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circle. We extend this theorem to bounded harmonic maps.
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1 Introduction

The aim of this paper is to present an extension to harmonic
maps of a classical theorem for harmonic functions due to Fatou
around 1905-1910.

1.1 The Fatou theorem

We first recall the classical theorem of Fatou for bounded har-
monic functions on the Euclidean disk.
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This theorem deals with the unit open ball B and with the unit sphere
S = ∂B in the Euclidean space Rk with k = 2 or, more generally, with k ≥ 2.
It identifies the space Hb(B,R) of bounded harmonic functions h : B → R
on the ball with the space L∞(∂B,R) of bounded measurable functions on
the boundary ∂B. We recall that a harmonic function on B is a C2-function
h that satisfies ∆0h = 0, where ∆0 is the Euclidean Laplacian. We denote
by σ0 the rotationally invariant probability measure on the sphere ∂B, and
we refer to Section 1.3 for the definition of a non-tangential limit.

Fact 1.1. (Fatou) a) Let h : B → R be a bounded harmonic function.
For σ0-almost all ξ in ∂B, the function h admits a non-tangential limit
φ(ξ) := NTlim

x→ξ
h(x) at the point ξ.

b) The map h 7→ φ is a bijection β : Hb(B,R) → L∞(∂B,R) called the
boundary transform.

The inverse of the map β is given by an explicit formula, the Poisson
formula. For every φ ∈ L∞(∂B,R), one can indeed recover h as h = P0φ
where P0φ is the bounded harmonic function defined on B by

P0φ(x) :=

∫
∂B

φ(ξ)P0,ξ(x) dσ0(ξ), where P0,ξ(x) =
1− |x|2

|x− ξ|k

is the Poisson kernel.
The proof of this fact can be found in Rudin’s book [34, Chap. 11] or in

[27] when k = 2, or in Armitage and Gardiner’s book [5, Chap. 4] for k ≥ 2.
Proving extensions of this fact has a long history that has already lasted

for more than a century. Indeed, an important goal of Potential Theory
is to understand to what extent this fact still holds for either harmonic or
superharmonic functions, on more general spaces.

The aim of this paper is to extend Fatou’s theorem to bounded harmonic
maps. We will allow the target space Y to be any complete CAT(0) space,
the first examples to have in mind being the hyperbolic spaces Hk.

We will also allow more general source spaces. Since, in dimension k = 2,
the harmonicity condition depends only on the conformal structure on the
source space B, we can think of B as the hyperbolic plane. We will explain
in Theorem 1.3 how to replace B by a GGG Riemannian manifold X. Later
on, we will also explain in Corollary 5.6 how to replace B by any bounded
Riemannian domain Ω with Lipschitz boundary.

1.2 Main result

We now state our main result, postponing the definitions to
Section 1.3.
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Definition 1.2. We will say that a Riemannian manifold X is GGG as a
shortcut forGromov Hyperbolic with Bounded Geometry and SpectralGap.

Theorem 1.3. Let X be a GGG Riemannian manifold, and Y be a proper
CAT(0)-space.
a) Let h :X→Y be a bounded harmonic map. Then, for σ-almost all ξ∈∂X,
the map h admits a non-tangential limit φ(ξ) := NTlim

x→ξ
h(x) at the point ξ.

b) The map h 7→ φ is a bijection β : Hb(X, Y )→L∞(∂X, Y ).

The main examples of GGG Riemannian manifolds X are the pinched
Hadamard manifolds : those have negative curvature. The condition GGG
allows a little bit of positive curvature on X. It also allows X to be non-
contractible. For instance, the quotient of a pinched Hadamard manifold by
a convex cocompact group of isometries is GGG .

1.3 Main definitions

Here are the definitions that are needed to understand our theorem 1.3. All
our manifolds will be assumed to be connected and with dimension k ≥ 2.

Definition 1.4. A Riemannian manifold X has bounded geometry if it is
complete, with bounded sectional curvature −Kmax ≤ KX ≤ Kmax, and if
the injectivity radius has a uniform lower bound injX ≥ rmin > 0.

As explained in [25, Section 1.1], one could replace in Definition 1.4 the
bound on the sectional curvature by a bound on the Ricci curvature. Indeed,
the important features of bounded geometry also hold if we just have a bound
on the Ricci curvature.

Definition 1.5. The Riemannian manifold X is Gromov hyperbolic if there
exists δ > 0 such that, for all o, x, y, z in X one has

(x|z)o ≥ min((x|y)o, (y|z)o)− δ. (1.1)

Here (x|y)o := 1
2
(d(o, x) + d(o, y) − d(x, y)) is the Gromov product of the

points x and y seen from o.
In this case ∂X will denote the “Gromov boundary” ofX andX = X∪∂X

will be the “Gromov compactification” of X where ∂X is the set of geodesic
rays on X, two geodesic rays being identified if they remain within bounded
distance from each other. See [18].

Definition 1.6. A Riemannian manifold X has a spectral gap, or a coercive
Laplacian, if the Rayleigh quotients admit a uniform lower bound

λ1 := inf
φ∈C∞

c (X)

∫
X
∥∇φ∥2 dvg∫
X
φ2 dvg

> 0. (1.2)
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Note that the spectral gap implies that X is non-compact.

Definition 1.7. A pinched Hadamard manifold X is a complete simply-
connected Riemannian manifold with dimension at least 2 whose sectional
curvature is pinched between two negative constants : −b2 ≤ KX ≤ −a2 < 0.

Examples are : hyperbolic spaces Hk, rank one non-compact Riemannian
symmetric spaces, any small perturbation of those...

Definition 1.8. A CAT(0) space Y is a geodesic metric space such that, for
every geodesic triangle T in Y , there exists a 1-Lipschitz map j : T0 → T
where T0 is the triangle the Euclidean plane with same side lengths as T and
j sends each vertex of T0 to the corresponding vertex of T . See [11].

Examples are : Hadamard manifolds (namely, complete and simply con-
nected Riemannian manifolds with non positive curvature), Euclidean buid-
ings, R-trees, convex subsets in Hilbert spaces...

It is not restrictive to assume that Y is complete, since the metric com-
pletion of a CAT(0) space still is a CAT(0) space. Since the closed balls
B(y0, R) in Y are also CAT(0) spaces, this will allow us to assume in the
proof of Theorem 1.3 that Y is bounded. We will sometimes assume that Y
is proper, i.e. that these closed balls B(y0, R) are compact.

Definition 1.9. A map h : X → Y is (energy minimizing) harmonic if it is
locally Lipschitz continuous and if it is a minimum for the Korevaar-Schoen
energy E(h) with respect to variations of h with compact support Z ⊂ X.

