UNIVERSITÉ PARIS XI

U.E.R. MATHÉMATIQUE

91405 ORSAY FRANCE

BANACH ALGEBRAS AND ABSOLUTELY SUMMING OPERATORS

Andrew Tonge
§1. Introduction.

If R is a Banach algebra and $\varphi \in R^{\prime}$, the dual space, then we may define a bounded linear map $\tilde{\varphi}: R \rightarrow R^{\prime} \quad$ by

$$
\langle\tilde{\varphi}(\mathrm{x}), \mathrm{y}\rangle=\langle\varphi, \mathrm{xy}\rangle \quad \forall \mathrm{x}, \mathrm{y} \in \mathrm{R} .
$$

We shall show that for suitable p the requirement that each $\tilde{\varphi}$ be p-absolutely summing constrains R to be an operator algebra, or even, in certain cases, a uniform algebra. In this way we are able to give generalisations of results of Varopoulos [12] and Kaijser [4].

The apparently artificial conditions imposed on R may be seen to have very natural interpretations in terms of the continuity of the multiplication map $M: R \otimes R \rightarrow R \quad$ when $\mathrm{R} \otimes \mathrm{R}$ is equipped with certain \otimes-norms of Grothendieck [3] and Saphar [9]. We shall go into this in more detail in the next section.

First, let us give precise definitions of the notions with which we work.

DEFINITION. (a) A uniform algebra is a closed subalgebra of the usual Banach algebra $C(X)$ of continuous functions on some compact Hausdorff space X.
(b) A Q-algebra is a Banach algebra (algebraically) isomorphic with a quotient of a uniform algebra.
(c) An operator algebra is a Banach algebra (algebraically) isomorphic with a closed
subalgebra of $L(H)$, the usual Banach algebra of bounded linear operators on some Hilbert space H.

If E and F are Banach spaces and $1 \leq p<\infty$, then the linear mapping $\mathrm{u}: \mathrm{E} \rightarrow \mathrm{F}$ is said to be p-absolutely summing if there is a positive number K such that

$$
\Sigma_{j=1}^{J J}\left\|u\left(e_{j}\right)\right\| p \leq K^{p} \sup \left\{\Sigma_{j=1}^{J}\left|\left\langle e_{j}, e^{\prime}\right\rangle\right|^{p}: \quad e^{\prime} \in \operatorname{ball}\left(E^{\prime}\right)\right\}
$$

for every finite set e_{1}, \ldots, e_{J} in E. The least such constant K is written $\pi_{p}(u)$. π_{p} defines a complete norm on the vector space $\pi_{p}(E, F)$ of all p-absolutely summing operators $\mathrm{E} \rightarrow \mathrm{F}$.

DEFINITION. The Banach algebra R is a p-summing algebra ($1 \leq p<\infty$) if there is a positive K such that for each $\varphi \in R^{\prime}$ the mapping $\tilde{\varphi}$ defined above is p-absolutely summing and satisfies $\pi_{p}(\widetilde{\varphi}) \leq K\|\tilde{\varphi}\|$. If K may be taken to be 1 , then R is said to be an isometrically p-summing algebra.

Charpentier $[1]$ has proved that every commutative 1 -summing algebra is a Q-algebra. On the other hand, Cole $[13]$ has shown that every Q-algebra is an operator algebra. We work in this wider context, but it is perhaps worth noting that Charpentier's result could be obtained by much the same method.

THEOREM 1 . Every 2 -summing algebra is an operator algebra.

As an immediate consequence, we have a simpler proof of a striking result of Varopou$\operatorname{los}[12]$.

COROLLARY 2. If an \mathscr{L}_{∞}-space (in the sense of [6]) has a Banach algebria structure, then it must be an operator algebra.

It would be of interest to know whether one can replace " $\mathscr{L}_{\infty}-$-space" by "the disc algebra $A(D)^{\prime \prime}$ in corollary 2 . Indeed, any non-trivial replacement would be welcome.

In the case of algebras with an identity (always of norm 1) we are able to generalise a result of Kaijser $[\underline{4}]$ to show

THEOREM 3. Every isometrically p-summing algebra ($1 \leq \mathrm{p}<\infty$) with (normalised) identity is a uniform algebra.

