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Let X/C be a smooth, projective variety and d = dim(X ). Let
H i

B(X ,R(j)) := H2i
B (X (C),R(j)), where R = Z,Q,C or Q/Z, and

R(j) = R ⊗ (Z.(2π
√
−1)⊗i ).

For any i ≥ 0, there is a cycle map with values in Betti cohomology

ci : CH i (X )→ H2i
B (X ,Z(i)).

Let H2i
alg (X ,Z) ⊂ H2i

B (X ,Z(i)) denote the image of this map.

Using the embedding H2i
B (X ,Q) ⊂ H2i

B (X ,C(i)) one defines the
subgroup H2i

Hdg (X ,Q) of classes of type (i , i).



One defines the group H2i
Hdg (X ,Z) ⊂ H2i

B (X ,Z(i)) as the inverse

image of H2i
Hdg (X ,Q) in H2i

B (X ,Z(i)).

One then has H2i
alg (X ,Z) ⊂ H2i

Hdg (X ,Z) ⊂ H2i
B (X ,Z(i))

The Hodge conjecture predicts that the quotient
H2i

Hdg (X ,Z)/H2i
alg (X ,Z) is finite.

Trivial remark : the embedding

Z 2i (X ) := H2i
Hdg (X ,Z)/H2i

alg (X ,Z) ⊂ H2i
B (X ,Z(i))/H2i

alg (X ,Z)

induces an isomorphism on torsion subgroups.



We know :

For i = 0, 1, d , we have Z 2i (X ) = 0.
For i = 1 : Lefschetz’s theorem on class of type (1, 1).
In this case one has an embedding NS(X ) ⊂ H2

B(X ,Z(1)), and it

induces an isomorphism NS(X ){tor} '→ H2
B(X ,Z(1)){tor}.

For i = d − 1, the group Z 2d−2(X ) is finite (follows from the hard
Lefschetz theorem and the case d = 1).

For i = 2, if there exists a proper map f : V → X , from a
3-dimensional variety V such that the induced homomorphism
f∗ : CH0(V )→ CH0(X ) is onto, then
Z 4(X ) = H4

Hdg (X ,Z)/H4
alg (X ,Z) is finite (Bloch-Srinivas).



One knows that the integral Hodge conjecture does not hold in
general. There are examples with
Z 4(X ) = H4

Hdg (X ,Z)/H4
alg (X ,Z) 6= 0.

More precisely : there are examples (Atiyah-Hirzebruch) for which
the finite group Z 4(X ){tors} 6= 0.



Questions which we want to ask :

Is there a systematic method to compute the finite group
Z 4(X ){tors} ?

Are there classes of varieties for which Z 4(X ){tors} = 0 ?
[C. Voisin for instance proves this for rational varieties.]

If X is rationally simply connected (in the sens of Kollár,
Miyaoka, Mori and Campana), is the finite group Z 4(X ) = 0?
(question raised by C. Voisin, 2004)

Using methods and results from algebraic K-theory, we shall
partially answer these questions.



Bloch–Ogus-Theory and Betti-Cohomology (1974)

Let X be a complex variety. Let Xcl denote the classical topology
on X (C). There is a morphism of sites h : Xcl → XZar . An abelian
group A defines a constant sheaf A on X (C). For i ∈ N, the sheaf

Hi (A) := R ih∗A

on XZar is the sheaf associated to the presheaf U 7→ H i
B(U,A).

We have the spectral sequence

Epq
2 = Hp(XZar ,Hq(A)) =⇒ Hn

B(X ,A).



Let iD : D ↪→ X be a closed integral subvariety, let C(D) be its
function field.
Let

H i (C(D),A) := lim
→

U⊂D,U 6=∅

H i (U(C),A).

This defines a constant sheaf on D, which itself defines the sheaf
iD∗H

i (C(D),A) on XZar .
For E ⊂ D of codimension 1, there is a residue map

H i (C(D),A)→ H i−1(C(E ),A(−1)).



