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Abstract. Surveying some of the recent developments on approximate
subgroups and super-strong approximation for thin groups, we describe
the Bourgain-Gamburd method for establishing spectral gaps for finite
groups and the proof of the classification of approximate subgroups of
semisimple algebraic groups over finite fields. We then give a proof of
the super-strong approximation for mod p quotients via random matrix
products and a quantitative version of strong approximation. Some
applications to the group sieve are also presented. These notes are based
on a series of lectures given at the 2013 Groups St. Andrews meeting.
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1. Introduction

In the early 1980’s Matthews-Vaserstein-Weisfeiler [69], and then Nori
[72] and Weisfeiler [100] (independently) proved the following theorem:

Theorem 1.1 (Strong-approximation theorem). Suppose G is a connected,
simply connected, semisimple algebraic group defined over Q, and let Γ 6
G(Q) be a finitely generated Zariski-dense subgroup. Then for all sufficiently
large prime numbers p, the reduction Γp of Γ is equal to Gp(Fp).

For example, if Γ 6 SLn(Z) is a finitely generated Zariski dense subgroup,
then Γp = SLn(Z/pZ) for all large enough prime numbers p. When p is large
enough, the algebraic group G (viewed as a closed subgroup of some GLn)
admits a smooth reduction defined over Fp, which we denote by Gp. Since
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Γ is finitely generated, there are finitely many primes p1, . . . , pk (appearing
in the denominators of the matrix entries of S) such that Γ belongs to
G(Z[ 1

p1
, . . . , 1

pk
]) := G ∩ GLn(Z[ 1

p1
, . . . , 1

pk
]), and the reduction modulo p

map is well-defined on this subgroup if p is large enough.
The result fails if G is not simply connected (e.g. the image of SL2(Z)

in PGL2(Fp) has index 2 when p > 2). However every connected absolutely
almost simple algebraic group admits a simply connected finite cover to
which we can lift Γ and apply the theorem. This yields that [Gp(Fp) : Γp] is
nevertheless always bounded (for p large) by a constant depending only on
G (one can take 1 + rank(G), see [72, Remark 3.6]).

A similar result holds for groups defined over number fields instead of
Q. Its proof reduces to the case of Q by suitable restriction of scalars. See
Remark 6.5 below (see also [100]).

That the result holds in the case when Γ is an S-arithmetic group Γ =
G(Z[ 1

p1
, . . . , 1

pm
]) was known much earlier by work of Kneser [50] and Platonov

[74] in particular. See [75, Chapter 7]) and [82].
Theorem 1.1 is then of particular interest when the group Γ is not a full

S-arithmetic subgroup of G but has infinite index in one of them, while still
remaining Zariski dense in G (S-arithmetic subgroups are Zariski dense by
the Borel density theorem). Such a group is called a thin subgroup of G in
recent terminology due to Peter Sarnak [89].

What we call super-strong approximation is the fact stated in Theorem
1.2 below that Γ not only surjects onto Gp(Fp) for p large but that the
associated Cayley graphs of Gp(Fp) form a family of expanders. The goal
of these notes is to give a proof of this fact, give some applications, and
introduce the reader to the various techniques used in the proof.

It is of course not the purpose of this survey to give a complete introduc-
tion to expander graphs and for that matter we refer the reader to the many
sources on the subject starting with Lubotzky’s monograph [62] and survey
[63] (see also [39] and [52, 95, 10]). Let us simply recall that to every finite
k-regular graph G is associated a combinatorial Laplace operator acting on
the (finite dimensional) space of functions on the vertices of the graph. It is
defined by the formula

∆f(x) = f(x)− 1

k

∑
y∼x

f(y),

where y ∼ x is a vertex connected to x by an edge. This operator is sym-
metric and non-negative. Its eigenvalues are real and non-negative. The
eigenvalue 0 comes with multiplicity one if the graph is connected and the
first nonzero eigenvalue is denoted by λ1(G) and satisfies satisfies:

λ1(G) = inf{〈∆f, f〉, ||f ||2 = 1,
∑
x

f(x) = 0}. (1.1)
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An infinite family of k-regular graphs (Gn)n>1 is said to be a family of
expanders if there is ε > 0 such that for all n > 1,

λ1(Gn) > ε.

We are now in a position to state the following strengthening of Theorem
1.1.

Theorem 1.2 (Super-strong approximation). Suppose G is a connected,
simply connected, semi-simple algebraic group defined over Q, and let Γ 6
G(Q) be a Zariski-dense subgroup generated by a finite set S. Then there is
ε = ε(S) > 0 such that for all large enough prime numbers p, the reduction
Γp of Γ is equal to Gp(Fp) and the associated Cayley graph Cay(Gp(Fp), Sp)
is an ε-expander.

Here Sp is the image of S by reduction modulo p. As before, the result
also holds if G is not assumed to be simply connected, but Γp may then only
be a subgroup of Gp(Fp) whose index is nevertheless bounded independently
of p, while Cay(Γp, Sp) remains an ε-expander.

This theorem is a special case of a result due to Salehi-Golsefidy and
Varjú [31], which asserts that the conclusion also holds for quotient modulo
a square free integer and even when the connected algebraic group G is
only assumed to be perfect. Their proof follows the so-called Bourgain-
Gamburd expansion machine, which can be implemented in this context in
part thanks to the recent results on approximate subgroups of linear groups
due to Pyber-Szabó [80] and Breuillard-Green-Tao [19].

In these notes we describe the Bourgain-Gamburd method as well as the
above mentioned results on approximate subgroups and finally give a com-
plete proof of Theorem 1.2 (i.e. of super-strong approximation for mod
p quotients) following a somewhat alternate route than in [31] by use of
random matrix products [15].

1.3. The Lubotzky alternative and its expander version. One can
formulate a version of the strong approximation theorem, which is valid for
every finitely generated subgroup of GLd(k), where k is an arbitrary field
of characteristic zero (one can also deal with the positive characteristic case
thanks to the work of Pink [73], however no super-strong version is known
in positive characteristic thus far). When the group Γ = 〈S〉 we start with
is non virtually solvable, one can show that there is a non trivial connected
and simply connected semisimple algebraic group G defined over Q and a
group homomorphism from a finite index subgroup of Γ into G(Q) with a
Zariski-dense image (see [68, Prop. 16.4.13] and the discussion that follows).
This allows to then apply the strong-approximation theorem 1.1 and deduce
that Γ0 admits Gp(Fp) as a quotient for almost all p.

This information was used in a key way by Lubotzky and Mann in their
work on subgroup growth [64]. For this version of strong approximation,
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called the Lubotzky alternative, and we refer the reader to the notes devoted
to it and its various refinements in the book by Lubotzky and Segal on
subgroup growth ([68, 16.4.12], see also [49]). Strengthened by the super-
strong approximation theorem, this gives the following statement:

Theorem 1.4. (Lubotzky super-alternative) Let S be a finite symmetric
subset of GLd(k), where k is a field of characteristic zero. Then the subgroup
Γ = 〈S〉 generated by S contains a subgroup Γ0 whose index m in Γ is finite
and bounded in terms of d only, such that

• either the subgroup Γ0 is solvable,
• or there is a connected, simply connected, semisimple algebraic group
G defined over Q, such that for all large enough primes p ∈ N, there
is a surjective group homomorphism ρp from Γ0 to Gp(Fp) such that
the Cayley graph Cay(Gp(Fp), ρp(S0)) is an ε-expander, for some
ε > 0 independent of p, where S0 is a subset of S2m generating Γ0.

Note that given a group Γ generated by a symmetric set S, then ev-
ery subgroup of finite index Γ0 is finitely generated by a symmetric subset
contained in S2m−1, if m is the index of Γ0 in Γ (e.g. see [19, Lemma C.1]).

A version of Theorem 1.4 for a bounded number of primes is also true:
given large enough distinct primes p1, . . . , pk, the Cayley graphs Cay(G(Fp1)×
. . .×G(Fpk), (ρp1 × . . .× ρpk)(S)) are ε-expanders for a uniform ε > 0 inde-
pendent of the number of primes k. We will prove this stronger version only
with an ε depending on k (but not on the choice of k primes). See Theorem
6.4 below. One needs the works of Varjú [99] and Salehi-Golsefidy-Varjú [31]
to get this uniformity in the number of primes, but the proof is rather more
involved. Note that at any case ε depends on S and it is an open question
whether this dependence can be removed (see [16] for partial results in this
direction).

1.5. The group sieve method. Knowing that the finite quotients Cayley
graphs are expanders is a very useful information for a number of appli-
cations to group theory and number theory, in particular it is the basis
of the so-called Group Sieve, pioneered by Kowalski [53, 54], Rivin [83],
and Lubotzky-Meiri [65, 66] and of the Affine Sieve of Bourgain-Gamburd-
Sarnak [7]. See [51] and [56] for two nice expositions.

Roughly speaking, the expander property allows to give very good bounds
on the various error terms that appear when sieving modulo primes. In these
notes, we will give a general statement, the group sieve lemma (Lemma 7.5
below), due to Lubotzky and Meiri, which allows to show that a subset Z
of a given finitely generated linear group is exponentially small, provided
its reduction modulo p does not occupy too large a subset of the quotient
group for many primes p. For this version of the group sieve, expansion
for pairs of primes is sufficient (i.e. we need that G(Fp1)×G(Fp2) expands
for p1 6= p2), so our version of the Lubotzky super-alternative above will
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be enough. Expansion for all square free moduli is necessary however, and
sometimes crucial, in other situations, such as in the Affine Sieve pioneered
by Bourgain-Gamburd-Sarnak [7] and further developed by Salehi-Golsefidy-
Sarnak [86], Bourgain and Kontorovich [9] and others.

The conclusion of the super-strong approximation theorem (Theorem 1.2)
can be reformulated in the following way: there is ε > 0 depending only on
the generating set S such that for every real valued function f on the group
Gp(Fp), such that

∑
x∈Gp(Fp) f(x) = 0 and ||f ||2`2 =

∑
x∈Gp(Fp) |f(x)|2 = 1,

〈∆f, f〉 > ε,

where

〈∆f, f〉 =
1

2k

∑
s∈S
||s · f − f ||2`2 =

1

2k

∑
s∈S

∑
x∈Gp(Fp)

|f(s−1x)− f(x)|2.

Let Sp = {s1, . . . , sk} be the image of S under the reduction modulo p map
and µSp be the uniform probability measure on Sp, assigning equal mass 1/k

(= 1
|S| for p large enough) to each element of Sp.

µSp :=
1

k
(δs1 + · · ·+ δsk)

Note that µSp = Id−∆ as operators on `2(Gp(Fp)), and hence its operator

norm on `20(Gp(Fp)), the orthogonal of constants, satisfies:

||µSp |`20 || < 1− ε
It is in this form that the theorem is used in its applications to the group

sieve method. For example it allows Lubotzky and Meiri [65] to establish the
following result about the scarcity of proper powers in non virtually solvable
linear groups. A group element is called a proper power if it is of the form
gn for some integer n > 2 and some other group element g (from the same
group).

Theorem 1.6. (Lubotzky-Meiri [65]) Let Γ 6 GLd(C) be a finitely generated
subgroup and let µS be the uniform probability measure on a finite symmetric
generating S. Assume that Γ is not virtually solvable. Then the set PΓ of
proper powers in Γ is exponentially small in the sense that there is c =
c(S) > 0 such that for every n ∈ N,

µnS(PΓ) 6 e−cn.

Here µnS is the n-th convolution power of the probability measure µS on
Γ. Equivalently, it is the distribution at time n of the simple random walk
starting at the identity on the associated Cayley graph Cay(Γ, S). Or more
explicitly:

µnS(PΓ) = Pw∈Wn,k
(PΓ) :=

|{w, |w| = n,w ∈ PΓ}|
|{w, |w| = n}|

,
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where Wn,k is the set of (non reduced!) words w of length |w| = n in the
formal alphabet made of letters from the set S, and w its value as a group
element when computed inside Γ. One can analogously count reduced words
of length n in the free group and get the same result, but we note in passing
that obtaining a result of this kind for the average with respect to the word
metric on Γ induced by S seems out of reach at the moment, because little is
known about the balls for the word metric on a group of exponential growth.

1.7. On the proof of the super-strong approximation theorem. The-
orem 1.2 was first proved in the special case of subgroups of SL2(Z) in a
remarkable breakthrough by Bourgain and Gamburd [5]. They deduced the
expansion by showing that the simple random walk on the finite quotient
SL2(Z/pZ) must equidistribute very fast, indeed after only O(log p) steps. In
doing so they reversed the traditional way of looking at things: traditionnally
spectral gaps estimates were proven by other methods (e.g. representation
theory, property (T ), etc.) and were then used to prove fast equidistribution
of random walks. Bourgain and Gamburd reversed this order, first proving
equidistribution and then deducing the gap (see Proposition 3.3 below for
the equivalence between spectral gap and fast equidistribution).

This idea can be traced back to the seminal work of Sarnak and Xue
[90], which gave a new, softer, approach toward Selberg’s 3/16 theorem (i.e.
the first eigenvalue of the Laplace operator on quotients of the hyperbolic
plane by congruence subgroups of SL(2,Z) is at least 3/16, see [92]). They
exploited, via the trace formula, the high multiplicity of the spectrum com-
ing from the p−1

2 lower bound on the dimension of the smallest non trivial
complex representation of SL2(Fp) (this bound goes back to Frobenius) and
a soft combinatorial upper bound on the number of lattice points in a ball
of radius roughly log p. We refer the reader to the expository papers of P.
Sarnak [88, 91], where this method and its history (in particular the role of
Bernstein and Kazhdan) is described.

In his thesis [29] Gamburd pursued this method and established the first
spectral gap result valid for thin groups: he showed that if a finitely gener-
ated subgroup Γ of SL2(Z) is large enough in the sense that the Hausdorff
dimension of its limit set on P1(R) is at least 5

6 , then the spectrum of the
associated (infinite volume) quotients of the hyperbolic plane modulo the
congruence subgroups Γp := Γ ∩ ker(SL2(Z) → SL2(Z/pZ)) admits a uni-
form lower bound independent of p. In turn the resulting Cayley graphs of
SL2(Z/pZ) are expander graphs.

Bourgain and Gamburd [5] pushed the method even further to implement
it for all Zariski-dense subgroups of SL2(Z) with no restriction on the limit
set. The structure of their proof retained the same patterns, playing the high
multiplicity lower bound against a combinatorial upper bound via the trace
formula applied to convolution powers of a fixed probability measure on
the generating set. Achieving this combinatorial upper bound is the gist of
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their work: they brought in an important graph theoretic result (the Balog-
Szemeredi-Gowers lemma, a parent of the celebrated Szemeredi regularity
lemma) revisited in this context by Tao [96] to show that convolution powers
of probability measures decay in `2 norm (the so-called `2-flattening) unless
the measure charges significantly a certain approximate subgroup. That
there exists no interesting approximate subgroup of SL2(Fp) was established
for this purpose by Helfgott [37]. The combinatorial upper bound (on the
probability of return to the identity of the simple random walk at time
roughly log p), and hence the spectral gap, then reduces to establishing
a certain non concentration estimate on subgroups for random walks on
SL2(Z) (see Theorem 5.1), which in this case can easily be deduced from
Kesten’s theorem [48].

This new method became known as the Bourgain-Gamburd expansion
machine (see e.g. the papers [20, 22] as well as the forthcoming book [95]).
Its scope goes beyond SL2(Fp) and, quite remarkably, it can potentially be
applied to any finite group (see Proposition 3.1 for a precise formulation of
the method and its ingredients). It was understood early on that the scheme
of the proof in [5] was general enough that it could be made to work in the
general setting of Theorem 1.2, provided one could establish each step in the
right generality. The bounds on the dimension of complex representations
are well-known thanks to classical work of Landazuri-Seitz [58]. The graph
theoretic lemma needs no modification in the general setting. The remain-
ing two items however require deeper consideration. The classification of
approximate groups, first established by Helfgott for SL2(Fp) and SL3(Fp),
was finally completed in the general case by Pyber and Szabó [80] and in-
dependently by Breuillard-Green-Tao [19]. Regarding the upper bounds on
the probability of hitting a subgroup, there are two known ways to achieve
them. The first is to use the theory of random matrix products, and this
was done in subsequent work of Bourgain-Gamburd [6], but only in the spe-
cial case of subgroups of SLn(Z), because the estimates from the theory of
random matrix products required to deal with the general case were lacking.
The second consists in applying a ping-pong argument akin to the proof of
the Tits alternative [98], and this was performed by Varjú in his thesis [99]
and subsequently by Salehi-Golsefidy and Varjú in their joint work [31], in
which they establish Theorem 1.2 in full generality.

