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Let X/C be a smooth, projective variety and d = dim(X). Let
Hg(X, R(j)) == HE (X(C), R(j)), where R = Z,Q,C or Q/Z, and
R(j) = R® (Z.(2m/—1)%").

For any i > 0, there is a cycle map with values in Betti cohomology

¢’ CH(X) — HE(X,Z()).
Let H?

2e(X,Z) C Hé’(X,.Z(i)) denote the image of this map.
Using the embedding HZ'(X, Q) C HZ (X, C(i)) one defines the
subgroup H,%,iclg(X,Q) of classes of type (i, 1).



One defines the group Hply, (X, Z) C HE (X, Z(i)) as the inverse
image of HHdg(X Q) in HE (X, Z(i)).

One then has Hg,’g(X Z) C HHdg(X,Z) C H3(X,Z(i))
The Hodge conjecture predicts that the quotient

H,%,’;jg(X,Z)/Hg,’g(X Z) is finite.

Trivial remark : the embedding
Z2I(X) = HI2-II;3’g(X7Z)/Ha/g(X7Z) - Héi(xvz(i))/Halg(sz)

induces an isomorphism on torsion subgroups.



We know :

For i =0,1,d, we have Z?(X) = 0.
For i =1 : Lefschetz's theorem on class of type (1,1).
In this case one has an embedding NS(X) C H3(X,Z(1)), and it

induces an isomorphism NS(X){tor} = H2(X,Z(1)){tor}.

For i = d — 1, the group Z29=2(X) is finite (follows from the hard
Lefschetz theorem and the case d = 1).

For i = 2, if there exists a proper map f : V — X, from a
3-dimensional variety V such that the induced homomorphism
f. : CHo(V) — CHg(X) is onto, then

ZHX) = H,‘f,dg(X,Z)/Hj,g(X,Z) is finite (Bloch-Srinivas).



One knows that the integral Hodge conjecture does not hold in
general. There are examples with

Z4(X) = Hﬁldg(Xa Z)/Hglg(XvZ) # 0.

More precisely : there are examples (Atiyah-Hirzebruch) for which
the finite group Z*(X){tors} # 0.




Questions which we want to ask :

Is there a systematic method to compute the finite group
Z4(X){tors} ?

Are there classes of varieties for which Z*#(X){tors} =0 ?
[C. Voisin for instance proves this for rational varieties.]

If X is rationally simply connected (in the sens of Kollar,
Miyaoka, Mori and Campana), is the finite group Z#(X) = 0?
(question raised by C. Voisin, 2004)

Using methods and results from algebraic K-theory, we shall
partially answer these questions.



Bloch—Ogus-Theory and Betti-Cohomology (1974)

Let X be a complex variety. Let X denote the classical topology
on X(C). There is a morphism of sites h: X — Xz,,. An abelian
group A defines a constant sheaf A on X(C). For i € N, the sheaf

H'(A) := R'h.A
on Xz, is the sheaf associated to the presheaf U — Hg(U, A).

We have the spectral sequence

EP? = HP(Xzar, HI(A)) = HE(X, A).



Let ip : D — X be a closed integral subvariety, let C(D) be its
function field.
Let

H(C(D),A):= lim H'(U(C),A).

UCD,U#D

This defines a constant sheaf on D, which itself defines the sheaf
ip, H(C(D), A) on Xz,
For E C D of codimension 1, there is a residue map

H'(C(D), A) — H'"Y(C(E), A(-1)).



Main theorem of the Bloch—Ogus Theory (Gersten conjecture for
étale cohomology)

Let X be a smooth irreducible variety over C. Then for all i € N
there is an exact sequence of sheaves

0 — Hi(A) = ix.H(C(X),A) % @ ipHYC(D),A(-1))

D integral

codim D=1
0 0 . .
= .. @ ip«Ap(—i) — 0.
D integral
codim D=j

The maps O are induced by the above mentioned residue maps.



Definition
Let X be complex variety, and A an abelian group. The i-th
unramified cohomology group of X with values in A is the group

H! (X, A) := HY (X, H'(X, A)).




Let X be a smooth, connected, projective variety over C. The
groups H!, and H2, were understood (Grothendieck) without
Bloch-Ogus theory.

H2 (X, ptn) ~ Br(X)[n] birational invariant
Exact sequence
0 — NS(X) — H3(X,Z(1)) — H2,(X,Z(1)) — 0.

H2.(X,Z) ~ 7.(b2=P).

