Arithmetic upon intersection of two quadrics

Hannover, June 14th, 2023
Göttingen-Hannover Seminar Jean-Louis Colliot-Thélène
CNRS et Université Paris-Saclay
z. Z. Leibniz Universität Hannover

References
JLCT, J-J. Sansuc, P. Swinnerton-Dyer, Crelle, 1987
JLCT, Retour sur l'arithmétique des intersections de deux quadriques, avec un appendice par A. Kuznetsov, https ://arxiv.org/abs/2208.04121
A. Molyakov, Le principe de Hasse pour les intersections de deux quadriques dans \mathbb{P}^{7}, arXiv 2305.0031

Let k be a number field. Let k_{v} run through the completions of k. Let $X \subset \mathbb{P}_{k}^{n}$, be a smooth complete intersection of two quadrics :

$$
f\left(x_{0}, \cdots, x_{n}\right)=g\left(x_{0}, \cdots, x_{n}\right)=0
$$

A well known conjecture asserts :
For $n \geq 5$, for any such X, the Hasse principle holds, namely

$$
\prod_{v} X\left(k_{v}\right) \neq \emptyset \Longrightarrow X(k) \neq \emptyset
$$

When $X(k) \neq \emptyset$, and $n \geq 5$, one knows that $X(k) \subset \prod_{v} X\left(k_{v}\right)$ is dense.

For $n=3$, the Hasse principle need not hold. One then has a curve of genus one, the obstruction to the Hasse principle is related to the Tate-Shafarevich group of the jacobian of the curve.
For $n=4$, the Hasse principle need not hold (first explicit example: Birch and Swinnerton-Dyer 1975). Conjecturally, the defect is controlled by the Brauer-Manin obstruction.

Results were obtained for $n \geq 12$ by Mordell (1959) and for $n=10$ by Swinnerton-Dyer (1964).

Assume k is totally imaginary, and $n=12$. Assume $f\left(x_{0}, \ldots, x_{12}\right)$ is non-degenerate. Here is Mordell's argument. The quadratic form f may be written as the direct sum of a totally hyperbolic quadratic form in 10 variables and a quadratic form in 3 variables. On a linear space of codimension $5+3=8$, that is a \mathbb{P}_{k}^{4}, the form f identically vanishes. The restriction of g to this \mathbb{P}_{k}^{4} is given by a quadratic form in 5 variables, it has a nontrivial zero over k.

Formally real fields are handled by an elegant trick over the reals : consider the behaviour of the signature of the quadratic form $a f+b g$ as (a, b) varies over $a^{2}+b^{2}=1$. One proves the existence of quadratic forms in the pencil over \mathbb{R} with 6 hyperbolics.

The Hasse principle for X smooth complete intersection of two quadrics in \mathbb{P}_{k}^{n} is known to hold :
For $n \geq 8$ (CT-Sansuc-Swinnerton-Dyer 1987) [Note: for $n \geq 8$, $X\left(k_{v}\right) \neq \emptyset$ for v nonarchimedean].
For $n \geq 4$ if X contains two lines globally defined over k (the case $n=4$ was known before 1970).
For $n \geq 5$ if X contains a conic (Salberger 1993).
For $n=7$ (Heath-Brown 2018).
Taking two difficult conjectures (finiteness of \amalg of elliptic curves and Schinzel's hypothesis) for granted, Wittenberg (2007) gave a proof of the Hasse principle for any smooth X for $n \geq 5$.

A number of the above results hold for smooth projective models of possibly singular projective models of intersections of two quadrics.

In this talk, I shall discuss the path to the following theorem of A. Molyakov (2023), which completes and encompasses results of Heath-Brown (2018) and myself (2022).

Theorem. Let k be a number field and $X \subset \mathbb{P}_{k}^{7}$ be a nonconical, geom. integral complete intersection of two quadrics. For any smooth projective model Y of X, the Hasse principle holds.

One useful tool is the theorem: Over any field, if an intersection of two quadrics $X \subset \mathbb{P}_{k}^{n}$ has a rational point over an odd degree extension of k then it has a rational point.