In fact, in theorem 3, the weaker hypothesis that the Banach algebra R has an approximate identity whose elements have norm ≤ 1 will ensure that $\|x\|^{2}=\left\|x^{2}\right\| \forall x \in R$. The example of e^{1} with pointwise multiplication shows however that some such hypothesis is necessary.
§2. The approach via tensor products.
The multiplication on a Banach algebra R may be thought of as a linear map $M: R \otimes R \rightarrow R$. In the usual definition, R is given the projective tensor product norm and M is required to be a contraction. As this norm is the greatest of the natural \otimes-norms of Grothendieck [3], it is of interest to consider what happens if M is supposed continuous even when $R \otimes R \quad$ is equipped with a smaller \otimes-norm. Saphar's paper [9] contains a useful summary of the properties of \otimes-norms ; we shall use his notation, except that the norms L and ε are sometimes written v and v, resp.

DEFINITION. Let α be $a \otimes$-norm. The Banach algebra R is said to be an α-algebra if the multiplication $M: R \otimes_{\alpha} R \rightarrow R$ is continuous. If M is a contraction, then R is said to be an α-algebra.

Varopoulos $[10]$ was the first to give significant results about $\underline{\alpha}$-algebras. He was concerned with $\underline{\varepsilon}$-algebras (ε is the familiar injective tensor product norm) and showed that the commutative ε-algebras are precisely the "direct" Q-algebras $[11]$. Kaijser $[4]$ specialised this to prove that unital ε-algebras are uniform algebras. On the other hand, Charpentier [1] generalised Varopoulos' results, showing that commutative \underline{v}-algebras (which are in fact the commutative 1-summing algebras) are Q-algebras.

The most interesting \otimes-norms from our point of view are the norms $\mathrm{d}_{\mathrm{q}}(1<\mathrm{q} \leq \infty)$ introduced by Saphar [9] and Chevet [2]. Their crucial property is that if E and F are Banach spaces, then $\left(E \hat{\otimes}_{d_{q}} F\right)^{\prime}$ may be identified isometrically with $\Pi_{p}\left(E, F^{\prime}\right)$ under the norm $\pi_{p} \quad\left(\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}=1\right)$. It is now an immediate consequence of the definitions that the p-summing algebras are exactly the d_{q}-algebras and that the isometrically p-summing algebras are exactly the d_{q}-algebras. We may thus rephrase theorems 1 and 3 .

THEOREM ${ }^{1}$. Every d_{2}-algebra is an operator algebra.
THEOREM 3^{\prime}. Every d_{q}-algebra $(1<\mathrm{q} \leq \infty)$ with (normalized) identity is a uniform algebra.

On the other hand, the natural \otimes-norms of Grothendieck $[3]$ are of basic importance. The ones which interest us in this paper are $\varepsilon, \mathrm{v} / \mathrm{H}, \mathrm{H} /$ and H^{\prime}. In view of the results of [6], $\mathrm{H}, \mathrm{H} /$ and H^{\prime}-algebras may be defined quite simply in terms of factorisations of the mappings $\tilde{\varphi}$ introduced in $\$ 1$. If C denotes a $C(K)$ space, L^{2} denotes a Hilbert space and L^{1} denotes an $L^{1}(\mu)$-space (as defined in $[6]$), we have : R is an \underline{H}-algebra if, for each $\varphi \in R^{\prime}$, the mapping $\widetilde{\varphi}$ factorises as follows:

R is an H/-algebra if, for each $\varphi \in R^{\prime}$, the mapping $\widetilde{\varphi}$ factorises as follows :

R is an H'-algebra if, for each $\varphi \in \mathrm{R}^{\prime}$, the mapping $\tilde{\varphi}$ factorises as follows:

In each of these cases α, β and γ are bounded linear mappings, the product of whose norms does not exceed a fixed multiple of $\|\tilde{\varphi}\|$.

As Saphar has observed, the norms d_{2} and $H /$ are (uniformly) equivalent (since every bounded linear mapping $C \rightarrow L^{2}$ is 2-absolutely summing), and d_{∞} and $\mathrm{V} /$ are equal. Thus, yet another formulation of theorem 1 is

THEOREM 1". Every H/-algebra is an operator algebra.

This complements Charpentier's result that every operator algebra is an \underline{H}^{\prime}-algebra. Since H/ and H^{\prime} are adjacent in Grothendieck's table of natural \otimes-norms, we see that there are operator algebras which are not $\underline{H} /$-algebras, but I do not know of an \underline{H}^{\prime}-algebra which is not an operator algebra.