When Y is a CAT(0) Riemannian manifold, the Korevaar-Schoen energy
on Z coincides with the Dirichlet energy E(h) =

∫
Z
|Dh(x)|2dvg(x). In this

case, the harmonicity condition can be expressed by a partial differential
equation which is not linear any more, see [16], [21] or [23]. When Y is only
a CAT(0) space, the energy of h on Z is the integral E(h) =

∫
Z
eh(x)dvg(x)

of the energy density eh where, for a Lipschitz continuous map h, the energy
density is given by eh(x) = lim sup

ε→0
ε−2−kv−1

k

∫
B(x,ε)

d(h(x), h(x′))2dvg(x
′),

where vk is the volume of the unit Euclidean ball and where this limit should
be understood in a weak sense. See [28, Section 1.5] for a precise definition.
See also [24].

The measure σ refers to any finite Borel measure on ∂X which is equiv-
alent to the harmonic measures on ∂X. The “σ-almost surely” means that
the property holds except on a set of measure zero for the measure σ on
∂X. Note that, when X is a pinched Hadamard manifold, such a measure
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σ is often found to be singular with respect to the Lebesgue measure on the
sphere ∂X.

The set Hb(X, Y ) is the set of bounded harmonic maps h : X → Y , and
the set L∞(∂X, Y ) is the set of bounded measurable maps from ∂X to Y
where two measurable maps are identified if they are σ-almost surely equal.

Definition 1.10. A function h : X → Y has a non-tangential limit y at a
point ξ ∈ ∂X (also called a conical limit), and we write y = NTlim

x→ξ
h(x), if

y = lim
n→∞

h(xn) holds for any sequence (xn) in X converging non-tangentially

to ξ, i.e. such that sup
n≥1

d(xn, oξ) < ∞ where oξ is any geodesic ray from a

point o ∈ X to ξ.

1.4 Previous results

When Y = R, we are dealing with harmonic functions. As we have already
seen in Section 1.1, Theorem 1.3 for X = B is the classical Fatou theorem.
The extension to the case whereX is a pinched Hadamard manifold appeared
in the 80′s and is due to Anderson and Schoen in [4]. The extension to the
case where X is a GGG Riemannian manifold is due to Ancona in [3].

When Y is a CAT(0) Riemannian manifold and X is a pinched Hadamard
manifold, Theorem 1.3.a is due to Aviles, Choi, Micallef in [6, Thm 5.1], and
Theorem 1.3.b is conjectured to be true by these authors. Indeed, as a final
observation in [6, Section 1] they write that such a theorem would be “a
consequence of the solvability of the Dirichlet problem with L∞ boundary
condition”. This solvability is one of the main technical issues in our paper
(Proposition 1.18). Note that the solvability of the Dirichlet problem with
continuous boundary condition is proven in [6, Thm 3.2]. The first case of
Theorem 1.3.b that seems to be new is when both X and Y are the hyperbolic
plane H2.

When Y is a CAT(0) space, the proof of Theorem 1.3 will rely on the
solution of the Dirichlet problem for harmonic maps with values in a CAT(0)
space under Lipschitz continuous boundary condition, due to Korevaar and
Schoen in [28], a result that extends the Hamilton theorem in [21].

Remark 1.11. Note that we cannot assume Y to be only locally CAT(0).
The fact that Y is simply connected will be important here. Indeed, it is not
clear how to parametrize the set of harmonic maps from the unit disk to a
compact hyperbolic surface. Similarly, it is not clear how to parametrize the
set of all harmonic maps from the unit disk to the circle R/Z, because this
is equivalent to parametrizing all the harmonic functions on the unit disk.
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Remark 1.12. Theorem 1.3 is an analog of the theorems that parametrize
unbounded harmonic maps between pinched Hadamard manifolds by their
“quasi-symmetric” boundary condition at infinity. See the successive papers
[32], [30], [8], [9], and [35]. that deal with an increasing level of generality.

1.5 Strategy of proof

We will split the statement of Theorem 1.3 into five propositions.

Proposition 1.13. (Construction of the boundary map) Let X be
a GGG Riemannian manifold and let Y be a proper CAT(0)-space. Let
h : X → Y be a bounded harmonic map. Then, for σ-almost all ξ ∈ ∂X, the
map h admits a non-tangential limit φ(ξ) := NTlim

x→ξ
h(x) at the point ξ.

We denote by
βh := φ ∈ L∞(∂X, Y ) (1.3)

the bounded measurable map from ∂X to Y given by Proposition 1.13. This
map βh is called the boundary map of h, and the map

β : Hb(X, Y ) → L∞(∂X, Y )

is called the boundary transform.

Proposition 1.14. (Injectivity of the boundary transform) Same
notation. Two harmonic maps h, h′ from X to Y with βh = βh′ are equal.

In order to prove that the transformation β is onto, we will construct its
inverse map P . We first rely on the theorem that solves the Dirichlet problem
for harmonic maps with regular boundary data. It is due to Hamilton in [21]
when the target is a manifold, and to Korevaar-Schoen in [28, Thm 2.2] when
the target is a CAT(0) space.

Fact 1.15. (Hamilton, Korevaar and Schoen)
Let Ω be a bounded Lipschitz Riemannian domain and Y be a complete
CAT(0) space. Let φ : ∂Ω → Y be a Lipschitz map. Then, there exists
a unique harmonic map h = Pφ from Ω to Y that extends continuously φ.

We then need to extend Fact 1.15 to continuous boundary data, and to
deal with a boundary at infinity. This is included in the following proposition
wich will be proven in Section 4.2. Note that when X is a pinched Hadamard
manifold and Y is a CAT(0) Riemannian manifold, this proposition is already
in [6, Thm 3.2 and 4.7].
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Proposition 1.16. (Dirichlet problem with continuous data) Let X
be a GGG Riemannian manifold and Y be a complete CAT(0)-space. Let
φ : ∂X → Y be a continuous map. Then, there exists a unique harmonic
map h = Pφ from X to Y that extends continuously φ.

The conclusion in Proposition 1.16 means that the map h : X → Y that
is equal to h on X and to φ on ∂X is continuous. Idem for Fact 1.15.

The main result in this article, Theorem 1.3, extends Proposition 1.16 to
more general boundary conditions φ. Indeed, it allows φ to be any bounded
measurable map from ∂X to Y . As will be very clear in the next proposition,
the proof of our main Theorem 1.3 relies on the Hamilton, Korevaar, Schoen
theorem.

We endow the space L∞(∂X, Y ) with “the topology of the convergence in
probability”, see (4.1). The subspace C(∂X, Y ) of continuous maps is then
dense in L∞(∂X, Y ), see Lemma 4.2.

We also endow the spaceHb(X, Y ) of bounded harmonic maps h : X → Y
with the topology of the uniform convergence on compact subsets of X.