This is an immediate consequence of Springer's theorem (same statement for one quadric, over any field) and the theorem of Amer and of Brumer :

Let $k(t)$ be the rational function field in one variable. A sytem of two quadratic forms $f=g=0$ over a field k has a nontrivial zero if and only if the quadratic form $f+t g$ over the field $k(t)$ has a nontrivial zero.

When discussing a complete intersection of two quadrics $X \subset \mathbb{P}_{k}^{n}$ over a field k (char. not 2) given by a system $f=g=0$, one is quickly led to consider the pencil of quadrics $\lambda f+\mu g=0$ containing X. Ignoring subtle points with the singular forms in the pencil, there is a close relation between the following statements, where we assume $r \geq 1$:

- There exists a form $\lambda f+\mu g$ in the pencil which splits off $r+1$ hyperbolic planes.
- There exists a quadric in the pencil which contains a linear space $\mathbb{P}_{k}^{r} \subset \mathbb{P}_{k}^{n}$.
- The variety X contains an $(r-1)$-dimensional quadric $Y \subset \mathbb{P}_{k}^{r} \subset \mathbb{P}_{k}^{n}$.

Theorem (CT 2022) Let k be a p-adic field. Let $X \subset \mathbb{P}_{k}^{3}$ be an intersection of two quadrics given by a system

$$
f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=0, g\left(x_{1}, x_{2}, x_{3}\right)=0 .
$$

Then there exists a quadratic extension K / k with $X(K) \neq \emptyset$.
Proof. When X is not a smooth complete intersection, this is proven by a case-by-case discussion. Assume X is a smooth complete intersection. Then X is a genus one curve.

Let \bar{k} be an algebraic closure of k, and $G:=\operatorname{Gal}(\bar{k} / k)$. The period of a curve X is defined as the positive generator of the image of the degree map $\operatorname{Pic}\left(X \times_{k} \bar{k}\right)^{G} \rightarrow \mathbb{Z}$.
The assumption that $g\left(x_{1}, x_{2}, x_{3}\right)$ involves only three variables implies that the "period" of the curve X divides 2 . This one sees by using the fact any conic has period 1 and that the curve X is a double cover of the conic $g\left(x_{1}, x_{2}, x_{3}\right)=0$.
For a curve of genus one, it is a theorem of Lichtenbaum (1969) that the period coincides with the index. Thus the index divides 2 . By Riemann-Roch, this implies that there exists a field K / k of degree at most 2 with $X(K) \neq \emptyset$.

Theorem (Creutz-Viray 2021) Let k be a p-adic field. Let $X \subset \mathbb{P}_{k}^{n}$, $n \geq 4$ be an intersection of two quadrics. There exists a field K / k of degree at most 2 with $X(K) \neq \emptyset$.
(Alternate) proof. It is enough to handle the case $n=4$. Singular cases are handled by a case by case analysis. Assume X is a smooth complete intersection. It is then given by a system

$$
h\left(x_{0}, x_{1}, x_{2}\right)+x_{3} x_{4}=0=g\left(x_{0}, \cdots, x_{4}\right) .
$$

The section by $x_{4}=0$ is an intersection of two quadrics in \mathbb{P}_{k}^{3} as in the previous theorem. QED

Theorem (Creutz-Viray 2021). Let k be a number field and $X \subset \mathbb{P}_{k}^{n}$ be a smooth complete intersection of two quadrics. For $n \geq 4$, the index $I(X)$ divides 2.

The proof is very elaborate.
Theorem (CT 2022) Let k be a number field and $X \subset \mathbb{P}_{k}^{n}$ be a smooth complete intersection of two quadrics. For $n \geq 5$ there exists a quadratic extension K / k with $X(K) \neq \emptyset$.

The question whether this holds for $n=4$ remains open. Partial results are given by Creutz-Viray.