Finally, in the spirit of corollary 2 , we may combine our results with theorems of

Kwapien [5] and Lindenstrauss-Pelczynski [6] to show that the possible Banach algebra structures on the \mathscr{L}_{p}-spaces of [6] are rather limited. This gives, in 4 b and 5b, a partial answer to a question in [12], and provides a stronger version of corollary 2.

THEOREM 4.
(a) An \mathscr{L}_{∞}-space with a Banach algebra structure is an H -algebra.
(b) An \mathscr{L}_{p}-space $(2 \leq \mathrm{p}<\infty)$ with a Banach algebra structure is an H^{I}-algebra.
(c) An \mathscr{L}_{p}-space $(2 \leq \mathrm{p}<\infty)$ with an r -summing algebra structure $(1 \leq \mathrm{r}<\infty)$
is a 2 -summing algebra.
(d) An \mathscr{L}_{p}-space $(1<\mathrm{p} \leq 2)$ with a 2 -summing algebra structure is a 1 -summing algebra.
(e) An \mathscr{L}_{1}-space with an \underline{H}^{\prime}-algebra structure is an ε-algebra.

As interesting special cases, we have

COROLLARY 5.
(a) An \mathscr{L}_{p}-space $(1 \leq \mathrm{p} \leq 2)$ with a commutative 2 -summing algebra structure is a Q-algebra.
(b) An \mathscr{L}_{p}-space $(2<\mathrm{p}<\infty)$ with an r -summing algebra structure $(1 \leq \mathrm{r}<\infty)$ is an operator algebra.
(c) An \mathscr{L}_{1}-space which is an operator algebra must be an ε-algebra.

An \mathscr{L}_{2}-space which is a Banach algebra is always an operator algebra [12].
§3. The tools.
To prove theorems 1 and 3, we rely on results of Pietsch and of Varopoulos.

THEOREM P [8]. Suppose that u is a p-absolutely summing operator from the Banach space E to the Banach space F. Write S for the unit ball of E^{\prime} provided with the weak ${ }^{*}$ topology. Then there is a probability measure μ on the compact set S such that $\|u(e)\| \leq \pi_{p}(u)\left[\int_{S}|\langle s, e\rangle| p \quad d \mu(s)\right]^{1 / p} \quad \forall e \in E$.

THEOREM $V[12]$. The Banach algebra R is an operator algebra if there is a positive K such that for any $\varphi \in \operatorname{ball}\left(R^{\prime}\right)$ and any positive integer N, there are a Hilbert space H, linear mappings $L_{n}: R \rightarrow L(H) \quad(1 \leq n \leq N)$ each of norm $\leq K$, and $h, k \in \operatorname{ball}(H)$ for which

$$
\left\langle\varphi, x_{1} \ldots x_{N}\right\rangle=\left\langle L_{1}\left(x_{1}\right) \circ \ldots \circ L_{N}\left(x_{N}\right) h, k\right\rangle
$$

for every choice of x_{1}, \ldots, x_{N} in R.

Here 〈., .〉 denotes both the duality between R and R^{\prime}, and the inner product on H .

§4. The proofs.

Proof of theorem 1. Suppose that the Banach algebra R satisfies $\pi_{2}(\tilde{\varphi}) \leq K\|\varphi\|$ $\forall \varphi \in R^{\prime}$. We shall verify the condition of theorem V for $N=3$. The same procedure clearly works for arbitrary N. Fix $\varphi \in \operatorname{ball}\left(R^{\prime}\right)$. We first construct the associated Hilbert space. By theorem $\mathrm{P}, \quad \widetilde{\varphi}$ may be factorized as follows :

Here S is the unit ball of R^{\prime} under the weak* topology, μ_{φ} is the probability
measure corresponding to $\tilde{\varphi}$ as in theorem $P, \quad I$ is the natural map $x \longmapsto f_{x}$ where $f_{x}(s)=\langle s, x\rangle \quad(s \in S), J$ is the formal inclusion and Φ is a bounded linear map with $\|\Phi\|=\pi_{2}(\tilde{\varphi})$.