Proposition 1.17. (Construction of the Poisson transform) Let X be
a GGG Riemannian manifold and Y be a bounded complete CAT(0)-space.
The map

P : C(∂X, Y ) → Hb(X, Y )

given by Proposition 1.16 has a unique continuous extension

P : L∞(∂X, Y ) → Hb(X, Y ).

We still call the extended map P the Poisson transform.

Proposition 1.18. (Surjectivity of the boundary transform) Let X
be a GGG Riemannian manifold and Y be a compact CAT(0)-space. For all
φ ∈ L∞(∂X, Y ), one has φ = βPφ.

1.6 Overview

In Chapter 2, we recall preliminary facts about harmonic, subharmonic
and superharmonic functions u on a GGG Riemannian manifold. The key
points that we will use are a control on the Poisson kernel in Proposition
2.8, upper bounds on the harmonic measures in Lemmas 2.15 and 2.17, and
the existence of non-tangential limit for bounded Lipschitz superharmonic
functions on X in Proposition 2.18.
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In Chapter 3, we recall two facts about harmonic maps. The first one
is the control, due to Cheng, of the Lipschitz constant of a harmonic map
(Lemma 3.1). The second one is the subharmonicity of the distance function
between two harmonic maps (Lemma 3.2). We use these two facts, together
with Proposition 2.18, to prove the existence of non-tangential limit for our
bounded harmonic map h : X → Y (Proposition 1.13). This provides the
construction of the boundary map φ = βh : ∂X → Y . These arguments also
prove that the boundary transform β : h 7→ φ is injective (Proposition 1.14).

In Chapter 4, we first construct the Poisson transform P : φ 7→ h when
the boundary data φ is continuous (Proposition 1.16) by building on the
Hamilton, Korevaar and Schoen theorem (Fact 1.15). We then extend this
transform P : φ 7→ h to bounded measurable boundary data φ (Proposi-
tion 1.17). The key point is a suitable uniform continuity property of this
transform φ 7→ h.

In Chapter 5 we prove that the Poisson transform P is a right inverse for
the boundary transform β, so that the boundary transform β is surjective
(Proposition 1.18). The key point is an estimate on sequences of subharmonic
functions (Lemma 5.3) that relies on the control of the Poisson kernel Pξ in
Proposition 2.8 and on the Lebesgue density theorem for a doubling measure
on a compact quasi-metric space (Fact 5.2).

We would like to thank F. Jäckel for useful comments on a first version
of this preprint.

2 Harmonic and subharmonic functions

In this second chapter, we gather a few results concerning
harmonic and subharmonic functions on a GGG Riemannian
manifold X that will be used in the proof ot Theorem 1.3.

We set g for the Riemannian metric, d for the Riemannian distance, ∆ for
the Laplace Beltrami operator and k = dimX. For the Potential theory of
a GGG Riemannian manifold, we refer to the seminal paper [3] and to its
recent update [25].

2.1 The Harnack inequality and the Green function

In this section we present three classical Harnack inequalities
for positive harmonic functions.
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We recall that a function u : X → R is superharmonic if it is lower
semicontinuous, locally integrable, and if ∆u ≤ 0 holds in the weak sense. A
function u is subharmonic if −u is superharmonic. A function u is harmonic
if it is both subharmonic and superharmonic

The Harnack inequality, which has been improved by Serrin and by S.T.
Yau, gives a uniform control for positive harmonic functions on compact sets.
See [31, Lemma 2.1] for a short proof, and also [20, Cor. 8.21].

Fact 2.1. (Harnack inequality) Let X be a complete Riemannian manifold
with bounded sectional curvature. There exists a constant c0 > 0 such that,
for any positive harmonic function u on a ball B(x0, r) with r ≤ 1, one has

∥∇ log u(x)∥ ≤ c0/r for all x in B(x0, r/2).

One then has

u(y) ≤ ec0u(x) for all x, y in B(x0, r/2).

The Green operator G is the “inverse” of the Laplacian. The spectral gap
assumption ensures that the Green operator is bounded as an operator on
L2(X). The Green kernel G(x, y) is the kernel of the Green operator. It is is
symmetric i.e. G(x, y) = G(y, x). It is a positive C∞-function onX×X∖∆X

and, for each x in X, the function Gx := G(x, .) satisfies ∆Gx = −δx. In
particular the function Gx is harmonic outside {x}.

The bounded geometry assumption ensures the following control on the
Green function. We set log∗(t) := max(1, log t).

Fact 2.2. (Green function) Let X be a Riemannian manifold with bounded
geometry and with spectral gap. There exist C0 > 1 and ε0 > 0 such that :
a) For x, y in X with d(x, y) ≤ 1, one has

C−1
0 d(x, y)2−k ≤ G(x, y) ≤ C0 d(x, y)

2−k if k ̸= 2,

C−1
0 log∗(1/d(x, y)) ≤ G(x, y) ≤ C0 log∗(1/d(x, y)) if k = 2.

b) For x, y in X with d(x, y) ≥ 1, one has

G(x, y) ≤ C0 e
−ε0 d(x,y) (2.1)

See for instance [25, Prop. 2.7 and 2.12].

2.2 The Ancona Inequality

The Gromov hyperbolicity assumption ensures a much more precise control
on the Green function due to Ancona.

10



Fact 2.3. (Ancona Inequality) Let X be a GGG Riemannian manifold.
Then, there exists C1 > 1 such that for any point y on a geodesic segment
[x, z] in X such that d(x, y) ≥ 1 and d(y, z) ≥ 1 one has

C−1
1 G(x, y)G(y, z) ≤ G(x, z) ≤ C1G(x, y)G(y, z) (2.2)

The boundary Harnack inequality compares the behavior of two positive
harmonic functions near a piece of the boundary ∂X where they both go to
zero. In order to state this inequality we need to introduce some notation.

We first recall the definition of the Gromov product for two points η1, η2
in X = X ∪ ∂X seen from a point o ∈ X :

(η1|η2)o := lim sup
x1→η1
x2→η2

(x1|x2)o.

This quantity is equal, up to a uniformly bounded error term, to the distance
between o and a geodesic going from η1 to η2.

For x in X, we introduce the sets

Ht
o(x) = {y ∈ X | (y|x)o ≥ t},

Ht

o(x) = {y ∈ X | (y|x)o ≥ t}.

Note that these sets are empty when d(o, x) < t.
We recall that the topology ofX is the topology that extends the topology

of X and such that a neighborhood basis of a point ξ ∈ ∂X is given by the

sets Ht

o(ξ) with t > 0. See [18]. We will call them (rough) half-spaces.
We also recall that, since X is Gromov hyperbolic, we can choose δ > 1

satisfying (1.1) and such that, for every geodesic triangle x, y, z in X, every
point u on the edge xz is at distance at most δ of the union xy ∪ yz of the
other edges.

