Arithmetic upon intersection of two quadrics

Hannover, June 14th, 2023 Göttingen–Hannover Seminar

Jean-Louis Colliot-Thélène CNRS et Université Paris-Saclay z. Z. Leibniz Universität Hannover

References

JLCT, J-J. Sansuc, P. Swinnerton-Dyer, Crelle, 1987

JLCT, Retour sur l'arithmétique des intersections de deux quadriques, avec un appendice par A. Kuznetsov, https://arxiv.org/abs/2208.04121

A. Molyakov, Le principe de Hasse pour les intersections de deux quadriques dans $\mathbb{P}^7,$ arXiv 2305.0031

Let k be a number field. Let k_v run through the completions of k. Let $X \subset \mathbb{P}_k^n$, be a smooth complete intersection of two quadrics :

$$f(x_0,\cdots,x_n)=g(x_0,\cdots,x_n)=0.$$

A well known conjecture asserts : For $n \ge 5$, for any such X, the Hasse principle holds, namely

$$\prod_{\nu} X(k_{\nu}) \neq \emptyset \Longrightarrow X(k) \neq \emptyset.$$

When $X(k) \neq \emptyset$, and $n \ge 5$, one knows that $X(k) \subset \prod_{\nu} X(k_{\nu})$ is dense.

For n = 3, the Hasse principle need not hold. One then has a curve of genus one, the obstruction to the Hasse principle is related to the Tate-Shafarevich group of the jacobian of the curve.

For n = 4, the Hasse principle need not hold (first explicit example : Birch and Swinnerton-Dyer 1975). Conjecturally, the defect is controlled by the Brauer-Manin obstruction.

Results were obtained for $n \ge 12$ by Mordell (1959) and for n = 10 by Swinnerton-Dyer (1964).

Assume k is totally imaginary, and n = 12. Assume $f(x_0, \ldots, x_{12})$ is non-degenerate. Here is Mordell's argument. The quadratic form f may be written as the direct sum of a totally hyperbolic quadratic form in 10 variables and a quadratic form in 3 variables. On a linear space of codimension 5 + 3 = 8, that is a \mathbb{P}_k^4 , the form f identically vanishes. The restriction of g to this \mathbb{P}_k^4 is given by a quadratic form in 5 variables, it has a nontrivial zero over k.

Formally real fields are handled by an elegant trick over the reals : consider the behaviour of the signature of the quadratic form af + bg as (a, b) varies over $a^2 + b^2 = 1$. One proves the existence of quadratic forms in the pencil over \mathbb{R} with 6 hyperbolics.

The Hasse principle for X smooth complete intersection of two quadrics in \mathbb{P}_{k}^{n} is known to hold :

For $n \ge 8$ (CT–Sansuc–Swinnerton-Dyer 1987) [Note : for $n \ge 8$, $X(k_v) \ne \emptyset$ for v nonarchimedean].

For $n \ge 4$ if X contains two lines globally defined over k (the case n = 4 was known before 1970).

For $n \ge 5$ if X contains a conic (Salberger 1993).

For n = 7 (Heath-Brown 2018).

Taking two difficult conjectures (finiteness of III of elliptic curves and Schinzel's hypothesis) for granted, Wittenberg (2007) gave a proof of the Hasse principle for any smooth X for $n \ge 5$.

A number of the above results hold for smooth projective models of possibly singular projective models of intersections of two quadrics.

In this talk, I shall discuss the path to the following theorem of A. Molyakov (2023), which completes and encompasses results of Heath-Brown (2018) and myself (2022).

Theorem. Let k be a number field and $X \subset \mathbb{P}_k^7$ be a nonconical, geom. integral complete intersection of two quadrics. For any smooth projective model Y of X, the Hasse principle holds.

One useful tool is the theorem : Over any field, if an intersection of two quadrics $X \subset \mathbb{P}_k^n$ has a rational point over an odd degree extension of k then it has a rational point.