In the remainder of these notes we will prove Theorem 1.2 following each
of these steps very closely. The only novelty in our proof lies in the last step:
thanks to [15], we now understand how to use random matrix products to
prove in the desired generality the required upper bounds for the probability
of hitting a subgroup (the non-concentration estimates). This approach is
somewhat more direct than the one taken by Salehi-Golsefidy and Varjú in
[31], and it is very close to what Green, Tao and I had in mind, when we
announced a proof of Theorem 1.2 in [18, Theorem 7.3] in the special case
of absolutely simple groups over Z, but never came to the point of writing
it up in full.
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As already mentioned Salehi-Golsefidy and Varjú [31] actually proved
a strong version of Theorem 1.2 showing the expansion property also for
the quotients modulo a square free integer, and assuming only that G is
perfect (which is also a necessary condition for expansion). See Theorem
6.6 below. That strong version is crucial for certain applications to sieving
in orbits (à la Bourgain-Gamburd-Sarnak [7]), but its proof is much more
involved. Often it is enough to have Theorem 1.2, or its extension to two or
a bounded number of primes, which is not more costly. That will be the case
for the applications presented in this paper. This, I thought, was enough
justification for writing a complete proof of super-strong approximation for
prime moduli in one place.

1.8. Outline of the article. In Section 2 we present a proof of the strong
approximation theorem of Matthews, Vassertein and Weisfeiler following
Nori’s proof. Our treatment yields a quantitative version in the sense that it
gives a upper bound on the first p for which the surjectivity of the reduction
mod p holds in terms of the height of the generating set. Section 3 is devoted
to the Bourgain-Gamburd machine: we state very general conditions on the
Cayley graph of an arbitrary finite group that are sufficient to establish a
spectral gap. Section 4 is devoted to approximate subgroups of linear groups
over finite fields. We prove there the theorem of Pyber-Szabó and Breuillard-
Green-Tao. In Section 5 we discuss random matrix products and a general
non-concentration on subgroups result for random walks on linear groups.
Finally in Section 6 we combine the results of the preceding three sections to
complete the proof of the super-strong approximation theorem in the case
of mod p quotients (Theorems 1.2 and 6.4). The final section is devoted to
applications to the group sieve method and results of Aoun, Jouve-Kowalski-
Zywina, Lubotzky-Meiri, Lubotzky-Rosenzweig and Prasad-Rapinchuk on
generic properties elements in non virtually solvable linear groups.

2. Nori’s theorem and a quantitative version of strong
approximation

It was Matthews Vaserstein and Weisfeiler [69] who first proved the strong
approximation theorem for Zariski-dense subgroups, i.e. Theorem 1.1, in the
case when G is absolutely simple. Their proof made use of the (brand new
at the time) classification of finite simple groups. Another, classification-
free proof was found roughly at the same time and independently by M.
Nori, yielding also the case G semisimple, as a consequence of the following
general result proved in [72].

Theorem 2.1 (Nori [72]). Let H be a subgroup of GLn(Fp), and H+ the
subgroup generated by its elements of order p. If p is larger than some con-
stant c(n) depending only on n, then there is a connected algebraic subgroup

H̃ of GLn defined over Fp such that H+ coincides with H̃(Fp)+. Moreover
there is a normal abelian subgroup A 6 H such that [H : AH+] is bounded
in terms of n only.
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Observe that if p > n, then elements of order p in GLn(Fp) are precisely
the unipotent matrices: indeed xp = 1 is equivalent to (x − 1)p = 0 for
x ∈ GLn(Fp) and hence to x = 1+n, where n is a nilpotent matrix. As Nori

explains in [72, Remark 3.6.], the index of H̃(Fp)+ in H̃(Fp) is bounded by
a function of n only. So the meaning of Nori’s theorem is that finite sub-
groups of GLn(Fp) generated by elements of order p are essentially algebraic
subgroups, if p > c(n).

The key feature of Nori’s theorem is that no assumption whatsoever is
made on the subgroup H. Hence Nori’s theorem can be seen as a description
of arbitrary subgroups of GLn(Fp). It can be viewed as complementing the
celebrated theorem of Camille Jordan [45] on finite subgroups of GLn(K)
whose order is prime to the characteristic of the field K : such a group
admits an abelian subgroup whose index is bounded by some function of n
only. Nori’s theorem explains what happens when the characteristic divides
the order of the finite group: recall that a finite group has an element of
prime order p if and only if its order is a multiple of p (Cauchy’s theorem).

Jordan’s theorem is usually quoted for subgroups of GLn(C), but this
stronger version can be derived easily by lifting the group to C (see [72,
Theorem C]). In fact Jordan had already proved this stronger version in
his original paper: his proof is purely algebraic and applies to any finite
subgroup of GLn(K) all of whose elements are semisimple (or equivalently
to finite subgroups without a non trivial unipotent element), where K is any
algebraically closed field (see [11] for a discussion).

Textbooks presenting Jordan’s theorem usually give a different, more geo-
metric treatment, due to Frobenius, Bieberbach and Blichfeldt. Jordan’s
own argument seems to have been forgotten for more than a hundred years
until Larsen and Pink [60] rediscovered it and generalized it considerably to
obtain a classification of all finite subgroups of GLd in every characteristic.
The Larsen-Pink theorem is more general than Nori’s result stated above in
that it applies to finite subgroups of GLd regardless of the field and the size
of the characteristic. We will comment on the Larsen-Pink theorem further
below, when we discuss approximate subgroups of linear groups. The proof
of the Larsen-Pink theorem, which by the way is also independent of the
classification of finite simple groups, plays a key role in the structure theorem
for approximate subgroups of linear groups (see Theorem 4.7 below).

For the applications to strong and super-strong approximation, we will
not need the full force of Theorem 2.1 above. Rather the following important
special case will be sufficient.

Theorem 2.2. (Sufficiently Zariski-dense subgroups) There is M = M(d)
such that the following holds. Let p > M be a prime number and Gp 6
GLd be a semisimple simply connected algebraic group defined over Fp. If a
subgroup H 6 Gp(Fp) is not contained in a proper algebraic subgroup of Gp
of complexity at most M , then it must be equal to Gp(Fp).



10 EMMANUEL BREUILLARD

We say informally that a closed algebraic subvariety of GLd has complex-
ity at most M if it can be defined as the vanishing locus of a finite set of
polynomials such that the sum of their degrees in each variable is at most
M . See [19] for background on this notion. It is particularly useful in pos-
itive characteristic: saying that a finite subgroup of GLd(Fp) is algebraic is
meaningless, because every finite subgroup is an algebraic subset with sev-
eral (possibly many) irreducible components. However putting a bound on
the complexity forces a bound on the number of irreducible components ([19,
Lemma A.4]) and hence restricts the class of finite subgroups drastically and
leads to interesting statements, such as the above.

We now sketch Nori’s proof of Theorem 2.2. A similar argument is due
to Gabber, see [47, Thm 12.4.1]. Pushing this idea a bit further allows Nori
to also prove Theorem 2.1.

Proof. (sketch) If H had no non trivial unipotent element, it would have an
abelian subgroup of bounded index by Jordan’s theorem. But this would
violate the assumption that H is sufficiently Zariski-dense. So H contains
a unipotent element, which we may write in the form h = exp ξ, for some
nilpotent matrix ξ. The Fp-span VH of all H-conjugates of ξ is invariant
under the adjoint action of H. The assumption that H is sufficiently Zariski-
dense implies that VH must be the full Fp-Lie algebra of Gp in gld(Fp). Pick
unipotent elements h1, . . . , hd ∈ H such that the corresponding ξi’s form a
basis of Lie(Gp).

Now consider the map Φ : FdimG
p → Gp(Fp), (t1, . . . , td) 7→ ht11 · . . . · h

td
d .

Note that Φ is a polynomial map whose degree is bounded in terms of d only.
Its image lies in H. We claim that there is a constant c = c(d) > 0 such that
|ImΦ| > cpd. Indeed, the jacobian of Φ is not identically zero, so outside
its vanishing locus (a proper subvariety, hence a subset of size O(pd−1)) the
fibers of Φ are of bounded cardinality. This implies the desired bound.

Now since there are positive constants c1, c2 such that c1p
d 6 |Gp(Fp)| 6

c2p
d (e.g. see [72, Lemma 3.5.]), we get that the index [Gp(Fp) : H] is

bounded. However since G is simply connected, Gp(Fp) is an almost direct
product of quasi-simple groups and thus has no subgroups of bounded index
when p is large (Kneser-Tits for Fp, see [75], see also Remark 3.4). Hence
H = Gp(Fp).

Nori’s proof of strong approximation (i.e. of Theorem 1.1) is based on
Theorem 2.2 alone. We will explain this argument below. It turns out that
this argument even yields a quantitative lower bound on the first prime
number for which we can claim that Γp = Gp(Fp) in terms of the height of
the generating set of Γ. Namely:

Theorem 2.3. (Strong approximation, quantitative version) Suppose G 6
GLd is a connected, simply connected, semisimple algebraic group defined
over Q. Then there are constants p0, C0 > 1 such that if S ⊂ G(Q) is a
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finite symmetric set generating a Zariski-dense subgroup Γ = 〈S〉 of G, and
MS denotes the maximal height of an element of S, then for every prime
number p > max{p0,M

C0
S }, the reduction Γp of Γ is equal to Gp(Fp).

Here the height H(s) of an element s ∈ GLd(Q) is defined naively as the
maximum of the numerators and denominators appearing in the expressions
of the matrix coefficients of s as irreducible fractions. The bound p0 is related
to the bound c(n) from Nori’s theorem and to pM from Lemma 2.7 below.
There is very little control on this bound in general (see [31, Appendix] for
a discussion of this issue).

Several other proofs and extensions of Theorem 1.1 (to groups defined
over number fields, to positive characteristic etc.) have since been found.
For those we refer the reader to the original articles, in particular [100], [72],
[42], [73], and to the chapter on strong approximation in the recent book
by Lubotzky and Segal [68] or in Nikolov’s lecture notes in [49, chapter II].
We also recommend reading Rapinchuk’s recent survey [82], which gives a
thorough overview of strong approximation.

We now pass to the derivation of Theorem 2.3 from Nori’s theorem. First,
we replace the naive height with another height, which is better suited for
our purposes since it is sub-additive. Given a ∈ GLd(Q), set

h(a) :=
∑
p,∞

log+ ||a||p,

where the sum is over all prime numbers p as well as the infinite place ∞.
Here log+ := max{log, 0}, and ||a||p denotes maxij |aij |p, the maximum p-
adic absolute value of a matrix entry aij of a, while ||a||∞ is the operator

norm of a for the standard euclidean norm on Rd. The following is straight-
forward:

Lemma 2.4. (a) The height h(a) is sub-additive, i.e. ∀a, b ∈ GLd(Q),

h(ab) 6 h(a) + h(b),

and (b) it is comparable to the naive height H(a), namely ∀a,

H(a) 6 eh(a) 6 d(H(a))d
2
.

We conclude that for all a1, . . . , an ∈ GLd(Q),

H(a1 · . . . · an) 6 dn(H(a1) · . . . ·H(an))d
2

(2.1)

Combined with the next lemma, this inequality allows us to assume, in
the proof of Theorem 2.3 that Γ is generated by two elements, i.e. that
S := {1, a±1, b±1}.

Lemma 2.5. (Reduction to 2 generators) Let G be a semisimple algebraic
group over C. Then there is c > 0 such that given any finite symmetric
subset S ⊂ G(C), with 1 ∈ S, generating a Zariski dense subgroup of G, the
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bounded power Sc contains two elements a, b which alone already generate a
Zariski-dense subgroup.

Proof. This is Proposition 1.8. from [13]. The proof is fairly classical, and
relies on Jordan’s theorem and the Eskin-Mozes-Oh escape from subvarieties
lemma (see e.g. [19, Lemma 3.11]).

Lemma 2.6. (Generating is an algebraic condition) Let G 6 GLd be a
semisimple algebraic group defined over Q. There is a proper closed algebraic
subvariety X 6 G × G defined over Q, whose points are precisely the pairs
of elements in G which are contained in a proper algebraic subgroup of G.

Proof. This is well-known (see e.g. [36, Theorem 11.6]). We work over an
algebraic closure of Q and show that X is a closed algebraic subset. Since
X is invariant under Galois automorphisms, it will automatically be defined
over Q. We claim that there are finitely many absolutely irreducible finite
dimensional non trivial modules of G, say ρ1, . . . , ρk such that a subgroup
Γ 6 G is not Zariski-dense if and only if ρi(Γ) fixes a line in the represen-
tation space Vi of ρi for some i = 1, . . . , k. And this happens if and only
if ρi(Γ) fixes a non trivial subspace of Vi for some i = 1, . . . , k. This last
condition clearly forms an algebraic condition, because it is equivalent to
say that ρi(Γ) does not span the ring of endomorphisms of Vi. Moreover
the span of ρi(Γ) is spanned by the ρi(w(a, b))’s for a bounded set of words
w. So we indeed have an algebraic condition on the pair a, b. Finally X is
proper, because every semisimple algebraic group can be generated by two
elements (see e.g. [57]).

To prove the claim, note that if H is a proper closed algebraic subgroup
of G, then either it is finite in projection to one of the simple factors of G,
or its Lie algebra is not preserved under the adjoint action of G on Lie(G).
Let j(d) the bound from Jordan’s theorem, so that every finite subgroup
of GLd has a normal abelian subgroup of index at most j(d). For each
simple factor Gi pick an irreducible module whose dimension is larger than
j(d), so that no finite subgroup of Gi can act irreducibly on it. We thus
have found finitely many irreducible modules, say π1, . . . , πm of G with the
property that if a subgroup acts irreducibly on each of them, it must be
Zariski-dense. Adding to this list all the non trivial irreducible submodules
of the wedge powers Λ∗πi, we obtain the desired list of modules ρ1, . . . , ρk.

Now, reducing modulo a large prime p, we obtain:

Lemma 2.7. (Generating mod p) With the assumptions of the previous
lemma, there is M0 > 1 such that ∀M > M0, there is pM > 0 such that if
p > pM is a prime number, the reduction of X mod p is a proper algebraic
subvariety of Xp 6 Gp × Gp defined over Fp whose points are precisely the
pairs of elements in Gp which are contained in a proper algebraic subgroup
of Gp of complexity at most M .
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Proof. First observe that there is a bound M0 such that every proper
algebraic subgroup of G is contained in a proper algebraic subgroup of com-
plexity at most M0. This follows from the discussion in the proof of Lemma
2.6, since a proper algebraic subgroup will either stabilize a subalgebra of
Lie(G) which is not an ideal, or will stabilize a proper subspace of some
Vi. Each of these stabilizers have bounded complexity. Now to prove the
lemma we argue by contradiction. If no such pM can be found, there must
be an infinite sequence of primes pi < pi+1 and pairs (ai, bi) ∈ Gpi(Fpi) such
that either for all i, (ai, bi) ∈ Xpi and are not contained in a proper alge-
braic subgroup of Gpi of complexity at most M , or for all i, (ai, bi) /∈ Xpi

and are contained in a proper algebraic subgroup of Gpi of complexity at
most M . The ultraproduct of the Xpi coincides with X ⊗Q K, where K is
the ultraproduct of the finite fields Fpi . This gives rise to a pair (a, b) in
the associated ultraproduct, which, in the first case, belongs to X(K) and
generates a Zariski-dense subgroup, and in the second case does not belong
to X(K) and yet generates a subgroup contained in a proper algebraic sub-
group of complexity at most M . In both cases we have a contradiction with
the definition of X in Lemma 2.6. For more details on similar ultraproduct
arguments, we refer the reader to the appendix of [19].

Now comes the point where Nori’s theorem is used in the form of Corollary
2.2 : when Gp is simply connected every subgroup of Gp(Fp) which is not
contained in an algebraic subgroup of bounded complexity must be all of
Gp(Fp).

We may then complete the proof of Theorem 2.3. Pick polynomial func-
tions (Pk)k=1,...,k0 , Pk = Pk((aij , bij)), in pairs of matrices (a, b) in GLd,
which generate the radical ideal of polynomial functions vanishing on X
in G × G. We may assume that the Pk’s have integer coefficients. If
S = {1, a±1, b±1} ⊂ G(Q) generates a Zariski-dense subgroup of G, then
(a, b) /∈ X and there must exist k such that Pk(a, b) 6= 0. We may bound
the height of Pk(a, b) in terms of the heights of a and b and the heights of
the coefficients of Pk. Hence

H(Pk(a, b)) 6 O(H(a)H(b))O(1) 6 (2MS)C ,

for some constant C depending only on G and not on k, a, b, where MS =
max{H(a), H(b)}. This means that if p > (2MS)C , then Pk(a, b) does not
vanish modulo p. Now Lemma 2.6, combined with Nori’s theorem (in the
form of Corollary 2.2), tells us that if additionnally p is larger than a constant
depending on G only, then the reduction mod p of the pair (a, b) generates
all of Gp(Fp) and we are done. This ends the proof of Theorem 2.3.
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3. The Bourgain-Gamburd expansion machine

Bourgain and Gamburd, in their groundbreaking paper [5], came up with
a new method to establish the expander property for Cayley graphs of fi-
nite groups. They applied it to prove Theorem 1.2 in the special case of
subgroups of SL2(Z), but their method is very general. We call it the
Bourgain-Gamburd expansion machine. In this section we give an overview
of this machine, suitable for the proof of Theorem 1.2 in full generality.