Main theorem of the Bloch–Ogus Theory (Gersten conjecture for
étale cohomology)

Let X be a smooth irreducible variety over C. Then for all i ∈ N
there is an exact sequence of sheaves

0→ Hi
X (A)→ iX∗H

i (C(X ),A)
∂→

⊕
D integral

codim D=1

iD∗H
i−1(C(D),A(−1))

∂→ . . .
∂→

⊕
D integral

codim D=i

iD∗AD(−i)→ 0.

The maps ∂ are induced by the above mentioned residue maps.



Definition
Let X be complex variety, and A an abelian group. The i-th
unramified cohomology group of X with values in A is the group

H i
nr (X ,A) := H0(X ,Hi (X ,A)).



Let X be a smooth, connected, projective variety over C. The
groups H1

nr and H2
nr were understood (Grothendieck) without

Bloch-Ogus theory.

H2
nr (X , µn) ' Br(X )[n] birational invariant

Exact sequence

0→ NS(X )→ H2
B(X ,Z(1))→ H2

nr (X ,Z(1))→ 0.

H2
nr (X ,Z) ' Z(b2−ρ).

Exact sequence

0→ (Q/Z)(b2−ρ) → H2
nr (X ,Q/Z)→ H3

B(X ,Z){tor} → 0.

and b2 − ρ = 0 if and only if H2(X ,OX ) = 0.



The main theorem of Bloch–Ogus theory implies :
Let X be smooth and irreducible. Then

H i
nr (X ,A) = Ker [H i (C(X ),A)

∂→
⊕

D integral

codim D=1

H i−1(C(D),A(−1))].

In particular : If X is smooth and U ⊂ X open with complement of
codimension at least 2, then H i

nr (X ,A)
'→ H i

nr (U,A).

Hence : if X and Y are smooth, projective, irreducible and
birational to each other, then H i

nr (X ,A) ' H i
nr (Y ,A). For i ≥ 1

and X = Pn
C, these groups vanish.



Moreover :

If X is smooth, then H r (XZar ,Hi (A)) = 0 for r > i .

Let X over C be smooth, connected, projective. Then

CHi (X )/n
'→ H i

Zar (X ,Hi (Z/n(i)))

and

CHi (X )/alg '→ H i
Zar (X ,Hi (Z(i))).



Let X over C be smooth and connected.
Let A be an abelian group.
Exact sequence :

H3
B(X (C),A)→ H3

nr (X ,A)
d2→ H2(XZar ,H2

X (A))→ H4
B(X (C),A)

If X moreover is projective, then exact sequence :

H3
B(X ,Z(2))→ H3

nr (X ,Z(2))→ CH2(X )/alg
c2

→ H4
B(X ,Z(2))



Hence (Definition of Griff2(X ))

0→ Griff2(X )→ CH2(X )/alg
c2

→ H4
B(X ,Z(2))

and

H3
B(X ,Z(2))→ H3

nr (X ,Z(2))→ Griff2(X )→ 0



The Bloch–Kato conjecture

F field, char(F ) = 0.
Map (Tate) from Milnor K -theory to Galois cohomology :

KM
i (F )/n→ H i (F , µ⊗i

n )

Conjecture BKi ,n : This is an isomorphism.

If this holds for all i and n, then

H i+1(F , µ⊗i
n ) ↪→ H i+1(F , µ⊗i

nm)

hence
H i+1(F ,Q/Z(i)) =

⋃
n

H i+1(F , µ⊗i
n ).



KM
i (F )/n

'→ H i (F , µ⊗i
n ) ?

Long history

i = 1 : Hilbert’s theorem 90 (Kummer theory)
i = 2 : Merkurjev and Suslin (1982)
i = 3, n = 2m : Merkurjev and Suslin, Rost (1990)
i > 4, n = 2m : Voevodsky (2003)
i > 4 : Voevodsky, Rost 2003-2010
(Voevodsky, arXiv 0805.4430v2, 10.2.2010)



Theorem
Let X be a complex variety. Multiplication by n > 0 induces short
exact sequences of Zariski sheaves

0→ Hi (X ,Z(j))
×n→ Hi (X ,Z(j))→ Hi (X ,Z/n(j)))→ 0.