This is an immediate consequence of Springer's theorem (same statement for one quadric, over any field) and the theorem of Amer and of Brumer :

Let k(t) be the rational function field in one variable. A sytem of two quadratic forms f = g = 0 over a field k has a nontrivial zero if and only if the quadratic form f + tg over the field k(t) has a nontrivial zero. When discussing a complete intersection of two quadrics $X \subset \mathbb{P}_k^n$ over a field k (char. not 2) given by a system f = g = 0, one is quickly led to consider the pencil of quadrics $\lambda f + \mu g = 0$ containing X.

Ignoring subtle points with the singular forms in the pencil, there is a close relation between the following statements, where we assume $r \ge 1$:

• There exists a form $\lambda f + \mu g$ in the pencil which splits off r + 1 hyperbolic planes.

• There exists a quadric in the pencil which contains a linear space $\mathbb{P}_{k}^{r} \subset \mathbb{P}_{k}^{n}$.

• The variety X contains an (r-1)-dimensional quadric $Y \subset \mathbb{P}^r_{L} \subset \mathbb{P}^n_{L}$.

Theorem (CT 2022) Let k be a p-adic field. Let $X \subset \mathbb{P}^3_k$ be an intersection of two quadrics given by a system

$$f(x_0, x_1, x_2, x_3) = 0, g(x_1, x_2, x_3) = 0.$$

Then there exists a quadratic extension K/k with $X(K) \neq \emptyset$.

Proof. When X is not a smooth complete intersection, this is proven by a case-by-case discussion. Assume X is a smooth complete intersection. Then X is a genus one curve.

Let \overline{k} be an algebraic closure of k, and $G := \operatorname{Gal}(\overline{k}/k)$. The period of a curve X is defined as the positive generator of the image of the degree map $\operatorname{Pic}(X \times_k \overline{k})^G \to \mathbb{Z}$.

The assumption that $g(x_1, x_2, x_3)$ involves only three variables implies that the "period" of the curve X divides 2. This one sees by using the fact any conic has period 1 and that the curve X is a double cover of the conic $g(x_1, x_2, x_3) = 0$.

For a curve of genus one, it is a theorem of Lichtenbaum (1969) that the period coincides with the index. Thus the index divides 2. By Riemann-Roch, this implies that there exists a field K/k of degree at most 2 with $X(K) \neq \emptyset$.

Theorem (Creutz–Viray 2021) Let k be a p-adic field. Let $X \subset \mathbb{P}_{k}^{n}$, $n \geq 4$ be an intersection of two quadrics. There exists a field K/k of degree at most 2 with $X(K) \neq \emptyset$.

(Alternate) proof. It is enough to handle the case n = 4. Singular cases are handled by a case by case analysis. Assume X is a smooth complete intersection. It is then given by a system

$$h(x_0, x_1, x_2) + x_3 x_4 = 0 = g(x_0, \cdots, x_4).$$

The section by $x_4 = 0$ is an intersection of two quadrics in \mathbb{P}^3_k as in the previous theorem. QED

Theorem (Creutz–Viray 2021). Let k be a number field and $X \subset \mathbb{P}_k^n$ be a smooth complete intersection of two quadrics. For $n \ge 4$, the index I(X) divides 2.

The proof is very elaborate.

Theorem (CT 2022) Let k be a number field and $X \subset \mathbb{P}_k^n$ be a smooth complete intersection of two quadrics. For $n \ge 5$ there exists a quadratic extension K/k with $X(K) \ne \emptyset$.

The question whether this holds for n = 4 remains open. Partial results are given by Creutz–Viray.

Proof. By Bertini it is enough to prove the case n = 5. In this case the variety $F_1(X)$ of lines on X is geometrically integral – it is actually a principal homogeneous space under an abelian variety. Hence there exists a finite set S of places of k such that $F_1(X)(k_v) \neq \emptyset$ for $v \notin S$. Thus for almost all v, any $\lambda f + \mu g$ splits off 2 hyperbolics over k_v .

For any place v, Theorem 2 gives a point of X in an extension of k_v of degree 2, hence there exists a $\lambda_v f + \mu_v g$ in the pencil over k_v which splits off two hyperbolics.

