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Abstract: It follows directly from Shelah’s structure theory that if T is a
classifiable theory, then the isomorphism type of any model of T is determined
by the theory of that model in the language L∞,ω1(d.q.). Leo Harrington
asked if one could improve this to the logic L∞,ℵε(d.q.) In [Sh 04] S. Shelah
gives a partial positive answer, showing that for T a countable superstable
NDOP theory, two ℵε-saturated models of T are isomorphic if and only if
they have the same L∞,ℵε(d.q)-theory. We give here a negative answer to
the general question by constructing two classifiable theories, each with 2ℵ1

pairwise non-isomorphic models of cardinality ℵ1 which are all L∞,ℵε(d.q.)-
equivalent: a shallow depth 3 ω-stable theory and a shallow NOTOP depth
1 superstable theory. In the other direction, we show that in the case of
an ω-stable depth 2 theory, the L∞,ℵε(d.q)-theory is enough to describe the
isomorphism type of all models.
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1 Introduction

Shelah’s classification theory divides countable first order theories into two
classes, the “classifiable” theories and the “unclassifiable” ones, in terms
of certain precise properties of the theory (stability, superstability, NDOP,
NOTOP, ordinal depth).
The unclassifiable theories are shown to have models coding second-order
information, and as a consequence to have many non-isomorphic models in
all uncountable cardinalities. On the other hand the number of models of
classifiable theories is controlled by showing that any model is the prime
model over a free amalgam - along a tree - of countable models. This reduces
the structure of arbitrary models to that of countable models.

Many parts of the classification are stronger, in that they relate only
to finitely generated substructures and their algebraic closures, rather than
arbitrary countable structures. This led Leo Harrington to ask whether it
was possible to improve Shelah’s theory and to describe the models in terms
of such “finitary” substructures. We show here that this is not the case;
classifiability leaves the possibility of some residual but genuinely infinite set
theory in the isomorphism type of models.

In more precise language, we consider three different logics. We will
begin at the base with a complete, classifiable theory in a countable first-
order language. In particular the theory is superstable and we can define
dimension quantifiers; see [Sh 90, XIII,1.2, page 624]). Our three logics will
all include dimension quantifiers and permit sentences of arbitrary recursive
depth. The difference between them will be in the size of the sets one is
allowed to quantify over and, hence, in the size of the sets over which the
types whose dimension we consider are based : the logic L∞,ω(d.q.) allows
quantification over (enumerated) finite sets, the logic L∞,ℵε(d.q.) quantifies
over (enumerated) algebraic closures of finite sets and finally L∞,ω1(d.q.)
allows quantification over arbitrary (enumerated) countable sets.

Harrington’s question can now be phrased in the following way. It fol-
lows directly from Shelah’s structure theory ([Sh 82a], [Sh 82b], [Sh 85],
[BuSh 89]) that if T is a classifiable theory, then the isomorphism type of
any model of T is determined by the theory of that model in L∞,ω1(d.q.).
Can one improve this to the logic L∞,ℵε(d.q.)?

Alternatively, the question can be phrased in terms of back-and-forth
systems, i.e. of winning strategies in Ehrenfeucht-Fraisse games. If T is a
classifiable theory, two models of T are isomorphic if and only if there is
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a back-and-forth system of partial elementary isomorphisms with domains
the countable subsets and which respects dimensions of (regular) types over
countable subsets. Is it enough to have such a back-and-forth system of
partial elementary isomorphisms with domains the algebraic closures of finite
subsets and which respects dimension of types over such subsets (see section
1.1 for a precise definition)?

We will show in the positive direction that for ω-stable theories of depth
at most 2, L∞,ℵε(d.q.) does determine the isomorphism type. However in
general we show that the answer is negative even in the omega-stable world.
For superstable but not omega-stable theories, the answer can be negative
even in depth 1.

A different partial positive answer was given by S. Shelah in [Sh 04]. If
one considers only models whose Lω1,ℵε-theory is trivial (i.e. equals that of
the universal domain), the answer is positive. Indeed he proves that, if T is
a complete countable superstable theory with elimination of imaginaries and
NDOP, then any two ℵε-saturated models of T are isomorphic if and only if
they are equivalent for the Logic L∞,ℵε(d.q.).

We will construct two theories: in Section 3.1 we describe an ω-stable
NDOP theory with 2ℵ1 pairwise non isomorphic models of cardinality ℵ1,
which are all L∞,ℵε(d.q.)-equivalent. This theory is a minimal counterexample
in the following sense : it is a shallow theory of depth 3 and in Section 4
we show that the result holds in the case of ω-stable theories of depth 2. In
Section 3.2, we construct, along similar lines, a superstable theory, NDOP,
NOTOP, of depth 1 this time, again with 2ℵ1 pairwise non-isomorphic models
of cardinality ℵ1, which are all L∞,ℵε(d.q.)-equivalent.

Let us point out that, of course, in order for the logic L∞,ℵε(d.q.)to suffice
to describe the isomorphism type of models, it is essential to work in T eq, so
that types over algebraically closed sets are stationary.

Before launching ourselves into the somewhat lengthy descriptions of the
counterexamples, we will remark (section 1.2) that even in the ω-stable case,
the Logic L∞,ω(d.q.) cannot suffice, and one must quantify over algebraic
closures of finite sets and not just finite sets themselves.

First, let us state the precise definition of the back-and-forth which we
will take as our defintion of L∞,ε(d.q)-equivalence.
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1.1 ε-finite sets and L∞,ℵε
(d.q.)-equivalence

Let T (= T eq) be a complete superstable theory in a countable lan-
guage with elimination of imaginaries.
As usual, we suppose that we are working inside a monster model C of T
which is saturated and that all other models we consider are elementary sub-
structures of C of cardinality strictly smaller than |C|.

We are not going to give a precise syntactic definition of the logic L∞,ℵε(d.q.),
but just say a few words. Consider L∞,ℵε , which is strictly included in L∞,ℵ1 :
one is allowed arbitrary conjunctions and disjunctions but may quantify only
over countable sequences of variables which are contained in the algebraic
closure of a finite subset. More precisely one only allows formulas of the
form ∃x̄φ(x̄), for x̄ = (xi)i<α, for α < ω1, if they contain a sub-formula of
the form:

∃ȳ
∧
i<α

[(θi(xi, ȳ)) ∧ (∃<ℵ0z θi(z, ȳ))]

for some finite ȳ and the θi’s in Lω,ω. Then one should close under dimension
quantifiers (see [Sh 90], XIII, 1.2, p:624). But there are various difficulties
involved in such a definition, in particular in choosing how to define dimension
quantifiers, difficulties which we will avoid here, by taking as our definition
for L∞,ℵε(d.q.), the existence of the back-and-forth described below.

Definition: We say that a subset a of M is ε-finite if there is a0 finite,
a0 ⊆ a, such that a ⊆ acl(a0). Note that by superstability, if b ⊆ a for a an
ε-finite set, then b is also ε-finite .
We say that a is ε-closed if a is ε-finite and algebraically closed.
We say that p ∈ S(A) is an ε-type if p = t(a/A) for some enumerated ε-closed
set a, that is p = ((ai)i<ω), where a = {ai; i < ω} is ε-finite .
In our notation, we will make no difference between enumerated ε-finite sets
and finite tuples.

Definition: Let M, N be two models of T , and let c ⊆ M , c′ ⊆ N range
over enumerated ε-closed subsets.
We define by induction on ordinals α

(M, c) ≡ε
α (N, c′).
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• (M, c) ≡ε
0 (N, c′) if there is a partial elementary isomorphism f , from

M into N such that f(c) = c′ (i.e. if c and c′ realize the same type)

• for δ limit ordinal, (M, c) ≡ε
δ (N, c′) iff for every α < δ, (M, c) ≡ε

α (N, c′)

• (M, c) ≡ε
α+1 (N, c′) if (M, c) ≡ε

α (N, c′) and

– for any ε-type q over c, if E = {di; i ∈ I} is a maximal Morley
sequence in M for q, there is some E ′, maximal Morley sequence
in N for the type q′, conjugate of q over c′, and a one-to-one
correspondence h between E and E ′, such that for every i ∈ I,
(M, acl(dic)) ≡ε

α (N, acl(h(di)c
′))

– conversely, for any ε-type q′ over c′, if E ′ = {d′i; i ∈ I} is a maximal
Morley sequence in N for q′, there is some E, maximal Morley
sequence in M for the type q, conjugate of q′ over c, and a one-
to-one correspondence h′ between E ′ and E, such that for every
i ∈ I, (M, acl(d′ic)) ≡ε

α (N, acl(h′(d′i)c
′)).

We say that:

(M, c) ≡ε
∞ (N, c′) if (M, c) ≡ε

α (N, c′) holds for all ordinals α,

and that

M and N are ≡ε
∞-equivalent (M ≡ε

∞ N), if (M, acl(∅)) ≡ε
∞ (N, acl(∅)).

Lemma 1.1 First properties of the relation ≡ε
∞

Let M and N be two models of T , c ⊆ M , c′ ⊆ N , ε-closed , such that
(M, c) ≡ε

∞ (N, c′).
1) If q is any ε-type over c and if E = {di; i ∈ I} is a maximal Morley se-

quence in M for the type q, then there is some E ′, maximal Morley sequence
in N for the type q′, conjugate of q over c′, and a one-to-one correspondence h
between E and E ′, such that for every i ∈ I, (M, acl(dic)) ≡ε

∞ (N, acl(h(di)c
′)).

2) For any ε-closed d, c ⊂ d ⊂ M , there is d′ ⊂ N , c′ ⊂ d′, such that

(M, cd) ≡ε
∞ (N, c′d′).

Proof : 1) By definition for every ordinal α, there is some E ′
α maximal Morley

sequence in N for q′ and a one-to-one correspondence hα between E and E ′
α,

such that for every i ∈ I, (M, acl(dic)) ≡ε
α (N, acl(hα(di)c

′)). This is taking
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place in a fixed model N , hence for cardinality reasons, the same E ′
α and hα

must appear cofinally.
2) follows from the definition of ≡ε

∞ and 1). 2

Remark: We have chosen the above family of partial isomorphisms as rep-
resenting, in the context of superstable theories the logic  L∞,ε(d.q.). We do
not restrict ourselves, in the definition, to considering only types for which
there is a well defined notion of dimension (regular types). There are many
possible ways to define families of partial isomorphism which could describe
L∞,ℵε(d.q.). Shelah, in [Sh 04] fixes a set of apparently weaker conditions
which he then shows to be enough to actually give the full isomorphism
type for the class of ℵε-saturated models of classifiable theories in particular.
Similarly, when we prove the positive result, in the second half of this paper,
for the case of depth 2 ω-stable theories, we use a back-and-forth which is
apparently weaker than the one described in this section.

1.2 Finite sets do not suffice

It is easy to see (and not very surprising) that the introduction of infinite
countable sets which are contained in the algebraic closure of finite sets (or
in other words the introduction of strong types) is unavoidable when dealing
with models of superstable not ω-stable theories. In the case of ω-stable
theories the finiteness of the number of strong types over finite sets might
lead one to think that there could be a really finitary description, at least for
ℵ0-saturated models, that is, that, in fact, the Logic L∞,ω(d.q.) might suffice.
It is not the case either.

To see that for superstable not ω-stable theories the Logic L∞,ω(d.q.) does
not suffice, consider the theory T of infinitely many equivalence relations
(En)n<ω where each En has exactly 2n classes and En+1 refines each En-
class into 2 infinite classes. Working in T eq means that we have names for
the equivalence classes in the algebraic closure of the empty set. Say that
xE∞y if xEny for every n < ω. Given a model M , choose an enumeration
of acleq(∅) = {aη : η ∈

⋃
n<ω 2n} with the obvious conditions that aηˆ0

and aηˆ1 are the two En+1-classes refining the En-class aη. Then assign to
M the map fM from 2ω to cardinals smaller or equal to the cardinality
of M , fM(ν) := |{x ∈ M : x ∈ aν(n), for all n < ω}|. Then M and N are
isomorphic if and only if there is a permutation σ of 2ω such that fN = σ◦fM .
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But suppose κ is any uncountable cardinal and M and N are two models
such that

– for every n, every En-class has cardinality κ,
– every E∞ class which is realised in the model has cardinality κ and the

set of E∞-classes realised in the model is dense in 2ω.
It is easy to check that M and N are L∞,ω(d.q.) equivalent, noting that

in this theory, for every type, the dimension is just the cardinality of the set
of realisations. But M and N need not be isomorphic.

