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Abstract

We know that the functional equation f⋆f(2 t) = λf(t)2 on the cyclic
group of odd order d has a non-zero solution f when λ =

√
a+i

√
b

where a, b are positive integers with a+b = d and a ≡ (d+1)2

4 mod 4.
We show here that in this case the function f can be chosen to be
equal to the conjugate of its Fourier transform.
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1 Introduction

1.1 Critical values

This paper is the sequel of [1] in which we introduced the notion of critical
values. Let us first recall this notion. Let G be a finite abelian group of odd
order d. Denote by FG the space of complex valued functions on G. For
λ ∈ C, we denote by Fλ = FG,λ the set:

Fλ := {f : G → C | f ∗f(2k) = λ f(k)2 for all k in G} (1.1)

A value λ for which such a non-zero function f exists is called a “critical
value on G”, or a “d-critical value” when G is the cyclic group Z/dZ. The
non-zero elements of Fλ are called λ-critical functions. We denote by CG
the set of critical values on G and simply by Cd the set of d-critical values.
According to [1, Prop. 2.1], the set CG is finite and all the elements λ of CG
are odd algebraic integers, i.e. the numbers λ−1

2
are algebraic integers.

The main result [1, Thm 2.3] of this first paper is the following.

Proposition 1.1. Let G= Z/dZ with d odd, a, b be positive integers with

a+b=d and a≡ (d+1)2

4
mod 4. The values λ0 :=

√
a± i

√
b are d-critical.

1.2 Fourier transform

In the present paper we still focus on the cyclic group G = Z/dZ and we
want to study the action of the Fourier transform on the λ-critical functions.
We recall that the Fourier transform f 7→ f̂ on FG is given by, for all k ∈ G,

f̂(k) = 1√
d

∑
ℓ∈G

e−2iπkℓ/d f(ℓ). (1.2)

See for instance [13]. The Fourier transform f 7→ f̂ sends Fλ onto Fd/λ. One

also defines the conjugate Fourier transform f 7→ f̂ on FG by

f̂(k) = 1√
d

∑
ℓ∈G

e2iπkℓ/d f(ℓ). (1.3)

This map f 7→ f̂ is an antilinear involution of FG, i.e. one has the equivalence

g = f̂ ⇐⇒ f = ĝ, for all f , g in FG. (1.4)
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When studying experimentally in [1] the d-critical values, it seemed that
the most interesting ones are those which have absolute value |λ| =

√
d.

Moreover, for all λ with |λ| =
√
d, this map f 7→ f̂ preserves the variety Fλ

of λ-critical functions. Therefore it is natural to introduce the subsets

Bo
d := {λ ∈ Cd | there exists f ̸= 0 in Fλ such that f̂ = f}, and (1.5)

Bd := {λ ∈ Cd | there exist q∈(Z/dZ)∗, f ̸= 0 in Fλ with f̂ = fq }, (1.6)

where fq is the function fq : k 7→ f(qk)

We begin by a few preliminary remarks on these two finite sets :

Remark 1.2. It is equivalent in (1.6) to require that there exists a λ-critical

function h on G such that ĥ = αhq for some scalar α ∈ C. Indeed, by (1.4),
this scalar α must have absolute value |α| = 1. Therefore writing α = β/β

with β in C, the function f := βh will satisfy f̂ = fq.

Remark 1.3. According to the previous discussion, all the elements λ of Bd

have absolute value |λ| =
√
d.

Remark 1.4. When λ is in Bd then its complex conjugate λ is also in Bd.
When λ is in Bo

d with a symmetric function f , then λ is also in Bo
d.

Remark 1.5. The simplest element of Bo
d is λ =

√
d for d ≡ 1 mod 4 and

is λ = ±i
√
d for d ≡ 3 mod 4. The corresponding λ-critical function is the

Gaussian function h := k 7→ η±k2 where η = −eiπd. This will be explained
with more details in Lemma 4.1.

Remark 1.6. The second simplest elements of Bo
d are λ = χ(4) J(χ, χ) where χ

is a Dirichlet character modulo d whose square χ2 is primitive and J(χ, χ) its
Jacobi sum. The corresponding λ-critical function is the Dirichlet character
χ. This will be explained with more details in Lemma 4.3.

Remark 1.7. We will see in Section 4.1 that when d = 1 mod 4 the d-critical
value λ0 = −

√
d is in Bd. For d = 5, one can check that this value is not in

Bo
d. This example explains why it is natural to introduce both Bo

d and Bd.

The main result of this short paper is to prove that the d-critical values
introduced in [1] belong to Bo

d.

Theorem 1.8. Let G = Z/dZ with d odd, a, b be positive integers with

a+b=d and a≡ (d+1)2

4
mod 4. Then both values

√
a± i

√
b belong to Bo

d
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The proof of Theorem 1.8 does not rely on [1] nor on [2]. In particular, it
gives a new proof of Proposition 1.1. As in [1], the proof of this elementary
statement relies on elliptic curves with complex multiplication and on the
modularity properties of their theta functions. The main surprise is the fact
that the function fz introduced in Proposition 2.3 satisfies Equation (2.1).
And also that the analogous functions f0,z and f1,z introduced in Proposition
3.5 satisfy Equations (3.8) and (3.9).