Using weak approximation, we find $(\lambda, \mu) \in \mathbb{P}^1(k)$ such that $\lambda f + \mu g$ splits off 2 hyperbolics over each k_v . By a result of Hasse (1924) it splits off 2 hyperbolics over k. Thus X contains a point over a quadratic extension of k.

Theorem (Salberger 1993 + ε) Let k be a number field and $X \subset \mathbb{P}_k^n$, $n \ge 4$, be a geometrically integral, nonconical, complete intersection of two quadrics, and let Y/k be a smooth projective model of X. Assume that X contains a conic $C \subset \mathbb{P}_k^2 \subset \mathbb{P}_k^n$. Then

(a) The set Y(k) is dense in the Brauer-Manin set $Y(\mathbb{A}_k)^{\operatorname{Br}(Y)} \subset Y(\mathbb{A}_k)$.

(b) For $n \ge 6$, the Hasse principle and weak approximation hold for Y.

(c) For n = 5 and X smooth, the Hasse principle and weak approximation hold for X.

The proof of the theorem relies in part on various works (CTSaSD 87, Coray-Tsfasman 88). Salberger's proof of the case n = 4 builds upon his very original work on zero-cycles.

Theorem 7 (Heath-Brown 2018) Let k be a local field. Let $X \subset \mathbb{P}_k^7$ be a smooth complete intersection of two quadrics given by f = g = 0. If $X(k) \neq \emptyset$, then there exists a nondegenerate form $\lambda f + \mu g$ in the pencil which splits off three hyperbolics.

Proof (CT 2022) Let $P \in X(k)$. The intersection C of X with the tangent \mathbb{P}^5_{μ} at P is a cone with vertex P over an intersection of two quadrics $Y \subset \mathbb{P}^4_k$. By Theorem 2 (Creutz–Viray) there exists a point on Y in a quadratic extension K/k. This defines a line over K on C passing through the vertex P of the cone. One thus gets a pair of lines in $C \subset X$ passing through P and globally defined over k. Fix a k-point Q in the plane \mathbb{P}^2_k defined by these two lines, outside of the two lines. The form $\lambda f + \mu g$ vanishing at Q vanishes on the plane \mathbb{P}^2_{μ} spanned by the two lines. If nondegenerate, this form splits off 3 hyperbolics. There is a simple way to handle the case where the form is of rank 7.

Theorem 8 (Heath-Brown, 2018) Let k be a number field. Let $X \subset \mathbb{P}^7_k$ be a smooth complete intersection of two quadrics given by f = g = 0. The Hasse principle holds for X.

< (回) > < 三 > <

э

Hasse principle for smooth $X \subset \mathbb{P}^7_k$

Proof (CT 2022, some ingredients from HB's proof). The variety $F_2(X)$ of planes $\mathbb{P}^2_k \subset X \subset \mathbb{P}^7_k$ is a geometrically integral variety – it is actually a principal homogeneous spaces under an abelian variety. Hence there exists a finite set S of places of k such that $F_2(X)(k_v) \neq \emptyset$ for $v \notin S$. Thus each $v \notin S$, any nondegenerate $\lambda f + \mu g$ splits off 3 hyperbolics over k_v . By Theorem 7, for each $v \in S$ the assumption $X(k_v) \neq \emptyset$ implies that there exists a point $(\lambda_{\nu}, \mu_{\nu}) \in \mathbb{P}^{1}(k_{\nu})$ such that $\lambda_{\nu}f + \mu_{\nu}g$ is nondegenerate and contains 3 hyperbolics. By weak approximation on \mathbb{P}^1_{μ} , there exists $(\lambda, \mu) \in \mathbb{P}^1(k)$ such that $\lambda f + \mu g$ is nondegenerate and contains 3 hyperbolics over each k_{ν} . By Hasse 1924 it contains 3 hyperbolics over k. Thus X contains a conic. Theorem 5 (Salberger) and the hypothesis $\prod_{v} X(k_v) \neq \emptyset$ then give $X(k) \neq \emptyset$.

