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Let X/Q be a smooth variety over the rationals.
Let X (AQ) ⊂

∏
p X (Qp) denote the adèles of X equipped with the

adèlic topology. If X/Q is projective, X (AQ) =
∏

p X (Qp) and the
adèle topology is just the product topoplogy.
Let X•(AQ) be the modified adèles, where X (R) is replaced by its
set of connected components.
We have the diagonal embedding

X (Q) ⊂ X•(AQ)



Basic question : Is X (Q) dense in X•(AQ) ?

For X/Q projective, X (AQ) =
∏

p X (Qp), we are concerned with
rational points and we are asking for a Hasse principle and for
weak approximation (with a weak condition at the reals).

For X/Q affine, say X = X ×Z Q for a scheme X affine of finite
type over Z, we are in particular asking for a Hasse principle for
the existence of an integral point on X , as well as for strong
approximation (with a weak condition at the reals).
Here are classical results in this direction.



The Hasse principle and weak approximation for rational points
hold for :

Quadrics, more generally projective homogeneous spaces of
connected linear algebraic groups (Eichler, Landherr, Kneser,
Harder).

Smooth projective hypersurfaces Fd(x0, · · · , xn) = 0 with n big
with respect to d : circle method (Hardy-Littlewood, Birch,
Heath-Brown, Hooley ...)



The Hasse principle and strong approximation for integral points
hold for :

Representation of an integer by an indefinite integral quadratic
form in at least 4 variables (Eichler, Kneser)

Representation of an integer by certains integral forms
Fd(x0, · · · , xn) with n big with respect to the degree d
(Waring’s problem, circle method).



But many examples show that the Hasse principle, weak
approximation and strong approximation in general do not hold.
Here is a general formalism which explains many counterexamples
to the Hasse principle, weak approximation and strong
approximation.
Let F be a contravariant functor from Q-schemes to sets. For any
α ∈ F (X ), one has a commutative diagram

X (Q) → X (AQ)
↓ evα ↓ evα

F (Q)
φ→

∏′
p F (Qp)

where
∏′

p F (Qp) is a certain restricted direct product.
If Im(φ) ∩ evα(X (AQ)) = ∅, then X (Q) = ∅.



How to control the image of φ : F (Q) →
∏′

p F (Qp) ?

First basic example:

F (X ) = Br(X ) (Manin 1970)
One then uses the class field theory exact sequence

0 → Br(Q) → ⊕pBr(Qp) → Q/Z → 0.

Second basic example: F (X ) = H1
ét(X ,G ), where G is an algebraic

group over Q (Fermat, Cassels, CT/Sansuc, Harari/Skorobogatov).
In various contexts, class field theory (generalization of Gauss’s law
of quadratic reciprocity) yields a control on the cokernel of the
maps φ : H1(Q,G ) →

∏′
p H1(Qp,G ).



For G finite abelian, Poitou-Tate exact sequence

H1(Q,G ) →
′∏
p

H1(Qp,G ) → Hom(H1(Q, Ĝ ), Q/Z)

For G a torus, Tate-Nakayama exact sequence

H1(Q,G ) → ⊕pH
1(Qp,G ) → Hom(H1(Q, Ĝ ), Q/Z)

For G an arbitrary connected linear algebraic group,
Kottwitz exact sequence of pointed sets:

H1(Q,G ) → ⊕pH
1(Qp,G ) → Hom(Pic(G ), Q/Z)



There then arises the question : are the constraints coming from
these various reciprocity laws the only ones preventing density of
X (Q) in X•(AQ) ?

For F (X ) = Br(X ), this is the question whether the Brauer-Manin
obstruction is the only obstruction (to existence of rational points,
to weak approximation, to strong approximation).



Let me review the situation for projective varieties.

The density of X (Q) in X (AQ)Br(X ) has been established for any
smooth, projective, geometrically integral variety X birational to :

– a homogeneous space of a connected linear algebraic groups, if
all geometric isotropy groups are connected (Sansuc 1981; Borovoi
1996)

– a conic bundle over P1 with at most 4 singular geometric fibres,
for example y2 − az2 = P(x) with P(x) of degree 4 (special case
CT, Coray, Sansuc 1981; CT, Sansuc, Swinnerton-Dyer 1987)

– a smooth intersection of two quadrics in Pn, n ≥ 8 (CT, Sansuc,
Swinnerton-Dyer 1987)



The proofs involve several techniques :

– Fibration method (reduction to subvarieties)

– Descent method (reduction to the total space of a torsor over
the given variety)

– Systematic use of class field theory (Tate-Nakayama).
In particular, the exactness of the sequence
0 → Br(Q) →

⊕
p∪∞ Br(Qp) → Q/Z → 0 is fully used

(whereas to produce counterexamples one need only know that this
is a complex.)