Other surprising aspects of the Fourier transform on cyclic groups can be
found in [3], [12], [7] and [6].

1.3 Examples

Relying on the numerical experiments of Section 4.4, one can describe the
sets Bo

d and Bd for small values of d. Here is the result for d ≤ 13.

⋆ d = 3 Bo
3 = {±i

√
3} and B3 = Bo

3.

⋆ d = 5 Bo
5 = {

√
5 , 1±2i} and B5 = Bo

5 ∪ {−
√
5}.

⋆ d = 7 Bo
7 = {±i

√
7 , ±2±i

√
3} and B7 = Bo

7.

⋆ d = 9 Bo
9 = {3 , ±

√
5±2i , ±1±2i

√
2} and B9 = Bo

9.

⋆ d = 11 Bo
11 = {±i

√
11, 2±i

√
7, ±2

√
2±i

√
3,

±(1+ε
√
5)± i

√
5−2ε

√
5 for ε = ±1} and B11 = Bo

11.

⋆ d = 13 Bo
13 ⊃ {

√
13, ±3±2i,

√
5±2i

√
2, ±1±2i

√
3} and

B13 ⊃ Bo
13 ∪ {−

√
13,−

√
5± 2i

√
2}.

Here are a few comments on this list :
- One notices that the values −1± 2i , −3 and −2± i

√
7 are not in the

corresponding Bd because they are not d-critical values.
- Many of the critical values in this list are in Bo

d because of either Remark
1.5, Lemma 4.3, or Theorem 1.8.
- For the d-critical values λ = −

√
5±2i, −1±2i

√
2, −2

√
2± i

√
3, one can

construct explicitely symmetric λ-critical functions f which satisfy f̂ = f .
- For the d-critical values λ = −

√
5±2i

√
2, one can construct explicitely

symmetric λ-critical functions that satisfy f̂(k) = f(2k) for all k in Z/13Z.
But there exist no symmetric λ-critical functions that satisfy f̂ = f .
- For d = 13 the above inclusions are probably equalities.

As explained in [1, §1.2], one might look at Equation (1.1) on locally
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compact abelian groups G. When the group is G = R or G = Z, the
only L2-solutions that I know are gaussian functions f(t) = eat

2+bt+c where
a, b, c ∈ C, Re(a) < 0, together with, when G = Z, their restrictions to
subgroups. When the group is G = R/Z, the only L2-solutions that I know
are proportional to a characters χn : t 7→ e2iπnt with n ∈ Z.

1.4 Organization

In Section 2 we prove Theorem 1.8.
In Section 3 we give a new proof of Proposition 1.1.
In Section 4, we explain in more detail the above preliminary remarks.

2 Theta functions as critical functions

In this Chapter we prove Theorem 1.8 and the more precise
Corollary 2.4 taking for granted Proposition 2.1.

2.1 Theta functions

We recall the definition of the Jacobi theta function:

θτ (z) = θ(z, τ) :=
∑
m∈Z

eiπτm
2
e2iπmz, for z ∈ C and τ ∈ H,

where H is the upper half plane H = {τ ∈ C | Im(τ) > 0}. This function is
1-periodic: θτ (z+1) = θτ (z). We can now recall the construction of λ-critical
functions on Z/dZ from [1, Prop. 3.2].

Proposition 2.1. Let G = Z/dZ with d odd, a,b be positive integers with

a+b= d and a≡ (d+1)2

4
mod 4. Let λ0 :=

√
a+i

√
b, τ0 :=

λ2
0−d2

4d2
and z ∈ C.

Then the function fz : ℓ 7→ θ(λ0z+
d+1
2d

ℓ, τ0) is λ0-critical on G.

A new proof of Proposition 2.1 will be given in Chapter 3. Note that we
have omitted the dependence on τ0 in the notation fz.

Remark 2.2. In [1, Prop. 3.2] one deals with the function ℓ 7→ θ(z+ ℓ
d
, τ0)

where the factor λ0 and the factor d+1
2

do not occur. Note that, since d
is odd, the factor d+1

2
is nothing than the inverse of 2 in the group Z/dZ.

Introducing these factors does not change the conclusion of Proposition 2.1
but will be crucial for the validity of Proposition 2.3.
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2.2 Theta functions and Fourier transform

In Proposition 2.3 the real numbers a and b are not assumed to be integers.

Proposition 2.3. Let G = Z/dZ with d odd, a,b be positive real numbers

with a+b=d. Let λ0 :=
√
a+i

√
b, τ0 :=

λ2
0−d2

4d2
and z ∈ C. Then the function

fz : ℓ 7→ θ(λ0z+
d+1
2d

ℓ, τ0) on G satisfies

f̂ z = λ0√
d
e4iπd

2z2 fz. (2.1)

Note that the function on the left-hand side is indexed by the complex
conjugate z. Note also that, when a, b are not assumed to be integers, even
when z = 0, this function fz is not always λ0-critical.

Theorem 1.8 follows from the following corollary of Proposition 2.3 which
tells us that, when z = r is real, with the precise factors λ0 and

d+1
2

as above,

the λ0-critical functions fr are proportional to their image f̂ r.