What about singular complete intersections of two quadrics?

Let k be a number field and $X \subset \mathbb{P}_k^n$ a possibly singular complete intersection of two quadrics. Assume it is geometrically integral and not a cone. One is interested in the Hasse principle for a smooth projective model Y of X.

In CT-Sansuc-Swinnerton-Dyer 1987, we proved the Hasse principle for Y under the assumption $n \ge 8$. We proposed : Conjecture. For n = 6 and n = 7, the Hasse principle holds for Y. For such n, one has Br(Y)/Br(k) = 0 so there is no Brauer-Manin obstruction. Under various additional hypotheses on Y, the conjecture is proved in CT–S–SD 1987. As we saw, Salberger 1993 proves it when X contains a conic.

A. Molyakov recently proved the above conjecture for n = 7.

Theorem (Molyakov 2023) Let k be a number field. Let $X \subset \mathbb{P}_k^7$ be a nondegenerate geom. integral complete intersection of two quadrics. Then the Hasse principle holds for X_{smooth} .

白 ト ・ ヨ ト ・

I sketch the main steps of his proof.

A local result

Theorem Let k be a local field. Let $X \subset \mathbb{P}^7_k$ be a nondegenerate geom. integral complete intersection of two quadrics given by f = g = 0. If $X_{smooth}(k) \neq \emptyset$, and there is no form of rank ≤ 5 in the geometric pencil $\lambda f + \mu g$ then there exists a nondegenerate form $\lambda f + \mu g$ in the pencil which splits off three hyperbolics. The proof is similar to the proof in the smooth case. Namely, one finds a smooth k-point $P \in X(k)$ such that the intersection of the tangent space T_P at X in the point P is a cone over a reasonable intersection of two quadrics $Y \subset \mathbb{P}^4$. Then there exists a quadratic point on Y over the p-adic field, which leads to a (degenerate conic) lying in $T_P \cap X$. A quadric in the pencil containing a conic is defined by a quadratic form which splits off three hyperbolics.

Global result, the regular case

Theorem Let k be a number field. Let $X \subset \mathbb{P}_k^7$ be a nondegenerate geom. integral complete intersection of two quadrics given by f = g = 0. Assume there is no form of rank ≤ 6 in the geometric pencil $\lambda f + \mu g$. Then the Hasse principle holds for X_{smooth} .

Proof. Under the geometric hypothesis one knows that the variety parametrizing the planes $\mathbb{P}^2 \subset X$ is a generalized jacobian (X. Wang) and in particular is **geometrically integral**. Via Lang-Weil and Hensel this shows there is a finite set *S* of places such that for $v \notin S$, there exists a $\mathbb{P}^2_{k_v} \subset X_{k_v}$. Thus any form $\lambda f + \mu g$ contains 3 hyperbolics over k_v for $v \notin S$. The previous theorem and weak approximation then produce a $\lambda f + \mu g$ over *k* with 3 hyperbolics over each k_v hence over *k* by Hasse, hence we have a conic lying on *X* and may conclude by Salberger's theorem.

Global result, the irregular case

We now allow the existence a form of rank ≤ 6 in the geometric pencil. In this case the variety parametrizing the $\mathbb{P}^2 \subset X \subset \mathbb{P}^7$ need not be geometrically connected. There is an interesting case by case discussion. A number of the cases were handled in [CT/Sa/SD]. But two cases require a new, specific argument.

- The geometric pencil contains two conjugate forms of rank 6.
- The geometric pencil contains 4 forms of rank 6.

One uses the fibration method for zero-cycles

(Harpaz-Wittenberg), which is more flexible than the fibration method for rational points. In the second case, one ends up with a fibration over \mathbb{P}^1 whose generic fibre is a principal homogeneous space under a torus. And one concludes by an application of the Amer-Brumer theorem which gives that existence of a rational point on an intersection of two quadrics follows from the existence of a point in an extension of odd degree.