In particular the groups H i
nr (X ,Z(j)) = H0(X ,Hi (X ,Z(j))) are

torsion free.
Follows from the Bloch-Kato conjecture and further work.



Corollary
Let X be smooth, connected, projective variety. If there exists Y
of dimension r and a morphism Y → X such that
CH0(Y )→ CH0(X ) is onto, then H i

nr (X ,Z(j)) = 0 for i > r .

Proof : The correspondance method of Bloch-Srinivas shows that
these groups are torsion groups.



For X smooth, injectivity of H3(X ,Z(j))
×n→ H3(X ,Z(j)) follows

from Merkurjev-Suslin: remark of Bloch and Srinivas (1983). If
moreover dim(X ) = 3, then H4(X ,Z(j)) = 0 (Lefschetz), hence
one already has the exact sequence.

0→ H3(X ,Z(j))
×n→ H3(X ,Z(j))→ H3(X ,Z/n(j)))→ 0.

This was noticed by Barbieri-Viale (1992).



Main theorem

Let X be a smooth variety over C.

(i) For n > 1, exact sequence

0→ H3
nr (X ,Z(2)))/n→ H3

nr (X , µ⊗2
n )→ Z 4(X )[n]→ 0

(ii) Exact sequence

0→ H3
nr (X ,Z(2)))⊗Q/Z→ H3

nr (X ,Q/Z(2)))→ Z 4(X ){tor} → 0.



Proof

By the Bloch-Ogus theorem, the spectal sequence

Epq
2 = Hp(XZar ,Hq(Z(2))) =⇒ Hn

B(X ,Z(2))

is concentrated in the second octant. When one analyses
the filtration on H4

B(X ,Z(2)) given by the spectral sequence,
one gets the exact sequence

0→ H1(X ,H3
X (Z(2)))→ [H4

B(X ,Z(2))/H4
alg (X ,Z(2))]

→ H0(X ,H4
X (Z(2))).

As the group H4
nr (X ,Z(2)) = H0(X ,H4

X (Z(2))) has no torsion,
this yields

H1(X ,H3
X (Z(2))){tor} '→ Z 4(X ){tor}.



The exact sequence of sheaves

0→ H3
X (Z(2))

×n→ H3
X (Z(2))→ H3

X (µ⊗2
n )→ 0

gives rise to the exact sequence of groups

0→ H0(X ,H3
X (Z(2)))/n→ H0(X ,H3

X (µ⊗2
n ))

→ H1(X ,H3
X (Z(2)))[n]→ 0,

from which we get the announced exact sequences

0→ H3
nr (X ,Z(2)))/n→ H3

nr (X , µ⊗2
n )→ Z 4(X )[n]→ 0

0→ H3
nr (X ,Z(2)))⊗Q/Z→ H3

nr (X ,Q/Z(2)))→ Z 4(X ){tor} → 0.



1) For varieties X of dimension 3 with H3
nr (X ,Z(2))) = 0, for

instance unitational varieties of dimension 3, the argument goes
back to a 1992 paper by Barbieri-Viale.

2) From the sequence and the Bloch–Ogus Theory one concludes
that the group Z 4(X ){tor} is a birational invariant. C. Voisin had
already remarked that the groups Z 4(X ) and Z 2d−2(X ) are
birational invariant. Her proof was by reduction to the case of
blowing up of a smooth closed subvariety.



On the group H3
nr (X ,Z)

We have the exact sequence

H3
B(X ,Z(2))→ H3

nr (X ,Z(2))→ Griff2(X )→ 0.

As already mentioned, if CH0(X ) is covered a surface, then
H3

nr (X ,Z(2)) = 0. One then has an isomorphism of finite abelian
groups

H3
nr (X ,Q/Z(2)))

'→ Z 4(X ).



Basic diagram

H3
B(X (C),Z(2))/n ↪→ H3

et(X , µ⊗2
n ) → H4

B(X (C),Z(2))[n]
↓ ↓ ↓

H3
nr (X ,Z(2)))/n ↪→ H3

nr (X , µ⊗2
n ) → Z 4(X )[n]

↓ ↓
Griff2(X )/n → Ker

↓ ↓
0 0

where Ker = Ker[CH2(X )/n→ H4
et(X , µ⊗2

n )] and the top two
sequences are short exact sequences.