– use of the existing stock of varieties which satisfy the Hasse
principle and weak approximation.



If one is willing to grant certain standard – but very difficult –
conjectures, then there are many more classes of smooth,
projective varieties for which one may prove

X (AQ)Br(X ) 6= ∅ =⇒ X (Q) 6= ∅ (existence)

or even better

X (Q) dense in X (AQ)
Br(X )
• (density).



Under the finiteness of Tate-Shafarevich groups :

Curves of genus 1, more generally homogneous spaces of abelian
varieties (Manin 1970, L. Wang).

Let C ↪→ J be a curve of genus at least 2 embedded in its
jacobian. Under the finiteness assumption of Sha,

X (AQ)BrX
• = X (AQ)• ∩ J(Q)closure ⊂ J(AQ)•.

If J(Q) is finite, this gives X (Q) = X (AQ)BrX
•

(Scharashkin, Skorobogatov)

Most diagonal cubic surfaces over Q (existence, Swinnerton-Dyer
2000)



Under the Bouniakowsky-Dickson-Schinzel hypothesis :

Conic bundles over P1 with an arbitrary number of singular fibres
(CT–Sansuc, Serre, Swinnerton-Dyer)

Proof : Generalisation of Hasse’s argument to prove the Hasse
principle for quadratic forms in 4 variables from the case of 3
variables



Under both conjectures :

Certain surfaces with a fibration over P1 whose generic fibre is a
curve of genus 1, including some K3 surfaces (existence, CT,
Skorobogatov, Swinnerton-Dyer 1998, ...)

Most smooth intersections of two quadrics in P4 (existence,
Wittenberg 2007; then density, Salberger/Skorobogatov )
Hasse principle for smooth intersections of two quadrics in
Pn, n ≥ 5 (Wittenberg 2007)



Numerical support for X (AQ)Br(X ) 6= ∅ =⇒ X (Q) 6= ∅ exist for :

– Diagonal cubic surfaces (CT, Kanevsky, Sansuc 1987; ...)

– Curves y2 = f6(x) (Bruin and Stoll 2008)
[For curves of genus at least 2 over a global field of positive
characteristic, the implication above has been established by
Poonen and Voloch (2008) under very minor restrictions.]

– Some Shimura curves (Skorobogatov, ...)

– Some K3-surfaces, in particular diagonal ones (Swinnerton-Dyer,
Bright)



However : There exist smooth projective varieties X over Q for
which X (AQ)Br(X ) 6= ∅ but X (Q) = ∅.

– Skorobogatov (1999) (a twisted bielliptic surface)
This example, and others may be explained (Harari, Skorobogatov)
by means of a functor F (X ) = H1

ét(X ,G ) for G a finite,
noncommutative group.
The technique has been further analyzed (Stoll, Demarche,
Skorobogatov)

– Poonen (2009) (new type, not covered by the previous analysis)



In the rest of the talk, I shall discuss integral points



Modest start : P1 minus a point

A nearly trivial result :

Let a, b, c ∈ Z not all zero. If the Z-curve X defined by
ax + by = c has solutions in all Zp, then it has solutions in Z.

Here XQ ' P1
Q \ {∞}. Hence Br(XQ)/Br(Q) = 0 creates no

obstruction!

The strong approximation theorem (here : the Chinese remainder
theorem) yields the much more precise result :

X (Z) is dense in
∏

p<∞ X (Zp)

(Note that the real completion is omitted.)



A more difficult, but in the end classical case : P1 minus two
points

The Z-curve X defined by

2x − 5y = 1, xt = 1

has solutions in all Zp but not in Z.
Here XQ ' P1

Q \ {0,∞}. Hence Br(XQ)/Br(Q) = H1(Q, Q/Z).

There is a Brauer-Manin obstruction attached to the quaternion
class (x , 5) ∈ Br(XQ).