Exact sequence
0 — (Q/2)® — H2(X,Q/Z) — H3(X, Z){tor} — 0.

and by — p = 0 if and only if H?(X, Ox) = 0.



The main theorem of Bloch—Ogus theory implies :
Let X be smooth and irreducible. Then

Hi (X, A) = Ker[H'(C(X), A) 2 @ H'=Y(C(D), A(-1))].

D integral
codim D=1

In particular : If X is smooth and U C X open with complement of
codimension at least 2, then H, (X, A) — H), (U, A).

Hence : if X and Y are smooth, projective, irreducible and
birational to each other, then H! (X, A) ~ H! (Y,A). Fori>1
and X = P¢, these groups vanish.



Moreover :
If X is smooth, then H"(Xza,, H'(A)) = 0 for r > i.

Let X over C be smooth, connected, projective. Then

CH'(X)/n 5 Hy (X, H(Z/n(i)))

and

CHY(X)/alg = Hi, (X, H(Z(i))).



Let X over C be smooth and connected.
Let A be an abelian group.
Exact sequence :

d
HE(X(C), A) — Hp (X, A) = HA(Xzar, Hx (A)) — HE(X(C), A)
If X moreover is projective, then exact sequence :

HE(X,Z(2)) — H3.(X,Z(2)) — CH?*(X)/alg < HE(X,Z(2))



Hence (Definition of Griff?(X))

0 — Griff2(X) — CH2(X)/alg S HA(X, Z(2))

and

HE(X,Z(2)) — H3.(X,Z(2)) — Griff>(X) — 0




The Bloch—Kato conjecture

F field, char(F) = 0.
Map (Tate) from Milnor K-theory to Galois cohomology :

KM (F)/n— H'(F, ")

Conjecture BK; , : This is an isomorphism.

If this holds for all i and n, then

Hl+1(l_— u®/) M Hl+1(F ®l)

hence
Hl+1(F Q/Z UHI+1(F M )



KM(F)/n = HI(F ) 7

Long history

i =1 : Hilbert's theorem 90 (Kummer theory)

i =2 : Merkurjev and Suslin (1982)
i=3,n=2": Merkurjev and Suslin, Rost (1990)
i>4,n=2": Voevodsky (2003)

i > 4 : Voevodsky, Rost 2003-2010

(Voevodsky, arXiv 0805.4430v2, 10.2.2010)



Theorem
Let Xbe a complex variety. Multiplication by n > 0 induces short

exact sequences of Zariski sheaves
0 — H'(X,Z()j)) = H'(X, Z(})) — H'(X, Z/n(j))) — 0.

In particular the groups Hi, (X, Z(j)) = HO(X, H(X,Z(j))) are
torsion free.
Follows from the Bloch-Kato conjecture and further work.



Corollary

Let X be smooth, connected, projective variety. If there exists Y
of dimension r and a morphism Y — X such that

CHo(Y) — CHo(X) is onto, then H! (X, Z(j)) = 0 for i > r.

Proof : The correspondance method of Bloch-Srinivas shows that
these groups are torsion groups.




For X smooth, injectivity of H3(X, Z(j)) =% H3(X, Z(j)) follows
from Merkurjev-Suslin: remark of Bloch and Srinivas (1983). If
moreover dim(X) = 3, then H*(X,Z(j)) = 0 (Lefschetz), hence
one already has the exact sequence.

0 — H3(X, Z(j)) = H3(X, Z(j)) — H3(X,Z/n(j))) — 0.

This was noticed by Barbieri-Viale (1992).



Main theorem
Let X be a smooth variety over C.

(i) For n > 1, exact sequence

0 — H3, (X, Z(2)))/n — Ha (X, 17%) — Z4(X)[n] — 0

(i) Exact sequence

0 — H3(X,Z(2)®Q/Z — H3.(X,Q/Z(2))) — Z*(X){tor} — 0.



Proof
By the Bloch-Ogus theorem, the spectal sequence
E}? = HP(Xzar, HY(Z(2))) = Hp(X, Z(2))

is concentrated in the second octant. When one analyses
the filtration on HE(X,Z(2)) given by the spectral sequence,
one gets the exact sequence

0 — HY(X, HX(Z(2))) — [HB(X, Z(2))/ Hag (X, Z(2))]

— HY(X, H%(2(2))).

As the group Hp (X, Z(2)) = H(X,H%(Z(2))) has no torsion,
this yields

HY(X, H3(Z(2))){tor} = Z*(X){tor}.