Here is now an ω-stable example. Consider a structure M with infinitely
many sorts: Q,Rn for n ∈ ω. There is for each n a map gn from Rn onto
Q, such that for each n the inverse images of the elements of Q in Rn are
pairwise disjoint and infinite; for a ∈ Q and n < ω we denote by Rn(a) the
inverse image of a by gn. For each n, there is an equivalence relation En on
Rn, with two infinite classes such that, for each a ∈ Q, En divides Rn(a) into
two infinite sets. The theory of M is ω-stable, ω-categorical, NDOP, shallow
of depth 2. In particular all models are ℵ0-saturated. Consider the set of
models of cardinality ℵ1 where Q has cardinality ℵ1, for each n and for each
a ∈ Q Rn(a) is divided by En into one countable set and one of cardinality
ℵ1. In such a model, after fixing for each n a bijection between Rn/En and
{0, 1} := 2, one can associate to each element a in Q an element s(a) in
2ω: if the classes of En are denoted C(n, 0) and C(n, 1), then s(a)(n) = 0
iff C(n, 0) ∩ Rn(a) is countable. Suppose furthermore that in our models,
for each s ∈ 2ω, if there is some a ∈ Q such that s = s(a) then there are
ℵ1 many such a’s. Then one can check that if M and N are models such
that {s(a); a ∈ Q(M)} and {s(a); a ∈ Q(N)} are dense in 2ω, M and N are
equivalent for the logic L∞,ω(d.q.). In fact, then, for each n, the truncated
models Mn = Q(M) ∪ R0 ∪ . . . ∪ Rn and Nn are isomorphic. But in order
for M and N to be isomorphic, S(M) = {s ∈ 2ω; ∃a ∈ Q(M) s = s(a)} and
S(N) must be equal up to coordinate-wise permutations of 2ω.

2 Preliminaries

2.1 Dimensional Order Property and Depth

We give only basic definitions and properties. The reader is referred to
[Sh 90], [Ba],[Ha 87], [HaMa 85],[La 87], where complete or partial exposi-
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tions can be found.
Let T be a complete countable superstable theory. When we talk of p ∈

S(A) being regular or strongly regular, we always mean that p is stationary.

Definition: 1) We say that T does not have the Dimensional order property,
or that T has NDOP if for all A, B1, B2, C, with A ⊂ B1 ∩ B2, B1 and B2

independent over A, B1∪B2 ⊆ C and for all regular type p ∈ S(C), if p is not
orthogonal to B1 ∪B2, then p is not orthogonal to B1 or p is not orthogonal
to B2.

2) Let T have NDOP, let p ∈ S(A) be regular. We define the depth of p,
denoted d(p), by induction:

- d(p) ≥ 0,
- if β is a limit ordinal, d(p) ≥ β if for all α < β, d(p) ≥ α,
- d(p) ≥ α + 1 if there is a realizing p, C ⊇ A ∪ {a} and q ∈ S(C), q

orthogonal to A but not orthogonal to A ∪ {a}, with d(q) ≥ α.
We let d(p) = ∞ if d(p) ≥ α for all ordinals α. Otherwise we let d(p) = α
where α is the first ordinal such that d(p) ≥ α and d(p) 6≥ α + 1.
The depth of T , d(T ) is defined to be the sup{d(p) + 1; A ⊆ M, M |= T, p ∈
S(A)}. If d(T ) = ∞ we say that T is deep, otherwise we say that T is shallow.

3) We say that T has the Omitting types order property (OTOP) if there is
a type p(x̄, ȳ, z̄) such that for every ordinal λ and every binary relation R on
λ, there is a model M of T and (āα)α<λ in M such that: for any α < β < λ,
the type p(āα, āβ, z̄) is realized in M iff αRβ.

If T has NDOP, then the class of ℵε-saturated of T is classifiable, that
is admits a good class of isomorphism invariants. If T is ω-stable and has
NDOP, then the class of all uncountable models of T is classifiable. If T (su-
perstable not ω-stable) has NDOP and NOTOP (does not have the OTOP),
then the class of all uncountable models of T is classifiable.
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3 The counterexamples

3.1 An ω-stable depth 3 theory

We are going to construct in stages a complete ω-stable theory T , with
NDOP, shallow of depth 3 and with 2ℵ1 non-isomorphic models of cardinality
ℵ1 which are all ≡ε

∞- equivalent.
Notation : if X is a sort or a relation of arity k in in our language, and if M
is a structure for this language, we denote by X(M) the set {m̄ ∈ Mk; M |=
X(m̄)}.

3.1.1 First language and axioms

We describe a first language L0 with finitely many sorts, and a first theory
T0 in L0, complete, ω-stable, NDOP and shallow of depth 2.
In L0 we have three sorts E, C, A, a map r0 from A to E × C, a binary
relation R ⊂ C × C, a ternary relation g ⊂ C × C × E, and finally a 5-ary
relation f ⊂ E × C × C × A× A.
If M is an L0-structure, M will be a model of T0 if M satisfies the following
first-order conditions, (1) to (5):

1. R is irreflexive, symmetric, and has no closed cycles.

2. E(M) is infinite. For each c ∈ C(M), g(c, y, z) induces a bijection,
which we denote gc, between the set of vertices adjacent to c in C(M)
in M (i.e. the set {y ∈ C(M); M |= R(c, y)}) and E(M), such that
if R(c, c′) holds, then gc(c

′) = gc′(c). If gc(c
′) = e we will say that the

edge between c and c′ has label e.
This gives rise to an induced action on C(M) of the free group on
E(M) with relations {e2 = 1, e ∈ E(M)}, which is sharply transitive
on orbits, if we let for e ∈ E(M), c = ec′ iff R(c, c′) and g(c, c′, e).

3. The map r0 is surjective from A(M) onto E(M)×C(M) and such that,
if A(e, c) denotes r0

−1(e, c), then all the A(e, c)′s are infinite.
This says that A(M) is an infinite cover of E(M)× C(M).

4. For each e ∈ E(M), for every distinct c, c′ ∈ C(M), f(e, c, c′, y, z),
induces a bijective map, denoted fecc′ , from A(e, c) to A(e, c′), such
that (fecc′)

−1 = fec′c.
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5. We must now say how the maps fecc′ behave with respect to composi-
tion, for fixed e ∈ E(M). We want that if two products of the fecc′ ’s
and their inverses (with same domain and range) are not formally equal
modulo the relations

(fecc′)
−1 = fec′c

then they should differ on every element of the domain. This is an
infinite scheme of axioms.

We will be using the following notation: if c1, c2, . . . , cn is an n-tuple from
C(M), then we denote by j(e, c1, . . . , cn) the map from A(e, cn) to A(e, c1),
(fec2c1 ◦ · · · ◦ fecncn−1). Note that for any n + 1-tuple c0, c1, . . . , cn from C,
then j(e, c0, c1, . . . , cn, c0) is a permutation of A(e, c0).

We leave it to the reader to check that this first theory T0 is a consistent
complete ω-stable theory, NDOP, shallow of depth 2. More precisely, we have
two orthogonal types over the empty set, E(x) and C(x). If M is a model of
T0, if e, c ∈ E(M)×C(M), we have the type “x ∈ A(e, c)′′, over ec, which is
orthogonal to c, but, by the existence of the maps fecc′ ’s, is not orthogonal
to e.
Any two elements of C(M) are independent if and only if they are not in
the same connected component for the graph structure, the type C(x) has
U -rank equal to ω. We call the C-dimension of M the number of components
in the graph structure on C(M) . The type E(x) is trivial of U -rank one and
its dimension is equal to its cardinality. For c0 ∈ C(M), the dimension of the
type “x ∈ A(e, c0)

′′ (which is also trivial of rank one) is equal to the number
of orbits in M modulo the action of the group generated by the permutations
j(e, c0, c1, . . . , cn−1, c0).

We are going to extend the language and the theory in stages, and at the
last stage we will explicitly construct a model of the final theory (see Claim
3.5).

We will now consider an extension of the language,

L1 = L0 ∪ {B} ∪ {r1(x)} ∪ {pi(x, y), qi(x, y); i < ω} ∪ {γi(x, y, z, z′); i < ω}

where B is a new sort, r1 is a map from B to A, pi, qi ⊂ A × B and γi ⊂
A×A×B×B. Let M be an L1-structure, model of T0. We add the following
conditions :
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1. B(M) is an infinite cover of A(M), that is, r1 is a surjection such that
for each a ∈ A(M), r−1

1 (a), denoted B(a), is infinite.

2. for each a ∈ A(M), for every i < ω, pi(a, M), qi(a, M) ⊂ B(a) and the
pi(a, M), qi(a, M)’s are all infinite and pairwise disjoint.

3. if e ∈ E(M), c, c′ ∈ C(M) distinct, a ∈ A(e, c) and a′ = fecc′(a),
γi(a, a′, z, z′) induces a bijective map, denoted γi,aa′ , from [(pi(a, M) ∪
qi(a, M)] onto [pi(a

′, M) ∪ qi(a
′, M)].

For each i < ω, either γi,aa′ maps pi(a, M) onto pi(a
′, M) and qi(a, M)

onto qi(a
′, M), or γi,aa′ makes a switch, that is, it maps pi(a, M) onto

qi(a
′, M) and qi(a, M) onto pi(a

′, M).
We require that γi,a′a = γi,a′a, and that ***!!!!! completeness

Now, for a ∈ A(e, c), and a′ = fecc′(a), we will arrange that the choice
of whether γi,aa′ makes the switch or not, depends exclusively on part of the
type of (ecc′) in M .
For this we need some more notation :
Let us fix some e in E(M). For any distinct c, c′ ∈ C(M), let d(c, c′) be the
distance between c and c′ in the graph structure on C(M) if c and c′ are
in the same component, and infinity otherwise. If d(c, c′) < ∞, let de(c, c

′)
denote the e-distance between c and c′, that is, the number of edges with
label e on the path between between c and c′ (recall that if c and c′ are
adjacent in C(M), i.e. if R(c, c′), then the edge between c and c′ has label e
if gc(c

′) = gc′(c) = e). Now let δe(c, c
′) be equal to 2d(c, c′)− de(c, c

′) if c and
c′ are in the same component. The following can be checked easily:

• If c and c′ are distinct elements of C(M) in the same component, then:
2 de(c, c

′) ≤ (d(c, c′) + 1) (because e2 = 1 or, equivalently, two adjacent
edges must have different labels); δe(c, c

′) = δe(c
′, c) and δe(c, c

′) ≥
d(c, c′) ≥ 1.

• For each n ≥ 1, and for each c ∈ C(M) there is some c′ ∈ C(M) such
that δe(c, c

′) = n.

We add the following condition (an infinite scheme of first-order sen-
tences):
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4. for every e ∈ E(M), for all c, c′ ∈ C(M), for all a ∈ A(e, c), if a′ =
fecc′(a), then for i < ω,

(a) if i + 1 < d(c, c′), then γi,aa′ maps pi(a, M) to pi(a
′, M) (i.e. there

is no switch)

(b) if d(c, c′) is finite, then

• for i < (δe(c, c
′) − 1), γi,aa′ maps pi(a, M) to pi(a

′, M) (i.e.
there is no switch)

• for i ≥ (δe(c, c
′) − 1), γi,aa′ maps pi(a, M) to qi(a

′, M) (i.e.
there is a switch)

Let M be an L1-structure, we say that M is a model of T1 if it is a model
of T0 and satisfies the above conditions (1) to (4).
Note that, by 4.(a) if M is a model of T1, and c, c′ in C(M) are not in the
same component, for each e ∈ E(M), each a ∈ A(e, c), if a′ = fecc′(a), then,
for each i < ω, γi,aa′ does not make the switch.

We leave the following claim to the reader:

Claim 3.1 The theory T1 is complete, ω-stable, NDOP, shallow of depth 3.
More precisely, if M is a model of T1, if (e, c) ∈ E(M)×C(M), if a ∈ A(e, c),
then the types pi(a, x) and qi(a, x), defined over aec, are trivial types of U-
rank one which are orthogonal to ec. Hence the type “y ∈ A(e, c)” has depth
1, and the type E(x) has depth 2.

From now on we will consider only models M of T1 of C-dimension
1, that is such that C(M) consists of only one R-component.

Definition and notation: For convenience, we denote by γa,a′ the union of
the definable maps γi,aa′ , for i < ω. And rather than γaa′ , we will consider
the permutation it induces on the set of pairs {(pi, qi) : i < ω}. So we attach
to each map γaa′ an element of ((Z/2Z)ω, +), s[γaa′ ] : if γaa′ maps pi(a, M)
to pi(a

′, M), we let s[γaa′ ](i) = 0, and if γaa′ maps pi(a, M) to qi(a
′, M), we

let s[γa,a′ ](i) = 1.

Condition (4) above now becomes:

• for i < δe(c, c
′)− 1, s[γaa′ ](i) = 0

• for i ≥ δe(c, c
′)− 1, s[γaa′ ](i) = 1.

12



In fact, if a1, a2 ∈ A(e, c), and a′1 = fecc′(a1), a′2 = fecc′(a2), then s[γa1a′1
] =

s[γa2a′2
], as the switching depends only on ecc′ in M . Hence we can forget

about the choice of a1, a2 and denote

s[γa1a′1
] = s[γa2a′2

] = s[e, c, c′](= s[e, c′, c]).

Any composition j(e, c0, c1, . . . , cn) will induce a map γaa′ between B(a) and
B(a′), for a′ = j(e, c0, c1, . . . , cn)(a). The corresponding permutation of the
pairs (pk, qk), which we denote by s[e, c0, c1, . . . , cn] is equal to s[e, cn, cn−1] +
· · ·+ s[e, c2, c1] + s[e, c1, c0].

