, \mu_{n m}^{\otimes i}\right)
$$

hence

$$
H^{i+1}(F, \mathbb{Q} / \mathbb{Z}(i))=\bigcup_{n} H^{i+1}\left(F, \mu_{n}^{\otimes i}\right) .
$$

$$
K_{i}^{M}(F) / n \xlongequal{\leftrightharpoons} H^{i}\left(F, \mu_{n}^{\otimes i}\right) ?
$$

Long history
$i=1$: Hilbert's theorem 90 (Kummer theory)
$i=2$: Merkurjev and Suslin (1982)
$i=3, n=2^{m}$: Merkurjev and Suslin, Rost (1990)
$i>4, n=2^{m}$: Voevodsky (2003)
i>4: Voevodsky, Rost 2003-2010
(Voevodsky, arXiv 0805.4430v2, 10.2.2010)

Theorem
Let X be a complex variety. Multiplication by $n>0$ induces short exact sequences of Zariski sheaves

$$
\left.0 \rightarrow \mathcal{H}^{i}(X, \mathbb{Z}(j)) \xrightarrow{\times n} \mathcal{H}^{i}(X, \mathbb{Z}(j)) \rightarrow \mathcal{H}^{i}(X, \mathbb{Z} / n(j))\right) \rightarrow 0 .
$$

In particular the groups $H_{n r}^{i}(X, \mathbb{Z}(j))=H^{0}\left(X, \mathcal{H}^{i}(X, \mathbb{Z}(j))\right)$ are torsion free.
Follows from the Bloch-Kato conjecture and further work.

Corollary
Let X be smooth, connected, projective variety. If there exists Y of dimension r and a morphism $Y \rightarrow X$ such that $C H_{0}(Y) \rightarrow C H_{0}(X)$ is onto, then $H_{n r}^{i}(X, \mathbb{Z}(j))=0$ for $i>r$.

Proof: The correspondance method of Bloch-Srinivas shows that these groups are torsion groups.

For X smooth, injectivity of $\mathcal{H}^{3}(X, \mathbb{Z}(j)) \xrightarrow{\times n} \mathcal{H}^{3}(X, \mathbb{Z}(j))$ follows from Merkurjev-Suslin: remark of Bloch and Srinivas (1983). If moreover $\operatorname{dim}(X)=3$, then $\mathcal{H}^{4}(X, \mathbb{Z}(j))=0$ (Lefschetz), hence one already has the exact sequence.

$$
\left.0 \rightarrow \mathcal{H}^{3}(X, \mathbb{Z}(j)) \xrightarrow{\times n} \mathcal{H}^{3}(X, \mathbb{Z}(j)) \rightarrow \mathcal{H}^{3}(X, \mathbb{Z} / n(j))\right) \rightarrow 0 .
$$

This was noticed by Barbieri-Viale (1992).

Main theorem

Let X be a smooth variety over \mathbb{C}.
(i) For $n>1$, exact sequence

$$
\left.0 \rightarrow H_{n r}^{3}(X, \mathbb{Z}(2))\right) / n \rightarrow H_{n r}^{3}\left(X, \mu_{n}^{\otimes 2}\right) \rightarrow Z^{4}(X)[n] \rightarrow 0
$$

(ii) Exact sequence $\left.\left.0 \rightarrow H_{n r}^{3}(X, \mathbb{Z}(2))\right) \otimes \mathbb{Q} / \mathbb{Z} \rightarrow H_{n r}^{3}(X, \mathbb{Q} / \mathbb{Z}(2))\right) \rightarrow Z^{4}(X)\{\operatorname{tor}\} \rightarrow 0$.

Proof

By the Bloch-Ogus theorem, the spectal sequence

$$
E_{2}^{p q}=H^{p}\left(X_{Z a r}, \mathcal{H}^{q}(\mathbb{Z}(2))\right) \Longrightarrow H_{B}^{n}(X, \mathbb{Z}(2))
$$

is concentrated in the second octant. When one analyses the filtration on $H_{B}^{4}(X, \mathbb{Z}(2))$ given by the spectral sequence, one gets the exact sequence

$$
\begin{gathered}
0 \rightarrow H^{1}\left(X, \mathcal{H}_{X}^{3}(\mathbb{Z}(2))\right) \rightarrow\left[H_{B}^{4}(X, \mathbb{Z}(2)) / H_{a l g}^{4}(X, \mathbb{Z}(2))\right] \\
\rightarrow H^{0}\left(X, \mathcal{H}_{X}^{4}(\mathbb{Z}(2))\right)
\end{gathered}
$$