The same argument shows that for K/Q field extension of odd
degree, unramified and totally split at 2 and 5, X (OK ) = ∅.



In a not completely immediate fashion, class field theory yields

Theorem (Harari 2008) Let X be a curve over Q which over an
algebraic closure of Q is isomorphic to P1 minus two points. Then
X (Q) is dense in X (AQ)BrX

• .
[Harari’s result deals with arbitrary homogeneous spaces of tori.]

This holds in particular for equations

a = q(x , y)

with a ∈ Q∗ and q(x , y) a nondegenerate binary quadratic form.



Difficulty for application : the quotient Br(X )/Br(Q) is infinite !

For a given X/Z given by a = q(x , y), it is thus not clear how to
decide whether or not (

∏
p X (Zp))

Br(XQ) 6= ∅.

There are nevertheless partial results in this direction
(Wei, Xu) which generalize results such as Gauß’ result on
p = x2 + 27y2 (a prime p is of this shape if and only if it is so
locally AND 2 = z3 may be solved in Fp).



The situation improves if one looks at the problem of
representation of an integer by a (Q-nondegenerate) integral
quadratic form in n ≥ 3 variables, if one moreover assumes
that q is indefinite over R.

Let X be the Z-scheme defined by a = q(x1, . . . , xn).

Forn ≥ 4, Br(XQ)/Br(Q)) = 0.

For n = 3, Br(XQ)/Br(Q) ⊂ Z/2.



Theorem Let q(x1, · · · , xn) be an integral quadratic form of
rank n, indefinite over R, and let a ∈ Z, a 6= 0. Let X/Z be the
Z-scheme defined by q(x1, · · · , xn) = a.
(a) If n ≥ 4 then X (Z) is dense in

∏
p X (Zp).

(b) Assume n = 3. Then X (Z) is dense in [
∏

p X (Zp)]
BrXQ .

If −a · det(q) is a square, Br(XQ)/Br(Q) = 0.
If −a · det(q) is not a square, Br(XQ)/Br(Q) = Z/2. Let
A ∈ Br(XQ) generate this quotient. Then X (Z) 6= ∅ if and only if
the map ∏

p

X (Zp) → Q/Z

{Mp} 7→
∑
p

evA(Mp)

contains 0 in its image.



Theorem (a) goes back to the 1950’s (Eichler, Kneser, Watson).
Theorem (b) is a variant (CT/Xu 2009) of a result of Borovoi et
Rudnick (1995).
The main points of the proof of (b) are :
– strong approximation for the spinor group of an indefinite
quadratic form
– representation of an affine quadric q = a over Q, with a
Q-rational point, as a quotient G/T , where G is the spinor group
of q and T is a 1-dimensional algebraic torus over Q.



In the case n = 3, one may produce the algebra A. Let M be a
Q-point on

q(x , y , z) = a.

(Denis Simon has an algorithm to find such a point). Let
l(x , y , z) = 0 be the equation for the tangent plane to the affine
quadric XQ at the point M.
As A one may take the quaternion algebra

A = (l(x , y , z),−a · det(q)).



With M = (0,−1/nk , 0) and A = (1 + nky , n), we recover :

Theorem (R. Schulze-Pillot and F. Xu, 2004)
Let n,m, k be positive integers, (n,m) = 1. Let Xm,n,k be the
scheme over Z defined by

m2x2 + n2ky2 − nz2 = 1

or
(1 + nky)(1− nky) = m2x2 − nz2.

(a) For all n,m, k,
∏

p∪∞ Xm,n,k(Zp) 6= ∅.
(b) Xm,n,k(Z) = ∅ if and only if either

(i) 2 divides m exactly and n ≡ 5 (8)
or

(ii) 4 divides m and n ≡ 3 or 5 (8).



The above results on the representation of an integer by an
integral quadratic form have been generalized in various directions.
Here is the present utmost generalisation.

Theorem (Borovoi/Demarche 2009) Let G be a connected (not
necessarily linear) algebraic group over Q. Let X be a
homogeneous space with connected geometric stabilizers. Under a
noncompacity assumption over R for all simple factors of the
derived group of G, and under the assumption that the
Tate-Shafarevich group of the maximal abelian variety quotient of
G is finite, then

X (Q) is dense in X (AQ)
Br(XQ)
• .