The exact sequence of sheaves
0 — MR (Z(2)) = HX(2(2)) = Hi (i) — 0
gives rise to the exact sequence of groups
0 — H(X, Hx(Z(2)))/n — H (X, Hx (1))

— HY(X, HX(Z(2)))[n] — 0,

from which we get the announced exact sequences
0 — Hp (X, Z(2)))/n — Ha (X, %) — Z*(X)[n] — 0

0 — Hy, (X, Z(2))) ® Q/Z — H;, (X, Q/Z(2))) — Z*(X){tor} — 0.



1) For varieties X of dimension 3 with H3,(X,Z(2))) = 0, for
instance unitational varieties of dimension 3, the argument goes
back to a 1992 paper by Barbieri-Viale.

2) From the sequence and the Bloch—Ogus Theory one concludes
that the group Z*(X){tor} is a birational invariant. C. Voisin had
already remarked that the groups Z#(X) and Z2972(X) are
birational invariant. Her proof was by reduction to the case of
blowing up of a smooth closed subvariety.



On the group H3.(X,7Z)

We have the exact sequence
HE(X,Z(2)) — H3.(X,Z(2)) — Griff?(X) — 0.
As already mentioned, if CHy(X) is covered a surface, then

H3.(X,Z(2)) = 0. One then has an isomorphism of finite abelian

groups
Hr(X,Q/Z(2))) = Z*4(X).



Basic diagram

HE(X(C),2(2))/n — HI(X,p5?) — HE(X(C), Z(2))[n]

! ! !
Ho (X Z(2))) /- = Ha (X, p?) — ZHX)[n]
| !
Criff?(X)/n — Ker
! !
0 0

where Ker = Ker[CH?(X)/n — H% (X, u%?)] and the top two
sequences are short exact sequences.



Varieties with H3,(X, u%?) # 0 or Z*(X) #0




Atiyah and Hirzebruch (1962); Totaro (1997) : Topological
methods. Torsion in Hz(X,Z). Does not come from H3,_ (X, Z).
Examples with dim(X) > 7.

Kollar (1990). Specialization argument. For X C P a very general
hypersurface of degree p3 with a prime p # 2,3, H3(X,Z) = Z

and H;‘,g(X,Z) C pZ. Thus Z*(X) # 0 and H3,(X,Z/p) # 0.

Bloch and Esnault (1996); Schoen (2002). Arithmetical method
(p-adic cohomology, Hilbert's irreducibility theorem).

Examples with dim(X) = 3. Griff>(X)/n # 0, resp. Griff?(X)/n
infinite. The same therefore holds for H3,(X,Z)/n and
H3.(X,Z/n). Open question : is Z4(X) # 0 ?

For rationally connected varieties, could the situation be better 7
(Question by C. Voisin 2004) Answer (CT /Voisin 2009) : No.



A unirational variety with H3,(X,Z/2) = Z*(X)[2] # 0

Let F be a field, Char.(F) =0, f,g,h € F*, let Q/F be the
3-dimensional quadric in P% defined by the equation

X2 — Y2 — gZ? + fgT? — hW? = 0. Let F(Q) denote its function
field.

Theorem (Arason, 1974) The kernel of the map

H3(F,7/2) — H3(F(Q),Z/2) is 0 or Z/2, and it is spanned by
the cup-product (f) U (g) U (h).

This result is a forerunner of the big theorems in algebraic
K-theory : Merkur'ev-Suslin, Rost, Voevodsky.

[Similar result : For H!, Hilbert. For H%, Witt. For H", n > 4,
Jacob and Rost; Orlov, Vishik and Voevodsky.]



Theorem (CT/Ojanguren, 1988)

Let F = C(x,y,z). There exist f,g, h = hyhy such that the class
(f)U (g) U (h1) € H3(F,Z/2) does not vanish in H3(F(Q),Z/2),
but becomes unramified on any smooth projective variety X /C
with C(X) = F(Q). On may choose f, g, h such that the
6-dimension variety X is unirational.

For the proof of this result, one uses residues with respect to rank
one discrete valuation on C(X).

[E. Peyre later produced many examples of unirational varities with
H},.(X,Z/n) # 0 for suitable i. Further recent results by A. Asok.]



1-dimensional version of the argument, with H}.
(Abhyankar's Lemma — Ramification eats up ramification)

Let T be the curve y? = x(x — 1)(x + 1). The function field

L = C(I') is a zero-dimensional quadric over F = C(x). The class
(x) € F*/F*2 = HY(F,Z/2) does not vanish in L*/L*?, because
the kernel is Z/2.(x(x — 1)(x + 1)), and the classes x and

(x(x — 1)(x + 1)) have different valuation mod. 2 at the place

x — 1 of C(x). The class x ist unramified in H*(L,Z/2), because
its ramification in C(x) at every place is eaten up by the
ramfication of x(x — 1)(x + 1).