Let G0 be a finite group, and S0 = {s1, . . . , sk} be a symmetric generating
set for G0. As before we write:

µ = µS0 :=
1

k
(δs1 + · · ·+ δsk)

for the uniform probability measure on the set S, where δx is the Dirac mass
at x. For us a probability measure on G0 is the same thing as a function on
G0 taking non-negative values at each element of G0 and summing to 1.

We write

µn := µ ∗ · · · ∗ µ
for the n-fold convolution power of µ with itself, where the convolution µ1∗µ2

of two functions µ1, µ2 : G0 → R+ is given by the formula

µ1 ∗ µ2(g) :=
∑
x∈G0

µ1(gx−1)µ2(x). (3.1)

The function x 7→ µn(x) is a probability measure describing the distribu-
tion of a random walk of length n starting at the identity in G0 and with
generators from S. In particular, if A is a subset of G0,

µn(A) = Pw∈Wn,k
(w(a1, . . . , ak) ∈ A), (3.2)

where Wn,k is the space of all formal words (not necessarily reduced) on k
generators of length exactly n. We can now state a version of the Bourgain-
Gamburd machine, adapted from [22] and [99].

Proposition 3.1 (Bourgain-Gamburd machine). Suppose that G0 is a finite
group, that S0 ⊆ G0 is a symmetric generating subset, and that there are
constants 0 < κ, β < 1 such that the following properties hold for every
quotient G of G0.

(i) (High multiplicity). For every faithful representation ρ : G→ GLd(C)
of G, dim ρ > |G|β;

(ii) (Classification of Approximate Subgroups). For every ε > 0, there
is δ = δ(ε), 0 < δ < ε with the property that every |G|δ-approximate
subgroup A of G, is either of size |A| > |G|1−ε or is contained in at
most [G : H]ε/|G|δ left cosets of a subgroup H 6 G;

(iii) (Non-concentration estimate). Let S be the image of S0 in G. There
is some even number n 6 log |G| such that for all subgroups H 6 G,

µnS(H) 6 [G : H]−κ.
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Then the first non zero eigenvalue of the Cayley graph Cay(G0, S0) satisfies

λ1 > β · e−
C
δ ,

where δ := δ(ε) > 0 with ε := min{β, κ}/4 and C is an absolute constant.

We will discuss approximate subgroups in the next section. It suffices for
now to say that by definition, given a parameter K > 1, a K-approximate
subgroup of G0 is a finite symmetric set A containing 1 such that AA ⊂ XA
for some subset X ⊂ G0 of size at most K.

Remark 3.2. We already observed that if the Cayley graph G(G0, S0) is
an ε-expander, then so are all induced quotient Cayley graphs corresponding
to a quotient group G := G0/H, for any normal subgroup H 6 G0. It
is therefore very natural that the Assumptions (i) to (iii) are made on all
quotients of G0.

As mentioned earlier, Assumption (ii), the classification of approximate
subgroups of G0, and (iii), the nonconcentration estimate, really constitute
the beefy parts of the proof of the expander property. They will be dealt
with in the next sections. We also remark that (iii) is the only condition of
the three that actually involves the set S. Finally we stress that the lower
bound on λ1 obtained here is independent of the size k of S.

An interesting feature of (iii) is that, unlike (i) and (ii), it is necessary
in order to verify the expander property, because the simple random walk
on an expander graph will equidistribute in logarithmic time. Indeed we
have the following basic lemma (recall the definition of ε-expanders in (1.1)
above).

Lemma 3.3 (random walk characterization of expanders). Let G0 be a finite
group and S0 a symmetric generating subset not contained in a coset of a
subgroup of index 2 of G0.

• if the Cayley graph G(G0, S0) is an ε-expander, then there is C =
Cε > 0 such that for every n > C log |G0|,

max
x∈G0

|µnS0
(x)− 1

|G0|
| 6 e−n/C

|G0|10
(3.3)

,
• if (3.3) holds for some n 6 C log |G0|, and C > 20, then G(G0, S0)

is an ε-expander, with ε = 10
C

Proof. Let Tµ = 1 −∆ be the operator f 7→ µ ∗ f on `2(G0). To prove the
second item, pick an eigenfunction f of the Laplacian with eigenvalue λ1

and note that ||(Tnµ − 1
|G0|Id)f ||2 6 1

|G|10 ||f ||2 forcing (1− λ1) 6 |G0|−10/n.

As for the first item, note that the left hand side of (3.3) is bounded by

||Tµ||n 6 ||Tµ||Cε log |G0| = 1/|G0|−Cε log(1/||Tµ||). The assumption on S0 and
the fact that G is the Cayley graph of a group ensure that it is not bi-partite
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and that ||Tµ|| 6 e−cε , for some cε > 0 depending only on ε and |S0| (see
[22, Prop. E.1]). The result follows with Cε = 10/cε.

To see that (iii) is necessary, simply note that µnm(H) > (µn(H))m and
apply the first item in the above lemma to evaluate µnm(H) using some m
between Cε and 2Cε say.

Remark 3.4. According to result of Landazuri-Seitz [58], Assumption (i)
is always verified when G0 is a simple or quasi-simple group of Lie type of
bounded rank, with the parameter β > 0 depending only on the rank. See
Prop. 6.1 below. Looking at the action by translation on `2(G0/H), where
H is an arbitrary subgroup of G0, this implies that every proper subgroup of
G0 has index at least |G0|c for some c > 0 depending only on the rank of
G0.

We now pass to the proof of Proposition 3.1. The following basic observa-
tion relates the eigenvalues of the Laplace operator ∆ on the Cayley graph,
with the probability of return to the identity of the simple random walk. Let
1 = α0 > α1 > . . . > α|G0|−1 be the eigenvalues of the convolution operator

Tµ : f 7→ µ ∗ f

on `2(G0). Since Tµ = TµS0 = Id−∆, the first non trivial eigenvalue of ∆,
is just λ1 = 1− α1.

Now observe that the eigenspace of Tµ corresponding to the eigenvalue
α1 is invariant under G0 and thus forms a linear representation of G0. Up
to replacing G0 with its image modulo of the kernel of this representation,
and µ with the corresponding push-forward measure, we may assume that
G0 acts faithfully on this eigenspace. And hence, applying Assumption (i),
that the dimension of this eigenspace is at least |G0|β.

Thus we seek a lower bound on 1 − α1. For this, we write the following
naive trace formula, which consists in expressing the trace of Tµn = Tnµ in
two ways (this key idea is analogous to what is done in the context of discrete
groups in Sarnak-Xue [90] and Gamburd [29]). Firstly:

tr(Tµn) =
∑
x∈G0

〈(Tµ)nδx, δx〉 = |G0|〈(Tµ)nδ1, δ1〉 = |G0|µn(1),

where µn(1) is the value at the identity of the probability measure µn. Here
δx denotes the Dirac mass at x and 〈·, ·, 〉 the `2 scalar product on G0. And
secondly:

tr(Tµn) = αn0 + αn1 + . . .+ αn|G0|−1.

We will now play the multiplicity lower bound on α1 against the combina-
torial upper bound on µn(1). Since αn1 appears at least |G0|β times in the
above sum, discarding all other eigenvalues (note that n is even and hence
αni > 0), we get the following:
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Observation 1. If µn(1) 6 1
|G0|1−β/2

for some even integer n 6 C1 log |G0|,
then the first non trivial eigenvalue α1 of Tµ satisfies

α1 6 e
− β

2C1 .

Assumption (iii) only guarantees the existence of an even integer n0 6
log |G0| such that µn0(1) 6 1

|G0|κ for some positive κ which may be smaller

than 1 − β/2. So in order to conclude, we need to show that µn(1) will

decay from 1/|G0|κ at time n = n0 6 log |G0| to 1/|G0|1−β/2 at a not much
larger time n = n1 6 C1 log |G0| for some constant C1 depending only on
the constants at hand and not on the size of G0.

Before going further, let us record the following simple remarks:

Remark 3.5. When n tends to infinity µn(1) converges to 1/|G0|, the uni-
form distribution on G0.

Remark 3.6. Since µ is assumed symmetric,

µ2n(1) =
∑
x∈G0

µn(x)µn(x−1) = ||µn||22 (3.4)

Remark 3.7. For every subgroup H 6 G0, the sequence µ2n(H) is non-
increasing: indeed µ2n(H) = ||fn,H ||22, where fn,H : G0/H → R, gH 7→
µn(gH), and fn+1,H = Tµfn,H , while Tµ is a contraction in `2.

The key ingredient in proving this final decay of µn(1) from 1/|G0|κ to

1/|G0|1−β/2 is the following `2-flattening lemma, due to Bourgain-Gamburd.
It says in substance that the only reason why the convolution of a probability
measure with itself would not decay in `2-norm is because it gave a lot of
mass to (a coset of) an approximate subgroup.

Lemma 3.8. (`2-flattening lemma) . There is absolute constant R > 0
such that the following holds. Let K > 2 and ν : G0 → R+ be a probability
measure on a finite group G0 which satisfies

‖ν ∗ ν‖2 >
1

K
‖ν‖2,

where convolution is defined in (3.1). Then there is a KR-approximate sub-
group A of G0 with

K−R
1

‖ν‖22
6 |A| 6 KR 1

‖ν‖22
and such that for each x ∈ A,

ν ∗ ν−1(x) >
1

KR|A|
.

Here ||ν||2 denotes the `2 norm on G0, i.e. ||ν||22 :=
∑

x∈G0
ν(x)2, and

ν−1 denotes the symmetric of ν, namely the probability measure ν−1(x) :=
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ν(x−1). Observe that the last condition implies immediately that there is
g ∈ G0 such that ν(Ag) > 1/KR.

Proof. The proof of the `2-flattening lemma is really the core of the
Bourgain-Gamburd machine. It is derived from a powerful combinatorial
tool, the Balog-Szemeredi-Gowers lemma (see Lemma 4.5 below), due in
this context to Tao ([96], [97, §2.5, 2.7]), but which originates from the work
of Balog-Szemeredi [3] and from Szemeredi’s celebrated regularity lemma for
large graphs. A simple derivation of the above `2-flattening lemma, based
on Tao’s version of the Balog-Szemeredi-Gowers lemma, namely Lemma 4.5
below, is given by Varjú in [99, Lemma 15] and we refer the reader to it
for the details. He can also consult [22, Appendix A]. The basic idea is
to decompose ν into approximate level sets ν =

∑
i 1Aiν, where Ai = {x ∈

G0; 2i−1||ν||22 < ν(x) 6 2i||ν||22} and show that for some suitable pair Ai1 , Ai2
the number of collisions ||1Ai1 ∗ 1Ai2 ||

2
2 is large enough to be able to apply

Lemma 4.5.

Applying this lemma to a symmetric measure ν with K = |G0|δ/R, we
obtain the following direct consequence:

Corollary 3.9. Let 0 < δ, ε 6 1
4 and let ν be a symmetric probability

measure on a finite group G0 such that |G0|2ε 6 1/||ν||22 6 |G0|1−2ε. Then

||ν ∗ ν||2 6
1

|G0|δ/R
||ν||2,

unless there is a |G0|δ-approximate subgroup A of G0 with |G0|ε 6 |A| 6
|G0|1−ε such that ν(gA) > 1/|G0|δ for some g ∈ G0.

Here R is the absolute constant from Lemma 3.8. We are going to apply
this corollary several times to the convolution powers µn with even n between
log |G0| and C1 log |G0|. After only a bounded number of applications of the

corollary, µn(1) will be at least as small as 1/|G0|1−β/2 and we will be done
by Observation 1 above.

So we set ε = 1
4 min{β, κ}, where 0 < β 6 1 is the exponent of quasiran-

domness given by Assumption (i) from Proposition 3.1 and κ > 0 is given by
Assumption (iii). Let δ = δ(ε) be given by Assumption (ii) of Proposition
3.1 (the Classification of Approximate Subgroups).

We will now apply the above corollary to any ν of the form ν = µn for
some even n > log |G0|. Assume that ||ν||22 > 1/|G0|1−β/2. Then 1/||ν||22 6
|G0|1−2ε, and if ||ν||22 6 1/|G0|2ε, we may apply Corollary 3.9, which gives

||ν ∗ ν||2 6
||ν||2
|G0|δ/R

, (3.5)

unless there is a |G0|δ-approximate group A in G0 with |A| 6 |G0|1−ε such
that ν(gA) > 1/|G0|δ for some g ∈ G0. By Assumption (ii) of Proposition
3.1, A must be contained in at most [G : H]ε/|G|δ left cosets of a proper
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subgroup H. Hence at least one coset xH of H charges ν a lot, i.e. ν(xH) >
1/[G0 : H]ε. However ν2(H) > ν(xH)2 since ν is symmetric, and hence,

ν2(H) > 1/[G0 : H]2ε. (3.6)

Since n 7→ µ2n(H) is non-increasing (see Remark 3.7 above), Assumption
(iii) of Proposition 3.1 implies that ν2(H) 6 1/[G0 : H]κ. However κ > 2ε,
so this clearly contradicts (3.6).

Therefore (3.5) always holds as long as 1/|G0|2ε 6 ||ν||22 6 1/|G0|1−β/2.
As a consequence, we need to apply (3.5) at most a bounded number of times
starting from ν = µ2n0 with n0 = [log |G0|] say to reach the desired upper
bound. Note that the bound 1/|G0|2ε > ||µ2n0 ||22 holds thanks to Remark
3.7, (3.4) and Assumption (iii) applied to H = {1}, because κ > 2ε. Now
apply successively T times Corollary 3.9 to get:

||(µ2n0)2T ||2 6
||µ2n0 ||2
|G0|Tδ/R

6
1

|G0|Tδ/R
6

1

|G0|1−β/2
,

provided Tδ/R > 1− β/2.
This yields a constant C1 such that µ2m(1) 6 1/|G0|1−β/2 for some m >

C1 log |G0|, where an upper bound for C1 is

C1 6 2
1
δ
R(1−β/2).

Together with Observation 1, this finishes the proof of Proposition 3.1
with a rather explicit spectral gap, α1 6 e−β/2C1 . Working out the above
expression yields the following dependence of the gap in terms of the pa-
rameters involved:

λ1 > β · e−
C
δ ,

for some absolute constant C > 0. Recall that δ := δ(ε) is the function
given in Assumption (ii) with ε := 1

4 min{β, κ}.

4. Approximate subgroups of linear groups

In this section, we give a very brief introduction to approximate sub-
groups. The first paragraph gives a definition and some general facts, in-
cluding the relation with small tripling and the Balog-Szemeredi-Gowers
lemma. Those are needed only to understand the proof of the `2-flattening
lemma, Lemma 3.8, stated in the last section.

Next we describe the classification of approximate subgroups of simple
algebraic groups required to deal with Assumption (ii) of the Bourgain-
Gamburd machine (Prop. 3.1 above) and prove Theorem 4.7 below, a struc-
ture theorem ([19, 80]) for approximate subgroups of linear groups. Its proof
is purely algebro-geometric and requires nothing on approximate subgroups
besides the definition. For further introductory material on approximate
groups see [96, 17, 14].
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4.1. General facts about approximate groups. The notion of an ap-
proximate subgroup of an ambient group G was introduced by Terry Tao in
[96] in connection with the work of Bourgain-Gamburd [5] and the Balog-
Szemeredi-Gowers theorem alluded to above in the proof of the `2-flattening
lemma (Lemma 3.8). Here is a definition:

Definition 4.2. (Approximate subgroup) A (finite) subset A of a group G
is said to be a K-approximate subgroup of G (here K > 1 is a parameter) if
A is symmetric (i.e. a ∈ A⇒ a−1 ∈ A), contains the identity, and if there
is a symmetric subset X ⊂ G of size |X| 6 K such that

AA ⊂ XA.

Although the definition makes sense without the assumption that A is
finite, we will always put this assumption throughout these notes whenever
we speak of an approximate subgroup.

Note that AA = (AA)−1 ⊂ AX, so we always have AA ⊂ XA ∩ AX.
Clearly if K = 1 this notion coincides with the requirement that A be a
finite subgroup of G.