Thus, if $x, y, z \in R$, we have

$$
\langle\varphi, \mathrm{xyz}\rangle=\langle\tilde{\varphi}(\mathrm{xy}), \mathrm{z}\rangle=\langle\Phi \mathrm{J}(\mathrm{xy}), \mathrm{z}\rangle=\left\langle\mathrm{J}(\mathrm{xy}),^{\mathrm{t}} \Phi(\mathrm{z})\right\rangle
$$

where ${ }^{\mathrm{t}} \mathrm{I}_{\mathrm{I}}: \mathrm{R}^{\prime \prime} \rightarrow \mathrm{L}^{2}\left(\mu_{\varphi}\right)$ is the transpose of Φ. Consequently, if we write $Z_{\varphi}={ }^{\mathrm{t}} \Phi(\mathrm{z}) \in \mathrm{L}^{2}\left(\mu_{\varphi}\right), \quad$ we have

$$
\langle\varphi, \mathrm{xyz}\rangle=\int_{\mathrm{S}}\langle\psi, \mathrm{xy}\rangle \mathrm{Z}_{\varphi}(\psi) \mathrm{d} \mu_{\varphi}(\psi)
$$

Now, applying the same process to $\tilde{\psi}$ and using the natural notation

$$
\langle\varphi, \mathrm{xyz}\rangle=\int_{\mathrm{S}}\left[\int_{\mathrm{S}}\langle\xi, \mathrm{x}\rangle \mathrm{Y}_{\psi}(\xi) \mathrm{d} \mu_{\psi}(\xi)\right] Z_{\varphi}(\psi) \mathrm{d} \mu_{\varphi}(\psi) .
$$

We may thus define a probability measure $\mu_{\varphi}^{(2)}$ on $S \times S$ such that

$$
\langle\varphi, \mathrm{xyz}\rangle=\int_{\mathrm{SxS}}\langle\xi, \mathrm{x}\rangle \mathrm{Y}_{\psi}(\xi) \mathrm{Z}_{\varphi}(\psi) \mathrm{d} \mu_{\varphi}^{(2)}(\psi, \xi)
$$

Let us now take H to be the Hilbert direct sum $\mathbb{C} \oplus L^{2}\left(\mu_{\varphi}\right) \oplus L^{2}\left(\mu_{\varphi}^{(2)}\right)$, and define three operators $L_{1}(x), L_{2}(y), L_{3}(z)$ in $L(H)$ by

$$
\begin{array}{lll}
L_{1}(x)(\alpha, f, g)=\left(0,0, G_{x}\right) & \text { where } & G_{x}(\psi, \xi)=\langle\xi, x\rangle g(\psi, \xi) \\
L_{2}(y)(\alpha, f, g)=\left(0,0, F_{y}\right) & \text { where } & F_{y}(\psi, \xi)=Y_{\psi}(\xi) f(\psi), \quad \text { and } \\
L_{3}(z)(\alpha, f, g)=\left(0, A_{z}, 0\right) & \text { where } & A_{z}(\psi)=\alpha Z_{\varphi}(\psi)
\end{array}
$$

It is easy to see that $\left\|L_{1}(x)\right\| \leq\|x\|, \quad\left\|L_{2}(y)\right\| \leq K\left\|_{y}\right\|$ and $\left\|L_{3}(z)\right\| \leq K\left\|_{z}\right\|$. Thus, we may produce linear operators $L_{1}, L_{2}, L_{3}: R \rightarrow L(H)$ which are bounded in the right way. A simple calculation shows that

$$
\langle\varphi, \mathrm{xyz}\rangle=\left\langle\mathrm{L}_{1}(\mathrm{x}) \circ \mathrm{L}_{2}(\mathrm{y}) \circ \mathrm{L}_{3}(\mathrm{z}) 1_{\mathbb{C}}, 1_{\mathrm{L}}{ }^{2}\left(\mu_{\varphi}^{(2)}\right)^{\rangle}\right.
$$

and so the condition of theorem V is indeed satisfied for $\mathrm{N}=3$.

Proof of corollary 2. If R is an \mathscr{L}_{∞}-space, then R^{\prime} is an \mathscr{L}_{1}-space [7]. Hence, [6], there is a $K>0$ such that every bounded linear operator $u: R \rightarrow R^{1}$ must be2-absolutely summing with $\pi_{2}(u) \leq K\|u\|$. The conclusion follows immediately from theorem 1.