Now, for e ∈ E(M), let Γ(e) denote the subgroup of (Z/2Z)ω generated
by {s[e, c, c′]; for distinct c, c′ ∈ C(M)}. Fix any c0 ∈ C, let Γ0(e, c0) denote
the subgroup of Γ(e) generated by

{s[e, c0, c1, . . . , ck, c0]; for all c1, . . . , ck ∈ C(M), for all k < ω}.

We also leave the checking of the following claim to the reader:

Claim 3.2 Let M be a model of T1 of C-dimension one.

• For each e ∈ E(M),

Γ(e) = {s ∈ (Z/2Z)ω;∃n < ω, ∀m,m ≥ n, s(m) = s(n)}.

• For each e ∈ E(M) and each c0 ∈ C(M), for any c1, c2, . . . , cn ∈ C(M),
(s[e, c1, c2]+s[e, c3, c4]+· · ·+s[e, cn, cn+1]) ∈ Γ0(e, c0) iff

∑n
k=1 δe(ck, ck+1)

is even.

• For each e ∈ E(M) and each c0 ∈ C(M), Γ0(e, c0) is a subgroup of
index 2 of Γ(e).

It follows in particular that Γ(e) does not depend on e, that Γ0(e, c0) does
not depend on e, c0, and that they are also independent of the choice of the
model M , as long as M has C-dimension one. Hence from now on, we will
use the notation Γ and Γ0.

We will from now on restrict our attention to a certain class of models of
T1.
Definition: Let M be a model of T1. We say that M is a one-dimensional
model of T1 of cardinality ℵ1, if it satisfies the following conditions (a) to
(e):

13



• (a) E(M) has cardinality ℵ1

• (b) M has C-dimension one, that is, all elements of C(M) are in one
R-component for the graph structure on C(M)

• (c) for every (e, c) in E(M) × C(M), A(e, c) has dimension one, that
is, consists of just one orbit modulo the action of the group generated
by the permutations {j(e, c, c1, . . . , ck, c), c1, . . . , ck ∈ C(M)}

• (d) for every (e, c) in E(M)×C(M), for every a ∈ A(e, c) and for each
i < ω, either

– pi(a, M) has cardinality ℵ0 and qi(a, M) has cardinality ℵ1

– or pi(a, M) has cardinality ℵ1 and qi(a, M) has cardinality ℵ0.

• (e) for every a ∈ A(M), B(a) =
⋃

i<ω(pi(a, M) ∪ qi(a, M)).

Condition (d) enables us to describe the induced action of the s[e, c, c′]’s
on the pairs (pk, qk) in a particularly convenient way : fix some e ∈ E(M).
By (d), for any c ∈ C(M), we can associate to each element a ∈ A(e, c) an
element v[a] in (Z/2Z)ω in the following way

v[a](n) = 0 iff the cardinality of pn(a, M) is ℵ0.

It is easy to check that if a, a′ ∈
⋃

c∈C(M) A(e, c), and a′ = j(e, c1, . . . , cm)(a),

then v[a′] = v[a] + s[e, c1, . . . , cm].
We can now add another condition on the class of models we want to consider:

• (f) for every (e, c) ∈ E(M)×C(M), for every a ∈ A(e, c), v[a] ∈ Γ (i.e.
v(a) is eventually constant, by Claim 3.2).

Definition: We say that a model M of T1 is a Γ-model if it is one-
dimensional of cardinality ℵ1, and satisfies condition (f).

Claim 3.3 Let M be any one-dimensional model of T1 of cardinality ℵ1.

• Condition (f) is equivalent to : for each e ∈ E(M), there is some
c0 ∈ C(M) and some a0 ∈ A(e, c0), such that v[a0] ∈ Γ

14



• Let v1 ∈ Γ \ Γ0 and let V (e, c) denote the following subset of (Z/2Z)ω,

V (e, c) = {v[a] ; a ∈ A(e, c)}.

Then V (e, c) = Γ0 or V (e, c) = v1 + Γ0.
If c, c′ ∈ C(M), and δe(c, c

′) is odd, then

V (e, c) = Γ0 iff V (e, c′) = v1 + Γ0.

If δe(c, c
′) is even (in particular if de(c, c

′) = 0), then V (e, c) = V (e, c′).

Proof of the Claim : For any other a′ in A(e, c0), then a′ = j(e, c0, c1, . . . , c0)(a0)
by condition (c). So, as remarked above, v[a′] = v[a0] + s[e, c0, c1, . . . , c0],
that is, v[a′] must be in v[a0] + Γ0. For any a′ ∈ A(e, c′), with c′ 6= c0,
then there is some a′′ ∈ A(e, c0) such that a′ = fec0c′(a

′′) . This means that
v[a′] = v[a′′] + s[e, c0, c

′], hence v[a′] ∈ Γ. Then condition (f) above says that
for all e, c, either V (e, c) = Γ0 or V (e, c) = v1 + Γ0 for v1 ∈ Γ \ Γ0. The last
statement is clear by Claim 3.2. 2

3.1.2 The example with infinitely many sorts

Now we can finally get to the theory we want to consider. We consider a
language L with infinitely many sorts :

E, (Cj)j<ω, (Aj)j<ω, (Bj)j<ω.

For each j < ω, the restriction of our models to the sorts E, Cj, Aj, Bj is a
model of T1, and there is no other link between any of the sorts. We call this
theory T2.

Let us denote by Resn the restriction of the language L to the sorts
E, Cn, An, Bn and, if M is a model of T2, M(Resn) = E(M) ∪ Cn(M) ∪
An(M) ∪ Bn(M), in particular for each n, M(Resn) is an L1-structure that
satisfies T1. It is straightforward to check the following:

Lemma 3.4 Let M, N be models of T2, let e1, . . . , ek,∈ E(M), and for each
n, let dn be a finite tuple, dn ⊂ M(Resn) \ E(M), e′1, . . . , e

′
k,∈ E(N) and

d′n ⊂ N(Resn) \ E(N). Then

(M, e1, . . . , ek, d0, . . . , dn, . . .) ≡ (N, e′1, . . . , e
′
k, d

′
0, . . . , d

′
n, . . .) (in L)
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if and only if, for every n,

(M(Resn), e1, . . . , ek, dn) ≡ (N(Resn), e′1, . . . , e
′
k, d

′
n) (in L1).

The theory T2 is complete, ω-stable, NDOP and shallow of depth 3.

Definition: We say that a model M of T2 is a Γ-model if, for each j < ω,
the restriction of M to the sorts E, Cj, Aj, Bj is a Γ-model of T1.

For convenience we may use the notation A(M) for the union of the
Aj(M)’s or B(M) for the union of the Bj(M)’s. We will also consider the set
B(a) = Bj(a) , for a ∈ Aj(M), or the set A(e, c) = Aj(e, c) where e ∈ E(M)
and c ∈ Cj(M), if there is no risk of ambiguity.

We can associate to each Γ-model M of T2 a quasi-invariant in the fol-
lowing way :
for each i < ω, for each couple (e, ci) ∈ E(M) × Ci(M) let ∆(e, ci) ∈ {0, 1}
be defined in the following way (V (e, ci) is defined as in Claim 3.3):

• ∆(e, ci) = 1 if V (e, ci) = Γ0

• ∆(e, ci) = 0 if V (e, ci) 6= Γ0.

Now if, for each sort Ci, we fix an element ci ∈ Ci(M), then, to each element
e ∈ E(M), we can associate an element ∆(e) ∈ 2ω (depending on the chosen
sequence (ci)i∈ω) by setting : ∆(e)(i) = ∆(e, ci). Given e and ∆(e), we know
what V (e, c′i) must be for any other c′i ∈ Ci(M), by Claim 3.3, hence we
know ∆(e, c′i) .
Given a sequence (ci)i∈ω the above induces an associated map ∆ from E(M)
into 2ω.

Claim 3.5 Given any subset of 2ω of cardinality ℵ1, F , there is a Γ-model
M of T2, and a choice of sequence (ci)i∈ω in M , such that if ∆ denotes the
associated map, then ∆(E(M)) = F .

Proof of the Claim : Take E a set of cardinality ℵ1, and any surjective map
∆ from E onto F . Fix some i ∈ ω.
Take Ci a set of cardinality ℵ1 also, on which the free group on E, with
relations e2 = 1 for all e, acts regularly. Let Ai be again of cardinality ℵ1.
Choose ri, a map from Ai onto E × Ci such that for all (e, c) ∈ E × Ci, the
r−1
i (e, c)’s are of cardinality ℵ1. As before denote r−1

i (e, c) by A(e, c).
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We must now construct the maps fecc′ ’s. Pick one element c0 ∈ Ci. Fix
some e ∈ E. For each cα 6= c0 in Ci, pick a bijection between A(e, c0) and
A(e, cα), this will be fec0cα . Let fecαc0 = (fec0cα)−1. Now let G be the free
group on ℵ1 generators, G generated by {gαβ : 0 < α < β < ℵ1}. Let G
act regularly on the set A(e, c0), which so far has no structure. We decide
that the permutation j(e, c0, cα, cβ, c0) will act on A(e, c0) like gαβ. This
determines fecαcβ

for all α < β,

fecαcβ
= (fec0cβ

◦ gαβ ◦ fecαc0).

It is fairly straightforward to check that these maps behave as they should.
For each a ∈ A, let B(a) again be a set of cardinality ℵ1, B(a) will be the
union of pairs (pk(a, x), qk(a, x)), for k < ω, such that for each k, exactly one
of pk(a, x) or qk(a, x) will have cardinality ℵ1 and the other, cardinality ℵ0.
Pick some v0 in Γ0, and some v1 in Γ\Γ0. Fix some a in A(e, c0). Recall that
we denoted by v[a] the element of Γ associated to a in the following way:

v[a](n) = 0 iff the dimension of pn(a, x) is ℵ0.

If ∆(e)(i) = 0, then let v[a] = v0, if ∆(e)(i) = 1, let v[a] = v1. By using
the above correspondence between v[a] and the cardinalities of the pk(a, x)’s,
this determines completely the way B(a) is constructed. For any other a′ ∈
A(e, c), for any c ∈ Ci, by Claim 3.3, v[a′] is determined, and hence also
B(a′).
We follow the same construction for every e ∈ E, and then for every i ∈ ω.
It is clear that we get a model M of T2, with all the right properties, ∆ being
the map associated to the sequence (c0i

)i<ω, c0i
∈ Ci. 2

Claim 3.6

1. If M and N are Γ-models of T2, then M and N are isomorphic if and
only if there are sequences (ci)i<ω in M , and (di)i<ω in N , such that
the corresponding maps ∆ from E(M) to 2ω, and ∆′ from E(N) to 2ω

commute in the following sense : there exists a bijection f from E(M)
to E(N) such that ∆ = (∆′ ◦ f).

2. If M is a Γ-model of T2, (ci)i<ω and (di)i<ω are sequences such that, for
each i < ω, ci, di ∈ Ci(M), then there exists at most countably many
elements e ∈ E(M) such that for some i, ∆(e, ci) 6= ∆(e, di).
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3. If M and N are two isomorphic Γ-models of T2, with associated maps
∆M and ∆N , then the symmetric difference between ∆M(E(M)) and
∆N(E(N)) is countable.

Proof of the Claim : 1) One direction is obvious. For the converse, in order,
given the bijection f , to construct the isomorphism, it suffices to note that
as we have a regular action of the free group generated by E(M) modulo
{e2 = 1; e ∈ E(M)} on each Ci(M), then, if one lets f(ci) = di, there is a
unique way to extend f to each Ci(M) which respects the action. Similarly as
∆(e, f(c)) = ∆(f(e), d), choose some a ∈ A(e, ci), and some a′ ∈ A(f(e), di)
such that v[a] = v[a′], let f(a) = a′, there again is only one way to extend f
to the whole of A(e, c), and then to the other A(e, c′)’s, by Claim 3.3, and
this way works.
2) Fix an i < ω. Recall that Ci(M) consists of just one component. By
Claim 3.3 again, if ∆(e, ci) 6= ∆(e, di), this means that there is an edge with
label e on the path between ci and di. This happens only for finitely (at most
d(ci, di)) many distinct e ∈ E(M).
3) This is a direct consequence of 1) and 2). 2

Now let us add one more (and last) restriction to our class of models. We
want to consider only Γ-models, together with a choice of (ci)i∈ω, such that
the associated map ∆ satisfies:

• (g) ∆(E) is an ℵ1-dense subset of 2ω , that is, for every open subset O
in 2ω, O ∩∆(E) has cardinality ℵ1.

Note that condition (g) holds of Γ-models independently of the choice of
the sequence (ci)i∈ω, by Claim 3.6.
Definition: We say that a Γ-model of T2 is good if it satisfies condition (g).

We are going to prove that :

Proposition 3.7 Any two good Γ-models of T2 are ≡ε
∞-equivalent .

There are 2ℵ1 non-isomorphic good Γ-models of T2.