Varieties with H3
nr (X , µ⊗2

n ) 6= 0 or Z 4(X ) 6= 0



Atiyah and Hirzebruch (1962); Totaro (1997) : Topological
methods. Torsion in H4

B(X ,Z). Does not come from H4
alg (X ,Z).

Examples with dim(X ) ≥ 7.

Kollár (1990). Specialization argument. For X ⊂ P4
C a very general

hypersurface of degree p3 with a prime p 6= 2, 3, H4
B(X ,Z) = Z

and H4
alg (X ,Z) ⊂ pZ. Thus Z 4(X ) 6= 0 and H3

nr (X ,Z/p) 6= 0.

Bloch and Esnault (1996); Schoen (2002). Arithmetical method
(p-adic cohomology, Hilbert’s irreducibility theorem).
Examples with dim(X ) = 3. Griff 2(X )/n 6= 0, resp. Griff 2(X )/n
infinite. The same therefore holds for H3

nr (X ,Z)/n and
H3

nr (X ,Z/n). Open question : is Z 4(X ) 6= 0 ?

For rationally connected varieties, could the situation be better ?
(Question by C. Voisin 2004) Answer (CT/Voisin 2009) : No.



A unirational variety with H3
nr (X ,Z/2) = Z 4(X )[2] 6= 0

Let F be a field, Char .(F ) = 0, f , g , h ∈ F ∗, let Q/F be the
3-dimensional quadric in P5

F defined by the equation
X 2 − fY 2 − gZ 2 + fgT 2 − hW 2 = 0. Let F (Q) denote its function
field.

Theorem (Arason, 1974) The kernel of the map
H3(F ,Z/2)→ H3(F (Q),Z/2) is 0 or Z/2, and it is spanned by
the cup-product (f ) ∪ (g) ∪ (h).

This result is a forerunner of the big theorems in algebraic
K-theory : Merkur’ev-Suslin, Rost, Voevodsky.
[Similar result : For H1, Hilbert. For H2, Witt. For Hn, n ≥ 4,
Jacob and Rost; Orlov, Vishik and Voevodsky.]



Theorem (CT/Ojanguren, 1988)
Let F = C(x , y , z). There exist f , g , h = h1h2 such that the class
(f ) ∪ (g) ∪ (h1) ∈ H3(F ,Z/2) does not vanish in H3(F (Q),Z/2),
but becomes unramified on any smooth projective variety X/C
with C(X ) = F (Q). On may choose f , g , h such that the
6-dimension variety X is unirational.

For the proof of this result, one uses residues with respect to rank
one discrete valuation on C(X ).

[E. Peyre later produced many examples of unirational varities with
H i

nr (X ,Z/n) 6= 0 for suitable i . Further recent results by A. Asok.]



1-dimensional version of the argument, with H1
nr

(Abhyankar’s Lemma – Ramification eats up ramification)

Let Γ be the curve y2 = x(x − 1)(x + 1). The function field
L = C(Γ) is a zero-dimensional quadric over F = C(x). The class
(x) ∈ F ∗/F ∗2 = H1(F ,Z/2) does not vanish in L∗/L∗2, because
the kernel is Z/2.(x(x − 1)(x + 1)), and the classes x and
(x(x − 1)(x + 1)) have different valuation mod. 2 at the place
x − 1 of C(x). The class x ist unramified in H1(L,Z/2), because
its ramification in C(x) at every place is eaten up by the
ramfication of x(x − 1)(x + 1).

Examples of Artin-Mumford (1970) : here one uses the group
H2

nr (X ,Z/2). As ramification locus one may take a suitable
configuration of 10 lines in P2

C. In CT/Ojanguren, for H3
nr , we use

a suitable configuration of 36 planes in P3
C.



Theorem (2010, CT/Voisin)
There exists a smooth, projective variety X of dimension 3 with
H i (X ,OX ) = 0 for any i > 0, but with Z 4(X ){tors} 6= 0.