As the group $H_{n r}^{4}(X, \mathbb{Z}(2))=H^{0}\left(X, \mathcal{H}_{X}^{4}(\mathbb{Z}(2))\right)$ has no torsion, this yields

$$
H^{1}\left(X, \mathcal{H}_{X}^{3}(\mathbb{Z}(2))\right)\{\text { tor }\} \stackrel{\simeq}{\leftrightarrows} Z^{4}(X)\{\text { tor }\}
$$

The exact sequence of sheaves

$$
0 \rightarrow \mathcal{H}_{X}^{3}(\mathbb{Z}(2)) \xrightarrow{\times n} \mathcal{H}_{X}^{3}(\mathbb{Z}(2)) \rightarrow \mathcal{H}_{X}^{3}\left(\mu_{n}^{\otimes 2}\right) \rightarrow 0
$$

gives rise to the exact sequence of groups

$$
\begin{aligned}
0 \rightarrow H^{0}\left(X, \mathcal{H}_{X}^{3}(\mathbb{Z}(2))\right) / n & \rightarrow H^{0}\left(X, \mathcal{H}_{X}^{3}\left(\mu_{n}^{\otimes 2}\right)\right) \\
& \rightarrow H^{1}\left(X, \mathcal{H}_{X}^{3}(\mathbb{Z}(2))\right)[n] \rightarrow 0,
\end{aligned}
$$

from which we get the announced exact sequences

$$
\begin{gathered}
\left.0 \rightarrow H_{n r}^{3}(X, \mathbb{Z}(2))\right) / n \rightarrow H_{n r}^{3}\left(X, \mu_{n}^{\otimes 2}\right) \rightarrow Z^{4}(X)[n] \rightarrow 0 \\
\left.\left.0 \rightarrow H_{n r}^{3}(X, \mathbb{Z}(2))\right) \otimes \mathbb{Q} / \mathbb{Z} \rightarrow H_{n r}^{3}(X, \mathbb{Q} / \mathbb{Z}(2))\right) \rightarrow Z^{4}(X)\{\text { tor }\} \rightarrow 0 .
\end{gathered}
$$

1) For varieties X of dimension 3 with $\left.H_{n r}^{3}(X, \mathbb{Z}(2))\right)=0$, for instance unitational varieties of dimension 3, the argument goes back to a 1992 paper by Barbieri-Viale.
2) From the sequence and the Bloch-Ogus Theory one concludes that the group $Z^{4}(X)\{$ tor $\}$ is a birational invariant. C. Voisin had already remarked that the groups $Z^{4}(X)$ and $Z^{2 d-2}(X)$ are birational invariant. Her proof was by reduction to the case of blowing up of a smooth closed subvariety.

On the group $H_{n r}^{3}(X, \mathbb{Z})$
We have the exact sequence

$$
H_{B}^{3}(X, \mathbb{Z}(2)) \rightarrow H_{n r}^{3}(X, \mathbb{Z}(2)) \rightarrow \operatorname{Griff}^{2}(X) \rightarrow 0
$$

As already mentioned, if $\mathrm{CH}_{0}(X)$ is covered a surface, then $H_{n r}^{3}(X, \mathbb{Z}(2))=0$. One then has an isomorphism of finite abelian groups

$$
\left.H_{n r}^{3}(X, \mathbb{Q} / \mathbb{Z}(2))\right) \stackrel{\simeq}{\rightrightarrows} Z^{4}(X) .
$$

Basic diagram

where $\operatorname{Ker}=\operatorname{Ker}\left[\mathrm{CH}^{2}(X) / n \rightarrow H_{\mathrm{et}}^{4}\left(X, \mu_{n}^{\otimes 2}\right)\right]$ and the top two sequences are short exact sequences.

Varieties with $H_{n r}^{3}\left(X, \mu_{n}^{\otimes 2}\right) \neq 0$ or $Z^{4}(X) \neq 0$

Atiyah and Hirzebruch (1962); Totaro (1997) : Topological methods. Torsion in $H_{B}^{4}(X, \mathbb{Z})$. Does not come from $H_{a l g}^{4}(X, \mathbb{Z})$. Examples with $\operatorname{dim}(X) \geq 7$.
Kollár (1990). Specialization argument. For $X \subset \mathbf{P}_{\mathbb{C}}^{4}$ a very general hypersurface of degree p^{3} with a prime $p \neq 2,3, H_{B}^{4}(X, \mathbb{Z})=\mathbb{Z}$ and $H_{a l g}^{4}(X, \mathbb{Z}) \subset p \mathbb{Z}$. Thus $Z^{4}(X) \neq 0$ and $H_{n r}^{3}(X, \mathbb{Z} / p) \neq 0$.
Bloch and Esnault (1996); Schoen (2002). Arithmetical method (p-adic cohomology, Hilbert's irreducibility theorem).
Examples with $\operatorname{dim}(X)=3$. $\operatorname{Griff}^{2}(X) / n \neq 0$, resp. $\operatorname{Griff}^{2}(X) / n$ infinite. The same therefore holds for $H_{n r}^{3}(X, \mathbb{Z}) / n$ and $H_{n r}^{3}(X, \mathbb{Z} / n)$. Open question: is $Z^{4}(X) \neq 0$?
For rationally connected varieties, could the situation be better ?
(Question by C. Voisin 2004) Answer (CT/Voisin 2009) : No.