The second statement follows directly from Claims 3.5 and 3.6 and the fact
that there are 2ℵ1 ℵ1-dense subsets of 2ω, of cardinality ℵ1, which pairwise
have uncountable symmetric difference.

It remains only to prove the ≡ε
∞-equivalence.
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Claim 3.8 1. For any Γ-model M , for any e1, . . . , en in E(M), for any
i < ω, for any choice of ε1, . . . , εn in {0, 1}, there is c ∈ Ci(M) such
that, for all k, 1 ≤ k ≤ n, ∆(ek, ci) = εk.

2. Let ∆ : E → 2n, ∆′ : E ′ → 2n have the following properties:

• E and E ′ have cardinality ℵ1

• for each s ∈ 2n, ∆(s)−1 and ∆′(s)−1 have cardinality ℵ1.

Let e1, . . . , ek ∈ E and e′1, . . . , e
′
k ∈ E ′ be such that for all i, 1 ≤ i ≤ k,

∆(ei) = ∆′(e′i).
Then there is a bijection f from E to E ′ such that

for all i, 1 ≤ i ≤ k, f(ei) = e′i and ∆ = (∆′ ◦ f).

Proof of the Claim : straightforward. 2

Notation : For n < ω, let Ln denote the restriction of our language with
infinitely many sorts to the first n sorts, that is to

E, (Ci)i≤n, (Ai)i≤n, (Bi)i≤n.

If M is a model of T2, let Mn denote the restriction of M to the language
Ln.

Remark: If M and N are good Γ-models of T2, then for all n, Mn and Nn

are isomorphic: for each i ≤ n, pick some ci ∈ Ci(M), and some di ∈ Ci(N).
Let ∆ from E(M) in 2n be defined by ∆(e)(i) = ∆(e, ci), and ∆′ from E(N)
in 2n be defined by ∆′(e) = ∆(e, di). By Claim 3.8, there is a bijection f
from E(M) onto E(N) such that ∆ = (∆′ ◦ f). Now exactly the same proof
as in Claim 3.6, but restricted to Mn and Nn gives the isomorphism.
But having such isomorphisms is not enough a priori to conclude that M and
N are ≡ε

∞. For this we need these isomorphisms to be “finitely compatible”.
This is exactly what the next proposition says.

Proposition 3.9 Let M , N be good Γ-models of T2. Let n < ω and let
D ⊂ Mn be a definably closed countable subset such that D ∩E(M) is finite.
Let h be a partial Ln-elementary isomorphism from Mn to Nn with domain
D such that:

19



• if e ∈ D ∩ E(M), c ∈ D ∩ Ci(M), for some i ≤ n, then ∆(e, c) =
∆(h(e), h(c))

• if e ∈ D∩E(M), c ∈ D∩Ci(M), for some i ≤ n, and a ∈ D∩A(e, c),
then v[a] = v[h(a)].

Then, for all k ≥ n, h extends to a full isomorphism from Mk onto Nk.

Note that if h is the restriction to D of a full isomorphism between Mn

and Nn, then certainly the two conditions in the above proposition are sat-
isfied. Note also that it follows from the above proposition that, if h and D
satisfy the assumptions, then D and h(D) must have same type in M and
N respectively, that is (M, D) ≡ε

0 (N, h(D)).

Proof of Proposition 3.9 : Note first that by the condition that D is definably
closed, if a ∈ Ai ∩ D, a ∈ Ai(e, c), then e ∈ D and c ∈ D. Similarly, if
b ∈ Bi ∩D, b ∈ Bi(a), then a ∈ D.
For each i ≤ k pick some ci,0 ∈ Ci(M) and some di,0 ∈ Ci(N) in the following
way:

1. if D ∩ Ci(M) 6= ∅, pick any c ∈ D ∩ Ci(M), this will be ci,0, and let
di,0 = h(ci,0)

2. if D ∩ Ci(M) = ∅, pick any element ci,0 in Ci(M). As D ∩ E(M) is
finite, by Claim 3.8, find di,0 ∈ Ci(N) such that for each e ∈ D∩E(M),
∆(e, ci,0) = ∆(h(e), di,0).

Now, again by Claim 3.8, extend h|E(M) ∩D
to a bijection f from E(M)

onto E(N) such that

for each i ≤ k, ∆(e, ci,0) = ∆(f(e), di,0).

Now let f |D = h, f(ci,0) = di,0, for all i ≤ k.

Note that as the action of the group generated by E(M) is regular, there is
a unique way to extend f to each Ci(M) which respects this action. As D
was supposed definably closed, all this is coherent.
Now for each e ∈ E(M), each i ≤ k, choose some ai in A(e, ci,0) ∩ D if
there is one, any ai ∈ A(e, ci,0) if there is not. Let f(ai) = h(ai) if ai ∈ D.
Otherwise by the condition that ∆(e, ci,0) = ∆(f(e), f(ci,0), find some a′i ∈
A(f(e), f(ci,0)) such that v[ai] = v[a′i], and let f(ai) = a′i.
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For every i ≤ k, by the existence of the fecc′ ’s there is a unique way to extend
f in an elementary way (for the theory T1) to

⋃
e∈E(M),c∈Ci(M) A(e, c).

By Claim 3.3, it will follow that for all a ∈ A(e, c), v[a] = v[f(a)]. It
follows that, for all a, for all j < ω, pj(a, M) (respectively qj(a, M)) has
same cardinality as pj(f(a), N) (respectively qj(f(a), N)). Hence it is easy
to extend f to B(a), in such a way that f coincides with h on B(a)∩D and
is Lk-elementary. 2

Recall that a set D is said to be ε-closed if D = acleq(D0), for some finite
D0.
We now need to see how ε-closed sets behave in our models.

Claim 3.10 Let M be a good Γ-model of T2.

1. If D ⊂ M eq is ε-closed , then there is n < ω and D0 ⊂ Mn, D0 finite,
such that D ⊂ M eq

n , and in M eq
n , D = acleq(D0).

2. E(M) is an indiscernible set over ∅. If D ⊂ M eq, is ε-closed , then
E0 = D ∩ E(M) is finite and E(M) \ E0 is indiscernible over D.

3. If D ⊂ M eq
n is ε-closed, there is some D1 ⊂ M , countable such that

D ⊆ dcleq(D1), and dcl(D1) ∩ E(M) is finite.

Proof of the Claim : 1) This is clear by the way the theory T2 is defined.
2) By Lemma 3.4, the type of a subset of E(M) is determined by its respec-
tive types in the restrictions M(Resn). In each M(Resn), E(M) is a strongly
minimal trivial set where any two elements are independent. This remains
true in the full model M , and the rest follows.
3) As D is ε-closed , D = acleq(F0) for some finite F0 ⊂ Mn. Suppose to
simplify notation that n = 0. Choose some c0 ∈ C0(M) ∩ acl(F0) if there
is one, any c0 ∈ C0(M) otherwise. Let D0 = acl(F0c0). We claim that
D ⊆ dcleq(D0). By 2) E0 = E(M) ∩D0 is finite. Let z be an element of D.
Then there is some finite tuple y ∈ M0 such that z ∈ dcleq(y). Consider the
possible cases for y:

- y ⊂ E(M), and y 6⊂ E0. Then z ∈ dcleq(E0 ∪ {e1, . . . , ek} \ dcleq(D0)),
with ej /∈ E0, for 1 ≤ j ≤ k. This is impossible: by 2) E(M) \ E0 is
indiscernible over D0, in particular any two k-tuples in E(M) have the same
type over acleq(D0) and z ∈ acleq(D0).
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- y ⊂ E(M) ∪ C(M). For each c ∈ C(M), there is a unique sequence
(e1, . . . , ek) in E(M), definable over {c0, c}, such that c = (e1 . . . ek)c0. Hence
z ∈ dcleq(E0 ∪E1 ∪ {c0}) \ dcleq(D0), for some E1 ⊂ E(M). By the previous
case, z /∈ dcleq(E0 ∪ E1). Consider, for each e ∈ E0 ∪ E1, some element
a(e) ∈ A(e, c0). Then e, c0 ∈ dcl(a(e)), hence z ∈ dcleq(D0 ∪ {a(e); e ∈
E0 ∪ E1} \ dcleq(D0). Again this is impossible: any two a, a′ in A(e, c0) and
not in acl(D0) have the same strong type over D0, hence the same type over
acleq(D0).

- the other cases are worked out similarly. 2

Claim 3.11 Let M and N be two good Γ-models of T2. For all ordinals α, if
A ⊂ M eq

n , A′ ⊂ N eq
n , A, A′ ε-closed, are such that there is an Ln-isomorphism

f from M eq
n to N eq

n , such that f(A) = A′, then (M eq, A) ≡ε
α (N eq, A′).

Proof of the Claim : By Claim 3.10, there is some A1 ⊂ Mn countable
such that A ⊆ dcleq(A1), A1 is definably closed in Mn, and A1 ∩ E(M)
is finite. Let A′

1 = f(A1); then by Proposition 3.9, for every k, f�A1 ex-
tends to an Lk-isomorphism from Mk onto Nk. It follows that for every k,
(M eq

k , dcleq(A1)) ≡ε
0 (N eq

k , dcleq(A′
1)) and hence that

(M eq, A) ≡ε
0 (N eq, A′).

We now proceed by induction on α. The limit case is clear. Consider α + 1.
Let q be any ε-type over A, and d any realization of q. By Claim 3.10, there
is some m ≥ n such that acleq(Ad) ⊂ M eq

m . Consider fm the isomorphism of
Lm extending f�A. Consider E = {di; i ∈ I} a maximal Morley sequence in
Mm for q, and E ′ = fm(E). Then by induction, for every i ∈ I,

(M eq, acleq(Adi) ≡ε
α (N eq, (A′fm(di)).

It is also clear by Prop. 3.9 that E and E ′ remain maximal Morley sequences
in M eq for q and fm(q) respectively. By definition of ≡ε

α, it follows that
(M eq, A) ≡ε

α+1 (N eq, A′). 2

Now in order to prove Proposition 3.7, just take any isomorphism from
M0 to N0. By the previous claim, we have

(M eq) ≡ε
∞ (N eq).

Remark: It is easy to see that the assumption that the models M and N are
of C-dimension one is essential in what we did. It might in fact be true for
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all ω-stable theories T that if one restricts oneself to “infinite dimensional”
models of T , these are isomorphic if and only if they are equivalent for ≡ε

∞,
where a model M is said to be infinite dimensional if for all A ⊂ M eq, A
ε-closed, for all q ∈ S(A), strongly regular, if q is realized in M , then it has
infinite dimension in M .

3.2 A superstable NOTOP nonmultidimensional
theory

This second example is based on the same principle as the previous one,
hence our account of the construction will be less detailed than the first one.
The main difference with the previous example is that here some of the group
actions present in the previous one become definable. As before, we begin
by a description of the language and the basic axioms and then we construct
the models we work with.

3.2.1 First language and axioms

We start with the same three sorted language L0 as in the previous example:

L0 = {E, C, A, r0, R, g, f}

and consider L0-structures M satisfying the first four conditions 1) to 4)
listed at the beginning of the first section.
So we have an action on C of the free group on E with relations {e2 =
1; e ∈ E(M)}, acting sharply transitively on orbits, in the language where,
for e ∈ E(M), c, c′ ∈ C(M),

c = ec′ iff R(c, c′) and g(e, c, c′).

A(M) is a cover of E(M)×C(M) via the map r0, with infinite fibers, denoted
A(e, c).
For each e ∈ E(M), for every distinct c, c′ ∈ C(M), we have a bijective map
fecc′ from A(e, c) to A(e, c′), with (fecc′)

−1 = fec′c. Before we say how the
maps fecc′ behave with respect to composition, we need to introduce more
structure.
We increase our language to

L2 = L0 ∪ {F, +F , G, +G, h, (in)n≥3, t, (Gn)n<ω}
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where F and G are new sorts, +F ⊂ F 3, +G ⊂ G3, h is a map from E ×C [2]

into F (C [2] denotes the 2-elements subsets of C) , in ⊂ E × F × G, t ⊂
E × C ×G× A× A and for each n, Gn ⊂ G.

We add the following axioms :

5. (F (M), +F ) is an Abelian group of exponent 2.

We want F (M) to contain the free Abelian group of exponent 2 gener-
ated by E(M)× C [2](M).
We express this in the language via the map h, with an infinite scheme
of axioms :

6. h is injective and Im(h) is an independent subset in F (M).

Now, for n ≥ 3, for e ∈ E(M), let F (n, e) denote the following definable
subset of F (M)

{h(e, c0, c1) + h(e, c1, c2) + · · ·+ h(e, cn−1, cn);

c0, . . . , cn ∈ C(M), c0 = cn, ci 6= cj for 0 < i < j ≤ n}.

For convenience we will denote by Fω(M) the (non-definable) subgroup
of F (M) generated by (

⋃
n≥3, e∈E F (n, e)).

7. (G(M), +G) is an Abelian group of exponent two.

8. For each n ≥ 3, in induces a map denoted in,e from F (n, e) into G(M)
which is one-to-one and such that

⋃
n≥3, e∈E in,e induces a one-to-one

group homomorphism from the subgroup Fω(M) into G(M).