Corollary 2.4. Let G=Z/dZ with d odd, a,b be positive integers with a+b=d

and a≡ (d+1)2

4
mod 4. Let λ0 :=

√
a+i

√
b, τ0 :=

λ2
0−d2

4d2
. When r is real, the

λ0-critical function fr : ℓ 7→ θ(λ0r+
d+1
2d

ℓ, τ0) on G satisfies

f̂ r =
λ0√
d
e4iπd

2r2 fr. (2.2)

2.3 Preliminary formulas

To prove Proposition 2.3 we need the following two classical formulas.
The first formula computes the Fourier transform of the theta function.

Lemma 2.5. For w ∈ C, τ ∈ H, d positive integer and k ∈ Z/dZ, one has∑
ℓ∈Z/dZ

e−2iπkℓ/d θ(w+ℓ/d, τ) = d eiπk
2τ e2iπkw θ(dw + dkτ, d2τ) (2.3)

Proof. Just write the left-hand sides as a double sum over m in Z and ℓ in
Z/dZ and notice that

∑
ℓ∈Z/dZ e

2iπℓ(m−k)/d is equal to d when d divides m−k
and is equal to 0 otherwise to obtain the right-hand side. Here are the details

LHS =
∑

ℓ∈Z/dZ,m∈Z
eiπτm

2
e2iπmwe2iπℓ(m−k)/d

= d
∑
n∈Z

eiπτ(k+dn)2e2iπ(k+dn)w = RHS

that prove (2.3).
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The second formula is the transformation formula due to Hecke that deals
with an element σ =

(
α β
γ δ

)
∈ SL(2,Z).

Lemma 2.6. If σ ≡ 1 mod 2, and γ > 0, then, for all w in C and τ in H,

θ( w
γτ+δ

, στ) = i
δ−1
2 (γ

δ
) (γτ+δ)

1
2 eiπ

γw2

γτ+δ θ(w, τ). (2.4)

In this formula, the SL(2,Z) action on the upper half plane H is the

standard action στ = ατ+β
γτ+δ

, the number z
1
2 is the square root with positive

real part of the complex number z ∈ H, and the symbol (γ
δ
) = ±1 is the

Jacobi symbol.

Proof. See for instance [10, p.32], [9, p.148] or [11, Chap. 5].

2.4 Proof of Proposition 2.3

We begin by a Corollary of Lemma 2.6.

Corollary 2.7. Let d be an odd integer, a,b be positive real numbers with

a+b=d. Let λ0 :=
√
a+i

√
b, and τ0 :=

λ2
0−d2

4d2
. Then, for all z in C, one has

θ(dλ0z,−d2τ 0) = λ0

d
e4iπd

2z2 θ(λ0z, τ0) (2.5)

Proof of Corollary 2.7. We apply Lemma 2.6 with the matrix

σ0 =
(

d2 d2−1
4

4 1

)
≡ 1 mod 2,

with τ = τ0 and with w = λ0z. This matrix σ0 has been chosen so that one
has the equality

σ0τ0 = −d2τ 0. (2.6)

We note that λ0λ0 = d and that 1/(4τ0+1) = λ
2

0 so that Formula (2.5)
directly follows from Formula (2.4).

Proof of Proposition 2.3. For k in Z/dZ, we compute replacing ℓ by 2ℓ in
Formula (1.2), and using Lemma 2.5 with w = λ0z and with k replaced by
4k,

f̂z(2k) = 1√
d

∑
ℓ∈Z/dZ

e−8iπkℓ/d θ(λ0z+ℓ/d, τ0)

=
√
d e16iπk

2τ0 e8iπkλ0z θ(dλ0z + 4dkτ0, d
2τ0)
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Applying the complex conjugation to this equality, remembering that the
theta functions are 1-periodic, and using the equalities

4dkτ 0 + dk = dk/λ2
0 = λ0k/λ0, one gets (2.7)

f̂ z(2k) =
√
d e−16iπk2τ0 e−8iπkλ0z θ(dλ0(z+

k
λ0d

),−d2τ 0).

We now apply Corollary 2.7 where z is replaced by z+ k
λ0d

and we get

f̂ z(2k) = λ0√
d
e−16iπk2τ0 e−8iπkλ0z e

4iπd2(z+
k

λ0d
)2
θ(λ0z+k/d, τ0).

In the exponent the terms that are linear in k are equal to

8iπkz (d/λ0 − λ0) = 0,

and the terms that are quadratic in k are equal to

4iπk2 (1/λ2
0 − 4τ 0) = 4iπk2 ∈ 2iπZ.

Both of them disappear, and one gets

f̂ z(2k) = λ0√
d
e4iπd

2z2 θ(λ0z+k/d, τ0)

= λ0√
d
e4iπd

2z2 fz(2k),

for all k in Z/dZ. This proves (2.1).

Proof of Theorem 1.8. It follows from Corollary 2.4, that the d-critical value
λ0 :=

√
a + i

√
b is in Bo

d. Moreover, by choosing the parameter r to be 0 in
Corollary 2.4, the function f satisfying (1.5) with λ = λ0 can be chosen to
be symmetric i.e. such that f(k) = f(−k) for all k in Z/dZ.