A unirational variety with $H_{n r}^{3}(X, \mathbb{Z} / 2)=Z^{4}(X)[2] \neq 0$
Let F be a field, Char. $(F)=0, f, g, h \in F^{*}$, let Q / F be the 3-dimensional quadric in \mathbf{P}_{F}^{5} defined by the equation $X^{2}-f Y^{2}-g Z^{2}+f g T^{2}-h W^{2}=0$. Let $F(Q)$ denote its function field.

Theorem (Arason, 1974) The kernel of the map $H^{3}(F, \mathbb{Z} / 2) \rightarrow H^{3}(F(Q), \mathbb{Z} / 2)$ is 0 or $\mathbb{Z} / 2$, and it is spanned by the cup-product $(f) \cup(g) \cup(h)$.

This result is a forerunner of the big theorems in algebraic K-theory : Merkur'ev-Suslin, Rost, Voevodsky.
[Similar result: For H^{1}, Hilbert. For H^{2}, Witt. For $H^{n}, n \geq 4$, Jacob and Rost; Orlov, Vishik and Voevodsky.]

Theorem (CT/Ojanguren, 1988)
Let $F=\mathbb{C}(x, y, z)$. There exist $f, g, h=h_{1} h_{2}$ such that the class $(f) \cup(g) \cup\left(h_{1}\right) \in H^{3}(F, \mathbb{Z} / 2)$ does not vanish in $H^{3}(F(Q), \mathbb{Z} / 2)$, but becomes unramified on any smooth projective variety X / \mathbb{C} with $\mathbb{C}(X)=F(Q)$. On may choose f, g, h such that the 6 -dimension variety X is unirational.

For the proof of this result, one uses residues with respect to rank one discrete valuation on $\mathbb{C}(X)$.
[E. Peyre later produced many examples of unirational varities with $H_{n r}^{i}(X, \mathbb{Z} / n) \neq 0$ for suitable i. Further recent results by A. Asok.]

1-dimensional version of the argument, with $H_{n r}^{1}$ (Abhyankar's Lemma - Ramification eats up ramification)
Let Γ be the curve $y^{2}=x(x-1)(x+1)$. The function field $L=\mathbb{C}(\Gamma)$ is a zero-dimensional quadric over $F=\mathbb{C}(x)$. The class $(x) \in F^{*} / F^{* 2}=H^{1}(F, \mathbb{Z} / 2)$ does not vanish in $L^{*} / L^{* 2}$, because the kernel is $\mathbb{Z} / 2 .(x(x-1)(x+1))$, and the classes x and $(x(x-1)(x+1))$ have different valuation mod. 2 at the place $x-1$ of $\mathbb{C}(x)$. The class x ist unramified in $H^{1}(L, \mathbb{Z} / 2)$, because its ramification in $\mathbb{C}(x)$ at every place is eaten up by the ramfication of $x(x-1)(x+1)$.

Examples of Artin-Mumford (1970) : here one uses the group $H_{n r}^{2}(X, \mathbb{Z} / 2)$. As ramification locus one may take a suitable configuration of 10 lines in $\mathbf{P}_{\mathbb{C}}^{2}$. In CT/Ojanguren, for $H_{n r}^{3}$, we use a suitable configuration of 36 planes in $\mathbf{P}_{\mathbb{C}}^{3}$.

Theorem (2010, CT/Voisin)
There exists a smooth, projective variety X of dimension 3 with $H^{i}\left(X, O_{X}\right)=0$ for any $i>0$, but with $Z^{4}(X)\{$ tors $\} \neq 0$.
These varieties X admit a fibration $X \rightarrow \mathbf{P}^{1}$ whose general fibre is a $K 3$-surface.
The index $I\left(X_{\text {eta }} / \mathbb{C}\left(\mathbf{P}^{1}\right)\right) \neq 1$.
Proof rather elaborate. In principle the argument is in the same spirit as Kollár's specialization argument.

Varieties for which $H_{n r}^{3}(X, \mathbb{Q} / \mathbb{Z}(2))=0$ and $Z^{4}(X)=0$.

Two theorems proven using methods of algebraic K-theory.
Theorem 1 (1988) Let $X \rightarrow S$ be a dominant morphism of smooth, projective, complex varieties, $\operatorname{dim}(S)=2$ whose generic fibre is a conic. Then $H_{n r}^{3}(X, \mathbb{Q} / \mathbb{Z})=0$. Hence also $Z^{4}(X)=0$.