Proof. By Bertini it is enough to prove the case $n=5$. In this case the variety $F_{1}(X)$ of lines on X is geometrically integral - it is actually a principal homogeneous space under an abelian variety. Hence there exists a finite set S of places of k such that $F_{1}(X)\left(k_{v}\right) \neq \emptyset$ for $v \notin S$. Thus for almost all v, any $\lambda f+\mu g$ splits off 2 hyperbolics over k_{v}.
For any place v, Theorem 2 gives a point of X in an extension of k_{v} of degree 2 , hence there exists a $\lambda_{v} f+\mu_{v} g$ in the pencil over k_{v} which splits off two hyperbolics.
Using weak approximation, we find $(\lambda, \mu) \in \mathbb{P}^{1}(k)$ such that $\lambda f+\mu g$ splits off 2 hyperbolics over each k_{v}. By a result of Hasse (1924) it splits off 2 hyperbolics over k. Thus X contains a point over a quadratic extension of k.

Theorem (Salberger $1993+\varepsilon$) Let k be a number field and $X \subset \mathbb{P}_{k}^{n}, n \geq 4$, be a geometrically integral, nonconical, complete intersection of two quadrics, and let Y / k be a smooth projective model of X. Assume that X contains a conic $C \subset \mathbb{P}_{k}^{2} \subset \mathbb{P}_{k}^{n}$. Then
(a) The set $Y(k)$ is dense in the Brauer-Manin set $Y\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(Y)} \subset Y\left(\mathbb{A}_{k}\right)$.
(b) For $n \geq 6$, the Hasse principle and weak approximation hold for Y.
(c) For $n=5$ and X smooth, the Hasse principle and weak approximation hold for X.

The proof of the theorem relies in part on various works (CTSaSD 87, Coray-Tsfasman 88). Salberger's proof of the case $n=4$ builds upon his very original work on zero-cycles.

Theorem 7 (Heath-Brown 2018) Let k be a local field. Let $X \subset \mathbb{P}_{k}^{7}$ be a smooth complete intersection of two quadrics given by $f=g=0$. If $X(k) \neq \emptyset$, then there exists a nondegenerate form $\lambda f+\mu g$ in the pencil which splits off three hyperbolics.

Proof (CT 2022) Let $P \in X(k)$. The intersection C of X with the tangent \mathbb{P}_{k}^{5} at P is a cone with vertex P over an intersection of two quadrics $Y \subset \mathbb{P}_{k}^{4}$. By Theorem 2 (Creutz-Viray) there exists a point on Y in a quadratic extension K / k. This defines a line over K on C passing through the vertex P of the cone. One thus gets a pair of lines in $C \subset X$ passing through P and globally defined over k. Fix a k-point Q in the plane \mathbb{P}_{k}^{2} defined by these two lines, outside of the two lines. The form $\lambda f+\mu g$ vanishing at Q vanishes on the plane \mathbb{P}_{k}^{2} spanned by the two lines. If nondegenerate, this form splits off 3 hyperbolics. There is a simple way to handle the case where the form is of rank 7 .

Theorem 8 (Heath-Brown, 2018) Let k be a number field. Let $X \subset \mathbb{P}_{k}^{7}$ be a smooth complete intersection of two quadrics given by $f=g=0$. The Hasse principle holds for X.

Hasse principle for smooth $X \subset \mathbb{P}_{k}^{7}$
Proof (CT 2022, some ingredients from HB's proof). The variety $F_{2}(X)$ of planes $\mathbb{P}_{k}^{2} \subset X \subset \mathbb{P}_{k}^{7}$ is a geometrically integral variety it is actually a principal homogeneous spaces under an abelian variety. Hence there exists a finite set S of places of k such that $F_{2}(X)\left(k_{v}\right) \neq \emptyset$ for $v \notin S$. Thus each $v \notin S$, any nondegenerate $\lambda f+\mu g$ splits off 3 hyperbolics over k_{v}. By Theorem 7, for each $v \in S$ the assumption $X\left(k_{v}\right) \neq \emptyset$ implies that there exists a point $\left(\lambda_{v}, \mu_{v}\right) \in \mathbb{P}^{1}\left(k_{v}\right)$ such that $\lambda_{v} f+\mu_{v} g$ is nondegenerate and contains 3 hyperbolics. By weak approximation on \mathbb{P}_{k}^{1}, there exists $(\lambda, \mu) \in \mathbb{P}^{1}(k)$ such that $\lambda f+\mu g$ is nondegenerate and contains 3 hyperbolics over each k_{v}. By Hasse 1924 it contains 3 hyperbolics over k. Thus X contains a conic. Theorem 5 (Salberger) and the hypothesis $\prod_{v} X\left(k_{v}\right) \neq \emptyset$ then give $X(k) \neq \emptyset$.