Proof of theorem 3. If R is our algebra, we have $\pi_{p}(\tilde{\varphi}) \leq\|\varphi\| \quad \forall \varphi \in R^{\prime}$. The main idea of the proof (used by Drury and Kaijser in the case of ε-algebras) is to show that every extreme point of the unit ball S of R^{1} must be a scalar multiple of a multiplicative linear functional. Once again, we use theorem P to factorise $\widetilde{\varphi}$:

Writing μ_{φ} for the probability measure on S corresponding to $\tilde{\varphi}, \Lambda_{p}$ is the subspace of $L^{p}\left(\mu_{\varphi}\right)$ formed by taking the closure of the natural image of R in $C(S)$ under the $L^{p}\left(\mu_{\varphi}\right)$ norm. I is the canonical map $x \longmapsto f_{x}$, with $f_{x}(s)=\langle s, x) \quad(s \in S)$, and Φ is a linear map of norm $\pi_{p}(\tilde{\varphi})$.

Now, if $x, y \in R$,

$$
\langle\varphi, \mathrm{xy}\rangle=\langle\tilde{\varphi}(\mathrm{x}), \mathrm{y}\rangle=\langle\Phi \mathrm{I}(\mathrm{x}), \mathrm{y}\rangle=\left\langle\mathrm{I}(\mathrm{x}), \mathrm{t}_{\Phi}(\mathrm{y})\right\rangle
$$

where $t^{t} \Phi: R^{\prime \prime} \rightarrow\left(\Lambda_{p}\right)^{\prime} \quad$ is the transpose of Φ. But, $\quad\left(\Lambda_{p}\right)^{\prime}=L^{q^{\prime}}\left(\mu_{\varphi}\right) /\left(\Lambda_{p}\right)^{o}$ $\left(\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}=1\right)$, where $\left(\Lambda_{\mathrm{p}}\right)^{0}$ is the annihilator of Λ_{p} in $L^{q}\left(\mu_{\varphi}\right)$. A weak* limit argument shows that $t_{\Phi(y)}$ has a representative function $\mathrm{B}_{\mathrm{y}} \in \mathrm{L}^{\mathrm{q}}\left(\mu_{\varphi}\right)$ of norm $\left\|t^{\mathrm{t}}(\mathrm{y})\right\|$. Hence $\langle\varphi, \mathrm{xy}\rangle=\int_{\mathrm{S}}\langle\psi, \mathrm{x}\rangle \mathrm{B}_{\mathrm{y}}(\psi) \mathrm{d} \mu \varphi_{\varphi}(\psi)$.
In particular, if e is the identity of R,

$$
\langle\varphi, \mathrm{x}\rangle=\int_{\mathrm{S}}\langle\psi, \mathrm{x}\rangle \mathrm{B}_{\mathrm{e}}(\psi) \mathrm{d} \mu_{\varphi}(\psi)
$$

or, symbolically, $\quad \varphi=\int_{S} \psi \mathrm{~B} \mathrm{e}^{(\psi) \mathrm{d} \mu_{\varphi}(\psi) .}$
Suppose now that φ is an extreme point of S and that $S=S_{1} \cup S_{2}$, where S_{1} and S_{2} are disjoint measurable sets. Define

$$
\varphi_{i}=\int_{S_{i}} \psi \mathrm{~B}_{\mathrm{e}}(\psi) \mathrm{d} \mu_{\varphi}(\psi) \quad(i=1,2)
$$

Then $\varphi=\varphi_{1}+\varphi_{2}$ and $\left\|\varphi_{i}\right\| \leq \int_{S_{i}}\left|\mathrm{~B}_{\mathrm{e}}(\psi)\right| \mathrm{d} \mu_{\varphi}(\psi)$. In fact, $\left\|\varphi_{\mathbf{i}}\right\|=\int_{\mathrm{S}_{\mathbf{i}}} \mathrm{d} \mu_{\varphi}(\psi)$, for

$$
1=\|\varphi\| \leq\left\|\varphi_{1}\right\|+\left\|\varphi_{2}\right\| \leq\left\|_{\mathrm{B}_{\mathrm{e}}}\right\|_{\mathrm{L}}^{1}\left(\mu_{\varphi}\right)=\| \|_{\mathrm{e}^{\mathrm{q}}\left(\mu_{\varphi}\right)} \leq\|\mathrm{e}\|=1
$$