We record a five properties of these half-spaces :

Hs

x(y) ∪Ht

y(x) = X for all x, y in X with d(x, y) ≥ s+ t, (2.3)

Hs

x(y) ∩Ht

y(x) = ∅ for all x, y in X with d(x, y) < s+ t. (2.4)

Ht

x(y) ⊂ Ht−δ
x (z) for all x in X, y, z in X with z ∈ Ht

x(y), (2.5)

Ht+s

x (y) ⊂ Ht

m(y) for all m, x, y in X with d(x,m) = s , (2.6)

Ht

m(y) ⊂ Ht+s−δ
x (y) for m in xy with d(x,m) = s and t > δ. (2.7)

These properties explain why these sets are called half-spaces.
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The first four ones are straightforward. For the last one, notice that,

since t > δ, for any z in Ht

m(y), the distance between m and a geodesic yz
is larger than δ and hence there exists a point m′ on a geodesic xz such that
d(m,m′) ≤ δ.

We now state the strong boundary Harnack inequality for a GGG Rie-
mannian manifold X. This inequality is actually equivalent to the Ancona
Inequality in Fact 2.3.

Fact 2.4. (Strong Boundary Harnack inequality) Let X be a GGG
Riemannian manifold. There exists C2 > 0 and t0 > 0 such that for all
o ∈ X, all ξ ∈ ∂X, all t ≥ 0 and all positive continuous functions u, v on

the half-space H := Ht

o(ξ) which are zero on ∂X ∩ H and harmonic in the
interior of X ∩H, one has

u(y)

v(y)
≤ C2

u(x)

v(x)
for all x, y ∈ Ht+t0

o (ξ). (2.8)

Remark 2.5. Fact 2.4 is due to Anderson and Schoen in [4, Corollary 5.2]
when X is a pinched Hadamard manifold. It is due to Ancona in [3] when
X is a GGG Riemannian manifold.

The following statement is a Corollary of Facts 2.1 and 2.4.

Corollary 2.6. (Boundary Harnack inequality) Let X be a GGG Rie-
mannian manifold. Let O ⊂ X be a connected open subset and K ⊂ O be
a compact subset. There exists a constant C = CK,O,X > 0 such that for all
continuous functions u, v on O that are harmonic and positive on O∩X and
zero on O ∩ ∂X, one has

u(y)

v(y)
≤ C

u(x)

v(x)
for all x, y ∈ K ∩X. (2.9)

Note that Fact 2.4 is stronger than Corollary 2.6 since it requires the
constant C2 not to depend on the half-space H.

2.3 The Poisson kernel

We now recall the definition of the Poisson kernel, also called
the Martin kernel.

The following fact is due to Anderson and Schoen in [4] for a pinched
Hadamard manifold, and has been generalized by Ancona in [3] for a GGG

12



Riemannian manifold X. See also [25] for more general measured metric
spaces. It describes all the positive harmonic functions on X and, more
precisely, it describes the Martin boundary of X. The key point in the proof
is the strong boundary Harnack inequality of Fact 2.4.

Fact 2.7. (Martin Boundary) Let X be a GGG Riemannian manifold,
and fix a point o ∈ X.
a) For all ξ in ∂X, there exists a unique non-negative continuous function

x 7→ Pξ(x) = Pξ(o, x)

on X ∖ {ξ} which is harmonic on X, zero on ∂X ∖ {ξ} with Pξ(o) = 1.
b) For x ∈ X and ξ ∈ ∂X, Pξ(x) is obtained as the limit

Pξ(x) = lim
y→ξ

G(x, y)

G(o, y)
. (2.10)

c) Any positive harmonic function h on X can be written as

h(x) =

∫
∂X

Pξ(x) dµ(ξ)

for a unique positive finite Borel measure µ = µh on ∂X.
d) The function (x, ξ) 7→ Pξ(x) is continuous on X × ∂X ∖∆∂X where ∆∂X

denotes the diagonal in ∂X × ∂X.

By the very definition of the Poisson functions, the following holds :

Pξ(x, o) = Pξ(o, x)
−1.

Those functions Pξ are exactly the positive harmonic functions on X that
are minimal, up to normalization: i.e. the only positive harmonic functions
h on X that are bounded by Pξ are the multiples h = αPξ with α ≤ 1.

In the proof of Proposition 1.18, we will need the following estimate for
the Poisson functions.

Proposition 2.8. Let X be a GGG Riemannian manifold. Then, there
exists a constant C3 > 0 such that for all o in X, all ξ in ∂X, all x on a
geodesic ray oξ, and for all η1, η2 in ∂X with

|(ξ|η1)o − (ξ|η2)o| ≤ 1 , (2.11)

one has

C−1
3 ≤

Pη1 (x)

Pη2 (x)
≤ C3 . (2.12)
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We begin by a lemma that extends Ancona’s inequality to Poisson func-
tions. Since X is Gromov hyperbolic, for every geodesic triangle with distinct
vertices x, y, z in X, there exists a point m whose distance to any of the
three geodesic sides is at most δ. Such a point m is called a center of the
triangle x, y, z. It is not unique, but the distance between two centers is at
most 8δ. See [18].

Lemma 2.9. Let X be a GGG Riemannian manifold. Then, there exists a
constant C4 > 1 such that for all ξ in ∂X, all points o, x in X one has

C−1
4

G(m,x)

G(m, o)
≤ Pξ(o, x) ≤ C4

G(m,x)

G(m, o)
, (2.13)

where m is a center of a geodesic triangle with vertices o, x, ξ such that
d(o,m) ≥ 1 and d(x,m) ≥ 1.

Note that it is possible to choose such a center m since X is Gromov
hyperbolic with constant δ > 1.

A particular instance of (2.13), when x is on a geodesic ray from o to ξ
and d(o, x) ≥ 1, reads as

C−1
4 G(o, x)−1 ≤ Pξ(o, x) ≤ C4G(o, x)

−1. (2.14)

Proof. The center m is at a distance at most δ from both a geodesic ray oξ
and a geodesic ray xξ. Therefore when a point y ∈ X is sufficiently near ξ,
the point m is at distance at most 2δ from both the geodesic rays oy and
xy. Therefore, using the Harnack inequality in Fact 2.1 and the Ancona
inequality in Fact 2.3 one gets, with a constant c4 depending only on X :

c−1
4 G(x,m)G(m, y) ≤ G(x, y) ≤ c4G(x,m)G(m, y),

c−1
4 G(o,m)G(m, y) ≤ G(o, y) ≤ c4G(o,m)G(m, y).

Taking the ratio of these estimates yields, with C4 = c24,

C−1
4

G(x,m)

G(o,m)
≤ G(x, y)

G(o, y)
≤ C4

G(x,m)

G(o,m)
.