Theorem 2 Let $X \rightarrow \Gamma$ be be a dominant morphism of smooth, projective, complex varieties, $\operatorname{dim}(\Gamma)=1$, geometric generic fibre a rational surface. Then $H_{n r}^{3}(X, \mathbb{Q} / \mathbb{Z})$ and $Z^{4}(X)=0$.

Proof of theorem 1. The generic fibre X_{η} is a conic C over $F=\mathbb{C}(S)$. Let D / F be the associated quaternion algebra. One may restrict attention to 2-torsion. One has $\left.H_{n r}^{3}(X / \mathbb{C}, \mathbb{Z} / 2)\right) \subset H_{n r}^{3}(C / F, \mathbb{Z} / 2)$. One considers the localisation sequence for étale cohomology and the Leray spectral sequence for $C \rightarrow \operatorname{Spec}(F)$. From this follows $F^{*} / \operatorname{Nrd}\left(D^{*}\right) \simeq H_{n r}^{3}(C, \mathbb{Z} / 2)$.
But $F^{*} / \operatorname{Nrd}\left(D^{*}\right) \hookrightarrow H^{3}(F, \mathbb{Z} / 2)$ (Merkurjev-Suslin) and $H^{3}(F, \mathbb{Z} / 2)=0$, since coh. $\operatorname{dim}(\mathbb{C}(S)) \leq 2$.

Proof of Theorem 2. Using methods of algebraic K-Theory one shows:

Theorem (B. Kahn (1996) $+\varepsilon$) Let F be a field of char. zero and cohomological dimension ≤ 1. Let V / F be a smooth projective surface. Let \bar{F} be an algebraic closure of F, G the absolute Galois group of F and $\bar{V}=V \times_{F} \bar{F}$. If $H^{2}\left(V, O_{V}\right)=0$ and the third integral cohomology of \bar{V} has no torsion, then one has an exact sequence

$$
0 \rightarrow C H^{2}(V) \rightarrow C H^{2}(\bar{V})^{G} \rightarrow H_{n r}^{3}(V, \mathbb{Q} / \mathbb{Z}(2)) \rightarrow 0
$$

If the surface \bar{V} is rational, then $\operatorname{deg}: C H^{2}(\bar{V}) \stackrel{\simeq}{\rightrightarrows} \mathbb{Z}$, hence

$$
\mathbb{Z} / I(V / F) \simeq H_{n r}^{3}(V, \mathbb{Q} / \mathbb{Z}(2))
$$

where $I(V / F)$ is the index of V.
The F-birational classification of geometrically F-rational surfaces (Iskovskikh) (or the Graber-Harris-Starr theorem) implies: over $F=\mathbb{C}(\Gamma)$, we have $V(F) \neq \emptyset$, hence $I(V / F)=1$. From this, one deduces $H_{n r}^{3}(V, \mathbb{Q} / \mathbb{Z}(2)=0$.
If V / F is the generic fibre of $X \rightarrow \Gamma$, then $H_{n r}^{3}(X, \mathbb{Q} / \mathbb{Z}) \subset H_{n r}^{3}(V, \mathbb{Q} / \mathbb{Z}(2)=0$. This proves Theorem 2 .

Theorems 1 and 2 are but special cases of a theorem which is proven using Hodge theoretic methods (infinitesimal variations of Hodge structures).
Theorem (Voisin, 2004) Let X be a smooth, projective uniruled threefold. Then $Z^{4}(X)=0$.
Hence, by the main theorem in this lecture, $H_{n r}^{3}(X, \mathbb{Q} / \mathbb{Z}(2))=0$.
[C. Voisin also proves $Z^{4}(X)=0$ for Calabi-Yau threefolds.]

Open problems
Let X be a smooth projective variety, $d=\operatorname{dim}(X)$.
(Voisin, 2004) If X is rationally connected, is $Z^{2 d-2}(X)=0$?
If X is rationally connected, $d=4$ or $d=5$, is the finite group $H_{n r}^{3}(X, \mathbb{Q} / \mathbb{Z}(2))=Z^{4}(X)$ zero ?

There are parallel problems for varieties over a finite field. The analogue of the Hodge conjecture is the Tate conjecture.

Let me mention just one specific problem.
Let X / \mathbb{F} be a smooth projective variety of dimension 3 over a finite field \mathbb{F} of characteristic p. Let $\ell \neq p$ be a prime. If X is geometrically covered by the product of a surface and \mathbf{P}^{1}, is the group $H_{n r}^{3}\left(X, \mathbb{Q}_{\ell} / \mathbb{Z}_{\ell}(2)\right)=0$?
For threefolds X / \mathbb{F} which admit a conic bundle structure over a surface, this was recently proved by Parimala and Suresh.