Although Tao was the first to define approximate subgroups in a non-
commutative context, their study in (Z,+), or (R,+), is an old subject,
part of additive combinatorics (see [70], [97] for modern expositions), culmi-
nating with the so-called Freiman-Ruzsa theorem ([27], [85]), which gives
a structure theorem for approximate subgroups of Z, or more generally
(Green-Ruzsa [34]) abelian groups:

Theorem 4.3. (Freiman-Ruzsa, Green-Ruzsa) Let G be an abelian group
and A ⊂ G be a K-approximate subgroup of G. Then there is a finite
subgroup H 6 G and a centered multidimensional progression P ⊂ G of
dimension at most d(K) such that A is contained in at most C(K) translates
of the subset HP and |HP | 6 C(K)|A|. The constants d(K) and C(K)
depend only on K and not on G nor A.

By definition a centered multidimensional progression of dimension at
most d is a subset P 6 G of the form π(B), where π : Zd → G is a
group homomorphism and B is a box in Zd, namely a subset of the form∏d
i=1[−Ni, Ni], where the Ni’s are non-negative integers. It is easy to see

that B is a 2d-approximate subgroup, indeed BB is the box with sides
[−2Ni, 2Ni] and thus can be covered by the translates of B centered at
each of the 2d corners of the box B. Passing to the quotient via π, we
get that P too is a 2d-approximate subgroup, and finally that for every
finite subgroup H 6 G, the so-called coset-progression HP is also a 2d-
approximate subgroup.

For the proof of this theorem, we refer the reader to the book by Tao and
Vu [97] as well as the article [34] and the original references therein.

Two remarks are in order:
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• The bounds d(K) and C(K) can be made quantitative, and good
estimates on them are useful for applications as we will see below.
Conjecturally (Freiman-Ruzsa conjecture), d(K) = O(logK) while

C(K) = O(KO(1)). See Sanders [87] for the best currently available
bounds.
• The conclusion is quite special to abelian groups. A very general

structure theorem was recently obtained in [21] valid for approxi-
mate subgroups of arbitrary groups, but it yields no explicit bounds
on C(K). As we will see below, when G is a finite simple group of
bounded rank, then a polynomial bound can be given on C(K) pro-
vided A generates G. Obtaining here a polynomial bound is crucial
for the applications to the Bourgain-Gamburd expansion machine,
i.e. to Assumption (ii) of Prop. 3.1.

As follows immediately from their definition, approximate subgroups do
not grow much under self multiplication, namely the product set Ak :=
A · . . . ·A of A with itself k times has size at most |X|k−1|A|. An important
observation (due to Tao using related ideas of Ruzsa) is that we have the
following converse:

Proposition 4.4. (Small tripling) Let A be a finite subset of a group G
such that |AAA| 6 K|A| for some parameter K > 1. Then B := (A ∪
A−1 ∪ {1})2 is a c(K)-approximate subgroup of size |B| 6 c(K)|A|, where

c(K) = O(KO(1)) and the implied constants are absolute. In particular

|An| 6 O(KO(n))|A|.

Proof. The proof is elementary. It is a simple application of the Ruzsa
inequality and Ruzsa covering lemma. See [96, Theorem 3.9] or [12, Prop
2.2].

We remark that it is necessary to take the 3-fold power of A in the assump-
tion of this proposition. It is not true if we only assume that |AA| 6 K|A|
(take A = {x} ∪ H, where x ∈ G and H is a large subgroup such that
xHx−1 ∩ H = {1}). Nevertheless one can still show in this case that A is

covered by O(KO(1)) left translates of an O(KO(1))-approximate subgroup

of G of size at most O(KO(1))|A| (see [96, Theorem 4.6])

A deeper fact, recorded in the lemma below, is that one can still identify
an approximate subgroup “near” the finite set A assuming only that A does
not grow under self multiplication in the following statistical sense:

||1A ∗ 1A||22 = |{(a, b, c, d) ∈ A×A×A×A; ab = cd}| > |A|3/K.
The left hand side is called the multiplicative energy of the set A with itself
and is sometimes denoted by E(A,A). It is the `2-norm squared of the
convolution product of the indicator function of A in G with itself and is
easily seen to be equal to the expression in the middle (number of “collisions”
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ab = cd). In other words: this condition means that the probability that
ab = cd, when a, b, c and d are chosen at random in A is at least 1/K|A|.
Clearly if A is a subgroup, this probability if exactly 1/|A|. Also easy to
see is the remark that if |AA| 6 K|A|, then ||1A ∗ 1A||22 > |A|3/K, indeed
setting r(x) := |{(a, b) ∈ A × A; ab = x}| we have

∑
r(x)2 = ||1A ∗ 1A||22,∑

r(x) = |A|2 and |{x, r(x) > 0}| = |AA|, hence applying Cauchy-Schwarz:

|A|4 = (
∑

r(x))2 6 |AA|(
∑

r(x)2) 6 K|A| · ||1A ∗ 1A||22.

Lemma 4.5. (Balog-Szemeredi-Gowers-Tao lemma) Suppose A1, A2 are fi-
nite subsets of a group G such that |A1| 6 K|A2| and |A2| 6 K|A1| and
assume that

||1A1 ∗ 1A2 ||22 > (|A1||A2|)3/2/K,

then there is a O(KO(1))-approximate subgroup A ⊂ G of size O(KO(1))|A1|
such that a subset of A1 of size at least |A1|/O(KO(1)) is contained in some

left translate of A and similarly a subset of A2 of size at least |A2|/O(KO(1))
is contained in some right translate of A.

Proof. We will not give the proof of this important combinatorial result
here. Rather we refer the reader to the book by Tao and Vu [97, §2.5, 2.7]
and Tao’s paper [96, Theorem 5.4]. See also [12, Corollaries 4.5, 4.6.] for a
somewhat different argument.

Note that we cannot claim that A1 itself is contained in few translates of
A, because if the condition ||1A′1 ∗ 1A′2 ||

2
2 > (|A′1||A′2|)3/2/O(KO(1)) holds for

some subsets A′1, A
′
2 each making a proportion > 1/O(KO(1)) of A1 and A2

respectively, then ||1A1 ∗ 1A2 ||22 > ||1A′1 ∗ 1A′2 ||
2
2 > (|A1||A2|)3/2/O(KO(1)).

For example if A1 = A2 = {1, . . . , N}∪ {2, 22, . . . , 2N}, then ||1A1 ∗ 1A1 ||22 >
||1{1,...,N} ∗1{1,...,N}||22 > N3, while A1 is not contained in a bounded number
of translates of multidimensional arithmetic progression in Z, hence not
contained in a bounded number of translates of an approximate subgroup
of Z (using Theorem 4.3).

4.6. Classification of approximate subgroups of G(Fq). The main re-
sult here is the following:

Theorem 4.7. (Classification theorem) Let K,M > 2. Assume that G is
an absolutely simple algebraic group of complexity at most M defined over
an algebraically closed field. If A is a finite K-approximate subgroup of G
which is C-sufficiently Zariski-dense in G, then either |A| 6 KC , or 〈A〉 is
finite and of cardinality at most KC |A|. Here C = C(M) > 0 is a constant
depending only on M and dimG.

The rest of this subsection is devoted to the proof of this theorem and
some of its corollaries.
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Remark. Although this will not be used later on, we may replace KC in the
above theorem by CK3 dimG+3, where C depends again on M and dimG.

Recall that an affine algebraic variety is said to have complexity at most
M if it is the vanishing locus of a finite set of polynomials whose sum of
their total degree is at most M . This notion can be extended to all algebraic
varieties (see [19, Appendix A] for background). Recall further that a subset
of G is called M -sufficiently Zariski-dense if it is not contained in a proper
algebraic subvariety of complexity at most M .

This result was obtained by Green, Tao and the author in [19, Theorem
5.5]. The proof of a closely related statement was derived independently at
the same time by Pyber and Szabó, see [80] and [81] for their point of view.

Simple and quasi-simple groups of Lie type are of the form G = G(Fq)σ/Z,
where G is a simply connected absolutely simple algebraic group defined and
split over the prime field Fp, σ is a Frobenius map, i.e. the composition of a
field automorphism and a graph automorphism, and Z is a central subgroup
(whose cardinal is bounded in terms of dimG only). It is not difficult (for
example using the Lang-Weil bounds or the related and easier Schwarz-
Zippel estimates) to check that the subgroups G(Fq)σ of fixed points of σ
are C-sufficiently Zariski-dense in G whenever q is larger than a constant
depending only on C and dimG (see [22, proposition 5.4] for details). Thus
a consequence of Theorem 4.7 is the following:

Corollary 4.8. Let G be a (non-abelian) finite simple (or quasisimple)
group of Lie type and suppose that A is a K-approximate subgroup of G.
Then either |A| 6 KC , or |A| > |G|/KC , or A is contained in a proper
subgroup of G. Here C > 0 is a constant depending only on the rank of G,
not on the size of the associated finite field.

Proof. By the discussion above, we may assume that G is a sufficiently
Zariski-dense subgroup of a simple algebraic group G of bounded complex-
ity. It only remains to check that if A generates G, then there is a bounded
m such that Am is sufficiently Zariski-dense and then apply Theorem 4.7
to Am. This fact goes back to Eskin-Mozes-Oh [26, Prop. 3.2]. It is a
basic tool called since escape from subvarieties, which can be proved with
explicit bounds using Bezout’s theorem. It can also easily be proved (with-
out an explicit bound on m) using ultraproducts: if no such m existed we
could form the ultraproduct of possible counter-examples, yielding a subset
of G(K), where K is the corresponding ultraproduct of fields, which gener-
ates a subgroup which is not Zariski-dense, hence is contained in a proper
algebraic subgroup of G(K). But this means that most (for the ultrafilter)
counter-examples are contained in that algebraic subgroup, contradicting
the assumption. See [19, Lemma 3.11] for more details regarding this argu-
ment.
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Another related statement is the following, sometimes called the product
theorem, because it guarantees that any generating subset of G grows under
products:

Corollary 4.9. (Product theorem) Let G be a (non-abelian) finite simple
(or quasi-simple) group of Lie type and A ⊂ G an arbitrary generating finite
subset, then

|AAA| > min{|A|1+ε, |G|},
where ε > 0 is a constant depending only on the rank of G, not on the size
of the associated finite field.

Proof. LetK = |A|ε and apply Proposition 4.4 to get a (2|A|)Cε-approximate
subgroup B containing A, where C > 0 is an absolute constant. By Corol-
lary 4.8, either |A| 6 KC , or |A| > |G|/KC . The first case is ruled out
if ε < 1/2C2, because that would force |A| = 1. In the second case
|A| > |G|1−δ for δ > 0 which can be taken arbitrarily small provided ε
is small enough. Then a general result of Nikolov-Pyber [71], based on an
observation of Gowers [33] using the quasirandomness of G (i.e. Proposition
6.1 below), implies that AAA = G. See [14, Corollary 2.3.] for a detailed
proof of this last step using basic representation theory of finite groups.

Corollary 4.9 was first proved by Helfgott [37] in the special cases of
SL2(Fp), for the prime field Fp only, using some ad hoc matrix computations
based on the sum-product phenomenon from additive combinatorics (i.e. the
Bourgain-Katz-Tao theorem [8]). Helfgott later settled the case of SL3(Fp)
in [38]. Earlier work of Elekes and Kiraly [25] had dealt with the analogous
result for SL2(R). Although these elementary methods fail to extend to the
general case, they have the merit of being somewhat more explicit on the ε
(see e.g. [55], [23]).

Remark. Our lower bound on ε is not explicit. However, if one assumes
further that the subsetA is C-sufficiently Zariski-dense in the ambient simple
algebraic group G (i.e. is not contained in any proper algebraic subvariety
of degree, or complexity, at most C for some non explicit C depending only
on G), then ε can be taken to be 1/(3 dimG+ 4). See Remark 4.13 below.

We will sketch below the proof of Theorem 4.9. The proof is germane
to the proof of the Larsen-Pink theorem [60] on the classification of finite
subgroups of G. Let us first state a version of the Larsen-Pink theorem
appropriate to our discussion (see [60, Theorem 0.5] and [43]).

Theorem 4.10. (Larsen-Pink theorem) Let F be an algebraically closed field
and G be an absolutely simple simply connected algebraic group of complexity
at most M defined and split over the prime field of F . If Γ is a finite subgroup
of G which is C-sufficiently Zariski-dense in G, then the field F has positive
characteristic p and Γ is a conjugate of the subgroup G(Fq) for a finite field
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Fq 6 F , q a power of p. Here C = C(M) > 0 is a constant depending only
on M and dimG.

This theorem is a strict generalization of Nori’s Theorem 2.2 discussed
earlier in the case of simple algebraic groups. However the proof by Larsen
and Pink is very different from Nori’s counting argument sketched in Theo-
rem 2.2 above. While Nori was building the algebraic subgroup from below
taking products of unipotent elements and using crucially that p is large,
Larsen and Pink argue differently and cut the group from above so to speak
by computing the approximate size of the centralizers in Γ of any subset
of elements. This allows them to eventually find many unipotent elements
(using an argument similar to the original argument of Jordan [45, 11]) in-
cluding a minimal one which will generate the additive subgroup of the finite
field Fq that we are required to build from Γ alone.

In order to compute the correct size of centralizers, Larsen and Pink
establish first a very general inequality, the Larsen-Pink non-concentration
estimate, which gives an a priori upper bound on the intersection of Γ with
any algebraic subvariety of bounded complexity. Namely:

Proposition 4.11. (Larsen-Pink non-concentration estimate [60, Thm 4.2.])
Under the assumptions of Theorem 4.10, consider a closed algebraic subva-
riety V of G of complexity at most M . Then if Γ is a finite subgroup of G
which is C-sufficiently Zariski-dense in G,

|Γ ∩ V| 6 C|Γ|
dimV
dimG , (4.1)

where C = C(M) > 0 is a constant depending only on M and dimG.

Before we say more about the proof of this proposition and its relation to
approximate subgroups, let us explain what it entails for centralizers. Define
qΓ as the positive real number |Γ|1/ dimG. Let Za be the centralizer in G of
an element a ∈ Γ. The orbit-stabilizer formula tells us that

|Za ∩ Γ| · |{γaγ−1; γ ∈ Γ}| = |Γ|,
so

qdimG
Γ = |Γ| 6 |Za ∩ Γ||Va ∩ Γ| 6 |Za ∩ Γ| · CqdimVa

Γ ,

where Va is the conjugacy class of a in G, which is a constructible set in G,
being the image of G under the map g 7→ gag−1. We applied the Larsen-
Pink inequality (4.1) to the Zariski closure of Va, which also has dimension
dimVa = dimG − dimZa. Now applying (4.1) once again but this time to
Za we obtain:

1

C
qdimZa

Γ 6 |Za ∩ Γ| 6 CqdimZa
Γ . (4.2)

The constant C depends only on the complexity of Za and the closure of
Va, which are both bounded in terms of dimG and the complexity of G
only and are in particular independent of a (see e.g. [19, Appendix A] for
general facts on the complexity of algebraic varieties). So we see that the
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Larsen-Pink inequality (4.1) not only gives an upper bound, but also a lower
bound of the same order of magnitude on the size of centralizers.

The proof of Theorem 4.7 rests on the same key idea. The main step
consists in extending the Larsen-Pink inequality (4.1) to the setting of ap-
proximate subgroups:

Proposition 4.12. (Larsen-Pink for approximate subgroups) Let K,M > 2.
Assume that G is an absolutely simple algebraic group of complexity at most
M defined over an algebraically closed field. If A is a finite K-approximate
subgroup of G which is C-sufficiently Zariski-dense in G, then for every
closed algebraic subvariety V of G of complexity at most M ,

|A ∩ V| 6 CKC |A|
dimV
dimG , (4.3)

where C = C(M) > 0 is a constant depending only on M and dimG.

This is a strict generalization of (4.1), indeed we recover Proposition 4.11
in the special case when K = 1 (i.e. A is a subgroup). The possibility
of an extension to approximate groups of the Larsen-Pink estimate is an
idea of Hrushovski, who proved a qualitative version of (4.3) in his ground-
breaking paper on approximate groups [40]. The polynomial dependence of
the constant (in CKC) is proved in [19, Thm 4.1] using a variation of the
argument we are about to present. Helfgott in [38] proved a special case of
this inequality when V = T is a maximal torus.

Proof. We follow the Larsen-Pink strategy for proving Proposition 4.11,
see [60, Thm 4.2.]. Since a bound on complexity implies a bound on the
number of irreducible components (see [19, Appendix A]), it is enough to
prove (4.3) for irreducible varieties. Clearly the estimate (4.3) holds when
V has dimension 0 or dimension dimG, so we may pick a possible counter-
example to (4.3) of minimal positive dimension, say V− and another one
of minimal co-dimension, say V+. The basic idea of the proof, which relies
crucially on the hypothesis that G is simple, is that we should be able to
find a ∈ A such that the product W := V−aV+a−1 is a constructible set of
dimension > dimV+ and thus hopefully will contain too many elements of
AaAa−1. Hence, since A is an approximate subgroup, some translate of W
will contain too many elements of A, contradicting the choice of V+.