One then gets (2.13) by letting y converge to ξ.

Proof of Proposition 2.8. Let m1 be a center of the triangle o, x, η1 and m2

be a center of the triangle o, x, η2. Those points can be chosen so that
d(mi, o) ≥ 1 and d(mi, x) ≥ 1. The assumption (2.11) tells us that the
distance d(m1,m2) is bounded by a constant depending only on δ. Therefore
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by the Harnack principle in Fact 2.1, there exists a constant c3 > 1 depending
only on X such that

c−1
3 ≤ G(x,m2)

G(x,m1)
≤ c3 and c−1

3 ≤ G(o,m2)

G(o,m1)
≤ c3 (2.15)

Taking the ratio of the bound (2.13) with ξ = η1 by the bound (2.13) with
ξ = η2 one gets

C−2
4

G(x,m1)

G(x,m2)

G(o,m2)

G(o,m1)
≤

Pη1 (x)

Pη2 (x)
≤ C2

4

G(x,m1)

G(x,m2)

G(o,m2)

G(o,m1)
. (2.16)

Combining (2.15) with (2.16), one obtains (2.12) with C3 = c23C
2
4 .

Corollary 2.10. Let X be a GGG Riemannian manifold. Then, there exists
a constant C4 > 1 such that for all ξ in ∂X, all points x in X and all point
y on a ray xξ with d(x, y) ≥ 1, one has

C4
−1G(x, y)Pξ(y) ≤ Pξ(x) ≤ C4G(x, y)Pξ(y). (2.17)

Proof. Since, by definition Pξ(x, y) = Pξ(y)/Pξ(x), inequalities (2.17) are
nothing but a reformulation of (2.14).

See also [4, Cor. 6.4] and [29] for other estimates on the Poisson kernel
when X is a pinched Hadamard manifold.

We recall that, in Geometric Group Theory, the word “geodesic” means
“minimizing geodesic”. This is why the following lemma is non-trivial.

Lemma 2.11. Let X be a GGG Riemannian manifold. Then there exists
C5 > 1 such that, for all x in X, there exists ξ, η in ∂X with (ξ|η)x ≤ C5.

We do not explicitely use this lemma. It illustrates the influence of the
spectral gap condition on the geometry of X. It tells us there are no dead
ends in X. Here is a sketch of proof.

Proof. Since X is Gromov hyperbolic, if there were dead ends, we would be
able to find, for all n ≥ 1, a ball Bn := B(xn, n) of radius n in X whose
boundary Sn := S(xn, n) has diameter at most 2δ. Since X has bounded
geometry, the volumes of the balls Bn go to infinity while the diameters of
Sn are bounded. This contradicts the spectral gap.
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2.4 The harmonic measures

2.4.1 Harmonic measures for a bounded domain

We first recall the solution of the Dirichlet problem for harmonic functions
on a Lipschitz bounded Riemannian domain Ω (see Section 5.5 for a precise
definition). This can be found in [20, Chapter 6 and 8] when ∂Ω is smooth
and in [2] when ∂Ω is Lipschitz continuous. It says:

Fact 2.12. (Dirichlet problem for functions on a bounded domain)
Let Ω be a Lipschitz bounded Riemannian domain. For every continuous
function φ ∈ C(∂Ω,R), there exists a unique continuous function h : Ω → R
which is harmonic on Ω and equal to φ on ∂Ω.

Moreover, for x ∈ Ω there exists a measure σx = σΩ
x on ∂Ω, called the

harmonic measure on ∂Ω seen from x, such that the harmonic extension h
of φ is given by

h(x) :=

∫
∂Ω

φ(ξ) dσx(ξ). (2.18)

By a theorem of Dahlberg in [14], the harmonic measure σΩ
x at each point

x ∈ Ω is equivalent to the Riemannian measure on ∂Ω.
The measure σΩ

x is a doubling measure on ∂Ω. This means, see [12,
Section 11.3], that there exists a constant c = cΩ,x such that for all r > 0
and all ξ in ∂Ω one has

σΩ
x (B(ξ, 2r)) ≤ c σΩ

x (B(ξ, r)). (2.19)

In this notation, we think of σΩ
x as a measure on X supported by ∂Ω.

Remark 2.13. From a probabilistic point of view, the harmonic measure σΩ
x

on ∂Ω is the exit probability measure of a Brownian motion on Ω starting at
point x.

2.4.2 Harmonic measures on GGG Riemannian manifolds

We now recall the solution of the Dirichlet problem for harmonic functions
on a GGG Riemannian manifold X. This is independently due to Anderson
and Sullivan when X is a pinched Hadamard manifold. See [4] for a nice
account. It is due to Ancona when X is a GGG Riemannian manifold, as a
consequence of the description of the Martin boundary of X.

Fact 2.14. (Dirichlet problem for functions on GGG manifolds)
Let X be a GGG Riemannian manifold. For every continuous function
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φ ∈ C(∂X,R), there exists a unique continuous function h : X → R which
is harmonic on X and is equal to φ on ∂X.

Moreover, for x ∈ X there exists a measure σx = σXx on ∂X, called the
harmonic measure on ∂X seen from x, such that the harmonic extension h
of φ is given by

h(x) :=

∫
∂X

φ(ξ) dσx(ξ). (2.20)

For x = o, the probability measure σo on ∂X is the one that appears in
the decomposition of the constant harmonic function h = 1 in Fact 2.7.c.

For every x in X, the positive measure σXx is given by the formula

dσXx (ξ) = Pξ(x) dσ
X
o (ξ)

so that Equation (2.20) can be rewritten as

h(x) :=

∫
∂X

φ(ξ)Pξ(x) dσ
X
o (ξ). (2.21)

When φ is continuous, the function h defined on X by (2.21) is harmonic
and extends continuously φ. Indeed each function ξ 7→ Pξ(x), for x ∈ X,
is positive and satisfies

∫
∂X
Pξ(x) dσ

X
o (ξ) = 1 and, when a sequence (xn)

converges to ξ ∈ ∂X, the sequence of probability measures (Pξ(xn)dσ
X
o (ξ))

converges weakly to δξ.
Note that, even when X is a pinched Hadamard manifold, the measure

σXo is not always equivalent to the “visual measure”.

In order to have shorter notation, we will think of the harmonic measures
σXx as measures on X supported by ∂X.

2.4.3 Upper bound for the harmonic measures

We will need the following uniform control of the harmonic measures σΩ
o

for bounded subdomains of X with Lipschitz boundary. By definition, the
probability measure σΩ

o is supported by the boundary ∂Ω. This control tells
us that, seen from o, the measure of the part of ∂Ω cut out by a half space
far away from o is uniformly small.