9. for each e ∈ E(M), for each c ∈ C(M), t induces a definable regular
action, denoted tec, of the group G(M) on the set A(e, c).

We will denote the groups F (M) and G(M) additively and use the
usual additive notation for the affine G-sets A(e, c)’s.
Now we can say that:

10. for each (e, c, c′) ∈ E(M)×C(M)×C(M), the map fecc′ is an isomor-
phism of G-sets between A(e, c) and A(e, c′).
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Following the notation we used in the previous example, if c1, c2, . . . , cn

is an n-tuple from C(M), we denote by j(e, c1, . . . , cn) the map from
A(e, cn) to A(e, c1), (fec2c1◦· · ·◦fecncn−1). For any n-tuple c0, c1, . . . , cn−1

from C(M), then j(e, c0, c1, . . . , cn−1, c0) will be a permutation of A(e, c0).
Now we link the action of these permutations to the action of G(M).
We say that :

11. for each e ∈ E(M) and each c0, c1, . . . , cn−1 ∈ C(M), the permutation
j(e, c0, c1, . . . , cn−1, c0) acts on A(e, c0) like the translation by the fol-
lowing element of G(M):
in,e(h(e, c0, c1) + h(e, c1, c2) + · · ·+ h(e, cn−1, c0)).

12. For each n ≥ 0, Gn(M) is a subgroup of G(M) of index 2 in G(M), such
that the Gn(M)’s are independent, i.e. such that every finite boolean
combination of the Gn(M)’s is non empty.
This gives us in (L2)eq for each n ≥ 0 the projection πn from G(M)
onto G/Gn(M). We will denote by π the map (π0, π1, . . . , πn, . . .) from
G(M) onto

∏
n≥0 G/Gn which is isomorphic to (Z/2Z)ω.

Now we work with the language L2 together with the sorts G/Gn and the
maps πn, for n ≥ 0.
We need to increase the language once more to L3 , where we add , for each
n ≥ 0, γn ⊂ E × C × A× (G/Gn).
We add that :

13. for each (e, c) ∈ E(M) × C(M), γn induces a map denoted γn
e,c from

A(e, c) onto G/Gn(M) such that:
for all a ∈ A(e, c), for all g ∈ G(M), γn

e,c(g + a) = πn(g) + γe,c(a)

Now it remains only to describe the way in which the maps fecc′ compose
with the maps γn

e,c and γn
e,c′ .

As in Section 1, we make this dependent only on the type of (e, c, c′) in the
graph structure induced by E on C. We introduce the same notation as
before : let us fix some e in E. For any c, c′ ∈ C, let d(c, c′) denote the
distance between c and c′ in the graph structure on C, if c and c′ are in
the same component, and infinity otherwise. If d(c, c′) < ∞, let de(c, c

′)
denote the e-distance between c and c′, that is, the number of edges with
label e on the path between between c and c′. Now let δe(c, c

′) be equal to
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2d(c, c′)− de(c, c
′) if c and c′ are in the same component.

We say that:

14. for all e ∈ E(M), for all c, c′ ∈ C(M), for all a ∈ A(e, c), if a′ = fecc′(a),
then

(a) if i + 1 < d(c, c′), then γi
e,c′(a

′) = γi
e,c(a)

(b) if d(c, c′) is finite, then

• for i < (δe(c, c
′)− 1), γi

e,c′(a
′) = γi

e,c(a)

• for i ≥ (δe(c, c
′)− 1), γi

e,c′(a
′) = γi

e,c(a) + 1.

Note that this implies that if c and c′ are not in the same component, then
γi

e,c′(a
′) = γi

e,c(a) for all i ≥ 0. We denote by γe,c the map (γ0
e,c, . . . , γ

n
e,c, . . .)

from A(e, c) onto (Z/2Z)ω.
For e, c, c′ ∈ E(M)× C(M)× C(M), with c, c′ in the same component , we
define s[e, c, c′] ∈ (Z/2Z)ω, by :
- s[e, c, c′](i) = 0 if i < (δe(c, c

′)− 1)
- s[e, c, c′](i) = 1 if i ≥ (δe(c, c

′)− 1).
Then the conditions above, for d(c, c′) finite can be denoted as

γe,c′(fecc′(a)) = γe,c(a) + s[e, c, c′].

It follows that if a, a′ ∈ A(e, c0), and a′ = j(e, c0, c1, ..., cn−1, c0)(a), then

γe,c0(a
′) = γe,c0(a0) + (s[e, c0, c1] + s[e, c1, c2] + · · ·+ s[e, cn−1, c0]).

We say that an L3-structure M is a model of T0 if M satisfies all
the above conditions 1) to 13).

We leave the actual construction of a model of T0 until a little later (Prop.
3.15).
For the moment, we will check that T0 is superstable NOTOP non multi-
dimensional by describing the invariants which characterize models up to
isomorphism.

3.2.2 Structure of models of T0

Let M be any model of T0.
Let Dim(C(M)) denote the number of R-components of C(M).
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The group F (M) is Abelian of exponent 2 and by the map h, contains a copy
F̂ (M) of the free Abelian group of exponent 2 generated by E(M)×C [2](M).
Hence F (M) = F̂ (M) ⊕ F ′(M), for some subgroup F ′(M) and, given the
cardinalities of E(M) and C(M), the isomorphism type of F (M) is given by
the dimension of F ′(M).
The group G(M) contains an isomorphic copy of Fω(M), by the maps in,e,
which we denote by Gω(M), G(M) = Gω(M) ⊕ G′(M), for some subgroup
G′(M) . The dimension of G(M) is given by the dimension of G′(M), given
Fω(M), which again is determined by the cardinalities of E(M) and C(M).

Claim 3.12

• (i) Let us fix some c0 ∈ C(M), and for each e ∈ E(M), some a(e) ∈
A(e, c0). Then for each c ∈ C(M), and each a ∈ A(e, c), γe,c(a) is
determined by π(G), d(c, c0), de(c, c0) and γe,c0(a(e)).

• (ii) For each g ∈ Gω, for each n ≥ 0, if g = ik,e(h(e, c′0, c
′
1) + · · · +

h(e, c′k−1, c
′
0)), then πn(g) = s[e, c′0, c

′
1] + · · ·+ s[e, c′k−1, c

′
0].

Proof of the Claim : By the axioms we have given, if a ∈ A(e, c0), there is
g ∈ G such that a = g + a(e) and we must have, for each n,

γn
e,c0

(g + a(e)) = πn(g) + γn
e,c0

(a(e)).

Now if a ∈ A(e, c) for some c ∈ C, c 6= c0, there is some a′ ∈ A(e, c0) such
that a = fec0c(a

′) = fec0c(g + a(e)) for some g ∈ G. It follows that

γn
e,c(a) = πn(g) + γn

e,c0
(a(e)) + s[e, c0, c](n).

This proves (i).
If g ∈ ik,e(F (k, e)), i.e. g = ik,e(h(e, c′0, c

′
1) + · · ·+ h(e, c′k−1, c

′
0)), then for any

a ∈ A(e, c′0), we must have both :

γn
e,c′0

(g + a) = γn
e,c′0

(j(e, c′0, . . . , c
′
k−1, c

′
0)(a))

= γn
e,c′0

(a) + (s[e, c′0, c
′
1](n) + · · ·+ s[e, c′k−1, c

′
0](n))

and
γn

e,c′0
(g + a)) = πn(g) + γn

e,c′0
(a).

Hence π(ik,e(h(e, c′0, c
′
1)+ · · ·+h(e, c′k−1, c

′
0))) = s[e, c′0, c

′
1]+ · · ·+s[e, c′k−1, c

′
0].

This proves (ii). 2
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Proposition 3.13 Let M and N be two models of T0. If c0 ∈ C(M), d0 ∈
C(N), for each e ∈ E(M), a(e) ∈ A(e, c0), for each e′ ∈ E(N), a(e′) ∈
A(e′, d0) are such that

• |E(M)| = |E(N)|, Dim(C(M))= Dim(C(N)), Dim(F ′(M)) = Dim(F ′(N)),

• (G′(M), (Gn∩G′(M))1<n<ω
∼= (G′(N), (Gn∩G′(N))1<n<ω, (as groups)

• for each s ∈ (Z/2Z)ω,
|{e ∈ E(M); γe,c0(a(e)) = s}| = |{e′ ∈ E(N); γe,d0(a(e)) = s}|,

then M and N are isomorphic.

Proof : This follows in a straightforward fashion from the previous claim. 2

It follows that, in cardinality ℵα, the number of non-isomorphic models

of T0 is bounded by |ω + α|22ω

.
The theory T0 is superstable non-ω-stable and by the above bound on the
number of models must be NOTOP non-multidimensional.

3.2.3 One-dimensional models of T0

We now construct a certain type of model of T0 which we are going to need.
First some notation, as in Section 1: let M be a model of T0 with C-dimension
one.
Let Γ denote the subgroup of (Z/2Z)ω generated by {s[e, c, c′]; for c, c′ ∈
C(M)}. Let Γ0 denote the subgroup of Γ generated by

{s[e, c0, c1]+s[e, c1, c2]+· · ·+s[e, ck, c0]; for all c0, c1, . . . , ck ∈ C(M), k ≥ 2}.

As in Section 1 (Claim 3.2), these do not depend on e nor on M as long as
C(M) is one-dimensional, Γ0 is a subgroup of index 2 of Γ, and, if δe(c, c

′)=
1, then s[e, c, c′] 6∈ Γ0. Note also that Γ0 is dense in (Z/2Z)ω.
By Claim 3.12, π(Gω) = Γ0.

Definition 3.14 Let M be a model of T0. We say that M is one-dimensional
if it satisfies the following:

• E(M) has cardinality ℵ1
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• C(M) has dimension one , i.e. is just one component

• F (M) is the free Abelian group of exponent 2 on E × C [2]

• G(M) = Fω

• for each e ∈ E(M), for each c ∈ C(M), γe,c(A(e, c)) = Γ0 or γe,c(A(e, c)) =
s1 + Γ0, for s1 ∈ Γ \ Γ0.

Proposition 3.15

• The theory T0 has one-dimensional models.

• If M and N are two one-dimensional models of T0, then M and N are
isomorphic iff there are c0 ∈ C(M) and d0 ∈ C(N) such that
|{e ∈ E(M); γe,c0(A(e, c0)) = Γ0}| = |{e′ ∈ E(N); γe′,d0(A(e′, d0)) =
Γ0}|
and
|{e ∈ E(M); γe,c0(A(e, c0)) = s1+Γ0}| = |{e′ ∈ E(N); γe′,d0(A(e′, d0)) =
s1 + Γ0}|.

• If M is a one-dimensional model of T0, if c, c′ ∈ C(M), then
|{e ∈ E(M); γe,c(A(e, c)) 6= γe,c′(A(e, c′))}| is finite.

Proof : We will just prove the first statement, that is construct a one-
dimensional model of T0.
The second statement then follows by Claim 3.13, and the third one is
straightforward.
Take E an infinite set of cardinality ℵ1, C a set on which the free group on
E with relations {e2 = 1; e ∈ E} acts regularly. Let F = F̂ i.e. the free
Abelian group of exponent 2 generated by E × C [2]. Take G = Fω = Gω,
hence G = {(e, c0, c1) + · · ·+ (e, cn−1, c0); e ∈ E, c0, . . . , cn−1 ∈ C}.
For g ∈ G, of the form above, let πi(g) = s[e, c0, c1](i) + · · ·+ s[e, cn−1, c0](i)
and let Gi = ker(πi). It is straightforward to check that:

Claim 3.16 For each i ≥ 0, [G/Gi] = 2, and the Gi’s are independent.

Now choose some c0 ∈ C. For each e ∈ E, let G act regularly on A(e, c0),
pick some a(e) ∈ A(e, c0), hence A(e, c0) = G + a(e). Let {ci; i < ℵ1} be an
enumeration of C. Choose for fec0ci

any bijection from A(e, c0) into A(e, ci).
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Let G act on A(e, ci) by the action induced by this bijection.
For i < j, the permutation j(e, c0, ci, cj, c0) must be the translation by
(e, c0, ci) + (e, ci, cj) + (e, cj, c0) in G. This determines the G-sets isomor-
phism fecicj

for all i < j,

fecicj
= fec0cj

◦ j(e, c0, ci, cj, c0) ◦ fecic0 .

Now choose for each e ∈ E, γe,c0(a(e)) in the group Γ. Then extend γe,c0 and
define γe,ci

as required by the axioms in T0 (Claim 3.12). It is straightfor-
ward to check that M = (E, C, F,G) as described above is a model of T0.

Let s1 be some element of Γ not in Γ0. The proof of the next claim is
exactly similar to that of Claim3.3.

Claim 3.17

• For any e ∈ E(M), for any c ∈ C(M), either γe,c(A(e, c)) = Γ0

or γe,c(A(e, c)) = s1 + Γ0.

• If c, c′ ∈ C(M) and δe(c, c
′) is odd, then γe,c(A(e, c)) = Γ0 iff

γe,c′(A(e, c′)) = s1 + Γ0.
If δe(c, c

′) is even, then γe,c(A(e, c)) = γe,c′(A(e, c′)).