To effect this strategy rigorously, one cannot just proceed as outlined
above, because A×A could concentrate of a singular subvariety of V−×V+

made of non-generic fibers of the product map

Φ : V− × V+ →W, (4.4)

(x, y) 7→ xaya−1. (4.5)

So instead we will prove first a weaker version of (4.3) in which the exponent
1

dimG is replaced by some α ∈ [ 1
dimG , 1]. And then improve that estimate

by showing that, given any fixed β > 1
dimG , if the bound (4.6) below holds
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for all subvarieties and for some α 6 β + ε, where ε = 1
(dimG)2

, then it also

holds for α = β and all subvarieties:

|A ∩ V| 6 O(KO(1))|A|α dimV . (4.6)

Since (4.6) holds obviously when α = 1 and all subvarieties and since if (4.6)
holds for α = α0, then it holds for all α > α0, this will eventually prove that
(4.6) holds for α = 1

dimG , so that (4.3) holds as desired.

Let us proceed as announced. We fix β > 1
dimG and assume that (4.6)

holds for all α > β + ε. Pick irreducible subvarieties V− and V+ as above
of minimal and maximal dimension providing counter-examples to (4.6) for

α = β. This means that |A ∩ V+| is much bigger than CKC |A|β dimV+
and

similarly for V−. By Lemma 4.14 below, we may find a ∈ A such that
W := V−aV+a−1 is a constructible set of dimension > dimV+. Consider
the product map Φ defined in (4.4) above. Let S 6 V− × V+ be a singular
subvariety of strictly smaller dimension outside of which each point lies on
a fiber of the right dimension namely d := dimV− + dimV+ − dimW. By
assumption d < dimV−. Basic algebraic geometry (cf. [94, I.6.3]) tells us
that S and the fibers are closed algebraic subvarieties, and it is possible to
prove by abstract nonsense (see [19, Appendix A]) that their complexity is
bounded in terms of those of V± alone.

Then we see that A × A must concentrate on S, i.e. |(A × A) ∩ S| >
1
2 |(A × A) ∩ (V− × V+)|, since otherwise, decomposing (V− × V+) \ S into
fibers of Φ we would get:

CKC |A|β(dimV++dimV−) � 1

2
|A ∩ V−| · |A ∩ V+|

6
∑

z∈W∩Φ(A×A)

|Φ−1(z) ∩ (A×A)|

� |W ∩A4||A|βd

implying that some translate ofW intersects A in a subset of size much larger
than O(KO(1))|A|β dimW and thus contradicting the choice (maximality) of
V+. It was licit to bound |Φ−1(z)∩ (A×A)| as we did above because of the
minimality of dimV− and the fact that d = dim Φ−1(z) < dimV−.

So we are reduced to the case when A × A concentrates on the singular
subvariety S, which is of dimension at most dimV−+dimV+−1. Passing to
a proper subvariety of smaller dimension if necessary, we may assume that S
is a subvariety of smallest possible dimension on which A× A concentrates
(i.e. |A∩V−| · |A∩V+| � O(1)|(A×A)∩S|). If its projection to the second
factor V+ is contained in a proper closed subvariety of V+, then we use (4.6)
for β + ε, to write

|(A×A) ∩ S| 6 O(KO(1))|A ∩ V−| · |A|(β+ε)(dimV+−1),

which is a contradiction since (β + ε)(dimV+ − 1) < β dimV+. So we may
assume that the projection of S 6 V−×V+ to the second factor V+ contains



28 EMMANUEL BREUILLARD

an open dense set of V+, i.e. the projection is dominant, and hence away
from a proper closed subvariety S0 of S (on which A×A cannot concentrate
by minimality of S) the fibers of this projection have dimension at most
dimV− − 1. Hence:

|(A×A) ∩ S| 6 O(1)|(A×A) ∩ S \ S0|

6 O(1)
∑

a∈A∩V+

|(A× {a}) ∩ S \ S0|

6 O(KO(1))|A ∩ V+| · |A|β(dimV−−1),

which is again contradictory. This establishes that (4.6) holds for α = β
and thus by induction that (4.3) holds unconditionally.

Remark 4.13. A careful analysis of the above argument shows that the
exponent of K in (4.3) can be taken to be 3 dimG, while the multiplicative
constant C, depends on the complexity of V, and is less explicit owing to
the less explicit nature of our notion of complexity and the way it bounds
the number of irreducible components (as proved in [19, Appendix A] using
ultraproducts). Similarly the threshold of “sufficient Zariski-density” of A is
non explicit.

Let M > 2 and G as above an absolutely simple connected algebraic
group G of complexity at most M . In the above proof, we made use of the
following lemma.

Lemma 4.14. (Finding a transverse conjugate) There is C = C(M) > 0
such that the following holds. If A is a C-sufficiently Zariski-dense finite
subset of G of complexity at most M , then for any two closed algebraic
subvarieties V1,V2 in G of complexity at most M and positive dimension
and co-dimension, there is a ∈ A such that the constructible set V1aV2a

−1

has dimension strictly bigger than dimV2 and complexity OM (1) (i.e. a
constant depending on M only).

Proof. We may assume both varieties to be irreducible. If no such a can
be found, then for every x1 ∈ V1 the closed irreducible subvarieties x1aV2

and the closure of V1aV2 have same dimension, hence are equal. This means
that x1aV2a

−1 = x′1aV2a
−1 for all x1, x

′
1 ∈ V1. Hence that x−1

1 x′1 lies in

the stabilizer in G of the subvariety aV2a
−1, namely V−1

1 V1 lies in aHa−1,
where H is the closed algebraic subgroup {g ∈ G; gV2 = V2}. Since V2 is a
proper subvariety, H is a proper subgroup, and since G is simple ∩a∈GaHa−1

is finite. We claim that, because A is assumed sufficiently Zariski-dense,
∩a∈AaHa−1 is finite too; this will contradict the assumption that V1 has
positive dimension and prove the lemma.

To see the claim, observe that if Y 6 H is an algebraic subvariety of com-
plexity at most M ′, then {g ∈ G,Y 6 gHg−1} is a subvariety of complexity
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at most OM ′(1). So if M ′ = OM (1), then there will be a ∈ A outside it. Ap-
plying this remark several times to each of the irreducible components Y of
the intersections H∩ a1Ha−1

1 ∩ . . .∩ aiHa
−1
i , i 6 k, we can build k = OM (1)

elements ai ∈ A such that ∩16i6kaiHa−1
i has dimension 0.

Having the Larsen-Pink estimate for approximate groups (Proposition
4.12) at our disposal, we are ready to prove our main theorem. So we now
pass to the proof of Theorem 4.7. For this it will be convenient to make the
following definition:

Definition: A maximal torus T of G will be called an involved torus if A2∩T
contains at least one regular element.

Recall that a maximal torus is a connected closed algebraic subgroup of G
containing only semisimple elements (i.e. elements that are diagonalizable
in some hence any embedding of G in GLd) and maximal for this property.
Maximal tori are all conjugate. We refer to Borel’s book [4] or Humphreys
[44] for background on algebraic groups. A semisimple element is called reg-
ular if its centralizer has a maximal torus of finite index. Regular semisimple
elements form a Zariski open subset of G. In particular, since the approxi-
mate group A is assumed to be sufficiently Zariski-dense in Theorem 4.7, we
see that A contains a regular semisimple element. We also recall that every
maximal torus T is of bounded index in its normalizer N(T ).

We observe at the outset that the number of involved tori is finite, indeed
of size at most |A2|, because a regular semisimple element can be contained
in at most one maximal torus (the connected component of its centralizer).

As in the Larsen-Pink theorem, we set qA := |A|1/dimG. We need to prove

that either qA is O(KO(1)), or 〈A〉 is finite and qA/q〈A〉 is O(KO(1)).

Claim 1. If T is an involved maximal torus, then

1/O(KO(1))qdimT
A 6 |T ∩A2| 6 O(KO(1))qdimT

A . (4.7)

Proof: The argument is the same as the one used to prove (4.2) above ap-
plying the Larsen-Pink inequality to both the centralizer and the conjugacy
class, and yields the desired estimate for the centralizer Z(a0) of a regular
semisimple a0 ∈ A2 ∩ T instead of T . Namely looking at the fibers of the
map A → A3 ∩ Va0 , a 7→ aa0a

−1, where Va0 is the conjugacy class of a0 in
G, we see that

|A| 6 |A2 ∩ Z(a0)| · |A3 ∩ V0|,

but each factor in the right handside is at most O(KO(1))q
dimZ(a0)
A and

O(KO(1))q
dimG−dimZ(a0)
A respectively, so the product is O(KO(1))|A|. We

thus obtain (4.7) with Z(a0) in place of T . But Z(a0) is an algebraic sub-
group with bounded complexity and T is its connected component, hence
T has bounded index in Z(a). This easily implies that |A2 ∩ T | > |A2 ∩
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Z(a0)|/O(KO(1)) (indeed A will intersect some translate of Z(a0) in a set

of size > qdimT
A /O(KO(1)), hence also some translate of T in a comparable

size). This establishes (4.7).

Claim 1 above is really the beef of the proof: assuming only that T∩A2 has
one regular element, we get that it has at least qdimT

A regular elements up to a

O(KO(1)) factor. Indeed, the non-regular elements in T are concentrated on
a bounded union of proper algebraic subgroups of bounded complexity (the
subtori corresponding to the vanishing of some root: in SLn this corresponds
to the subgroups of diagonal matrices having at least one double eigenvalue).
So applying the Larsen-Pink inequality (4.3) to this bounded union Tsing of

subtori, we see that |A2∩Tsing| 6 O(KO(1))qdimT−1
A . This means that there

are at least qdimT
A /O(KO(1)) elements in A2 ∩ T lying outside of Tsing.

Claim 2. Unless qA is O(KO(1)), for every maximal torus T of G, if T is
involved in A, so is aTa−1 for every a ∈ A.

Proof: This follows easily from Claim 1 and the above remark. Note that
|A2 ∩ aTa−1| = |a−1A2a∩ T |. However aA2a−1 being contained in A4 must
lie in at most K3 left translates of A. Hence A2 is contained in at most
K3 left translates of a−1Aa. This means that one of these translates must
intersect T in a set of size at least qdimT

A /O(KO(1)). Hence |a−1A2a ∩ T | >
qdimT
A /O(KO(1)), which implies by the remark above, that a−1A2a contains

a regular semisimple element of T , unless qA 6 O(KO(1)). This proves the
claim.

Obviously this lemma implies that all conjugates gTg−1, g ∈ 〈A〉, are
involved.

Claim 3. Unless qA is O(KO(1)), 〈A〉 is finite.

Proof: As remarked earlier, since A is sufficiently Zariski-dense, it must
contain a regular semisimple element, so there is at least one involved
torus. Since every regular semisimple element is contained in at most
one torus, there are only finitely many involved tori. By Claim 2, unless
qA = O(KO(1)), they are permuted under conjugation by 〈A〉. In particular
the Zariski-closure H of 〈A〉 intersects the normalizer N(T ), and hence T
itself in a subgroup of finite index. We claim that if 〈A〉 is infinite, and
hence the connected component of the identity H0 has positive dimension,
then there is a closed connected algebraic subgroup S 6 T of bounded com-
plexity and containing H0 such that H 6 N(S). This will yield the desired
contradiction, because N(S) has then bounded complexity. Starting with
S = T observe that if H does not normalize S, then there is h ∈ H such
that S ∩ hSh−1 has dimension < dimS and bounded complexity. Hence so
does the connected component S1 of S ∩ hSh−1. Since H0 is normalized by
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h, this S1 also contains H0. Reiterate with S := S1. This process ends after
at most dimT steps and the claim follows.

The proof of Theorem 4.7 now follows in a few lines from Claims 1 and 3
and the Larsen-Pink inequality by counting the number T of involved tori.
Since every regular semisimple element is contained in at most one maximal
torus, Claim 1 implies that

T 6 O(KO(1))|A2|/qdimT
A 6 O(KO(1))qdimG−dimT

A

On the other hand, the subgroup 〈A〉 acts by conjugation on the (finite) set
of involved tori by Claim 2. So

T > |〈A〉|/|〈A〉 ∩N(T )| > |〈A〉|/O(1)qdimT
〈A〉 = qdimG−dimT

〈A〉 /O(1),

where the second inequality follows from the original Larsen-Pink inequality
(Proposition 4.11) applied to the sufficiently Zariski-dense subgroup 〈A〉. So

qA/q〈A〉 = O(KO(1)) as desired. Finally note that the Larsen-Pink estimate
was used only for subvarieties (tori, conjugacy classes, etc.) whose complex-
ity is bounded in terms of the complexity of G only. Hence the threshold of
sufficient Zariski density required in these applications of (4.3) is uniform.
This ends the proof of Theorem 4.7.

4.15. Verifying Assumption (ii) of the Bourgain-Gamburd machine.
Suppose G0 = G(Fq), where G is an absolutely simple algebraic group
defined over the finite field Fq. Then Corollary 4.8 proved in the previ-
ous subsection implies that Assumption (ii) of the Bourgain-Gamburd ma-
chine (i.e. Proposition 3.1) holds for G0 with a function δ(ε) given by
δ(ε) = εmin{β, 1/(C + 1)}, where C is the constant from Corollary 4.8
(distinguishing the cases H = 1 and H 6= 1 and using Remark 3.4).

In order to deal with products of a bounded number of quasi-simple groups
of Lie type of bounded rank, one needs the following rather straightforward
extension of Theorem 4.9, based on Goursat’s lemma about subgroups of
direct products of groups.

Theorem 4.16 (Approximate subgroups of semisimple groups). Let G be
an (almost direct) product of finite simple (or quasisimple) groups of Lie
type and suppose that A a K-approximate subgroup of G. Then either |A| >
|G|/KC , or A is contained in at most KC left cosets of a proper subgroup
H of G, where C > 0 is a constant depending only on the rank of G.

We refer the reader to [22, Theorem 8.1.] for a detailed proof.
If G is a semisimple algebraic group defined over Q its reduction Gp

modulo p is well-defined for all but finitely many primes p. When G is
simply connected, then Gp(Fp) is an almost direct product of quasi-simple
groups of Lie type over Fq, where q is a bounded power of p. It then follows
from Remark 3.4 that every proper subgroup H of a quotient G of Gp(Fp)
has index at least |G|η in G for some η = η(G) > 0 independent of p and of
the quotient G. We may then take as above δ(ε) = min{η, 1/(C+1)}ε, where
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C > 1 is the constant in the above proposition and apply this proposition
to K = |G|δ to obtain Assumption (ii) of the Bourgain-Gamburd machine
(Proposition 3.1).

More generally we can handle a bounded number of quasi-simple factors.
Namely if G is a (almost direct) product of at most r quasi-simple groups of
Lie type of dimension at most d (so for instance if G is the reduction modulo
q := p1 ·. . .·pr, for some distinct large primes p1, . . . , pr of some Zariski-dense
subgroup of G(Q)), then Assumption (ii) of the Bourgain-Gamburd machine
is still satisfied with say δ := min{η(d)/2r, 1/(2C)}ε. Here η(d) > 0 denotes
the constant of quasi-randomness (see Remark 3.4) such that every proper
subgroup of a quasi-simple group S of Lie type of dimension at most d has
index at least |S|η, r is the number of quasi-simple factors of G and C is the
constant from Theorem 4.16.

To verify that these constants indeed work, split G as a product G1G2,
where G1 is the product of the quasi-simple factors of size at most |G|ε/2r.
Given a |G|δ-approximate subgroup A of G, apply Theorem 4.16 to π2(A),
the projection of A to G2. Then either |π2(A)| > |G2|/|G|Cδ, in which

case |A| > |π2(A)| > |G|/(|G1||G|Cδ) > |G|1−ε, because |G1| 6 |G|ε/2 and
Cδ 6 ε/2. Or π2(A) is covered by at most |G|Cδ translates of a proper
subgroup of G2. However proper subgroups of G2 have index at least |S|η,
where S is a quasi-simple factor of G2, hence have index at least |G|ηε/2r. It
follows that A itself is covered by at most |G|Cδ 6 [G : H]ε/|G|δ translates
of a proper subgroup H of G. We are done.

To summarize the above discussion, we have proved in particular:

Corollary 4.17. If G is a semisimple simply connected algebraic group
defined over Q and p1, . . . , pr distinct large enough primes, then Assumption
(ii) of Proposition 3.1 holds for G0 :=

∏r
i=1Gpi(Fpi) with δ = ε/Dr, for

some constant D > 0 depending only on the dimension of the algebraic
group G and not on the pi’s.

5. Random matrix products

The theory of random matrix products is a well developed part of proba-
bility theory on groups. It aims at understanding the statistical behavior of
products of n matrices chosen at random when n tends to infinity. It is cus-
tomary to restrict attention to the case when the matrices are independent
and chosen according to the same probability distribution.