Therefore the complex conjugate function f which is λ0-critical also sat-
isfies (1.5) with λ = λ0. This prove that λ0 is also in Bo

d.

3 Theta functions with characteristic

.
In this chapter, we give a new proof of Proposition 2.1 by applying the

same calculation as above to theta functions with characteristic. Most of
the calculation relies only on the assumption that a and b are positive real
numbers with a+b = d. The integrality condition is only needed at the end.
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3.1 Reinterpreting the convolution equation

The starting point is the following Lemma 3.1 which gives a reinterpretation
of the conditions in (1.5) thanks to the square F = f 2 of the function f .

Lemma 3.1. Let d be an odd integer, λ, α be complex numbers, f be a

functions on G = Z/dZ such that f̂(t) = α f(t) and let F = f 2. Then the
following conditions are equivalent

f ∗ f(2t) = λ f 2(t) ⇐⇒ F̂ (2t) = α2λ√
d
F (t) (3.1)

In these equalities one must interpret t as a variable describing G.

Proof of Lemma 3.1. We recall the formula which is valid for any function f

F̂ = 1√
d
f̂ ∗f̂ . (3.2)

Since our function f satisfies f̂ = α f , this proves the claim (3.1).

This lemma tells us that we need to compute the finite Fourier transform
of the square Fz of the theta functions fz. This will be the aim of the next
four sections.

3.2 Square of theta functions

We need to introduce the theta functions with characteristic

θ[0](z, τ) = θ
[
0
0

]
(2z, 2τ) :=

∑
m even

eiπ
τ
2
m2

e2iπmz

θ[1](z, τ) = θ
[
1/2
0

]
(2z, 2τ) :=

∑
m odd

eiπ
τ
2
m2

e2iπmz.

Note that one has the equalities:

θ[0](z, τ) = θ(2z, 2τ) and θ[1](z, τ) = eiπτ/2 e2iπz θ[0](z+τ/2, τ). (3.3)

We first recall that the square of the theta function is a linear combination
of two theta functions with characteristic.

Lemma 3.2. For all z in C, τ ∈ H, one has

θ(z, τ)2 = θ[0](0, τ)θ[0](z, τ) + θ[1](0, τ)θ[1](z, τ). (3.4)
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Proof. Just write the left-hand side as a double sum over m, n in Z and split
this double sum according to the parity of m−n.

The following calculation of the finite Fourier transform for these func-
tions θ[0] and θ[1], is an analogue of Lemma 2.5.

Lemma 3.3. For w ∈ C, τ ∈ H, d > 0 odd integer and k ∈ Z/dZ, one has∑
ℓ∈Z/dZ

e−4iπkℓ/d θ[0](w+ℓ/d, τ) = d e2iπk
2τ e4iπkw θ[0](dw + dkτ, d2τ),∑

ℓ∈Z/dZ
e−4iπkℓ/d θ[1](w+ℓ/d, τ) = d e2iπk

2τ e4iπkw θ[1](dw + dkτ, d2τ).

Proof. The proof is the same as for Lemma 2.5, except that we have to
restrict the sum to even integers m for the first formula, and to odd integers
m for the second formula. Here are the details that prove the first formula

LHS =
∑

ℓ∈Z/dZ,m even

eiπ
τ
2
m2

e2iπmwe2iπℓ(m−2k)/d

= d
∑

n even

eiπ
τ
2
(2k+dn)2e2iπ(2k+dn)w = RHS.

And similarly for the second formula.

3.3 More transformation formulas

We go on with an analog of Corollary 2.7.

Corollary 3.4. Let d be an odd integer, a,b be positive real numbers with

a+b=d. Let λ0 :=
√
a+i

√
b, and τ0 :=

λ2
0−d2

4d2
. Then, for all z in C, one has

θ[0](dλ0z,−d2τ 0) = λ0

d
e8iπd

2z2 θ[0](λ0z, τ0), (3.5)

(−1)
d2−1

8 θ[1](dλ0z,−d2τ 0) = λ0

d
e8iπd

2z2 θ[1](λ0z, τ0). (3.6)

Proof of Corollary 3.4. We first prove (3.5). We apply Lemma 2.6 with the
matrix

σ1 =
(

d2 d2−1
2

2 1

)
≡ 1 mod 2,

with w = 2λ0z and with τ1 := 2τ0. This matrix σ1 has been chosen so that
one has the equality σ1τ1 = −d2τ 1. Remembering that λ0λ0 = d and that

1/(2τ1+1) = λ
2

0, this gives the equality

θ(2dλ0z,−2d2τ 0) = λ0

d
e8iπd

2z2 θ(2λ0z, 2τ0),
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which is nothing but (3.5).
We now explain how to deduce (3.6) from (3.5). We compute the left-

hand side of (3.6) up to multiplicative factors M1, M2 and M3 whose values
are given below.