Lemma 2.15. Let X be a GGG Riemannian manifold. For all ε > 0 there
exists ℓ = ℓε > 0 such that for all o in X, x in X, one has

σXo (H
ℓ

o(x)) ≤ ε, (2.22)

and, for all bounded Lipschitz subdomain Ω ⊂ X containing o, one has

σΩ
o (Hℓ

o(x)) ≤ ε. (2.23)
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Proof. We first prove (2.23). We introduce the set

E := Hℓ
o(x) ∩ ∂Ω,

where ℓ > δ will be chosen later, and the open 1-neighborhood of E

U := {y ∈ X | d(y, E) < 1}.

We introduce then the reduced function u := RU
1 of the constant function

1 to this open set U . By definition, u is the smallest positive superharmonic
function on X which is larger than 1U . This function is equal to 1 on U , it
is harmonic on X ∖U and one has 0 ≤ u ≤ 1. Since U is relatively compact
this function u is a potential on X i.e. its largest harmonic minorant is 0.

The Riesz decomposition theorem tells us that every potential u on X
can be written in a unique way as

u(x) =

∫
X

G(x, y) dλ(y) , (2.24)

where λ is a positive Radon measure on X called the Riesz measure of u.
In our case where u is the reduced function u = RU

1 for a relatively
compact open set U , the Riesz measure λ is a finite measure supported by
the boundary ∂U .

Since u is a positive superharmonic function on X which is equal to 1 on
E one has, for all z ∈ Ω,

σΩ
z (E) ≤ u(z). (2.25)

We can assume that E is not empty, and hence that d(o, x) ≥ ℓ. Let m
be a point on a geodesic segment from o to x with d(o,m) = ℓ. We claim
that there exists a constant C > 0 depending only on X such that

u(o) ≤ C G(o,m)u(m). (2.26)

Indeed, for each y in Hℓ
o(x), any geodesic segment from o to y intersects

the ball B(m, δ). Applying Harnack Inequality and Ancona Inequality, one
finds a constant C6 > 0 depending only on X such that, for all t > 1 and all
y in ∂U , one has

G(o, y) ≤ C6G(o,m)G(m, y).

Applying this inequality to each of the Green functions in the integral
(2.24), one gets our claim (2.26).

Since u is bounded by 1, it follows from (2.25), (2.26) and (2.1) that

σΩ
o (E) ≤ u(o) ≤ C6G(o,m) ≤ C6C0 e

−ε0ℓ ≤ ε
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if ℓ = ℓε is chosen large enough.

We now prove (2.22) with the same ε and ℓε as in (2.23). If (2.22) were
not true, there would exist a point x ∈ X, a small constant α > 0 and
a continuous function φ : ∂X → [0, 1 − α] supported by an open subset

of ∂X included in Hℓ

o(x) whose harmonic extension h : X → [0, 1 − α]
satisfies h(o) > ε. Since h is continuous, if Ω contains a sufficiently large ball
B(o,R), the restriction of h to the complement ∂Ω ∖ Hℓ

o(x) is bounded by
αε. Therefore, applying formula (2.18) with φ = h and using (2.23), we get

ε < h(0) ≤ (1− α)σΩ
o (Hℓ

o(x)) + αε ≤ (1− α) ε+ αε = ε.

This contradiction proves that (2.22) is true.

2.4.4 Lower bound for the harmonic measure

In order to prove the doubling property of the harmonic measure on X, we
will need the following uniform lower bound on the harmonic measure

Lemma 2.16. Let X be a GGG Riemannian manifold. For all ℓ ≥ 0, there
exists εℓ > 0 such that such that for all o in X and ξ ∈ ∂X, one has

σXo (H
ℓ

o(ξ)) ≥ εℓ. (2.27)

Proof. Let ℓ0 > 0 be the length given by (2.22) with ε = 1/2. Let m be a
point on a geodesic ray oξ such that d(o,m) = ℓ + ℓ0 + δ, so that, by (2.5)
and (2.3),

Hℓ

o(ξ) ⊃ Hℓ+δ

o (m) ⊃ X ∖Hℓ0
m(o).

By the Harnack inequality applied to the harmonic function x 7→ σXx (H
ℓ

o(ξ)),
there exists a constant Cℓ > 0 depending only on X and ℓ such that

σXo (H
ℓ

o(ξ)) ≥ C−1
ℓ σXm(H

ℓ

o(ξ)) ≥ C−1
ℓ (1− σXm(H

ℓ0
m(o))).

The choice of ℓ0 implies σXm(H
ℓ0
m(o)) ≤ 1/2. This gives (2.27) with the con-

stant εℓ = 1/(2Cℓ).

2.4.5 Doubling for the harmonic measure

The following Lemma 2.17 tells us that the measure σXo satisfies a doubling
property. See [4, Lemma 7.4] when X is a pinched Hadamard manifold.
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Lemma 2.17. Let X be a GGG Riemannian manifold. There exists a
constant c = cX such that for all o in X, ξ ∈ ∂X and t ≥ 0, one has

σXo (H
t

o(ξ)) ≤ c σXo (H
t+1

o (ξ)). (2.28)

Proof. By Lemma 2.16, we may assume that t ≥ 1.
We first claim that there exists a constant C7 > 1 such that for all o in

X, all ξ in ∂X, and all xt on a geodesic ray oξ with d(o, xt) = t ≥ 1, one has

C−1
7 G(o, xt) ≤ σXo (H

t

o(ξ)) ≤ C7G(o, xt) . (2.29)

In order to prove this claim, we introduce for each t > 0 the harmonic
function

z 7→ ht(z) := σXz (H
t

o(ξ)) =

∫
Ht

o(ξ)∩∂X
Pη(z) dσ

X
o (η).

Integrating the inequalities (2.17), one finds a constant C4 > 1 depending
only on X such that

C4
−1G(o, xt)ht(xt) ≤ ht(o) ≤ C4G(o, xt)ht(xt). (2.30)

We recall from (2.7) that

H2δ

xt
(ξ) ⊂ Ht

o(ξ),

so that, using Lemma 2.16 with ℓ = 2δ, one gets a constant ε2δ > 0 such that

ε2δ ≤ σxt (H
2δ

xt
(ξ)) ≤ ht(xt) ≤ 1. (2.31)

Combining (2.30) with (2.31), we obtain our claim (2.29).
Now, the Harnack inequality in Fact 2.1 provides a constant C depending

only on X such that, for t ≥ 1,

G(o, xt) ≤ C G(o, xt+1). (2.32)

The bound (2.28) follows from (2.29) and (2.32).

2.5 Non-tangential limits

According to Fatou’s theorem, every bounded harmonic function on the Eu-
clidean ball B ⊂ Rk admits a non-tangential limit at σ0-almost all points of
the boundary sphere ∂B (see [5, Theorem 4.6.7]). This is not always true for
a bounded superharmonic function u, see [36, p. 175].