This builds upon work of Borovoi/CT/Skorobogatov, CT/Xu,
Harari-Szamuely, Harari, Demarche (2005/2010)



And when there is no homogeneous space structure ?



P1 minus three points

F. Voloch pointed out the following conjecture of Skolem (1937).
Let S be a finite set of prime numbers pi , i = 1, · · · , n. Let
R ⊂ Q× be the subgroup generated by the pi . Let a1, a2, a3 be
elements in R.
Skolem’s conjecture :
The equation

∑3
i=1 aixi = 0 has solutions with xi ∈ R if and only

if for all integer m prime to S , the equation∑3
i=1 aixi = 0 mod m has a solution for all xi ∈ R.



Let X ⊂ P1
Q be an open set whose geometric complement consist

of at least 3 points. One may view X as a closed curve in a
Q-torus T . The whole situation may be realized over the ring OS

of S-integers, for some finite set S of places. We thus have X ⊂ T .

Conjecture (Harari and Voloch 2009)

X (OS) = [
∏
v /∈S

X (Ov )] ∩ T (OS)closure ⊂
∏
v /∈S

T (Ov ).

They show that [
∏

v /∈S X (Ov )] ∩ T (OS)closure may be interpreted
as a Brauer-Manin set of X (analogue of the result by Scharashkin
and Skorobogatov).



One might be tempted to produce further conjectures of the kind
for integral points of arbitrary hyperbolic curves.

Harari and Voloch however have a striking bad example.

They take the affine curve X/Z given by y2 = x3 + 3. Over Q,
this is the complement of one rational point in an elliptic curve E .
Let P be the point (x , y) = (1, 2). One has E (Q) = Z.P and
X (Z) = {±P}. They show that there exists a sequence in E (Q)
which under the embedding E (Q) ↪→ E (AQ) converges to a point
in

∏
p X (Zp)

BrXQ which is neither P nor −P.



The equation a = x3 + y3 + z3, with a ∈ Z nonzero.

There are solutions with x , y , z ∈ Q.

For a = 9n ± 4 with n ∈ Z, there are no solutions with x , y , z ∈ Z.

Famous open question : if a is not of the shape 9n ± 4, is there a
solution with x , y , z ∈ Z ?

Open already for a = 33.



Theorem (CT/Wittenberg 2009) Let Xa be the Z-scheme defined
by x3 + y3 + z3 = a, with a 6= 0. If a 6= 9n ± 4, then

(
∏
p

Xa(Zp))
Br(Xa,Q) 6= ∅.

In other words, no reciprocity law whatsoever will prevent this
equation from having an integral solution.



To prove such a result, one must compute Br(Xa,Q)/Br(Q).
Let X c

a,Q ⊂ P3
Q be the cubic surface with homogeneous equation

x3 + y3 + z3 = at3. Let E be the elliptic curve over Q with
equation x3 + y3 + z3 = 0. This is the complement of Xa,Q in X c

a,Q.
There is a localisation exact sequence

0 → Br(X c
a,Q) → Br(Xa,Q) → H1(E , Q/Z).

The last group classifies abelian unramified covers of E .
We may assume that a is not a cube. An algebraic computation
yields Br(X c

a,Q)/Br(Q) = Z/3, with an explicit generator
β ∈ Br(X c

a,Q), of order 3.



An algebraic argument shows that the image of
Br(Xa,Q) → H1(E , Q/Z) consist of classes which vanish at each of
the points (1,−1, 0), (0, 1,−1), (1, 0,−1).

One then uses arithmetic for the elliptic curve E over Q
(knowledge of all isogeneous curves) to show that such a class in
H1(E , Q/Z) is zero. Thus Br(X c

a,Q) = Br(Xa,Q).

One then shows that for any a ∈ Z not a cube and not of the
shape 9n ± 4, there exists a prime p such that β takes three
distinct values on Xa(Zp).
Thus

(
∏
p

Xa(Zp))
Br(Xa,Q) = (

∏
p

Xa(Zp))
β 6= ∅



It is an open question whether any integer a may be written as
x3 + y3 + 2z3, with x , y , z ∈ Z.