These varieties X admit a fibration X → P1 whose general fibre is
a K 3-surface.
The index I (Xeta/C(P1)) 6= 1.

Proof rather elaborate. In principle the argument is in the same
spirit as Kollár’s specialization argument.



Varieties for which H3
nr (X ,Q/Z(2)) = 0 and Z 4(X ) = 0.



Two theorems proven using methods of algebraic K -theory.

Theorem 1 (1988) Let X → S be a dominant morphism of
smooth, projective, complex varieties, dim(S) = 2 whose generic
fibre is a conic. Then H3

nr (X ,Q/Z) = 0.
Hence also Z 4(X ) = 0.

Theorem 2 Let X → Γ be be a dominant morphism of smooth,
projective, complex varieties, dim(Γ) = 1, geometric generic fibre a
rational surface. Then H3

nr (X ,Q/Z) and Z 4(X ) = 0.



Proof of theorem 1. The generic fibre Xη is a conic C over
F = C(S). Let D/F be the associated quaternion algebra. One
may restrict attention to 2-torsion. One has
H3

nr (X/C,Z/2)) ⊂ H3
nr (C/F ,Z/2). One considers the localisation

sequence for étale cohomology and the Leray spectral sequence for
C → Spec(F ). From this follows F ∗/Nrd(D∗) ' H3

nr (C ,Z/2).
But F ∗/Nrd(D∗) ↪→ H3(F ,Z/2) (Merkurjev-Suslin) and
H3(F ,Z/2) = 0, since coh.dim(C(S)) ≤ 2.



Proof of Theorem 2. Using methods of algebraic K -Theory one
shows :

Theorem (B. Kahn (1996) + ε) Let F be a field of char. zero and
cohomological dimension ≤ 1. Let V /F be a smooth projective
surface. Let F be an algebraic closure of F ,
G the absolute Galois group of F and V = V ×F F . If
H2(V ,OV ) = 0 and the third integral cohomology of V has no
torsion, then one has an exact sequence

0→ CH2(V )→ CH2(V )G → H3
nr (V ,Q/Z(2))→ 0.



If the surface V is rational, then deg : CH2(V )
'→ Z, hence

Z/I (V /F ) ' H3
nr (V ,Q/Z(2)),

where I (V /F ) is the index of V .
The F -birational classification of geometrically F -rational surfaces
(Iskovskikh) (or the Graber-Harris-Starr theorem) implies : over
F = C(Γ), we have V (F ) 6= ∅, hence I (V /F ) = 1. From this, one
deduces H3

nr (V ,Q/Z(2) = 0.

If V /F is the generic fibre of X → Γ, then
H3

nr (X ,Q/Z) ⊂ H3
nr (V ,Q/Z(2) = 0. This proves Theorem 2.



Theorems 1 and 2 are but special cases of a theorem which is
proven using Hodge theoretic methods (infinitesimal variations of
Hodge structures).

Theorem (Voisin, 2004) Let X be a smooth, projective uniruled
threefold. Then Z 4(X ) = 0.

Hence, by the main theorem in this lecture, H3
nr (X ,Q/Z(2)) = 0.

[C. Voisin also proves Z 4(X ) = 0 for Calabi-Yau threefolds.]



Open problems

Let X be a smooth projective variety, d = dim(X ).

(Voisin, 2004) If X is rationally connected, is Z 2d−2(X ) = 0 ?

If X is rationally connected, d = 4 or d = 5, is the finite group
H3

nr (X ,Q/Z(2)) = Z 4(X ) zero ?



There are parallel problems for varieties over a finite field. The
analogue of the Hodge conjecture is the Tate conjecture.

Let me mention just one specific problem.

Let X/F be a smooth projective variety of dimension 3 over a
finite field F of characteristic p. Let ` 6= p be a prime. If X is
geometrically covered by the product of a surface and P1, is the
group H3

nr (X ,Q`/Z`(2)) = 0 ?

For threefolds X/F which admit a conic bundle structure over a
surface, this was recently proved by Parimala and Suresh.