This finishes the proof of the proposition. 2

3.2.4 The example with infinitely many sorts

Now, again as in the first example, we pass to a language with infinitely
many sorts:

E, (Ci)i<ω, (Ai)i<ω, (Fi)i<ω, (Gi)i<ω.

For every i < ω the restriction of our models to the sorts E, Ci, Ai, Fi, Gi is a
model of T0, and there is no other link between any of the sorts. This theory,
which we denote T1 is again superstable NOTOP non multidimensional.

We say that a model M of T1 is one-dimensional if its restriction to the
sorts E, Ci, Ai, Fi, Gi is a one-dimensional model of T0 for every i < ω.

To each one-dimensional model M of T0 and to each choice (ci)i<ω with
ci ∈ Ci(M) for each i, we associate a map ∆[M, (ci)i<ω] from E(M) to 2ω in
the following way:

∆[M, (ci)i<ω](e)(i) = 0 iff
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γe,ci
(a) ∈ Γ0 for some (any) a ∈ Ai(e, ci).

Now the proof that T1 satisfies the right properties with respect to the
language L∞,ε(d.q.) is similar to the first example and we leave it to the
reader.

Proposition 3.18

• Let M, N be one-dimensional models of T1 such that ∆(E(M)) and
∆(E(N)) are ℵ1-dense in 2ω.

1. If M and N are isomorphic, then the symmetric difference between
∆(E(M)) and ∆(E(N)) must be countable.

2. The models M and N are ≡ε
∞-equivalent.

• Given any ℵ1-dense subset of 2ω of cardinality ℵ1, D, there is a one-
dimensional model M of T1 such that if ∆ denotes the associated map,
then ∆(E(M)) = D.

This finishes the second counterexample.

4 The depth 2 case

The ω-stable example we constructed in the first section has depth 3. Here
we show that this is minimal possible. Recall the definition of ≡ε

∞-equivalent
from section 1.1

Proposition 4.1 Let T be a countable ω-stable theory, NDOP, shallow of
depth 2. Let M, N be two models of T . Then M and N are isomorphic if
and only if they are ≡ε

∞-equivalent.

If T has depth 1 (T is then said to be non-multidimensional), it is easy
to check that the above proposition holds.

We always suppose that T = T eq and in particular types over algebraically
closed sets are stationary. As usual, we are working inside a “monster” satu-
rated model for T , such that all models we consider are elementary submodels
of this monster model .
Notation : If p ∈ S(A) is stationary, and if C ⊆ A ⊆ B, pB denotes the
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unique non-forking extension of p over B and p�C the restriction of p to C.

We will assume that the reader is familiar with notions like strong regu-
larity, orthogonality, dimension and basic consequences of NDOP which can
be found for example in [Ba], [La 87] or [Sh 90].
Nevertheless we recall briefly the specific basic facts about strongly regular
types and depth 2 theories which we will use constantly:

Facts 4.2 Let T be any ω-stable theory.

1. Let M be a model of T , A ⊂ M , A algebraically closed, C, C ′ ⊂ M ,
such that t(C/A) = t(C ′/A). Let q ∈ S(C) be a strongly regular type,
and let q′ denote the conjugate of q over C ′.
If q 6⊥ A, then q 6⊥ q′ and dim(q, M) = dim(q′, M).

2. Let M � N be models of T , A ⊂ M , p ∈ S(A) strongly regular. Then

if I is a Morley sequence for p in N , I |̂
p(M)A

M , where p(M) denotes

the set of realizations of p in M .
Moreover, dim(p, N) = dim(p, M) + dim(pM , N).

Facts 4.3 Let T be countable ω-stable, NDOP, shallow of depth 2.

1. If M is a model of T , and N is a prime model over Mā, if p is a
strongly regular type over N , p ⊥ M , then p 6⊥ Mā.

2. Let M � N be models of T , let E ⊂ N be a maximal independent
set of realizations of strongly regular types over M . For each e ∈ E,
let M(e) � N be a prime model over Me and let Be be a maximal
independent set of realizations of strongly regular types over M(e), each
orthogonal to M .
Then N is prime over (

⋃
e∈E M(e)) ∪ (

⋃
e∈E Be).

From now on T is a countable ω-stable theory.

We need to introduce some definitions:

Definition: Let p ∈ S(C) be strongly regular.
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1. We say that p is persistently isolated if p is isolated and for all finite D,
pCD remains isolated.

2. We say that p ∈ S(C) is good if p is either persistently isolated or not
isolated.

3. Let B ⊂ A ⊆ C, C atomic over A. We say that p is good for (A, B) if
p 6⊥ A, p ⊥ B and p is good.

Lemma 4.4 1). Let M be a model of T . Let q ∈ S(M) be strongly regular.
If A ⊂ M is such that q does not fork over A and is stationary over A, then
there exists some finite F ⊂ M such that q�A∪F is good.
2). Let q ∈ S(A) be strongly regular, let M be prime over A, then q is
persistently isolated iff the dimension of q in M is countably infinite.

Proof : 1). We can suppose that M is prime over A and that q�A is isolated
but not persistently isolated.
We show that in this case the dimension of q�A in M is finite. We can then
take F to be a basis (i.e. maximal independent set of realizations) for q�A in
M .
So suppose the dimension of p = q�A is infinite in M . Let D finite in some
extension of M be such that pD ∈ S(AD) is not isolated. Let N be a model
prime over AD, without loss of generality M � N . Let I be an infinite basis
for p in M ; then by finite weight, there must be some element in I, e such
that e and D are independent over A, but then e realizes pD, contradicting
the fact that pD is not isolated over AD.
Note that this also gives the second statement of the lemma. 2

Lemma 4.5 Let A be countable, let N be a model of T containing A. Then
there is a prime model over A, M � N satisfying the following condition: let
q ∈ S(M) be strongly regular not orthogonal to A and let B, A ⊆ B ⊆ M ,
B \A finite be such that q does not fork over B and q�B is stationary. If the
dimension of q�B in N is infinite countable then M contains a basis for q�B,
i.e. the dimension of q in N is zero.

Proof : We first check that we can suppose that the model N is countable:
consider all the strongly regular types over N which are not orthogonal to A,
there are only countably many up to pairwise orthogonality. For each class,
choose a representative q and some set Dq, A ⊆ Dq ⊆ N , Dq \A finite, such
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that q does not fork over Dq and q�Dq is stationary. If the dimension of q�Dq

is countable in N , choose Jq a basis for it in N . Note that the countability
of this dimension does not depend on the actual choice of Dq. Take a prime
model N ′ over A, the D′

q’s and the Jq’s, N ′ � N ; N ′ is countable. Now
suppose we have proved the lemma above for N ′ instead of N . Then the
prime model M � N ′ satisfying the conditions will also work for N : if
p ∈ S(M) is not orthogonal to A, it must be not orthogonal to one of the
chosen representatives q and then the dimensions of pN ′

and qN ′
in N must

be equal.
Hence we suppose that N is countable. Consider M maximal atomic

over A in N , and suppose it does not satisfy the conditions in the lemma.
Then let e be a realization of q not in M , we will show that Me is still
atomic over A, contradicting the maximality of M . Let B ⊂ M satisfy the
conditions in the lemma and let c be any finite subset of M . Then q�Bc still
has infinite countable dimension in N and is still persistently isolated. Let
J be an infinite basis for q�Bc in M by lemma 4.4. Then for any a in J , aBc
is atomic over A. Now for almost all a ∈ J , a and e have the same type over
Bc, because q is the average of J . Hence for all finite c ⊂ M , ec is isolated
over A, i.e. Me is still atomic over A. 2

Lemma 4.6 If B ⊂ A ⊆ C ⊆ D, p ∈ S(C) is strongly regular good, D \ C
finite and D is atomic over C, then :

1. pacl(D) is good

2. if p is good for (A,B), then pacl(D) is good for (A,B)

3. if p is not isolated , if M is a model of T , M ⊃ acl(D), and if I is
a Morley sequence for p in M , then I remains a Morley sequence for
pacl(D).

4. if p is isolated, then pacl(D) is isolated, and if M is any model of T
containing acl(D), then Dim(pacl(D); M) is infinite.

Proof : 1) and 2) are clear : suppose that p is isolated, then by definition
of good, pacl(D) is still persistently isolated. If p is non isolated, then pacl(D)

remains not isolated by non-forking.
By non-forking also, it is clear that if p is good for (A, B), then pacl(D) remains
good for (A, B).
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3) Let M0 � M be a model atomic over C, containing D. As p is not isolated,
it is not realized in M0. Let I ⊂ M be a Morley sequence in p. Then by 4.2,
I remains a Morley sequence for pM , hence also for pacl(D).
4) As p is isolated, it is realized in M . Now let J be any finite Morley
sequence for p, in M . As p is good, pJ is still isolated, hence realized in M ,
and J cannot be maximal. 2

Recall that we say that A is ε-closed if for some finite A0 ⊆ A, A = acl(A0).
For convenience, we define some equivalence relations ≡1 and ≡2 which iso-
late the parts of ≡ε

∞ relevant to depth two theories.

Definition: Let M, N be models of T

1. Let D ⊆ M , D′ ⊆ N range over enumerated ε-closed sets which are
atomic (over ∅). Let e ∈ M , with t(e/D) strongly regular, and e′ ∈ N .

We say that

(
e
D

, M

)
≡1

(
e′

D′ , N

)
if

• t(acl(eD)) = t(acl(e′D′)), that is, there is an elementary isomor-
phism f , from D to D′, and an elementary isomorphism f ′, from
acl(eD) onto acl(e′D′), such that f ′ extends f and f ′(e) = e′.

• for all C ⊆ M , C ⊇ acl(eD), C ε-closed, C atomic over acl(eD),
there is C ′ ⊆ N such that :

(a) t(Cacl(eD)) = t(C ′acl(e′D′)), that is, there is an elementary
isomorphism g from C onto C ′, g � acl(eD) = f ′

(b) for every strongly regular q ∈ S(C), q good for (acl(eD), D),
if q′ = g(q) is the conjugate of q over C ′, dim(q, M) =
dim(q′, N).

• for all C ′ ⊆ N , C ′ ⊇ acl(e′D′), C ′ ε-closed, C ′ atomic over D′e′,
there is C ⊆ M such that:

(a) t(Cacl(eD)) = t(C ′acl(e′D′))

(b) for every strongly regular q′ ∈ S(C ′), q′ good for (acl(e′D′), D′),
if q denotes the conjugate of q′ over C, dim(q, M) = dim(q′, N).

2. Let C ⊆ M and C ′ ⊆ N range over enumerated ε-closed and atomic
(over ∅) sets.
We say that (C, M) ≡2 (C ′, N) if,
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(a) t(C) = t(C ′)

(b) for all D ⊇ C, D ⊆ M , D ε-closed and atomic over C, there
is D′ ⊆ N , D′ ⊇ C ′, such that t(DC) = t(D′C ′), and, for all
p ∈ S(D), p strongly regular, good, there is Ip in M , maximal
Morley sequence for p, and Ip′ in N , maximal Morley sequence
for the conjugate of p over C ′ and a one-to-one correspondence h
between Ip and I ′p such that for all e ∈ Ip,(

e
D

, M

)
≡1

(
h(e)
D′ , N

)
.

(c) for all D′ ⊇ C ′, D′ ⊆ N , D′ ε-closed and atomic over C ′′, there
is D ⊆ M , D ⊇ C, such that t(DC) = t(D′C ′), and, for all
p ∈ S(D), p strongly regular, good, there is Ip in M , maximal
Morley sequence for p, and Ip′ in N , maximal Morley sequence
for the conjugate of p over C ′ and a one-to-one correspondence h
between Ip and I ′p such that for all e ∈ Ip,(

e
D

, M

)
≡1

(
h(e)
D′ , N

)
.

The next lemma follows easily from the definition of ≡ε
∞ and Lemma 1.1.

Lemma 4.7 Let M and N be two models of T . Suppose that C ⊆ M , C
ε-closed and atomic, and C ′ ⊆ N , C ′ ε-closed and atomic.
If (M, C) ≡ε

∞ (N, C ′), then (M, C) ≡2 (N, C ′).

Proof : This follows easily from Lemma 1.1. 2

Now we will establish some properties of these equivalence relations.

Proposition 4.8 Let D ⊆ M e ∈ M , with D ε-closed and atomic (over ∅)
and t(e/D) strongly regular, good. Let D′ ⊆ N and e′ ∈ N .