In order to establish the non-concentration estimate in the Bourgain-
Gamburd machine (i.e. Assumption (iii) in Proposition 3.1) we will need
the following result:

Theorem 5.1. (probability of return to a subgroup [15]) Let G be a con-
nected semisimple algebraic group over a field K of characteristic zero and
Γ 6 G(K) a Zariski-dense subgroup generated by a finite set S. Let µ be
a probability measure on S with µ(s) > 0 for each s ∈ S. Then there is a
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positive constant c > 0 such that for every integer n > 1,

µn(H) < e−cn,

uniformly for every proper closed algebraic subgroup H of G.

We will not go here into all the details of the proof of Theorem 5.1 and
instead refer the reader to [15]. However we will indicate how the theory of
random matrix products is used to derive it. Theorem 5.1 is deduced from
the following fact proved in [15].

Proposition 5.2. (probability of fixing a line) Let K be a local field of char-
acteristic zero and µ a probability measure on GLd(K) such that max{‖g‖, ‖g−1‖}ε
is µ-integrable for some ε > 0. Assume that the support of µ generates a
subgroup Γµ which is not relatively compact in projection to PGLd(K) and

does not preserve any finite union of proper vector subspaces of Kd. Then
there is c > 0 such that for every n > 1 and every line x ∈ P(Kd),

µn({g ∈ GLd(K); g(x) = x}) < e−cn.

The condition that the support of µ does not preserve any finite union
of proper subspaces is usually called strong irreducibility. It is equivalent
to asking that every subgroup of finite index in Γµ acts irreducibly, or that
the connected component of the Zariski-closure of Γµ acts irreducibly. This
condition was introduced by Furstenberg in the 1960’s in his study of random
matrix products [28]: he showed that under the conditions of the proposition,
if µ is supported on SLd(k), then the first Lyapunov exponent of µ is positive,
namely:

lim
1

n

∫
log ||g||dµn(g) > 0.

Another key theorem in the theory of random matrix products is the sim-
plicity of the Lyapunov spectrum, due to Guivarc’h and Raugi [35]. It states
that under the assumptions of proposition, if the subgroup Γµ is proximal
(by definition this means that the semigroupKΓµ contains a rank one matrix
in its closure in the algebra of d× d matrices Md(K)), then the second Lya-
punov exponent is strictly smaller than the first. In other words the random
matrix product will almost surely contract almost all of the projective space
P(kd) into an exponentially small neighborhood of a point. From this the
conclusion of proposition 5.2 can be easily obtained. However this requires
the proximality assumption and this assumption does not always hold. It
holds for measures µ supported on Zariski-dense subgroups of SLd(R) due to
work of Goldsheid-Margulis [30] and this was used by Bourgain and Gam-
burd in their work [6]. But it does not hold in general in particular if we
replace R with a p-adic field. So one needs to avoid this assumption if one
wishes to establish Proposition 5.2 in full generality (and this generality is
require to get Theorem 5.1). This is what is done in [15].
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Let us now explain how to derive Theorem 5.1 from Proposition 5.2.
First we claim that we may assume that K is a local field and that Γ is not
relatively compact in G(K). To see it, first note that we may assume K
to be finitely generated over Q, since K can be taken to be generated by
the matrix entries of the elements of the finite generating set S. Now pick
a semisimple element of infinite order in Γ (it always exists, because Γ is
Zariski-dense in G) and let λ be one of its eigenvalues of infinite order. Find
an absolute value on an algebraic closure of K, which is not equal to one on
λ and consider the associated completion to obtain the desired local field.
This argument is standard, details can be found in [98, Lemma 4.1.].

Note that passing to a finite extension of K if necessary, we may assume
that G is K-split, so that each absolutely irreducible module of G can be
defined over K. Next, we claim that there are a finite number of absolutely
irreducible finite dimensional representations of G, say ρ1, . . . , ρk, each of
dimension at least 2, such that every proper closed algebraic subgroup H
of G must stabilize a line in one of these representations. This claim was
already verified in the proof of Lemma 2.6 above.

Finally, note that we may apply Proposition 5.2 to each ρi(Γ), because
ρi(Γ) acts strongly irreducibly on the representation space of ρi and is not
relatively compact modulo scalars, because it is non relatively compact and
of determinant 1 since G is semisimple. Since there are only finitely many
ρi’s to consider, we get the desired uniformity in H and Theorem 5.1 is
proved.

6. Proof of the super-strong approximation theorem

In this section we verify that the ingredients of the expansion machine
(i.e. Proposition 3.1) are all met under the assumptions of Theorem 1.2 and
complete the proof of this theorem.

In view of Proposition 3.1, we see that Theorem 1.2 will follow from Propo-
sition 3.1 applied to the groups G0 := Gp(Fp) with generating sets Sp, where
Sp is the reduction modulo p of the generating set S of the Zariski-dense
subgroup Γ 6 G(Q), provided the three assumptions of Proposition 3.1 are
fulfilled. We saw in subsection 4.15 that Assumption (ii), the classification
of approximate subgroups, is satisfied. Let us now consider Assumption (i).

Proposition 6.1 (High multiplicity/Quasirandomness). Let G be a semisim-
ple and simply connected algeraic group defined over Q and p a large enough
prime. Then every non-trivial irreducible representation ρ : Gp(Fp) →
GLd(C) of G = Gp(Fp) has dimension at least |G|β, where β > 0 depends
only on the dimension of G.

Proof. As observed by Sarnak-Xue [90] and Gamburd [29], this goes back
to Frobenius in the case of SL2. In [58] Landazuri and Seitz proved that all
non-trivial irreducible projective representations of a finite simple group of
Lie type have dimension at least |G|β for some β > 0 depending only on the
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rank, which implies the analogous claim for irreducible linear representations
of any quasi-simple group. Actually, since we do not need the best possible
β, we can arrive to this conclusion rather quickly if we observe that (see
e.g. [47, Theorem 4.1]) with the exception of the Suzuki groups, every
quasi-simple finite group of Lie type contains a copy of either SL2(Fq) or
PSL2(Fq). But both the Suzuki case and PSL2(Fq), can be handled easily
(see [58, Lemma 4.1]).

Now Gp(Fp) is an almost direct product of quasi-simple groups over Fq,
with q = pf and f is bounded in terms of the dimension of G only. So any
non trivial linear representation of Gp(Fp) gives rise to a representation of a
quasi-simple group of Lie type over Fpf with f and rank bounded in terms
of dimG only. The proposition follows.

Remark. Tim Gowers called a group quasi-random if it has the property
sought for in this proposition. In such groups large subsets behave in a
quasi-random way in the sense that the (non-abelian) non trivial characters
of the indicator function of a subset are always very small ([33]). This was
used by Gowers to show that product-free sets (i.e. subsets A ⊂ G not
containing any x, y, z with xy = z) in such groups are small.

It now remains to verify Assumption (iii) of the Bourgain-Gamburd ma-
chine. This is usually the most difficult step. Here it will follow easily from
the combination of the quantitative version of the strong approximation the-
orem proved in Section 2 and the large deviation estimates from the theory
of random matrix products recalled in the previous section.

We may assume that G 6 GLd and this allows us to define the height
H(γ) of an element of Γ 6 G(Q) as in Theorem 2.3. In follows from (2.1)
that for every n > 1 and every γ ∈ Sn,

H(γ) 6 (dMS)nd
2
, (6.1)

where we recall that MS is defined as

MS = max{H(s), s ∈ S} (6.2)

and the height H(s) is the naive height (maximum of the numerator and
denominator of each matrix entries written as an irreducible fraction).

Fix τ > 0 to be determined below. Let p0 be defined as in Theorem 2.3
and p > p0 be any prime number. Choose an even integer n between τ log p
and 2τ log p. Now let H be a proper subgroup of Gp(Fp), and SH,n be the
subset of all elements in Sn whose reduction modulo p lies in H. From (6.1)
we see that if τ < 1/(2C0d

2 log(dMS)), then

p > (MSH,n)C0 ,

where C0 is the constant arising in Theorem 2.3. Hence Theorem 2.3 applies
to the symmetric set SH,n and we conclude that the subgroup generated by
SH,n is not Zariski-dense in G. Let H be its Zariski-closure.
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From Theorem 5.1 we know that in Γ and for all n > 1,

µnS(H) 6 e−cn,

where c > 0 is a positive constant independent of the choice of H. However,
the reduction mod p map from Γ to Gp(Fp) is injective on all elements of
height at most p, and hence on Sn, thanks to our choice of n (of size roughly
τ log p). Therefore

µnSp(H) = µnS(H) 6 e−cn 6 1/pτc 6 1/|Gp(Fp)|κ,

where we have set κ = cτ/2d2, because |Gp(Fp)| 6 pd
2
. In particular we

see that the exponent κ can be taken of the form c1
c

logM(S) , where c1 > 0

depends only on G and c is the constant from Theorem deviation. This es-
tablishes the non-concentration estimate needed in the Bourgain-Gamburd
machine (Assumption (iii)) and ends the proof of the super-strong approxi-
mation theorem (Theorem 1.2).

Remark 6.2. (Explicit estimate on the gap) The proposed proof of Theorem
5.1 is non effective (it uses the ergodic theorem in Proposition 5.2) and
hence gives no explicit lower bound on c. However it is likely that c is in
fact independent of the choice of S provided |S| is bounded. In that case the
estimate given by Proposition 3.1 would give the following lower bound for
the spectral gap:

λ1 > 1/M
O(1)
S ,

where MS (see (6.2)) is the maximal height of an element of S and the
implied constant depends only on G and the cardinal of S. See [55] for
an explicit upper bound on the implied constant in the special case when S
belongs to SL2(Z).

6.3. Several prime factors. The case of several (but boundedly many
primes) can be handled at little additional cost. Assumptions (i) and (ii)
of Prop. 3.1 have already been verified in this more general setting (see
§4.15). Assumption (iii) follows in the same way as before by projecting the
proper subgroup H to the largest simple factor where it remains proper. The
corresponding bound on κ and thus on the λ1 will depend on the number of
prime factors involved.

Hence we get the following improved version of Theorem 1.2.

Theorem 6.4. Suppose G is a connected and simply connected semisimple
algebraic group defined over Q and let Γ 6 G(Q) be a Zariski-dense subgroup
generated by a finite set S. Let also r ∈ N. Then there is ε = ε(S, r) > 0 such
that for all large enough distinct prime numbers p1, . . . , pr, the projection
of Γ in the finite group G0 :=

∏r
i=1Gpi(Fpi) is surjective and the induced

Cayley graph of G0 is an ε-expander.

Note that the spectral gap in this result depends on r but not on the
choice of the r primes p1, . . . , pr. Here again, if G is not assumed simply
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connected, then the projection of Γ to G0 may not be surjective, but it has
bounded index (depending only on G and r) in G0 and the induced Cayley
graph of the image remains an ε-expander. One reduces easily to the simply
connected case by lifting to Γ to the simply connected cover of G (see e.g.
[68, p.399-418]).

Remark 6.5. (Groups defined over a number field) If Q is replaced by a
number field K, then a similar result holds, which can be reduced to the
case of Q. If one wants to take quotients modulo prime ideals P of the ring
of integers OK of K, then one needs to be careful that the corresponding
reduction may not be surjective on G(OK/P) (e.g. SL2(Z) is Zariski-dense
in SL2, but maps onto SL2(Fp) and not onto SL2(OK/P) ' SL2(Fpf ) for
any prime P with residual degree f > 1.)

To palliate this problem, one needs either to pass to a smaller number
field (e.g. the one generated by the traces of the elements of Γ) or to consider
the Zariski-closure of the embedding of Γ under the restriction of scalars of
G from K to Q. This Zariski closure will be semisimple and Theorem 6.4
will apply. In case G is not simply connected, one can lift to the simply
connected cover. At any case it will always be the case that if Γ is a Zariski-
dense subgroup of G(K) for some number field K and semisimple algebraic
K-group G, then the quotients of Γ modulo prime ideals of OK will be
expanders. This follows readily, by restriction of scalars, from Theoremn
6.4.

Bourgain-Gamburd-Sarnak [7] for SL2, Varjú [99] for SLd and Salehi-
Golsefidy-Varjú [31] in general for G perfect, went much further by estab-
lishing that the spectral gap can be made independent of r (for a given S).
This however requires to prove Assumption (ii) of the Bourgain-Gamburd
machine in this setting, hence to understand approximate subgroups of large
products of quasi-simple finite groups of bounded rank. This lies much
deeper and requires a delicate multi-scale analysis. They prove:

Theorem 6.6 (Salehi-Golsefidy-Varjú [31]). Let q0 ∈ N and Γ = 〈S〉 be a
finitely generated subgroup of GLd(Z[ 1

q0
]). Assume that the connected com-

ponent of the Zariski closure of Γ is perfect. Then there is ε = ε(d, S) > 0
such that the Cayley graphs of the quotients πq(Γ) induced by the generat-
ing set S are ε-expanders uniformly over all square-free integers q co-prime
to q0. Here πq is the reduction modulo q defined on rational numbers with
denominator co-prime to q.

To finish, let us quote the following related by-product of the Bourgain-
Gamburd method.

Proposition 6.7. ([22, Prop. 8.4]) Let r ∈ N and ε > 0. Suppose G =
G1G2, where G1 and G2 are products of at most r finite simple (or quasisim-
ple) groups of Lie type of rank at most r. Suppose that no simple factor of G1

is isomorphic to a simple factor of G2. If x1 = x
(1)
1 x

(2)
1 , . . . , xk = x

(1)
k x

(2)
k are
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chosen so that {x(1)
1 , . . . , x

(1)
k } and {x(2)

1 , . . . , x
(2)
k } are both ε-expanding gen-

erating subsets in G1 and G2 respectively, then {x1, . . . , xk} is δ-expanding
in G for some δ = δ(ε, r) > 0.

The assumption that no simple factor of G1 be isomorphic to a simple
factor of G2 is necessary here, because otherwise {x1, . . . , xk} may not gen-
erate. However what if we suppose it generates, is the conclusion still true
without the assumption that G1 and G2 have no isomorphic factors (e.g. if
G1 = G2 = SL2(Fp)) ? this is an open question.

7. The group sieve method

One of the leitmotives of the subject matter in this paper is the ability to
study finite simple groups of Lie type as quotients of certain infinite linear
groups and thereby to do geometry and analysis on infinite groups in order
to derive properties of finite groups, such as the expander property of their
Cayley graph. The purpose of the sieve method is to achieve the converse:
to study infinite linear groups from the properties of their finite quotients.

In this concluding section, we describe this method, first by showing a
very simple application of Theorem 1.2 to random matrix product theory,
where only one prime is required, and then by describing the group sieve
lemma of Lubotzky and Meiri and two of its applications to the study of
generic properties in infinite linear groups.

7.1. Large deviations for subvarieties. One of the simplest example
showing the power of Theorem 1.2 is the following theorem. It says that
random walks on linear groups do not concentrate much on any algebraic
subvariety.

Theorem 7.2. (Subvarieties are exponentially small) Let K be a field of
characteristic zero, Γ 6 GLd(K) a non virtually solvable finitely generated
subgroup and µ a probability measure whose support S is a finite symmetric
generating subset of Γ. Let G be the Zariski closure of Γ, and R its solvable
radical. Suppose V is an algebraic subvariety in GLd such that dim(R(V ∩
G)) < dimG. Then we have for all n > 1:

µn(Γ ∩ V) 6 c0(V) · e−cn,
where c0(V) > 0 is a constant depending only on the complexity (i.e. degree)
of V, and c > 0 depends only on µ.

Note that we have already shown a special case of this theorem in The-
orem 5.1 above. Theorem 5.1 claimed essentially the same result when the
subvariety V is assumed to be an algebraic subgroup. Although a direct ap-
proach similar to the proof of the Larsen-Pink inequality (Prop. 4.12) might
be successful in deriving Theorem 7.2 from Theorem 5.1, the sieve method
here can be implemented without any effort (modulo standard reductions)
and yields Theorem 7.2 as a direct consequence of the super-strong approxi-
mation theorem (Theorem 1.2) as we now show. This was already observed
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(and proved in a special case) in the original work of Bourgain-Gamburd [6,
Corollary 1.1].

Proof. We first reduce to the case when the Zariski-closure G of Γ is
semisimple and defined over Q. Taking the quotient modulo the solvable
radical R, we may assume that G is semisimple (with connected component
of the identity G0). Now since Γ is finitely generated, we may assume that
the field K is finitely generated over Q, hence is a finite algebraic extension
of a purely transcendental extension of Q with a finite transcendence basis.
One may then specialize and pick algebraic values for this transcendence
basis in such way that the connected component of the Zariski closure of
the resulting image group Γ′, now a subgroup of GLd(Q), is still G0 (this
follows from Lemma 2.6, see also [59] for a related statement). Now taking
the restriction of scalars to Q we have reduced to the case when K = Q and
G0 is semisimple.