LHS = (−1)
d2−1

8 θ[1](dλ0z,−d2τ 0)

= M1 θ[0](dλ0z − d2 τ0
2
,−d2τ 0) by (3.3)

= M1 θ[0](dλ0(z +
τ0
2λ0

),−d2τ 0) by (3.7)

= M1M2 θ[0](λ0(z +
τ0
2λ0

), τ0) by (3.5)

= M1M2M3 θ[1](λ0z, τ0). by (3.3)

Note that in the third line of this computation, we used the periodicity of
the function θ[0] and the fact that the sum

d2 τ0
2
+ λ

2

0
τ0
2

= 1−d2

8
(3.7)

is an integer. The factors are given by

M1 = eiπ
1−d2

8 e−iπd2
τ0
2 e2iπdλ0z,

M2 = λ0

d
e
8iπd2(z+

τ0
2λ0

)2
,

M3 = e−iπ
τ0
2 e−2iπλ0z.

In the exponent of the product M1M2M3 the constant terms are equal to

iπ
2
(1−d2

4
− d2τ 0 + 4λ

2

0τ
2
0 − τ0) = iπτ0

2
(λ

2

0 + 4λ
2

0τ0 − 1) = 0,

and the terms that are linear in k are equal to

2iπλ0z (λ
2

0 + 4λ
2

0τ0 − 1) = 0.

Both of them disappear, and one gets LHS = λ0

d
e8iπd

2z2 θ[1](λ0z, τ0).

3.4 More Fourier transform of theta functions

We begin by an analog of Proposition 2.3.
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Proposition 3.5. Let G = Z/dZ with d odd, a,b be positive real numbers

with a+b=d. Let λ0 :=
√
a+i

√
b, τ0 :=

λ2
0−d2

4d2
and z ∈ C. Then

(i) the function f0,z : ℓ 7→ θ[0](λ0z+
d+1
2d

ℓ, τ0) on G satisfies, for all k in G,

f̂ 0,z(2k) = λ0√
d
e8iπd

2z2 f0,z(k). (3.8)

(ii) the function f1,z : ℓ 7→ θ[1](λ0z+
d+1
2d

ℓ, τ0) on G satisfies, for all k in G,

(−1)
d2−1

8 f̂ 1,z(2k) = λ0√
d
e8iπd

2z2 f1,z(k). (3.9)

Proof of Proposition 3.5. The proof is the same as for Proposition 2.3.
We first prove (3.8). For k in Z/dZ, we compute using Lemma 3.3

f̂0,z(4k) = 1√
d

∑
ℓ∈Z/dZ

e−16iπkℓ/d θ[0](λ0z+ℓ/d, τ0)

=
√
d e32iπk

2τ0 e16iπkλ0z θ[0](dλ0z + 4dkτ0, d
2τ0).

And hence, applying first Equation (2.7) and then Corollary 3.4, one gets

f̂ 0,z(4k) =
√
d e−32iπk2τ0 e−16iπkλ0z θ[0](dλ0(z+

k
λ0d

),−d2τ 0)

= λ0√
d
e−32iπk2τ0 e−16iπkλ0z e

8iπd2(z+
k

λ0d
)2
θ[0](λ0z+k/d, τ0).

In the exponent the terms that are linear in k are equal to

16iπkz (d/λ0 − λ0) = 0,

and the terms that are quadratic in k are equal to

8iπk2 (1/λ2
0 − 4τ 0) = 8iπk2 ∈ 2iπZ.

Both of them disappear, and one gets f̂ 0,z(4k) =
λ0√
d
e8iπd

2z2 f0,z(2k).

The proof of (3.9) is similar, the sign (−1)
d2−1

8 sign coming from (3.6).

3.5 Fourier transform of squares of theta functions

We have not yet assumed that the positive real number a is an integer equal

to (d+1)2

4
modulo 4. This condition will be crucial in the next Lemma 3.7.
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Proposition 3.6. Let G = Z/dZ with d odd, a,b be positive integers with

a+b= d and a≡ (d+1)2

4
mod 4. Let λ0 :=

√
a+i

√
b, τ0 :=

λ2
0−d2

4d2
. The square

function Fz : ℓ 7→ θ(λ0z+
d+1
2d

ℓ, τ0)
2 on G satisfies, for all k in G,

F̂ z(2k) =
λ3
0

d
√
d
e8iπd

2z2 Fz(k). (3.10)

The following lemma will be useful.

Lemma 3.7. Let G=Z/dZ with d odd, a,b be positive integers with a+b=d

and a≡ (d+1)2

4
mod 4. Let λ0 :=

√
a+i

√
b, τ0 :=

λ2
0−d2

4d2
. Then, one has

λ0 θ[0](0,−τ 0) = λ0 θ[0](0, τ0) (3.11)

(−1)
d2−1

8 λ0 θ[1](0,−τ 0) = λ0 θ[1](0, τ0). (3.12)

Assertion (3.11) means that λ0 θ[0](0, τ0) is real. Assertion (3.12) means
that λ0 θ[1](0, τ0) is real when d≡±1 mod 8 and imaginary otherwise.