1. If

(
e
D

, M

)
≡1

(
e′

D′ , N

)
, and C ⊃ acl(eD), C ε-closed and

atomic over acl(eD), then, for all C ′ ⊃ acl(e′D′), with t(C ′acl(e′D′)) =
t(Cacl(eD)), if q ∈ S(C) is good and 6⊥ (acl(eD) then dim(q, M) =
dim(q′, N), where q′ is the conjugate of q over C ′.
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2. Let C ⊃ D, C ε-closed and atomic, e |̂
D

C, and C ′ ⊃ D′ with t(C ′acl(e′D′)) =

t(Cacl(eD)). Then

(
e
C

, M

)
≡1

(
e′

C ′ , N

)
iff

(
e
D

, M

)
≡1(

e′

D′ , N

)
Proof : 1) This is immediate : by definition there is some C ′′ in N with

t(C ′′acl(e′D′)) = t(Cacl(eD)) and such that q and q′′ the conjugate of q
over C” have the same dimension. But t(C ′/acl(e′D′)) = t(C ′′/acl(e′D′)) ,
q′′ 6⊥ acl(D′e′), hence q′′ and q′ have the same dimension (by 4.2).

2) Suppose first that

(
e
D

, M

)
≡1

(
e′

D′ , N

)
.

Let F ⊇ acl(Ce) be ε-closed and atomic over acl(Ce). Let F ′ ⊆ N be
such that t(Facl(CDe)) = t(F ′acl(C ′D′e′)). Let q ∈ S(F ) be good for
(acl(Ce), C), and let q′ denote the conjugate of q over F ′. We want to show
that Dim(q) = Dim(q′). We claim that in fact q is good for (acl(eD), D).
By our assumption and 1), this is enough. Let us check the claim: as e and
C are independent over D, and q ⊥ C, by NDOP, q 6⊥ acl(eD) and q ⊥ D
because q ⊥ C. It remains to show that F is atomic over acl(eD) : if t(e/D)
is isolated, then as t(e/D) is good, t(e/C) is still isolated, so as F is atomic
over Ce, and C is atomic over D, then F is atomic over De. If t(e/D) is
not isolated, then we know that t(e/D) ` t(e/C) by 4.2; hence C remains
atomic over De and F is also atomic over De.

Suppose now that

(
e
C

, M

)
≡1

(
e′

C ′ , N

)
.

Let Z ⊇ acl(eD) be ε-closed and atomic over acl(eD), and let Z ′ ⊆ N be such
that (Zacl(eD)) = t(Z ′acl(e′D′)). We want to show that for every strongly
regular type q over Z, good for (acl(eD), D), if q′ denotes the conjugate of q
over Z ′, the dimension of q in M is equal to the dimension of q′ in N .
Note first that we may assume without loss of generality that acl(CZ) is
atomic over acl(eD) : it is easy to see by the same arguments as above
that acl(Ce) itself is atomic over acl(eD). Now let Z0 ⊆ M be such that
t(Z/acl(eD)) = t(Z0/acl(eD)) and acl(CZ0) is atomic over acl(eD). Con-
sider q0 the conjugate of q over Z0. Let Z ′

0 ⊂ N be such that t(Z0acl(eC)) =
t(Z ′

0acl(e′C ′)) and let q′0 denote the conjugate of q0 over Z ′
0. Then, as

q 6⊥ acl(eD), q and q0 have same dimension in M , and similarly, q′ and
q′0 have same dimension in N .
Hence we assume that acl(CZ) is atomic over acl(eD), and as all sets are
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algebraic closures of finite sets, also over acl(Ce), and also over Z. By 1), we
can also suppose that t(Z ′/acl(C ′D′e′)) = t(Z/acl(CDe)).
Let q1 = qacl(CZ), and q′1 = q′acl(C′Z′). Then, q1 is good for (acl(Ce), C): as C
and De are independent over D, and q 6⊥ acl(eD) but q ⊥ D, it follows that
q1 ⊥ C. On the other hand, it is clear by non-forking that q1 6⊥ acl(Ce).
So by our assumption, dim(q1, M) = dim(q′1, N). If q is not isolated, as
acl(ZC) is atomic over Z, q ` q1, in particular, dim(q, M) = dim(q1, M) =
dim(q′1, N) = dim(q′, N). If q is isolated, then as q is good, dim(q, M)
is infinite. But as C is contained in the algebraic closure of a finite set,
dim(q, M) − dim(q1, M) is finite, and similarly dim(q′, N) − dim(q′1, N) is
finite. It follows that dim(q, M) = dim(q′, N). 2

We are now going to prove Proposition 4.1.

From now on, T = T eq is a countable ω-stable theory, NDOP, shal-
low of depth 2.

Consider M and N , such that (M, acl(∅)) ≡ε
∞ (N, acl(∅)). We are going

to construct isomorphic maximal independent trees of models in M and N ,
with three levels. By depth 2, M and N will be prime over these trees, hence
isomorphic (by Facts 4.3 ).
We leave it to the reader to check that the next two propositions (4.9 and
4.10) are sufficient to construct the isomorphic trees.

Proposition 4.9 There are models M0 � M , N0 � N , an elementary iso-
morphism f0 between M0 and N0 and a set of pairwise orthogonal strongly
regular types over M0, R(M0), such that

• M0, N0 are prime models (over ∅)

• for every strongly regular type q, if q 6⊥ M0, then there is some p ∈
R(M0) such that p 6⊥ q

• for each p ∈ R(M0), there are Ip ⊂ M , maximal Morley sequence for
p, Jp ⊂ N , maximal Morley sequence for the conjugate of p, f0(p), and
a one-to-one correspondence hp between Ip and Jp such that:
for every e ∈ Ip, for every sufficiently large C ⊆ M0, ε-closed, such
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that e |̂
C

M0 and t(e/C) is good, then(
e
C

, M

)
≡1

(
hp(e)
f0(C)

, N

)
.

Proof : We are going to construct M0, N0, f0, R(M0) by induction, each step
of induction will itself be broken into four substeps.
First we fix an enumeration {φk(v̄) : k < ω} of all formulas such that each
formula is repeated infinitely many times. We also fix a bijection from ω to
ω × ω, denoted π.

For each n ≥ 0, by this induction process, we will construct An, Bn, gn, R(An)
such that

(1) An, Bn are atomic and ε-closed, An ⊂ M, Bn ⊂ N , gn is an elementary
isomorphism from An onto Bn; if n ≥ 1, An−1 ⊆ An, gn−1 ⊆ gn.

(2) We also have for each n ≥ 1, dn ⊆ An finite such that An = acl(dn), and
for n ≥ 1, dn−1 ⊆ dn and increasing enumerations of the finite sequences
in the dn’s, (sk)k∈FS(dn), where FS(dn) denotes the cardinality of the
set of ordered finite subsets of dn. For n = 0, d0 = ∅.

(3) R(An) is a set of pairwise orthogonal representatives for all good strongly
regular types over An, R(An−1) ⊆ R(An) by which we mean that if
p ∈ R(An−1), then pAn ∈ R(An) (pAn is good also by 4.6).

(4) For each p ∈ R(An), we have Ip,n and Jp,n, Morley sequences respec-
tively of p in M and of the conjugate of p in N over Bn, Ip,n+1 ⊆ Ip,n

and Jp,n+1 ⊆ Jp,n.

(5) If p ∈ R(An), and p 6∈ R(An−1) then Ip,n is a maximal Morley sequence
for p in M over An, and Jp,n is a maximal Morley sequence for the
conjugate of p over Bn in N . We have also a one-to-one map, hp, from
Ip,n onto Jp,n such that, for all e ∈ Ip,n,(

e
An

, M

)
≡1

(
hp(e)
Bn

, N

)
.

(6) If n ≡ 1, 0(4), for all p ∈ R(An), hp restricted to Ip,n is one-to-one onto
Jp,n.
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(7) If n ≡ 2(4), if p ∈ R(An) and if k0 < n is the first integer such that

p ∈ R(Ak0), then, for all e ∈ Ip,k0 \ Ip,n, e |̂/
Ak0

An.

(8) If n ≡ 3(4), if p ∈ R(An) and if k0 < n is the first integer such that

p ∈ R(Ak0), then, for all e′ ∈ Jp,k0 \ Jp,n, e′ |̂/
Bk0

Bn.

(9) if n = 4k + 1, if π(k) = (k1, k2), if M |= ∃xφk1(x, sk2), where sk2

is a finite sequence from dn−1, then there is a ∈ An such that M |=
φk1(a, sk2) and such that every strong type extending t(a/dn−1) is also
realized in An.

Then we let M0 =
⋃

n<ω An, N0 =
⋃

n<ω Bn, f0 =
⋃

n<ω gn.
Let R(M0) = {pM0 ; p ∈

⋃
n<ω R(An)}.

For each q ∈ R(M0), let k be minimal such that q is based on Ak and
p = q�Ak

is good, hence such that p ∈ R(Ak). Then we let Iq =
⋂

k≤n<ω Ip,n,
Jq =

⋂
k≤n<ω Jp,n.

We must now check that the conditions in the proposition are satisfied :

• M0 � M by (9), N0 � N because by (1) f0 is an elementary isomor-
phism.

• M0 and N0 are prime models over ∅ by (1).

• Let q be a strongly regular type over M0. Then there is some m such
that q does not fork over Am, and q�Am is good. Then by definition of
R(Am) in (3), there is some p ∈ R(Am) such that q 6⊥ pM0 .

• By (6), for p ∈ R(M0), hp induces a one-to-one correspondence between
Ip and Jp. Furthermore, if k0 is the first integer such that p does not
fork over Ak0 and p�Ak0

is good, then by (5), for all e ∈ Ip,(
e

Ak0

, M

)
≡1

(
hp(e)
Bk0

, N

)
.

It follows by Prop.4.8 that for all ε-closed C, Ak0 ⊆ C ⊆ M0, we have
that (

e
C

, M

)
≡1

(
hp(e)
f0(C)

, N

)
.
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• For p ∈ R(M0), Ip is a Morley sequence in p, and Jp is a Morley
sequence in the conjugate of p, f0(p), by (4). Furthermore, Ip and Jp

must be maximal : if not let for example a ∈ M be such that Ipa is still
a Morley sequence in p. But by (5), for some k0, (the first such that p
does not fork over Ak0 , and p�Ak0

is good), Ip,k0 is maximal independent
in M over Ak0 .

Hence we have that aIp
|̂/

Ak0

(Ip,k0 \ Ip). But it follows from (7) that, for

each e ∈ Ip,k0 \Ip, e |̂/
Ak0

M0. Hence by strong regularity, as each element

in Ip,k0 \ Ip realizes a forking extension of the restriction of p to Ak0 ,
aIp and Ip,k0 \ Ip are independent over M0, hence also independent over
Ak0 , contradiction. Similarly, by (8), Jp must be maximal.

We can now begin the induction. Technical difficulties arise when we try to
fulfill conditions (6), (7) and (8) and force us to construct some auxiliary
subsets. In addition to the above conditions (1) to (9), we will have the
following conditions which enable us to proceed with the induction:

(1*) (M, An) ≡ε
∞ (N, Bn).

(2*) For each n, for each p ∈ R(An), if k0 is the first integer such that p
appears in R(Ak0), we have a finite set C(p, n) ⊆ Ip,k0 \ Ip,n such that
Ip,n ∪ C(p, n) is a Morley sequence for p over An in M .

(3*) For each n, for all p ∈ R(An) except a finite number, C(p, n) = ∅. If
C(p, n) 6= ∅, then p must be isolated.

(4*) If n ≡ 2, 3(4), then for all p ∈ R(An), C(p, n) = ∅.

(5*) For each n, for each p ∈ R(An), if k0 is the first integer such that p
appears in R(Ak0), we have a finite set D(p, n) ⊆ Jp,k0 \ Jp,n such that
Jp,n∪D(p, n) is a Morley sequence for the conjugate of p over Bn in N .

(6*) For each n, for all p ∈ R(An) except a finite number, D(p, n) = ∅. If
D(p, n) 6= ∅, then p must be isolated.

(7*) If n ≡ 3(4), then for all p ∈ R(An), D(p, n) = ∅.

Case n = 0
Let A0 = acl(∅) in M , and B0 = acl(∅) in N . By our hypothesis, we have that
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(M, A0) ≡ε
∞ (N, B0). Let g0 be the corresponding elementary isomorphism.

Let R(A0) be a set of pairwise orthogonal representatives for all strongly
regular good types over A0.
By 4.7, for each p ∈ R(A0) there are Ip,0 maximal Morley sequence for p in
M and Jp,0, maximal Morley sequence in N for g0(p) the conjugate of p over
B0, and a one-to-one correspondence hp between Ip,0 and Jp,0 such that for
all e ∈ Ip,0, (

e
A0

, M

)
≡1

(
hp(e)
B0

, N

)
.

Let C(p, 0) = D(p, 0) = ∅.

Case n = 4k + 1, with π(k) = (k1, k2)
If M |= φk1(m, sk2) for some m, with sk2 ⊆ dn−1, choose one such m with
isolated type over dn−1. Then there are a finite number of strong types
extending t(m/dn−1), i.e. a finite number of (isolated) extensions over An−1 =
acl(dn−1). Find d ⊂ M , finite, which contains a realization of each of these
strong types over An−1 and such that d is atomic over An−1. Let An =
acl(An−1d), then An is atomic over ∅ and also over An−1. By our induction
assumptions, (M, An−1)≡ε

∞ (N, Bn−1), hence by Lemma 1.1 we can find
Bn ⊆ N , such that (M, An) ≡ε

∞ (N, Bn).
Now define R(An) to be the union of the set {pAn ; p ∈ R(An−1)} and of a
maximal set of pairwise orthogonal new strongly regular good types over An.
If p ∈ R(An) \R(An−1), let Ip,n be a maximal independent set of realizations
of p in M . Then by 4.7, there is Jp,n, maximal independent set of realizations
in N for the conjugate p′ of p over Bn, and a one-to-one correspondence hp

such that : (
e

An
, M

)
≡1

(
hp(e)
Bn

, N

)
.