It is enough to prove the result for n even, and hence replacing S with
S2 we may assume that 1 belongs to S (note that the subgroup generated
by S2 has finite index in Γ). Let then Γ0 := Γ ∩ G0. It is a subgroup of
finite index in Γ which is Zariski dense in G0. Now pick a large prime p.
For p large enough, we know by the super-strong approximation theorem
(Theorem 1.2) that (Γ0)p, the reduction mod p of Γ0, has bounded index in
G0
p(Fp) and that its induced Cayley graph is an ε-expander for some ε > 0

independent of p. It follows that the reduction mod p of Γ, itself is a finite
group Gp containing (Γ0)p as a subgroup of bounded index and hence is also
an ε′-expander for some ε′ > 0 independent of p and depending only on ε, G,
and the index of Γ0 in Γ. Moreover Sp is not contained in a coset of a proper
subgroup of Gp, because 1 ∈ Sp. By the random walk characterization of
expanders (see Lemma 3.3 above), this means that random walks at any
time larger than Cε log p are very well equidistributed in the sense that if
n = [Cε′ log |Gp|] say

|µnp (x)− 1

|Gp|
| 6 1/|Gp|10

for every x ∈ Gp. In particular

µn(V) 6 µnp (V mod p) 6
|Vp|
|Gp|

+ 1/|Gp|9,

However the assumption on V implies that |Vp| 6 c0(V)pdimG−1 while |Gp| =
Ω(pdimG) (see the Schwarz-Zippel lemma in [22]). If follows that

µn(V) 6 c0(V) ·O(1/p),

with the implied constant depending only on G0. Now given any large n,
one needs only pick a prime p such that n is roughly of size Cε log |Gp| and
the result follows.
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For another method towards Theorem 7.2 and related partial results see
the work of Aoun [1].

We now pass to a corollary of Theorem 7.2. In [2], R. Aoun showed a
probabilistic version of the Tits alternative: he proved that two independent
random walks on a non virtually solvable linear group eventually generate
a free subgroup. In other words a generic pair of elements always generates
a free subgroup. Combining Theorem 7.2 with Lemma 2.6 we can now
assert that a generic pair of elements generates a Zariski-dense free subgroup,
namely:

Corollary 7.3. (A generic pair generates a Zariski-dense free subgroup)
Under the assumptions of Theorem 7.2 assume further that the Zariski clo-
sure of Γ = 〈S〉 is connected semisimple. Let E be the set of pairs (a, b) in
Γ×Γ such that the subgroup 〈a, b〉 is either not free, or not Zariski dense in
Γ. Then there is c = c(µ) > 0

µn × µn(E) 6 e−cn.

Proof. Aoun’s theorem [2] tells us that for some c > 0, µn×µn(NF) 6 e−cn,
where NF is the set of non-free pairs. Now applying Theorem 7.2 to the
group Γ×Γ in G×G the measure µ×µ and subvariety V = X from Lemma
2.6, we get the desired result.

For related results, see Aoun’s work [1] and Rivin’s [84].

7.4. The group sieve lemma. The spectral gap for mod p quotients has
been exploited by Rivin [83] and Kowalski [53] to perform sieving on arith-
metic lattice subgroups. Prior to the new results on thin groups such as
the super-strong approximation theorem, the spectral gap was known in
a variety of cases for mod p or mod n quotients of arithmetic subgroups.
Thanks to super-strong approximation (i.e. Theorem 1.2 or [31]), we can
now perform this sieving on arbitrary Zariski-dense subgroups (i.e. thin
subgroups).

In Theorem 7.2 we used only one prime number to show our non con-
centration estimate. The power of the sieve consists in taking advantage of
several primes and using as a guiding principle that primes are essentially
independent.

Lubotzky and Meiri [65] formulated the following elegant lemma, which
gives a simple set of conditions to be fulfilled in order to get further genericity
results (akin to Theorem 7.2 above) that may require more than one prime.

Lemma 7.5 (Group sieve lemma). Let Γ = 〈S〉 be a group generated by
a finite symmetric set S and {Ni}16i6N be a finite sequence of finite index
normal subgroups. Set πi : Γ → Γ/Ni the projection maps. Let Z ⊂ Γ
be a subset of Γ and assume that there are positive constants D, ε, α, with
α ∈ (0, 1), such that

• Cay(Γ/(Ni ∩Nj), S mod Ni ∩Nj) for i 6= j are ε-expanders;
• Γ/(Ni ∩Nj) ' Γ/Ni × Γ/Nj for i 6= j;
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• |Γ/Ni| 6 ND for all i = 1, . . . , N ;
• |π(Z)| 6 (1− α)|πi(Γ)| for all i = 1, . . . , N .

Then there is a constant B = B(ε,D, α) > 0 such that for all n > B logN ,

µnS(Z) 6
1

N
.

As before we have denoted by µS the uniform probability measure on
the finite symmetric generating set S. Note that only the last assumption
involves the set Z. In applying this lemma, typically the πi will be the
reduction maps modulo a prime pi. It is crucial that the constant B(ε,D, α)
depends only on these three parameters and not on Γ, nor the choice of the
sequence {Ni}i.

The proof of this lemma is quite short, but before we give it in full, let us
comment on it a little. Let Sn := Y1 · . . . ·Yn be the product of n independent
random variables Y1, . . . , Yn on Γ all distributed according to the same prob-
ability distribution µS (the uniform distribution on the generating set S).
The key feature of an expander graph is that random walks on them become
equidistributed very fast. By the first item in the above lemma, the Cayley
graph of Γ/(Ni ∩ Nj) is an ε-expander. Clearly this also implies that the
quotients Γ/Ni and Γ/Nj are ε-expanders. Hence the distributions of πi(Sn)
and πj(Sn) are very close to the uniform distribution on Γ/Ni and Γ/Nj re-
spectively as long as n > Cε log |πi(Γ)|, so in particular if n > CεD logN
(thanks to the third item). By the second item the natural injection from
Γ/(Ni ∩Nj) to Γ/Ni×Γ/Nj is surjective. This implies that the joint distri-
bution (πi(Sn), πj(Sn)) is also close to the uniform distribution, and hence
that πi(Sn) and πj(Sn) are almost independent as random variables.

Suppose for a second that they were actually independent. Then quite
obviously, using the fourth item in the last inequality:

P(Sn ∈ Z) 6 P(πi(Sn) ∈ πi(Z) ∀i 6 en/CεD) 6 (1− α)e
n/CεD

,

where P(Ω) denotes the probability of the event Ω. We would thus get a
super-exponential decay of the probability of belonging to Z.

Of course joint independence is too much to hope for, but the expander
property on Γ/Ni × Γ/Nj implies that the πi(Sn) are pairwise almost in-
dependent. Now the following classical result from basic probability the-
ory (the second moment method) allows us to take advantage of this pair-
wise almost independence in order to derive a meaningful upper bound on
P(Sn ∈ Z).

Lemma 7.6. Let X > 0 be a real random variable with E(X2) < ∞ and
T > 1 a parameter.

(i) (1st moment method) P(X 6 T · E(X)) > 1− 1/T ;

(ii) (2nd moment method) P(X > 1
T · E(X)) > (1− 1

T )2 E(X)2

E(X2)
.
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Proof. The first item is an instance of Chebychev’s inequality:

P(X > T · E(X)) · T · E(X) 6 E(X1X>T ·E(X)),

while the second follows from Cauchy-Schwarz:

(1− 1

T
)E(X) 6 E(X1X> 1

T
·E(X)) 6 E(X2)

1
2P(X >

1

T
E(X))

1
2

Applying this lemma to the variable X :=
∑N

i=1 1Aci , (Aci being the com-
plement of the event Ai), we obtain:

Fact (exploiting pairwise almost independence) : if {Ai}16i6N are
N events on a probability space, such that for some α, δ > 0,

• P(Ai) 6 1− ω for each i = 1, . . . , N , and
• P(Ai ∩Aj) 6 P(Ai)P(Aj) + δ for all i 6= j,

then

P(∩16i6NAi) 6
1

ω2
(δ +

3

N
).

Proof. Indeed, P(Aci ) = 1− P(Ai) > ω, so E(X) > ωN and by Lemma 7.6

1− P(∩N1 Ai) = P(X > 1) > P(X >
1

ωN
· E(X)) > (1− 1

ωN
)2E(X)2

E(X2)
,

while E(X2) =
∑

i P(Aci ) +
∑

i 6=j P(Aci ∩ Acj) and E(X)2 =
∑

i P(Aci )
2 +∑

i 6=j P(Aci )P(Acj). Hence using that P(Aci ∩Acj) 6 P(Aci )P(Acj) + δ,

E(X2)− E(X)2 6
∑
i

P(Aci )P(Ai) + δN(N − 1) 6 N(1− ω) + δN2,

from which we deduce (using that E(X) > Nω) that

1− P(∩N1 Ai) > (1− 1

ωN
)2(1− N(1− ω) + δN2

(ωN)2
) > 1− 1

ω2
(δ +

3

N
)

as desired.

We can now complete the proof of the group sieve lemma (i.e. Lemma
7.5):

Proof. Note that we may assume that n is even, and thus replacing S by
S2 if necessary we may assume that S contains 1. Then by the random walk
characterization of ε-expanders (Lemma 3.3) we know that the random walk
Sn = Y1 · . . . ·Yn is almost equidistributed in projection to each πi(Γ) as long
as n > Cε log |Γ/Ni|, hence as soon as n > CεD logN . In particular for all
x ∈ πi(Γ):

|P(πi(Sn) = x)− 1

|πi(Γ)|
| 6 e−n/Cε

|πi(Γ)|10
(7.1)
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and for i 6= j, x ∈ πi(Γ) and y ∈ πj(Γ)

|P((πi(Sn), πj(Sn)) = (x, y))− 1

|πi(Γ)| · |πj(Γ)|
| 6 e−n/Cε

|πi(Γ)|10|πj(Γ)|10
(7.2)

Let Ai be the event “πi(Sn) ∈ πi(Z)”. From (7.1) and (7.2) we get for
i 6= j

|P(Ai)−
|πi(Z)|
|πi(Γ)|

| 6 e−n/Cε

|πi(Γ)|9
,

|P(Aj)−
|πj(Z)|
|πj(Γ)|

| 6 e−n/Cε

|πj(Γ)|9
,

|P(Ai ∩Aj)−
|πi(Z)|
|πi(Γ)|

|πj(Z)|
|πj(Γ)|

| 6 e−n/Cε

|πi(Γ)|9|πj(Γ)|9
,

Hence

|P(Ai ∩Aj)− P(Ai)P(Aj)| 6 3e−n/Cε

Recall further that by assumption |πi(Z)|/|πi(Γ)| 6 1− α hence

P(Ai) 6 1− α+ e−n/Cε 6 1− α/2,

for n large enough. Setting B(ε,D, α) = 10CεD/α
2 (say), the lemma now

follows by applying the Fact above with ω := α/2, δ = 3e−n/Cε .

In the next subsection, we give an application of this group sieve lemma
to a counting problem in infinite linear groups.

To conclude we note that the pairwise almost independence given by
the assumption that the Cayley graphs of Γ/(Ni ∩ Nj) ' Γ/Ni × Γ/Nj

are expanders corresponds to the super-strong approximation theorem for
products of two prime factors (i.e. when r = 2 in Theorem 6.4). The
result of Salehi-Golsefidy and Varjú [31] shows uniform expansion for an
arbitrary (growing) number of prime factors. This corresponds to joint
almost independence of the sequence πi(Sn) instead of pairwise. Clearly
this is a much stronger property to have at one’s disposal and it is crucial
in the Affine Sieve of Bourgain-Gamburd-Sarnak [7] and Salehi-Golsefidy-
Sarnak [86].

7.7. Proper powers in linear groups are scarce. In [65] Lubotzky and
Meiri use the group sieve lemma (Lemma 7.5) above to establish the follow-
ing result:

Theorem 7.8. (Proper powers are exponentially small, [65]) Under the as-
sumptions of Theorem 7.2, let P be the proper powers in Γ, i.e. the set of
elements in γ ∈ Γ such that there is γ0 ∈ Γ and k > 2 such that γ = γk0 .
Then P is exponentially small, namely there is c > 0 such that for all n > 1,

µn(P) 6 e−cn.
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An old result of Malcev (see [61] and references therein) says that for each
n > 1, then set of n-th powers in any finitely generated nilpotent group
contains a finite index subgroup, and thus cannot be exponentially small.
So Theorem 7.8 can be seen as a strong quantitative converse to Malcev’s
theorem. Prior attempts to prove this result, see Hrushovski-Kropholler-
Lubotzky-Shalev [41], could only go as far as proving that for each k, the
set of k-powers in Γ does not contain a finite index subgroup of Γ.

We sketch the proof in the special case when Γ is a Zariski-dense subgroup
of SLd(Z).

Proof. We want to apply the group sieve lemma to the subset Z := P of
proper powers. The projection maps πi will be the reduction maps modulo
large primes pi to be chosen carefully. By the strong approximation theorem
(Theorem 1.1 above) Γ maps onto SLd(Fp) for all large enough prime p.

In a finite group every element of order at least 3 is a proper power, so
we have to restrict attention to m-powers (i.e. elements in the image of the
map g → gm) for each given m. Luckily we do not need to consider all m’s,
but only those with m 6 Cn for some C = C(S) > 0. The reason is that
if γ ∈ SLd(Z) has an eigenvalue λ of modulus > 1, then it is of modulus
> 1 + δ for some δ depending only on the dimension d (indeed eigenvalues
are roots of the characteristic polynomial, which has degree d and integer
coefficients: if all eigenvalues were say 6 2 in modulus, then the coefficients
would be bounded, leaving only finitely many possibilities for λ). So for
every m > 2,

||γm|| > |λ|m > (1 + δ)m,

while every element in the support of the measure µn has size at most Mn
S ,

where MS = max{||s||, s ∈ S}. So if an element g in the support of µn

is a proper power γm0 , then either m = O(n) or g has all its eigenvalues
of modulus 1. Kronecker’s lemma tells us that if the roots of a monic
polynomial of degree d in Z[X] have all modulus 1, they must be roots
of unity of degree at most d. Hence gd! must be a unipotent element, i.e.
(gd! − 1)d = 0. However V := {g ∈ SLd; g

d! is unipotent } is a proper
algebraic subvariety of SLd, and hence Theorem 7.2 tells us that this set is
exponentially small and can be ignored. It follows that

µn(P) 6
∑

m6C(S)n

µn{Pm}+O(e−cn)

where Pm is the set of m-powers. We will then apply the group sieve lemma
to each Pm separately.

Now given m > 2, how many m-powers are there in SLd(Fp) ? If m is
co-prime to the order of SLd(Fp), then every element is an m-power. So
we wish to choose p in such a way that there are not too many m-powers.
For example, assume that p ≡ 1 mod m, so that m divides the order of
the multiplicative group of Fp, which is a cyclic group of order p − 1. In
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Z/(p − 1)Z there are precisely p−1
m multiples of m. So there are exactly

(p−1
m )d−1 m-powers in the subgroup of SLd(Fp) made of diagonal matrices,

which is a subgroup isomorphic to (Z/(p − 1)Z)d−1. In particular at least
(p−1)d−1

2 of the diagonal matrices are not m-powers. Among them at most

(p− 1)d−2 have two identical diagonal entries, i.e. at least (p−1)d−1

3 of them
(for p large) have distinct eigenvalues and thus a centralizer which is as small
as possible, that is equal to the full diagonal group. In each conjugacy class
of such a diagonal matrix, there are no more than d! other such matrices.
Taking the union of the conjugacy classes of these elements thus yields at
least |SLd(Fp)|/3d! different elements that are not m-powers. Thus we have
shown that for large p and any m > 2 with p ≡ 1 mod m

|{m-powers in SLd(Fp)| 6 (1− 1

3d!
)|SLd(Fp)|

To apply Lemma 7.5 need now choose a sequence of distinct primes
{pi}i=1,...,N with N of exponential size in n. We choose one sequence of
primes for each m 6 Cn. Dirichlet’s theorem ensures that there are in-
finitely many primes congruent to 1 mod m. More follows from the proof:
there is in fact a positive density of such primes among the primes. However
we need a uniform estimate as m is allowed to vary from 1 to n, while the
primes we sieve with will be of exponential size in n. We need that there
are exponentially many primes of exponential size congruent to 1 mod m
uniformly in m 6 Cn. So one needs a fairly precise quantitative version of
Dirichlet’s theorem: we need to know that the number π(x;m, 1) of primes
congruent to 1 mod m and less than x is at least say

√
x uniformly over all

moduli m 6 log x. The Siegel-Walfisz theorem says that the prime number
theorem in arithmetic progressions is accurate uniformly for values m going
up to (log x)A for any given A > 1. But it is non-effective in the sense that
the first x for which the estimate begins to be meaningful is not explicitly
computable in terms of A due to the possible presence of Siegel zeros. In
our case, we need only a much weaker lower bound on the number of such
primes and the estimate

π(x;m, 1) =
x

φ(m)
(1 +O(e−O((log x)1/5)))

holds uniformly for all m 6 (log x)3/2 with effective implied constants in
the big O’s, where φ(m) denotes the Euler function (see (7) on page 123 of

Davenport’s book [24]). In particular π(x;m, 1) >
√
x for all m 6 (log x)3/2

and x large enough.
We can now finish the proof of Theorem 7.8 (in our special case of Zariski-

dense subgroups of SLd(Z)). Let B = B(ε,D, α) > 0 be the constant
from the group sieve lemma (Lemma 7.5). Set α = 1/3d!, D = 2d2, and
ε = ε(S) > 0 is given by the super-strong approximation theorem (Theorem
6.4 for r = 2 primes). Given a large n, and some m 6 C(S)n, by the above
there are at least

√
x distinct primes congruent to 1 mod m and smaller
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than x := e2n/B. Pick a subset of roughly N = en/B of them, and apply
Lemma 7.5 to conclude that

µn(Pm) 6 e−n/B

for each m 6 C(S)n. The result follows.