Proof of Lemma 3.7. The congruence assumption on a tells us that

d2τ0 + d2τ 0 = a−b−d2

2
belongs to d2−1

4
+4Z. (3.13)

Combining this with the equality θ[0](0, τ + 2) = θ[0](0, τ) and using twice
Formula (3.5) one gets

λ0

d
θ[0](0,−τ 0) = θ[0](0, d

2τ0) = θ[0](0,−d2τ 0) = λ0

d
θ[0](0, τ0)

which proves (3.11).
Similarly with (3.13) and the equality θ[1](0, τ + 2) = −θ[1](0, τ), one has

the following computation in which we use twice Formula (3.6),

(−1)
d2−1
8

λ0

d
θ[1](0,−τ 0) = θ[1](0, d

2τ0) = (−1)
d2−1
8 θ[1](0,−d2τ 0) =

λ0

d
θ[1](0, τ0)

which proves (3.12).

Proof of Proposition 3.6. According to Lemma 3.2, one has, for k in G,

Fz(k) = θ[0](0, τ0) f0,z(k) + θ[1](0, τ0) f1,z(k). (3.14)

14



Therefore we compute the conjugate Fourier transform

F̂ z(2k) = θ[0](0,−τ 0)f̂ 0,z(2k) + θ[1](0,−τ 0)f̂ 1,z(2k)

=
λ2
0

d

(
θ[0](0, τ0)f̂ 0,z(2k) + (−1)

d2−1
8 θ[1](0, τ0)f̂ 1,z(2k)

)
=

λ3
0

d
√
d
e8iπd

2z2
(
θ[0](0, τ0)f0,z(k) + θ[1](0, τ0)f1,z(k)

)
=

λ3
0

d
√
d
e8iπd

2z2 Fz(k).

where we used Formulas (3.11) and (3.12), and Formulas (3.8) and (3.9).

3.6 Another proof of Proposition 2.1

Proof. By Propositions 2.3 and 3.6, we know that, for all k in G,

f̂ z(k) = α fz(k) with α := λ0√
d
e4iπd

2z2 ,

F̂ z(2k) = β Fz(k) with β :=
λ3
0

d
√
d
e8iπd

2z2 .

Therefore, by Formula (3.2), we get, for all k in G,

fz∗fz(2k) = λ f 2
z (k) with λ = β

√
d

α2 = λ0.

This says that the function fz is λ0-critical.

4 Properties of the elements of Bd

In this last chapter, we explain the relationship between the set Bo
d, the

Gaussian functions, the Dirichlet characters, the Jacobi sums and the Weil
numbers. We also update in section 4.4 the list of critical values for d ≤ 17
that is given in [1]. We will see in Section 4.5 that this updated list for d = 17
contains elements λ ∈ Bo

d that are not Weil numbers.

4.1 Gaussian functions

Let d be an odd integer, ζ := e2iπ/d and η := −eiπ/d, so that η2 = ζ. Set gd
to be the classical Gauss sum gd :=

∑
k ζ

k2 . So that one has gd =
√
d when

d ≡ 1 mod 4, and gd = i
√
d when d ≡ 3 mod 4.

15



For u ∈ (Z/dZ)∗, v ∈ Z/dZ we introduce the Gaussian function on Z/dZ

fu,v(k) = η−u(k−v)2 .

The conjugate of its Fourier transform is given by

f̂u,v = (2u
d
) gd√

d
fu−1,uv (4.1)

Lemma 4.1. a) For d odd, the classical Gauss sum λ0 = gd belongs to Bo
d.

b) When d ≡ 1 mod 4, the opposite value λ0 = −
√
d also belongs to Bd.

c) When d ≡ 3 mod 4, the opposite value λ0 = −i
√
d also belongs to Bo

d .

Proof. For f = fu,v, one computes

f ∗f(2k) = λ f 2(k) with λ = (u
d
) gd.

This says that the function f is λ0-critical with λ0 = (u
d
) gd.

a) When u = 1 and v = 0, one has λ0 = gd, and Equation (4.1), tells
us that the λ0-critical function f : k 7→ η−k2 is proportional to its conjugate

Fourier transform f̂ .
b) When u ∈ Z/dZ is not a square and v = 0, one has λ0 = −gd, and

the function f : k 7→ η−uk2 is λ0-critical. Equation (4.1), tells us that the

conjugate Fourier transform f̂ is proportional to k 7→ f(u−1k).
c) When d ≡ 3 mod 4 and u = −1, one has λ0 = −i

√
d, and Equation

(4.1), tells us that the λ0-critical function f : k 7→ ηk
2
is proportional to its

conjugate Fourier transform f̂ .

Remark 4.2. For d = 5 the critical value λ0 = −
√
5 does not belong to Bo

d.
Indeed a direct calculation shows that, up to scalar, there are exactly 10
λ0-critical functions. These are the gaussian functions fu,v, with u = ±2 and
v ∈ Z/5Z. By (4.1), none of them is proportional to its conjugate Fourier
transform.