What about singular complete intersections of two quadrics?
Let k be a number field and $X \subset \mathbb{P}_{k}^{n}$ a possibly singular complete intersection of two quadrics. Assume it is geometrically integral and not a cone. One is interested in the Hasse principle for a smooth projective model Y of X.
In CT-Sansuc-Swinnerton-Dyer 1987, we proved the Hasse principle for Y under the assumption $n \geq 8$. We proposed : Conjecture. For $n=6$ and $n=7$, the Hasse principle holds for Y.
For such n, one has $\operatorname{Br}(Y) / \operatorname{Br}(k)=0$ so there is no Brauer-Manin obstruction. Under various additional hypotheses on Y, the conjecture is proved in CT-S-SD 1987. As we saw, Salberger 1993 proves it when X contains a conic.
A. Molyakov recently proved the above conjecture for $n=7$.

Theorem (Molyakov 2023) Let k be a number field. Let $X \subset \mathbb{P}_{k}^{7}$ be a nondegenerate geom. integral complete intersection of two quadrics. Then the Hasse principle holds for $X_{\text {smooth }}$.

I sketch the main steps of his proof.

A local result

Theorem Let k be a local field. Let $X \subset \mathbb{P}_{k}^{7}$ be a nondegenerate geom. integral complete intersection of two quadrics given by $f=g=0$. If $X_{\text {smooth }}(k) \neq \emptyset$, and there is no form of rank ≤ 5 in the geometric pencil $\lambda f+\mu g$ then there exists a nondegenerate form $\lambda f+\mu g$ in the pencil which splits off three hyperbolics. The proof is similar to the proof in the smooth case. Namely, one finds a smooth k-point $P \in X(k)$ such that the intersection of the tangent space T_{P} at X in the point P is a cone over a reasonable intersection of two quadrics $Y \subset \mathbb{P}^{4}$. Then there exists a quadratic point on Y over the p-adic field, which leads to a (degenerate conic) lying in $T_{P} \cap X$. A quadric in the pencil containing a conic is defined by a quadratic form which splits off three hyperbolics.

Global result, the regular case

Theorem Let k be a number field. Let $X \subset \mathbb{P}_{k}^{7}$ be a nondegenerate geom. integral complete intersection of two quadrics given by $f=g=0$. Assume there is no form of rank ≤ 6 in the geometric pencil $\lambda f+\mu g$. Then the Hasse principle holds for $X_{\text {smooth }}$.

Proof. Under the geometric hypothesis one knows that the variety parametrizing the planes $\mathbb{P}^{2} \subset X$ is a generalized jacobian (X . Wang) and in particular is geometrically integral.
Via Lang-Weil and Hensel this shows there is a finite set S of places such that for $v \notin S$, there exists a $\mathbb{P}_{k_{v}}^{2} \subset X_{k_{v}}$. Thus any form $\lambda f+\mu g$ contains 3 hyperbolics over k_{v} for $v \notin S$.
The previous theorem and weak approximation then produce a $\lambda f+\mu g$ over k with 3 hyperbolics over each k_{v} hence over k by Hasse, hence we have a conic lying on X and may conclude by Salberger's theorem.

Global result, the irregular case

We now allow the existence a form of rank ≤ 6 in the geometric pencil. In this case the variety parametrizing the $\mathbb{P}^{2} \subset X \subset \mathbb{P}^{7}$ need not be geometrically connected.
There is an interesting case by case discussion. A number of the cases were handled in [CT/Sa/SD].

But two cases require a new, specific argument.

- The geometric pencil contains two conjugate forms of rank 6.
- The geometric pencil contains 4 forms of rank 6.

One uses the fibration method for zero-cycles
(Harpaz-Wittenberg), which is more flexible than the fibration method for rational points. In the second case, one ends up with a fibration over \mathbb{P}^{1} whose generic fibre is a principal homogeneous space under a torus. And one concludes by an application of the Amer-Brumer theorem which gives that existence of a rational point on an intersection of two quadrics follows from the existence of a point in an extension of odd degree.