Remark. In the proof we used an effective version of the prime number
theorem in progressions as opposed to the Siegel-Walfisz theorem, which is
non-effective. This has only some sense if all other constants involved are
indeed effective. The expander constant ε > 0 depends on the approximate
subgroup constant δ from Proposition 3.1. It is effective since all the alge-
braic geometry bounds used in Section 4 are effective, although not really
explicit (see in particular [80] where an attempt has been made to make
some of these constants more explicit). Finally the first prime starting from
which the super-strong approximation theorem holds is also effective as it
relies on Nori’s theorem (see the appendix of [31]) although far from explicit.
So it is fair to say that the rate of exponential decay in Theorem 7.8, though
effective, is far from explicit.

7.9. The generic Galois group is the Weyl group. Given a matrix in
SLd(Z), one may look at its characteristic polynomial and ask if it is irre-
ducible over Q. This amounts to say that the Galois group of the polynomial
acts transitively on the roots. More generally when is the Galois group equal
to the full group of all permutations of the roots ? when is it only a proper
subgroup ?

Prasad and Rapinchuk [77] have shown that given a Zariski-dense sub-
group Γ of SLd(Z), the subset of elements in Γ whose characteristic poly-
nomial is irreducible, or even has full Galois group, is itself Zariski-dense in
Γ, and even contains an entire coset of a certain finite index subgroup (see
[77, Remark 6]). They proved their result in a much greater generality (for
an arbitrary semisimple group) and we refer the reader to [78] and to the
excellent surveys [79] and [76, §9] for a description of their work and several
further interesting results on how to find many elements in Γ with various
constraints on their characteristic polynomial.

Their method is also based on the study of the mod p quotients of Γ. By
Jordan’s lemma (see below Lemma 7.11), the Galois group is maximal if and
only if it has elements from every conjugacy class of the symmetric group.
It is thus enough to find one prime number per conjugacy class for which
the associated Frobenius element modulo p is in that conjugacy class.

The same idea, this time combined with the group sieve lemma (Lemma
7.5) and the super-strong approximation theorem (Theorem 1.2), can be ap-
plied to show the following somewhat stronger result, due to Jouve, Kowalski
and Zywina [46], which asserts that, the set of elements in Γ whose charac-
teristic polynomial is not all of Sd is exponentially small in the above sense
of random walks: the probability that a random walk at time n hits this
subset decays exponentially with n. Note that combined with Theorem 7.2,
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this also implies that the subset of elements in Γ with full Galois group is
Zariski-dense.

Theorem 7.10. Let d > 2 and Γ = 〈S〉 6 SLd(Z) be a Zariski-dense
subgroup of SLd. Let as above µS denote the uniform probability measure
on the symmetric set S. Then there is c = c(S) > 0 such that for all n > 1,

µnS({γ ∈ Γ, Gal(γ) 6= Sd}) 6 e−cn.

Here Gal(γ) denotes the Galois group of the extension Kγ |Q, where Kγ is
the splitting field of the characteristic polynomial of γ and Sd denotes the
symmetric group of all permutations of d elements. In particular

µnS({γ ∈ Γ, πγ not Q-irreducible}) 6 e−cn

We also refer the reader to the earlier work of Rivin [83, 84] for related
statements and generalizations to other geometric contexts. And to the
subsequent work of Gorodnik and Nevo [32], which proves a similar result
(for arithmetic groups only) when counting with respect to a height function
of Md(Z) instead of the random walk average.

Theorem 7.10 was proved by Jouve, Kowalski and Zywina [46] in the
special case when Γ has finite index in SLd(Z). When [46] was written the
super-strong approximation theorem was still in limbo. Now that we have
Theorems 1.2 and 6.4 at our disposal, we can use them in the argument
from [46] and the whole proof goes through verbatim yielding Theorem 7.10
above. We give below the complete proof (see also [67]).

Jouve, Kowalski and Zywina proved their result in the wider generality of
arithmetic subgroups of arbitrary connected semisimple groups (see below).
Likewise, combined with the super-strong approximation, their argument
extends to all Zariski-dense subgroups. It remains an open problem however
to extend the Gorodnik-Nevo result to Zariski-dense subgroups.

In [67] Lubotzky and Rosenzweig extended these results to cover also
non-connected semisimple algebraic groups and showed the interesting phe-
nomenon that each coset of the connected component has its own generic
Galois group, which may be different from the Weyl group of the connected
component.

We now pass to the proof of Theorem 7.10.

Proof. The method is based on the following classical lemma of Jordan:

Lemma 7.11. (Jordan) Let G be a finite group and H a subgroup. If H is
a proper subgroup of G, then some conjugacy class of G is disjoint from H.

In other words, the only subgroup of G intersecting every conjugacy class
is G itself. Looking at the action by left translations on the set of left
cosets G/H, we see that the lemma is equivalent to the following assertion:
every transitive subgroup of Sd (d > 2) must contain a permutation with
no fix points. For the proof of this simple lemma and a number of pretty
applications to number theory, we refer the reader to Serre’s short note [93].



48 EMMANUEL BREUILLARD

We will apply this lemma with G = Sd and H = Gal(γ). Set Z := {γ ∈
Γ;Gal(γ) 6= Sd} and ZC := {γ ∈ Γ;Gal(γ) ∩ C = ∅}, where C denotes a
conjugacy class in the symmetric group Sd. A conjugacy class C of Sd is
given by a partition of d as d = d1 + . . . + dk for integers di > 1. Jordan’s
lemma then tell us that

Z =
⋃
C

ZC ,

where the union ranges over all conjugacy classes of Sd. Thus for proving
Theorem 7.10 it will suffice to show that each ZC is exponentially small. We
will apply the group sieve lemma (Lemma 7.5 above) to show precisely this.

As is well-known, to every prime p not dividing the discriminant of πγ , one
can associate a particular conjugacy class ofGal(γ), the Frobenius conjugacy
class Frobp(πγ). The prime ideals above p in the splitting field Kγ are
permuted transitively by Gal(γ). Each stabilizer subgroup is in bijection
with the Galois group of the reduced polynomial πγ mod p in Fp[X], which
is a cyclic group generated by the Frobenius element mapping x to xp in the
corresponding residue field extension Fp[X]/(πγ mod p). The corresponding
elements in each stabilizer (decomposition) subgroup form the conjugacy
class Frobp(πγ) in Gal(γ). The Frobenius element permutes the roots of πγ
mod p and its decomposition into a product of disjoint cycles corresponds
to the factorization

πγ mod p = πγ mod p = P1 · . . . · Pk
into irreducible polynomials in Fp[X] with one cycle of length deg(Pi) for
each i = 1, . . . , k. It determines a conjugacy class of Sd identified by the
partition of d given by d = deg(P1) + . . .+ deg(Pk).

Let C be a conjugacy class of Sd determined by a partition d = d1+. . .+dk
of d. From the above discussion, we see that if γ ∈ ZC and p is a prime, then
either the discriminant of πγ is divisible by p and γ mod p has a multiple
eigenvalue, or γ mod p is contained in the set of elements g ∈ SLd(Fp)
whose characteristic polynomial is without multiple roots (i.e. g is regular
semisimple) and whose factorization into irreducible polynomials in Fp[X]
determines a partition of d different from the partition associated to C.

The set of elements with a multiple eigenvalue (i.e. non regular semisim-
ple elements) forms a proper subvariety of SLd of bounded degree (it is
defined by the vanishing of the gcd of the characteristic polynomial and its
derivative). The Lang-Weil bound, or the easier Schwarz-Zippel estimate

(see [22]), allows us to assert that this set has size O(pd
2−2), while SLd(Fp)

has size at least Ω(pd
2−1), and is thus negligible. Consider now the second

set.

To apply the group sieve lemma (Lemma 7.5) to the set ZC , it thus
remains to show a uniform upper bound on the proportion of SLd(Fp) the
set of such elements can occupy. Or, equivalently, to prove a uniform lower
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bound on the size of the set Ωp,C of regular semisimple elements in SLd(Fp)
whose characteristic polynomial admits a factorization of the form dictated
by the partition of d associated to C.

It is easy to obtain such a lower bound. Every monic polynomial with con-
stant term (−1)d is the characteristic polynomial of some matrix in SLd(Fp),
e.g. the companion matrix of the polynomial. So, given C, just pick a poly-
nomial whose irreducible factors are distinct and whose degrees di’s are
such that d = d1 + . . . + dk is the partition associated to C. Let g be the
associated companion matrix. It belongs to Ωp,C and so do all its conju-
gates. It is a regular semisimple element of SLd(Fp) and thus it belongs
to a unique maximal torus T . All other regular semisimple elements in T
have the same associated partition of d, because they generate the same
commutative subalgebra of matrices over Fp. It follows that Ωp,C contains
∪g∈SLd(Fp)gT

regg−1, where T reg denotes the subset of regular elements in T
(i.e. with distinct eigenvalues). Hence

|Ωp,C | >
|SLd(Fp)|
|N(T )/T |)

− |{g ∈ SLd(Fp); g not regular semisimple }|,

where N(T ) is the normalizer of T . Now N(T )/T is the Weyl group of
SLd, thus isomorphic to Sd. As already mentioned the set of non regular
semisimple elements in SLd(Fp) is negligible (being of size O(|SLd(Fp)|/p)).
Hence |Ωp,C | > 1

2d! |SLd(Fp)| say when p is large enough.

To conclude the proof of Theorem 7.10, it remains to apply the group sieve
lemma (Lemma 7.5) to the sets ZC for each conjugacy class C of Sd and
to the group Γ with projection homomorphisms πi given by the reduction
modulo N primes pi of size at most N2 say, where N is chosen of size en/B,
with B = B(ε,D, α) > 0 is the constant given by Lemma 7.5 with D := 3d2,
α := 1/2d! say, and ε = ε(S) > 0 is given by the super-strong approximation
theorem for two primes (Theorem 6.4). This ends the proof.

In their paper Jouve, Kowalski and Zywina prove (the correct modified
version of) Theorem 7.10 in the more general setting where the ambient
group is a connected semisimple algebraic group defined (and not necessarily
split) over a number field. Again while they treated only arithmetic sub-
groups, because the super-strong approximation theorem was not available
to them, their method extends and applies to all Zariski dense subgroups.
This was worked out by Lubotzky and Rosenzweig [67], who also described
in full the most general situation, when the field of definition is only assumed
to be finitely generated over Q and, most interestingly, the algebraic group
may not be connected nor semisimple. Without reaching out for the greatest
generality, we will only state their theorem for split connected semisimple
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groups defined over a field of characteristic zero. In order to do so we first
give some background on the Galois action on tori (see also [76], [46]).

Let the ambient group G be a connected semisimple algebraic group de-
fined and split over some finitely generated field K of characteristic zero.
This means that G admits a maximal torus T0 which is defined and di-
agonalizable in any linear representation of G over K. To every regular
semisimple element g in G(K) corresponds the unique maximal K-torus Tg
it contains. A priori Tg is not diagonalizable over K, but there is a smallest
finite extension of K, the splitting field KTg of Tg such that Tg is conjugate
over KTg to the K-split (i.e. diagonalizable) torus T0. The Galois group
Gal(g) of the extension KTg |K acts on the group X(Tg) of characters of
Tg. The group X(Tg) is the free abelian group of rank r = rank(G) made
of algebraic homomorphisms from Tg to the multiplicative group Gm. The
Galois action of Gal(g) on XTg is via the formula

σ(χ(t)) = σχ(σ(t)).

This action is faithful and thus Gal(g) can be viewed as a finite subgroup
of Aut(X(Tg)) ' GLr(Z).

The Weyl groupW (Tg) := N(Tg)/Z(Tg) of Tg, whereN(Tg) is the normal-
izer and Z(Tg) = Tg the centralizer of Tg, can also be viewed as a subgroup
of Aut(X(Tg)) using the action by conjugation of the normalizer N(Tg),
namely

χ 7→ (t 7→ χ(n−1tn)),

for n ∈ N(Tg) and t ∈ Tg.
Under the identification, it turns out that Gal(g) becomes a subgroup of

the Weyl group W (Tg): indeed fixing a K-split maximal torus T0, there is

an element x ∈ G(K) such that Tg = xT0x
−1, because all maximal tori are

conjugate over the algebraic closure K of K. Now from the fact that Tg
is defined over K, we see that nσ := σ(x)x−1 belongs to N(Tg), and that
σχ(t) = χ(n−1

σ tnσ) for all t ∈ Tg. Recall that the isomorphism class of W (T )
is independent of T , it is the Weyl group WG of G. When G = SLd, then
WG ' Sd.

We can now state the theorem of Jouve, Kowalski and Zywina [46] in
the version proved by Lubotzky and Rosenzweig [67] (i.e. for Zariski-dense
subgroups over fields of characteristic zero and not merely arithmetic groups
over number fields).

Theorem 7.12. Let G be a connected semisimple algebraic group defined
and split over K, a finitely generated field extension of Q. Suppose Γ 6
G(K) is a Zariski-dense subgroup and µ a symmetric probability measure
whose support is a finite generating subset of Γ. Then there is c > 0 such
that

µn(γ ∈ Γ;Gal(γ) �W (Tγ)) 6 e−cn.
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Here again, this implies (via Theorem 7.2) that the set of elements γ with
Gal(γ) = W (Tγ) is Zariski-dense in Γ, a fact first established by Prasad and
Rapinchuk in [77].

The proof of Theorem 7.12 follows the same sieving argument as in the
special case of subgroups of SLd(Z) presented above. Using a specialization
argument Lubotzky and Rosenzweig reduce to the case when K is a number
field. Then the group sieve lemma together with the super-strong approxi-
mation theorem (applied to the reduction of scalars of G from K to Q, see
Remark 6.5) apply in a similar way.

If G is not split over the base field K, or if it is not connected, then the
theorem still holds, but the generic Galois group of an element γ may no
longer be the Weyl group (in the connected non split case, the Weyl group
appears only as a subgroup) and it will depend (only) on the coset of the
connected component of G it lives in. See [76], [46] and [67] for this and
further information about the generic Gal(γ).
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théorèmes de convergence. Z. Wahrsch. Verw. Gebiete, 69(2):187–242, 1985.

[36] R. M. Guralnick and P. H. Tiep. Decompositions of small tensor powers and Larsen’s
conjecture. Represent. Theory, 9:138–208 (electronic), 2005.

[37] H. A. Helfgott. Growth and generation in SL2(Z/pZ). Ann. of Math. (2), 167(2):601–
623, 2008.



APPROXIMATE SUBGROUPS AND SUPER-STRONG APPROXIMATION 53

[38] H. A. Helfgott. Growth in SL3(Z/pZ). J. Eur. Math. Soc. (JEMS), 13(3):761–851,
2011.

[39] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications.
Bull. Amer. Math. Soc. (N.S.), 43(4):439–561 (electronic), 2006.

[40] E. Hrushovski. Stable group theory and approximate subgroups. J. Amer. Math.
Soc., 25(1):189–243, 2012.

[41] E. Hrushovski, P. H. Kropholler, A. Lubotzky, and A. Shalev. Powers in finitely
generated groups. Trans. Amer. Math. Soc., 348(1):291–304, 1996.

[42] E. Hrushovski and A. Pillay. Definable subgroups of algebraic groups over finite
fields. J. Reine Angew. Math., 462:69–91, 1995.

[43] E. Hrushovski and F. Wagner. Counting and dimensions. In Model theory with ap-
plications to algebra and analysis. Vol. 2, volume 350 of London Math. Soc. Lecture
Note Ser., pages 161–176. Cambridge Univ. Press, Cambridge, 2008.

[44] J. E. Humphreys. Linear algebraic groups. Springer-Verlag, New York-Heidelberg,
1975. Graduate Texts in Mathematics, No. 21.
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