4.2 Dirichlet characters and Jacobi sums

We refer to [8, §3.5] and to [4] for the results of this section.
We recall that a Dirichlet character χ : Z/dZ → C is a multiplicative

character on the multiplicative group (Z/dZ)⋆ which is extended by 0 on the

16



set of zero divisors of Z/dZ. The group of Dirichlet characters is isomor-
phic to (Z/dZ)⋆. Its order is given by the Euler function φ(d). A Dirichlet
character of Z/dZ is said to be primitive if does not come from a Dirichlet
character of Z/d′Z for a proper divisor d′ of d. The number N(d) of primitive
Dirichlet characters can be easily computed by the formulas:
N(d1d2) = N(d1)N(d2) when d1 is coprime to d2.
N(p) = p−2 and N(pr) = (p− 1)2pr−2 when p is prime and r ≥ 2.
In particular primitive Dirichlet characters exist if only if and only if d ̸≡ 2
mod 4.

To Dirichlet characters χ, χ1, χ2 one associates the Gauss sum

G(χ) =
∑

k e
2iπk/dχ(k)

and the Jacobi sum

J(χ1, χ2) =
∑

k χ1(k)χ2(1− k).

Lemma 4.3. For all Dirichlet character χ whose square χ2 is primitive, the
value λχ := χ(4) J(χ, χ) belongs to Bo

d. Moreover the Dirichlet character χ
is a λχ-critical function on Z/dZ which is proportionnal to χ̂.

Remark 4.4. The number N0(d) of Dirichlet characters whose square is prim-
itive can be easily computed by the formulas:
N0(d1d2) = N0(d1)N0(d2) when d1 is coprime to d2.
N0(p) = p−3 and N0(p

r) = (p− 1)2pr−2 when p is an odd prime, and r ≥ 2.
In particular, for d odd, Dirichlet characters with primitive square exist if
only if and only if d ̸≡ ±3 mod 9.

Proof. The Fourier transform of a primitive Dirichlet character χ is propor-
tional to the conjugate Dirichlet character

χ̂(k) = 1√
d

∑
k

e−2iπkℓ/dχ(ℓ) = χ(−1)√
d
G(χ) χ(k).

Hence, since both χ and χ2 are primitive on Z/dZ, one has

χ̂(k) = αχ(k) with α := 1√
d
G(χ),

χ̂2(2k) = β χ2(k) with β := χ(4)√
d
G(χ2).

17



Therefore, by Formula (3.2), we get, for all k in G,

χ∗χ(2k) = λχ2(k) with λ = β
√
d

α2 = dχ(4)G(χ2)
G(χ)2

= χ(4)G(χ)2

G(χ2)
. (4.2)

This says that the function χ is λ-critical and that λ belongs to Bo
d. Evalu-

ating Formula (4.2) at k = 1 also gives the equality λ = χ(4) J(χ, χ).

Here are the values λχ obtained when d ≤ 17. Note that two different
Dirichlet characters χ may have the same λχ.
⋆ d = 5. N0(d) = 2 and λχ = 1±2i.
⋆ d = 7. N0(d) = 4 and λχ = ±2±i

√
3.

⋆ d = 9. N0(d) = 4 and λχ = 3.

⋆ d = 11. N0(d) = 8 and λχ = ±(1+ε
√
5)± i

√
5−2ε

√
5 with ε = ±1.

⋆ d = 13. N0(d) = 10 and λχ = ±3±2i and −1±2i
√
3.

⋆ d = 17. N0(d) = 14 and λχ = 3±2i
√
2 and −1±4i and

λχ = −1+2ε
√
2± 2i

√
2+ε

√
2 with ε = ±1.

4.3 Weil numbers

We focus on the arithmetic properties of critical values. Let d be an odd
integer and G = Z/dZ. We recall that a d-Weil number is an algebraic
integer all of whose Galois conjugates have absolute value

√
d.

All the elements of Bd we have constructed so far belong to a cyclotomic
field. This is not always the case. Indeed, one can check that the element

λ = 1+
√
5+ i

√
9−2

√
5 belongs to B15. We may ask, for any odd integer d,

Is every λ ∈ Bd a d-Weil number?

We will give a very partial positive answer to this question in Lemma 4.5
but we will exhibit an example of λ in Bo

d which is not a Weil numbers in
Section 4.5. In this example, one has d = 17.

Let G be a finite abelian group of odd order d. For any symmetric non
degenerate pairing e(., .) : G × G → S1, where S1 := {z ∈ C | |z| = 1}, one
can define the conjugate Fourier transform f 7→ f̂ on FG by, for all x ∈ G,

f̂(x) = 1√
d

∑
y∈G

f(y) e(x, y).
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Since the pairing is symmetric and non-degenerate, this map f 7→ f̂ is again
an antilinear involution of FG. Moreover for all λ with |λ| =

√
d the conjugate

Fourier transform preserves the variety Fλ of λ-critical functions.
Therefore it is also natural to introduce the following finite set of numbers

BG : = {λ ∈ C | there exists a symmetric non-degenerate pairing on G

and a λ-critical function f on G such that f̂ = f}.

By definition, when G = Z/dZ, we have Bd = BG. Lemma 4.5 below gives
some very partial insight on the set BG.

Lemma 4.5. Let G be a finite abelian group of odd order d.
(i) If λ ∈ BG belongs to a CM-field then λ is a d-Weil number.
(ii) Moreover if the function f satisfying (1.5) can also be chosen in a CM-
field then all the Galois conjugates of λ belong to BG.