Yet, according to Littlewood’s theorem, every bounded superharmonic
function u on B admits a radial limit at σ0-almost all points of ∂B, see [5,
Thm. 4.6.4, Cor. 4.6.8]. One needs an extra assumption on u to ensure
that this radial limit is also a non-tangential limit. This condition is the
“Lipschitz continuity of u for the hyperbolic metric on the ball B”.
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Proposition 2.18. Let X be a GGG Riemannian manifold, o ∈ X and let
σ = σXo . Let u :X → R be a bounded Lipschitz superharmonic function.
a)For σ-almost all ξ∈∂X, the non-tangential limit ψ(ξ):=NTlim

x→ξ
u(x) exists.

b) If this limit ψ(ξ) is σ-almost surely null, then one has u ≥ 0.

Note that the Lipschitz continuity of u is true for all bounded harmonic
functions, because of the Harnack inequality in Fact 2.1.

Proof of Proposition 2.18. : This follows from the Fatou–Näım–Doob theo-
rem and the Brelot-Doob trick, as they are explained by Ancona in [3].

a) It is proven in [3, Thm 1.8] that for any superharmonic function u on
X which is bounded below, for σ-almost all ξ in ∂X, the minimal fine limit

ψ(ξ) :=MFlim
x→ξ

u(x)

exists. This means that the limit of u(x) when x → ξ exists as soon as x
avoids a subset E = Eξ which is minimally thin at ξ. We recall that a subset
E ⊂ X is minimally thin if the function Pξ1E is bounded by a potential
on X. And we recall that a potential is a positive superharmonic function
whose largest harmonic minorant is zero. Moreover, there is a formula for
this limit :

ψ(ξ) =
dµh
dσ

(ξ)

where µh is the trace measure on ∂X of the harmonic function h in the Riesz
decomposition of u as a sum u = p + h of a potential p and a harmonic
function h.

It is also proven in [3, p.99-100] that for a Lipschitz continuous function
u on X and a point ξ in ∂X, if the minimal fine limit ℓ :=MFlim

x→ξ
u(x) exists

then the non-tangential limitNTlim
x→ξ

u(x) exists and is equal to ℓ.

b) Since u and hence its harmonic part h are bounded on X, the measure
µh is absolutely continuous to σ. Hence, when the limit ψ(ξ) is σ-almost
surely zero, the trace measure µh is zero, and the harmonic function h is also
0. This tells us that u is a potential, so that one has in particular u ≥ 0.

3 The boundary transform

In this third chapter, we construct the boundary transform
β : Hb(X, Y ) −→ L∞(∂X, Y ) and prove that it is injective.

We recall that X is a GGG Riemannian manifold, that Y is a complete
CAT(0) space, and that X = X ∪ ∂X.
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3.1 Harmonic maps and subharmonic functions

The following lemmas relate harmonic maps h : X → Y with
Lipschitz subharmonic functions u on X. They will allow us to
apply the results on superharmonic functions from Chapter 2.

We begin by a useful bound for the Lipschitz constant of a harmonic map
due to Cheng.

Lemma 3.1. Let X be a Riemannian manifold with bounded geometry, and
let Y be a bounded CAT(0)-space. There exists L > 0 such that for all x0 in
X, all r ≤ 1 and any harmonic map h : B(x0, r) → Y , the restriction of h
to the ball B(x0, r/2) is L/r-Lipschitz.

Proof. When Y is a manifold, this is a simplified version of [13, Formula
2.9]. See also [19, Theorem 6]. When Y is a more general CAT(0) space, the
extension of Cheng Lemma has been proven in [37, Theorem 1.4].

Lemma 3.2. Let X be a complete Riemannian manifold with bounded sec-
tional curvature, and let Y be a CAT(0)-space.
a) Let h : X → Y be a bounded harmonic map and y0 ∈ Y . Then the func-
tion x 7→ d(y0, h(x)) is a bounded Lipschitz subharmonic function on X.
b) Let h, h′ : X → Y be two bounded harmonic maps. Then the function
x 7→ d(h(x), h′(x)) is also a bounded Lipschitz subharmonic function on X.

Proof. When Y is a manifold this is in[22, Lemmas 3.8.1 and 3.8.2].
a) We can assume that the CAT(0) space Y is bounded. Since Y is

CAT(0), the function α on Y defined by α(y) := d(y0, y) is convex. Therefore,
by [23, Lemma 1.7.1] when Y is a manifold and [15, Lemma 10.2] in general,
the function u := α ◦ h is subharmonic on X. The Lipschitz continuity of u
follows from the Cheng bound in Lemma 3.1.

b) The proof is as in a). Indeed, the map (h, h′) : X → Y ×Y is harmonic,
the product space Y × Y is CAT(0), and the function (y, y′) → d(y, y′) is a
convex function.

3.2 Construction of the boundary map

In this section, we prove Proposition 1.13.

Proof of Proposition 1.13. Remember that Y is here assumed to be proper.
Fix o ∈ X and set σ = σXo . Let h : X → Y be a bounded harmonic map. We
want to prove that, for σ-almost all ξ ∈ ∂X, the map h has a non-tangential
limit φ(ξ) at the point ξ.
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Let y ∈ Y . By Lemma 3.2, the function uy : x→ d(y, h(x)) is a bounded
Lipschitz subharmonic function on X. Hence, by Proposition 2.18.a, there
exists a subset Fy of full measure in ∂X such that the function uy admits a
non-tangential limit ψy(ξ) at each point ξ ∈ Fy.

Let Y1 ⊂ Y be the closure of the convex hull of h(X) in Y . This subspace
Y1 is a compact CAT(0) space. Let D ⊂ Y1 be a countable dense subset of
Y1. The intersection F ⊂ ∂X of all the sets Fy, for y in D, still has full
σ-measure. Note that, for all y, y′ in Y1 and x in X, one has

d(uy(x), uy′(x)) ≤ d(y, y′).

Therefore, for all ξ ∈ F and all y in Y1, the function uy has a non-tangential
limit at the point ξ.

We introduce the map

Φ : Y1 → Lip1(Y1, [0, δY1 ])

y′ 7→ (d(y, y′))y∈Y1 .

where δY1 is the diameter of Y1 and Lip1 refers to the set of 1-Lipschitz
functions endowed with the sup distance. This map Φ is an isometry onto
its image Φ(Y1) and, since Y1 is compact, this image Φ(Y1) is closed. Let
ξ ∈ F . Since Y1 is compact, what we have just seen tells us that the map
Φ ◦ h has a non-tangential limit at the point ξ. Therefore, the map h also
has a non-tangential limit φ(ξ) ∈ Y1 at the point ξ.

3.3 Injectivity of the boundary transform

In this section, we prove Proposition 1.14.