Theorem (CT/Wittenberg 2009)
Let Ya be the Z-scheme defined by x3 + y3 + 2z3 = a, with a 6= 0.
Then

(
∏
p

Ya(Zp))
Br(Xa,Q) 6= ∅.

In other words, no reciprocity law whatsoever will prevent this
equation from having an integral solution.



The proof here is more delicate : the restriction map
Br(Y c

a,Q) → Br(Ya,Q) is not onto. We have
Br(Ya,Q)/Br(Q) ' Z/3⊕ Z/2.



For U ⊂ X the complement of a smooth curve C in say a
geometrically rational smooth projective surface X , the quotient
Br(U)/Br(Q) need not be finite.
Example : complement U of a smooth conic in P2

Q (a log del

Pezzo surface). In this case Br(U)/Br(Q) = Q∗/Q∗2.



Let q(x , y , z) = 16x2 + 9y2 − 3z2. Consider the Z-scheme X ⊂ P2
Z

defined by q(x , y , z) 6= 0. Let Q be the affine quadric over Z
defined by q(x , y , z) = 1.

Using the obvious µ2-covering QQ → XQ, one shows :

[
∏

p X (Zp)]
BrXQ 6= ∅ but X (Z) = ∅.

This provides a rather simple “Skorobogatov” type of example in
the affine context. Other examples were found by Kresch and
Tschinkel.



The equation q(x , y) = P(t) over Z

Her q is a binary quadratic form, P(t) a polynomial.
Over Q, we had more theoretical success with these equations than
with cubic surfaces.
One would like to investigate such equations over Z. But this
looks hard, even for P(t) of degree at most 4.
The first step will be to determine the Brauer-Manin set.

Let us for now look at a simpler problem, one which would be
trivial over the rationals.



The equation q(x , y , z) = P(t) over Z

Proposition (CTXu, 2010)

Let q(x , y , z) be an indefinite, non degenerate quadratic form with
coefficients in Z. Let P(t) ∈ Z[t] be nonconstant and separable as
a polynomial in Q[t]. Let X/Z be defined by the affine equation
q(x , y , z) = P(t).
Then X (Z) is dense in

∏
p X (Zp).

In particular, the Hasse principle holds for integral points.



The key idea is that for a given indefinite form q(x , y , z) as above,
the integers n for which the integral Hasse principle for
q(x , y , z) = n fail fall into finitely many classes in Q∗/Q∗2. This is
a classical result, and may be deduced from the theory developed
above.
Given a family {Mp} ∈

∏
p X (Zp), with associated family {tp} in∏

p Zp, and a fixed set S of finite places, which one may assume
contains all the dyadic and bad places for q, an application of the
the Chinese remainder theorem yields a t0 ∈ Z very close to tp for
p ∈ S and such that moreover P(t0) is not in one of the
exceptional classes in Q∗/Q∗2. One then uses the density result for

q(x , y , z) = P(t0).



Appendix : The classical (German) language for integral
quadratic forms (Eichler, Kneser), as reviewed in CT/Xu

Let f (x1, . . . , xn) et g(y1, . . . , ym) be integral quadratic forms,
1 ≤ n < m and m ≥ 3.
One looks for linear forms li (x1, . . . , xn), i = 1, . . . ,m such that

g(x1, . . . , xn) = f (l1(x1, . . . , xn), . . . , lm(x1, . . . , xn)).

This defines a scheme X = X (g , f ) over Z. One assumes that it
has points over each Zp and one asks if it has points in Z.

To f and g one classically associates lattices (Gitter) N et M.



Das Gitter N wird von der Klasse des Gitters M dargestellt.

Translation :

X (Z) 6= ∅



Das Gitter N wird von dem Geschlecht des Gitters M dargestellt.

Translation :∏
p X (Zp) 6= ∅



Das Gitter N wird von dem Spinorgeschlecht des Gitters M
dargestellt.

Translation :

(
∏

p X (Zp))
BrXQ 6= ∅



Assume m − n = 2 and −disc(f ).disc(g) not a square.

Ein Gitter N, das zwar von dem Geschlecht von M dargestellt ist,
nicht aber von allen Spinorgschlechtern im Geschlecht von M
dargestellt wird, nennt man eine Spinorausnahme.

Translation :

Let A ∈ BrXQ be a generator of BrXQ/BrQ = Z/2. Then for each
prime p, A takes only one value on X (Zp).