Since $\mathrm{q} \neq 1$, the equality $\quad\left\|_{\mathrm{B}_{\mathrm{e}}}\right\|_{L_{1}}=\| \|_{\mathrm{B}_{\mathrm{L}}} \|_{\mathrm{q}}=1$ gives $\left|\mathrm{B}_{\mathrm{e}}(\psi)\right|=1 \quad \mu_{\varphi}$-a. e..
Thus $\left\|\varphi_{\mathbf{i}}\right\|=\left.\int_{\mathrm{S}_{\mathbf{i}}}\right|_{\mathrm{B}_{e}}(\psi) \mid \mathrm{d} \mu_{\varphi}(\psi)=\int_{\mathrm{S}_{\mathbf{i}}} \mathrm{d} \mu_{\varphi}(\psi)$. If $\mu_{\varphi}\left(\mathrm{S}_{1}\right) \neq 0$, the fact that φ is extreme now gives $\varphi=\varphi_{1} /\left\|\varphi_{1}\right\|$,
i.e.

$$
\int_{\mathrm{S}_{1}} \varphi \mathrm{~d} \mu_{\varphi}(\psi)=\int_{\mathrm{S}_{1}} \psi \mathrm{~B}_{\mathrm{e}}(\psi) \mathrm{d} \mu_{\varphi}(\psi)
$$

This equality is thus valid for every measurable subset of S, whence

$$
\varphi=\psi \mathrm{B}_{\mathrm{e}}(\psi) \quad \mu_{\varphi}-\mathrm{a} \cdot \mathrm{e} .
$$

Consequently, $\langle\varphi, e\rangle\langle\varphi, \mathrm{xy}\rangle=\langle\varphi, \mathrm{e}\rangle \int_{\mathrm{S}}\langle\psi, \mathrm{x}\rangle \mathrm{B}_{\mathrm{y}}(\psi) \mathrm{d} \mu_{\varphi}(\psi)$

$$
\begin{aligned}
& =\int_{\mathrm{S}}\langle\psi, \mathrm{e}\rangle \mathrm{B}_{\mathrm{e}}(\psi)\langle\psi, \mathrm{x}\rangle \mathrm{B}_{\mathrm{y}}(\psi) \mathrm{d} \mu_{\varphi}(\psi) \\
& =\int_{\mathrm{S}}\langle\psi, \mathrm{e}\rangle\langle\varphi, \mathrm{x}\rangle \mathrm{B}_{\mathrm{y}}(\psi) \mathrm{d} \mu_{\varphi}(\psi) \\
& =\langle\varphi, \mathrm{x}\rangle\langle\varphi, \mathrm{y}\rangle
\end{aligned}
$$

Easily, $\quad|\langle\varphi, \mathrm{e}\rangle|=1$, and so $\varphi /\langle\varphi, \mathrm{e}\rangle$ is a multiplicative linear functional. Now, for $\quad x \in R, \quad\left\|x^{2}\right\|=\sup \left\{\left|\left\langle\varphi, x^{2}\right\rangle\right|: \varphi\right.$ extreme point of $\left.S\right\}$

$$
\begin{aligned}
& =\sup \left\{\left|\left\langle\frac{\varphi}{\langle\varphi, \mathrm{e}\rangle}, \mathrm{x}^{2}\right\rangle\right|: \varphi \text { extreme point of } \mathrm{S}\right\} \\
& =\sup \left\{\left|\left\langle\frac{\varphi}{\langle\varphi, \mathrm{e}\rangle}, \mathrm{x}\right\rangle\right|^{2}: \varphi \text { extreme point of } \mathrm{S}\right\} \\
& =\left\|_{\mathrm{x}}\right\|^{2} .
\end{aligned}
$$

The result follows at once.

Proof of theorem 4. We shall only prove (e). The rest is a straightforward consequence of the fact that the dual of an \mathscr{L}_{p}-space is an \mathscr{L}_{q}-space $\left(\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}=1\right)($ see $[7])$ and of the results in $[5]$ and $[6]$. Note that for (a) we need the fact $[6]$ that an \mathscr{L}_{1}-space which is a dual space - and so complemented in its bidual - is a complemented subspace of an $\mathrm{L}^{1}(\mu)$-space.