Examples of Artin-Mumford (1970) : here one uses the group
H2,.(X,Z/2). As ramification locus one may take a suitable
configuration of 10 lines in PZ. In CT/Ojanguren, for H3,, we use
a suitable configuration of 36 planes in P(3c-



Theorem (2010, CT/Voisin)
There exists a smooth, projective variety X of dimension 3 with
H(X, Ox) = 0 for any i > 0, but with Z*(X){tors} # 0.

These varieties X admit a fibration X — P! whose general fibre is
a K3-surface.
The index /(Xera/C(PY)) # 1.

Proof rather elaborate. In principle the argument is in the same
spirit as Kollar's specialization argument.



Varieties for which H3,(X,Q/Z(2)) = 0 and Z*(X) = 0.




Two theorems proven using methods of algebraic K-theory.

Theorem 1 (1988) Let X — S be a dominant morphism of
smooth, projective, complex varieties, dim(S) = 2 whose generic
fibre is a conic. Then H3,(X,Q/Z) = 0.

Hence also Z4(X) = 0.

Theorem 2 Let X — [ be be a dominant morphism of smooth,
projective, complex varieties, dim(I') = 1, geometric generic fibre a
rational surface. Then H3,(X,Q/Z) and Z*(X) = 0.



Proof of theorem 1. The generic fibre X, is a conic C over

F = C(S). Let D/F be the associated quaternion algebra. One
may restrict attention to 2-torsion. One has

H3.(X/C,Z/2)) C H3,(C/F,Z/2). One considers the localisation
sequence for étale cohomology and the Leray spectral sequence for
C — Spec(F). From this follows F*/Nrd(D*) ~ H3.(C,7Z/2).
But F*/Nrd(D*) — H3(F,Z/2) (Merkurjev-Suslin) and
H3(F,Z/2) = 0, since coh.dim(C(S)) < 2.



Proof of Theorem 2. Using methods of algebraic K-Theory one
shows :

Theorem (B. Kahn (1996) + ¢) Let F be a field of char. zero and
cohomological dimension < 1. Let V' /F be a smooth projective
surface. Let F be an algebraic closure of F,

G the absolute Galois group of F and V =V xfr F. If

H?(V, Oy) = 0 and the third integral cohomology of V' has no
torsion, then one has an exact sequence

0 — CH*(V) — CH*(V)® — H3(V,Q/Z(2)) — 0.



If the surface V is rational, then deg : CH*(V) = Z, hence

Z/I(V/F) ~ H3(V,Q/Z(2)),

where /(V//F) is the index of V.

The F-birational classification of geometrically F-rational surfaces
(Iskovskikh) (or the Graber-Harris-Starr theorem) implies : over

F =C(I), we have V(F) # (), hence I(V/F) = 1. From this, one
deduces H3.(V,Q/Z(2) = 0.

If V/F is the generic fibre of X — T, then
H3.(X,Q/Z) C H3,(V,Q/Z(2) = 0. This proves Theorem 2.



Theorems 1 and 2 are but special cases of a theorem which is
proven using Hodge theoretic methods (infinitesimal variations of
Hodge structures).

Theorem (Voisin, 2004) Let X be a smooth, projective uniruled
threefold. Then Z*(X) = 0.

Hence, by the main theorem in this lecture, H3,(X,Q/Z(2)) = 0.
[C. Voisin also proves Z#(X) = 0 for Calabi-Yau threefolds.]



Open problems
Let X be a smooth projective variety, d = dim(X).

(Voisin, 2004) If X is rationally connected, is Z2972(X) =07

If X is rationally connected, d = 4 or d =5, is the finite group
HE, (X, Q/Z(2)) = Z(X) zero ?




There are parallel problems for varieties over a finite field. The
analogue of the Hodge conjecture is the Tate conjecture.

Let me mention just one specific problem.

Let X/F be a smooth projective variety of dimension 3 over a
finite field F of characteristic p. Let { # p be a prime. If X is
geometrically covered by the product of a surface and P!, is the

group Hy (X, Qu/Ze(2)) =0 7

For threefolds X /IF which admit a conic bundle structure over a
surface, this was recently proved by Parimala and Suresh.