By definition, a CM-field is a totally complex quadratic extension of a
totally real number field.

Proof. (i) We first recall that, by [1, Prop. 2.1], all the critical numbers
λ ∈ CG are algebraic integers. On the one hand, for each choice of symmetric

non-degenerate pairing e(., .), the conjugate Fourier transform f 7→ f̂ is an
isometry of FG endowed with the L2-norm. Therefore all the numbers λ in
BG have absolute value equal to

√
d. On the other hand for λ in a CM-

number field, all the Galois conjugates of λ have the same absolute value.
This proves that λ is a d-Weil number.

(ii) Let λ′ be a Galois conjugate of λ. Let K ⊂ C be a CM number field
containing not only λ and the dth-roots of unity but also the coefficients of a
function f satisfying (1.5). We can assume that the extension K/Q is Galois.
Let σ ∈ Gal(K/Q) be an automorphism of K such that λ′ = σ(λ).

Since K is a CM number field, this element σ commutes with the complex
conjugation. There exists an integer m coprime to d such that, for all dth-
root of unity ζ, one has σ(ζ) = ζm. We then introduce the symmetric
non-degenerate pairing on G

em(x, y) = e(x, y)m = e(mx, y) = e(x,my) = σ(e(x, y))

By assumption there exists a non-zero λ-critical function f on G and a con-
stant α such that, for all x ∈ G,∑

y∈G
f(y) e(x, y) = αf(x)
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Since σ commutes with the complex conjugation, applying σ to this equality,
one gets, with the function g := fσ which is λσ-critical, the equality∑

y∈G
g(y) em(x, y) = ασg(x)

This proves that λσ belongs to BG.

4.4 List of critical values for small d

The following lists of d-critical values rely on numerical experiments using
the Buchberger’s algorithm for computing Groebner basis (see [5, Chap. 2]).
Implementing the algorithm modulo many prime numbers allowed us to im-
prove the lists given in [1].

For 3 ≤ d ≤ 11 here are the complete lists of d-critical values. For d = 13,
the list below of d-critical values is also probably complete

For d = 3 λ = 1, 3, ±i
√
3.

For d = 5 λ = 1, 5, ±
√
5, 1± 2i.

For d = 7 λ = 1, 7, ±i
√
7, ±2± i

√
3.

For d = 9 λ = 1, 9, ±i
√
3, ±3i

√
3,

λ = 3, ±
√
5± 2i, ±1± 2i

√
2.

For d = 11 λ = 1 , 11, 4±
√
5,

λ = ±i
√
11, 2± i

√
7, ±2

√
2± i

√
3,

λ = ±(1+ε
√
5)± i

√
5−2ε

√
5 with ε = ±1.

For d = 13 λ = 1 , 13, 5± 2
√
3,

λ = ±
√
13, ±3± 2i, ±

√
5± 2i

√
2, ±1± 2i

√
3.

For d = 15 , here is the complete list of d-critical values associated with a
symmetric critical function.
⋆ λ = product of a 3-critical and a 5-critical value, λ = 6±

√
21,

⋆ λ = −3, −5, ±(
√
3± i

√
2)(

√
2± i), ±2± i

√
11, ±2

√
2± i

√
7,

⋆ λ = 1+ε
√
5± i

√
9−2ε

√
5 or ±

√
10 + 2ε

√
5± i

√
5− 2ε

√
5 with ε = ±1,

⋆ λ is a root of the equation λ2 − 4bλ+ 15 = 0 where either

b3 − 2b2 − 2 = 0 or b3 − b2 − b− 1 = 0 or

b10−b9−10b8+10b7+34b6−38b5−43b4+65b3+8b2−40b+16 = 0.
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For d = 17 , here is a list of d-critical values that contains all those associated
with an antisymmetric critical function.
⋆ λ = 1 , 17, 7± 4

√
2,

⋆ λ = ±
√
17, ±

√
13± 2i, 3± 2i

√
2, ±

√
5± 2i

√
3, ±1± 4i,

⋆ λ = ±(1 + 2ε
√
2)± 2i

√
2− ε

√
2 with ε = ±1,

⋆ λ is a root of the equation

λ2 − 2cλ+ 17 = 0 where (4.3)

c10−6c9−15c8+136c7−62c6−628c5+586c4+232c3+733c2−246c+293 = 0.

4.5 A critical value which is not a Weil number

Example 4.6. For d = 17, there exists a critical value λ ∈ Bo
d which is not

a Weil number.

Proof. We choose λ to be one of the 20 critical values λ given by (4.3). These
values λ are not Weil numbers. Indeed, among these 20 Galois conjugates,
only 8 have absolute value equal to

√
17. Those for which c is real and

belongs to the interval [−
√
17,

√
17].

Using again Buchberger’s algorithm for computing Groebner basis, one
can list, for each such λ, all the antisymmetric λ-critical functions f with
f(1) = 1. There are 8 of them. One can then check that, for a well-chosen
λ approximately equal to 3.942 + 1.209 i, one of these λ-critical functions f

is proportional to its conjugate Fourier transform f̂ . Such a critical value λ
belongs to Bo

d.
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