Suppose now that R is an \mathscr{L}_{1}-space with an \underline{H}^{\prime}-algebra structure. In all that follows, the constants K (with or without a subscript) will be independent of the algebra structure of R. If $\varphi \in R^{\prime}$, it follows from $\S 2$ that $\tilde{\varphi}$ factors through a Hilbert space H. But by [6, p. 286] a bounded linear operator $f: R \rightarrow H$ is 1-absolutely summing and satisfies $\pi_{1}(f) \leq K\|f\|$. Hence R is a \underline{d}_{∞}-algebra. To show that it is an $\underline{\varepsilon}$-algebra, choose $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{J}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{J}}\right\} \subseteq \mathrm{R}$ and consider the closed subspace generated by these elements and $\left\{x_{1} y_{1}, \ldots, x_{J} y_{J}\right\}$. This is contained in some subspace E of R of finite dimension n for which there are isomorphisms $u: E \rightarrow l_{n}^{1}$ and $v: l_{n}^{1} \rightarrow E$ $\|v\|_{\leq 1}$ such that $\|u\| \leq K_{1} \sqrt{\operatorname{and}}$ vo $\mathrm{u}=\mathrm{Id}_{\mathrm{E}}$. Since R is a d_{∞}-algebra,

$$
\begin{aligned}
& \left\|\Sigma_{j=1}^{J} x_{j} y_{j}\right\|_{R} \leq K .\left\|\Sigma_{j=1}^{J} x_{j} \otimes y_{j}\right\|_{R \hat{\otimes}_{d_{\infty}}} \leq K\left\|\Sigma_{j=1}^{J} x_{j} \otimes y_{j}\right\|_{E \hat{\otimes}_{d_{\infty}}} E \\
& =K\| \|_{j=1}^{J} v\left(u\left(x_{j}\right)\right) \otimes v\left(u\left(y_{j}\right)\right) \|_{E \otimes E} \underset{~}{V} \\
& \leq K\| \|_{j=1}^{J} u\left(x_{j}\right) \otimes u\left(y_{j}\right) \| e_{n}^{i v \otimes} e_{n}^{1} \\
& =K\left\|\sum_{j=1}^{J} u\left(x_{j}\right) \otimes u\left(y_{j}\right)\right\| \ell_{n}^{1} \stackrel{v}{\otimes} e_{n}^{1} \text { by definition of } v / \\
& \leq K . K_{1}^{2}\left\|_{j=1}^{J} x_{j} \otimes y_{j}\right\|_{E \vee E} \\
& =K \cdot K_{1}^{2}\left\|\Sigma_{j=1}^{J} x_{j} \otimes y_{j}\right\|_{R}{ }^{\vee}{ }_{R} .
\end{aligned}
$$

Since our choice of the x_{j}^{\prime} s and y_{j}^{\prime} s was arbitrary, R is an ε-algebra.
Finally, corollary 5 needs no proof.

References

[1] CHARPENTIER, Ph. Q-algèbres et produits tensoriels topologiques. Thèse. Onsay, 1973.
[2] CHEVET, S. Sur certains produits tensoriels topologiques d'espaces de Banach. Z. Wahr. Verw. Geb. 11 (1969).
[3] GROTHENDIECK, A. Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. Sao Paulo 8 (1956), $1-79$.
[4] KALISER, S. Some remarks on injective Banach algebras. Uppsala University, Depart. Math., Report no 1975: 10.
[5] KWAPIEN, S A remark on p-absolutely summing operators in ℓ_{r}-spaces. Studia Math. 34 (1970), 109-111.
[6] LINDENSTRAUSS, J. and PEモCZYŃNKI, A. Absolutely summing operators in \mathscr{L}_{p}-spaces and their applications. Studia Math. 29 (1968), 275-326.
[7] LINDENSTRAUSS, J. and ROSENTHAL, H. P. The \mathscr{L}_{p}-spaces. Israel J. Math. 7 (1969), 325-349.
[8] PIETSCH, A. Absolut p-summierende Abbildungen in normierten Raiumen Studia Math. 28 (1967), 333-353.
[9] SAPHAR, P. Produits tensoriels d'espaces de Banach et classes d'applications linéaires. Studia Math. 38 (1970), 71-100.
[10] VAROPOULOS, N. Th. Some remarks on Q-algebras. Ann. Inst. Fourier 22 (1972), 1-11.
[11] VAROPOULOS, N. Th. Sur les quotients des algèbres uniformes. C. R. Acad. Sc. Paris, 274 (1972), 1344-1346.
[12] VAROPOULOS, N. Th. A theorem on operator algebras. Institut Mittag-Leffler, Report no. 8-1974.
[13] WERMER, J. Quotient algebras of uniform algebras. Symposium on function algebras and rational approximation. Univ. Michigan, 1969.