Let also C(p, n) = D(p, n) = ∅.
For all p ∈ R(An−1), except a finite number, Ip,n−1 ∪ C(p, n − 1) remains
independent over An, and Jp,n−1∪D(p, n− 1) also remains independent over
Bn. In this case, let Ip,n = Ip,n−1 and Jp,n = Jp,n−1, and C(p, n) = C(p, n−1),
D(p, n) = D(p, n− 1).
For a finite number of p′s from R(An−1), Ip,n−1 ∪ C(p, n − 1) is no longer
independent over An, or Jp,n−1∪D(p, n−1) is no longer independent over Bn.
Note that such a p must be isolated over An−1, by 4.6. In this case, let F (p, n)
be a minimal finite subset of Ip,n−1 ∪C(p, n− 1) such that (Ip,n−1 ∪C(p, n−
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1))\F (p, n) is independent over An, and let G(p, n) be a minimal finite subset
of Jp,n−1∪D(p, n−1) such that (Jp,n−1∪D(p, n−1))\G(p, n) is independent
over Bn. Let also C0(p, n) be a minimal subset in (Ip,n−1∪C(p, n−1))\F (p, n)

such that for all e ∈ F (p, n), e |̂/
An−1

C0(p, n)An. It follows by our induction

assumption that, if k0 is the first integer such that p ∈ R(Ak0), then for all

e ∈ Ip,k0 \ Ip,n−1, e |̂/
Ak0

C0(p, n)An.

Similarly, let D0(p, n) be a minimal finite subset of (Jp,n−1 ∪ D(p, n − 1)) \
G(p, n) such that that for all e′ ∈ G(p, n), e′ |̂/

Bn−1

D0(p, n)Bn. Again it follows

that for all e′ ∈ Jp,k0 \ Jp,n−1, e′ |̂/
Bk0

D0(p, n)Bn.

Now let C(p, n) and D(p, n) be finite sets such that :

• C(p, n) ⊆ (Ip,n−1 ∪ C(p, n− 1)) \ F (p, n)

• for every e ∈ (C0(p, n) ∪ C(p, n− 1)), if e 6∈ F (p, n), then e ∈ C(p, n)

• D(p, n) ⊆ (Jp,n−1 ∪D(p, n1)) \G(p, n)

• for every e′ ∈ (D0(p, n)∪D(p, n− 1)), if e′ 6∈ G(p, n), then e′ ∈ D(p, n)

• hp induces a one-to-one correspondence between (Ip,n−1∪C(p, n−1))\
(F (p, n) ∪ C(p, n)) and (Jp,n−1 ∪D(p, n− 1)) \ (G(p, n) ∪D(p, n)).

Now let

Ip,n = (Ip,n−1 ∪ C(p, n− 1)) \ (F (p, n) ∪ C(p, n)) ⊆ Ip,n−1

and
Jp,n = (Jp,n−1 ∪D(p, n− 1)) \ (G(p, n) ∪D(p, n)) ⊆ Jp,n−1.

Note that now, for all p ∈ R(An) we have :

• Ip,n ∪ C(p, n) is an independent set of realizations of p over An

• Jp,n ∪D(p, n) is an independent set of realizations of the conjugate of
p over Bn

• if C(p, n) 6= ∅ or D(p, n) 6= ∅, then p is isolated over An.

• for all p except a finite number, C(p, n) and D(p, n) are both empty.
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• hp induces a one-to-one correspondence between Ip,n and Jp,n.

• if k0 is the first integer such that p ∈ R(Ak0), then for all e ∈ Ip,k0 \Ip,n,

e |̂/
Ak0

C(p, n)An. Similarly, for all e′ ∈ Jp,k0 \ Jp,n, e′ |̂/
Bk0

D(p, n)Bn.

Now define gn and dn and the enumeration of finite sequences of dn in the
obvious way.

Case n = 4k + 2
Let D =

⋃
C(p, n − 1), for all p ∈ R(An−1); D must be finite. Let An =

acl(An−1D). Then because D consists of independent realizations of good
isolated types in R(An−1), and D comes from some previous Ip,m’s, we must
have that :

• Ip,n−1 is a Morley sequence in pAn

• if k0 is the first integer m such that p ∈ R(Am), then for all e ∈
Ip,k0 \ Ip,n−1, e |̂/

Ak0

An.

• An is atomic over An−1 , hence over ∅.
By 1.1 we can find Bn ⊆ N such that (An, M) ≡ε

∞ (Bn, N). Let NOn be a
maximal set of new pairwise orthogonal good strongly regular types over An.
Let

R(An) = {pAn ; p ∈ R(An−1) ∪ NOn.

If p ∈ R(An), p already appearing in R(An−1), let Ip,n = Ip,n−1 and let
C(p, n) = ∅. Let G(p, n) be finite minimal such that (Jp,n−1 ∪D(p, n− 1)) \
G(p, n) remains independent over Bn. Note that if G(p, n) is not empty, p
must be isolated, and also that for all p except a finite number , G(p, n) is
empty.
Let Jp,n = Jp,n−1 \ (G(p, n) ∩ Jp,n−1). Let D(p, n) = D(p, n− 1) \ (G(p, n) ∩
D(p, n− 1)). Note that Jp,n ∪D(p, n) is an independent set of realizations of
the conjugate of p over Bn. Note also that at this stage, hp does not induce
a one-to-one correspondence anymore between Ip,n and Jp,n, for the finite
number of p’s such that G(p, n) is not empty. If p ∈ R(An) did not appear in
R(An−1), define Ip,n, Jp,n, hp a one-to-one correspondence, given by the fact
that (An, M) ≡ε

∞ (Bn, N), such that for all e ∈ Ip,n,(
e

An
, M

)
≡1

(
hp(e)
Bn

, N

)
.
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Let in this case C(p, n) = D(p, n) = ∅. Now define gn, dn and the numeration
(sk)k∈FS(dn) in the obvious way.

Case n = 4k + 3.
For p ∈ R(An−1), there are two cases :
- G(p, n − 1) 6= ∅. In this case, let D0(p, n) ⊂ (Jp,n−1 ∪ D(p, n − 1)) be
finite minimal containing D(p, n − 1) such that for all e′ ∈ G(p, n − 1),

e′ |̂/
Bn−2

Bn−1D0(p, n).

- G(p, n− 1) = ∅. In this case, let D0(p, n) = D(p, n− 1).
Let E =

⋃
D0(p, n), for all p ∈ R(An−1). Then as above, E is finite and

Bn−1 ∪ E is atomic over Bn−1. Let Bn = acl(Bn−1E) and let Jp,n = Jp,n−1 \
(D0(p, n) ∩ Jp,n−1).
Then we have the following :

• for all p ∈ R(An−1), Jp,n is a Morley sequence in N for the conjugate of
p over Bn

• for all p ∈ R(An−1), if k0 is the first integer such that p appears in

R(Ak0), for all e′ ∈ Jp,k0 \ Jp,n, e′ |̂/
Bk0

Bn

Now let An ⊆ M be such that (An, M) ≡2 (Bn, N). For p ∈ R(An−1), let
F (p, n) be finite minimal such that Ip,n−1 \F (p, n) remains independent over
An. Again note that if F (p, n) 6= ∅, p must be isolated , and that for all
p except a finite number, F (p, n) = ∅. Let Ip,n = Ip,n−1 \ F (p, n). Now as
above, define R(An) = {pAn ; p ∈ R(An−1)} ∪
{a maximal set of pairwise orthogonal new good strongly regular types over
An }.
For these new types in R(An)\R(An−1), choose Ip,n, Jp,n, and the one-to-one
correspondence hp as usual. Now for all p ∈ R(An), let C(p, n) = D(p, n) = ∅.
Again define, dn, gn and (sk)k∈FS(dn), in the obvious way.

Case n = 4k + 4.
For p ∈ R(An−1), there are two cases :
- F (p, n − 1) 6= ∅. In this case, let C0(p, n) ⊆ Ip,n−1 be finite minimal such

that for all e ∈ F (p, n− 1), e |̂/
An−2

An−1C0(p, n).

- F (p, n− 1) = ∅. In this case, let C0(p, n) = ∅.
Now let C(p, n) and D(p, n) be finite sets such that :
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• C(p, n) ⊆ Ip,n−1, C0(p, n) ⊆ C(p, n)

• D(p, n) ⊆ Jp,n−1

• hp induces a one-to-one correspondence between Ip,n−1 \ C(p, n) and
Jp,n−1 \D(p, n)

Let Ip,n = Ip,n−1 \ C(p, n) and Jp,n = Jp,n−1 \ D(p, n), An = An−1 and
Bn = Bn−1. Note that the following hold :

• for all p ∈ R(An), Ip,n ∪ C(p, n) is a Morley sequence in M for p over
An

• for all p ∈ R(An), Jp,n ∪ D(p, n) is a Morley sequence in N for the
conjugate of p over Bn

• for all p ∈ R(An), if k0 is the first integer such that p appears in R(Ak0),

for all e ∈ Ip,k0 \ Ip,n, e |̂/
Ak0

AnC(p, n)

• for all p ∈ R(An), if k0 is the first integer such that p appears in R(Ak0),

for all e′ ∈ Jp,k0 \ Jp,n, e′ |̂/
Bk0

BnD(p, n)

• for all p ∈ R(An) except a finite number, C(p, n) = D(p, n) = ∅

• if C(p, n) 6= ∅, or D(p, n) 6= ∅, p is isolated

• for each p ∈ R(An), hp induces a one-to-one correspondence between
Ip,n and Jp,n.

We let of course gn = gn−1 and dn = dn−1, and this finishes the induction
step. 2

The second (and final) step of the construction is much shorter:

Proposition 4.10 Suppose we have M0 � M , N0 � N , M0 and N0 both
prime over ∅, and an elementary isomorphism f0 between M0 and N0. Let e ∈
M realize a strongly regular type over M0, let e′ ∈ N realize the conjugate by
f0 of t(e/M0) over N0. Suppose that for all sufficiently large ε-closed D ⊆ M0

such that e |̂
D

M0 and t(e/D) is good, we have

(
e
D

, M

)
≡1

(
e′

f0(D)
, N

)
.

Then there are M1 � M , N1 � N and an elementary isomorphism f1 from
M1 onto N1, such that

46



• M1 is prime over M0e

• f1 extends f0, f1(e) = e′, hence N1 is prime over N0e
′

• for all q ∈ S(M1), strongly regular, such that q ⊥ M0, dim(q, M) =
dim(f1(q), N).

Proof : Let M1 � M be a model prime over M0e such that for all q ∈
S(M1), q ⊥ M0, strongly regular, if there is Cq ⊆ M1 such that

• Cq is finite

• q does not fork over M0eCq and q�M0eCq is stationary

• q�M0eCq is persistently isolated

• the dimension in M of q�M0eCq is countable (it must then be infinite
countable)

then, dim(q, M) = 0. Such a model exists by 4.5. Similarly, let N1 � N be
prime over N0e

′, with the same property. By uniqueness of prime models,
there is an elementary isomorphism f1 from M1 onto N1, extending f0 and
taking e to e′.
Now let q ∈ S(M1) be strongly regular orthogonal to M0, and let q′ denote
the conjugate of q over N1. First, by depth 2 (Facts 4.3 ), as M1 is atomic
over M0e, q 6⊥ M0e. By assumption we can find D ⊆ M0, and C ⊆ M1

ε-closed such that

• q does not fork over acl(DeC)

• eC |̂
D

M0, q 6⊥ acl(De)

• q�acl(DeC) is good for (acl(De), D).

• t(e/D) is good.

•
(

e
D

, M

)
≡1

(
e′

D′ , N

)
, where D′ denotes f0(D).
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Then the dimension of q�acl(DeC) in M is equal to the dimension of the con-

jugate q′�acl(D′e′C′) in N . Now, as q�acl(DeC) ⊥ D, and eC |̂
D

M0, any indepen-

dent set of realizations of q�acl(DeC) remains an independent set of realiza-
tions of q�acl(M0eC). Similarly for q′. Hence the dimensions of q�acl(M0eC) and
q′�acl(N0e′C′) remain equal.

If q�acl(M0eC) is not isolated, then as M1 is atomic over acl(M0eC), by Facts
4.2, any Morley sequence for q�acl(M0eC) remains a Morley sequence for q, and
similarly for q′. Hence it follows that q and q′ have same dimension .
If q�acl(M0eC) is isolated : if it has uncountable dimension , as M1 is count-
able, then its dimension remains the same over M1, and similarly for q′. If it
has countable dimension, then our assumption on M1 and N1 ensures that
dim(q, M) = dim(q′, N) = 0. 2
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