Proof. Let h and h′ be two harmonic maps from X to Y whose boundary
maps βh and βh′ are σ-almost surely equal. We want to prove that h = h′.

By Lemma 3.2, the function u : x → d(h(x), h′(x)) is a bounded Lips-
chitz subharmonic function on X. By assumption the non-tangential limit
NTlim
x→ξ

u(x) is zero for σ-almost all ξ in ∂X. Therefore, by Proposition 2.18.b,

the function umust be non-positive. Since u is already non-negative, we must
have u = 0, and hence h = h′.

4 The Poisson transform

In this fourth chapter, we construct the Poisson transform.
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4.1 Density of the Lipschitz maps

We first need a lemma on the density of Lipschitz maps on a compact man-
ifold S inside the set of bounded measurable maps. We will apply it to the
boundary S = ∂Ω of a bounded Lipschitz domain Ω. Such a boundary is
bi-Lipschitz homeomorphic to a compact smooth manifold.

Lemma 4.1. Let S be a compact manifold and Y be a CAT(0) space. Then,
every continuous map φ : S → Y is a uniform limit of Lipschitz maps.

We begin by recalling the classical construction of the weighted barycenter
β = βµ(y0, . . . , yn) of n+1 points (y0, . . . , yn) in a CAT(0)-space Y . The
weight µ belongs to the standard n-simplex

Σn := {µ = (µ1, . . . , µn) | µi ≥ 0 for all i, and µ0 + · · ·+ µn = 1}.

We endow this simplex with the ℓ1-distance. This barycenter β is the unique
point where the strictly convex function on Y

y 7→ ψµ(y) :=
∑

0≤i≤n

µi d(yi, y)
2

achieves its minimum. As a function of the weight, this barycenter map

µ 7→ βµ(y0, . . . , yn)

is L-Lipschitz continuous where L is the diameter of the finite set {y0, . . . , yn}.
We refer to [26, Lemma 4.2] for these properties.

Proof of Lemma 4.1. Using a triangulation of S we can assume that S is a
compact CW -complex. We endow each n-simplex Σ0 of S with the ℓ1-norm
and we endow S with the corresponding length metric. This new metric is
Lipschitz equivalent to the Riemannian metric on S. Each n-simplex Σ0 of S
can be decomposed as a union of 2n half-size n-simplices. Iterating k times
this process we obtain a decomposition of Σ0 as a union of 2kn n-simplices of
level k whose size is 2−k the size of Σ0.

Fix ε > 0 and φ ∈ C(S, Y ). There exists an integer k such that, for each
simplex Σ of level k, one can uniformly bound the diameter

diam(φ(Σ)) ≤ ε/2.

For each simplex Σ of level k, we denote by fΣ : Σ → Y the barycenter map
such that fΣ(s) = φ(s) for each vertex s of Σ. One then has

diam(fΣ(Σ)) ≤ ε/2,
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and d(fΣ(s), φ(s)) ≤ ε holds for all s in Σ. These maps fΣ are 2kε-Lipschitz
continuous.

These maps fΣ being compatible, each fΣ is the restriction to Σ of a
map f : S → Y . This map f is also 2kε-Lipschitz continuous, and one has
d(f(s), φ(s)) ≤ ε for all s in S.

Lemma 4.2. Let S be a compact metric space, σ be a Borel probability
measure on S, and Y be a CAT(0) space. Then the set C(S, Y ) of continuous
maps f : S → Y is dense in the set L∞(S, Y ) of bounded measurable maps
φ : S → Y .

We recall that L∞(S, Y ) is endowed with the “topology of the convergence
in probability”. The distance between two maps φ, φ′ in L∞(S, Y ) is given
by

d(φ, φ′) := inf{δ ≥ 0 | σ({ξ ∈ S | d(φ(ξ), φ′(ξ)) ≥ δ}) ≤ δ} . (4.1)

The space L∞(S, Y ) and its topology do not depend on the choice of the
measure σ inside its equivalence class of measures.

Proof of Lemma 4.2. Let φ : S → Y be a bounded measurable map. Let
ε > 0. By Lusin’s theorem, there exists a compact subset K ⊂ S such that
the complement Kc satisfies σ(Kc) ≤ ε and such that the restriction φ|K is
continuous. Since a CAT(0) space Y is an absolute retract metric space, see
[33, Lemma 1.1], and since an absolute retract metric space is an absolute
extension metric space, there exists a continuous function f : S → Y whose
restriction to K is equal to φ|K , so that d(φ, f) ≤ ε.

Lusin’s theorem is usually stated under the assumption that the metric
target space Y is separable. Here we do not need this assumption since S
is a standard Borel space endowed with a Radon measure σ. Indeed, in this
case, all measurable maps φ : S → Y are strongly measurable. This means
that φ is an almost sure limit of a sequence of measurable step functions φn
or equivalently that there exists a conull subset S ′ ⊂ S such that the image
φ(S ′) is separable. See [17, Thm 2.B] for more details.

4.2 The continuous Dirichlet problem

In this section we prove Proposition 1.16.

We first deal with bounded domains.
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Proposition 4.3. Let Ω be a bounded Lipschitz Riemannian domain, Y a
complete CAT(0) space and φ : ∂Ω → Y a continuous map, then there exists
a unique harmonic map h : Ω → Y which is a continuous extension of φ.

Proof. By Lemma 4.1, we can choose a sequence φn ∈ Lip(∂Ω, Y ) that con-
verges uniformly to φ. It suffices to prove that the sequence of their harmonic
extensions hn := Pφn given by Fact 1.15 converge uniformly. We introduce
the subharmonic functions on Ω given by

um,n(x) := d(hm(x), hn(x)).

They extend the continuous functions on ∂Ω given by

ψm,n(ξ) = d(φm(ξ), φn(ξ)).

By the maximum principle, the supremum of um,n on Ω is equal to the
supremum of ψm,n on ∂Ω. Hence it goes to zero when m,n→ ∞. Therefore
the sequence hn converges uniformly to a map h which is harmonic and which
extends continuously φ.

This harmonic extension is unique because if h′ is another harmonic ex-
tension, the positive function

x 7→ u(x) := d(h(x), h′(x))

is subharmonic on Ω and goes to zero near the boundary. Hence u = 0 and
h = h′.

We now deal with a GGG Riemannian manifold X.

Proof of Proposition 1.16 . We fix o in X. We can assume that the diameter
δY of Y is finite. Indeed we can always replace Y by a closed ball B(o,R)
that contains the image of φ, since such a ball is also a complete CAT(0)
space.

As we have seen in the proof of Lemma 4.2, since the compactification
X is a metrizable compact space and Y is a CAT(0) space, there exists a
continuous function

ψ : X → Y such that ψ|∂X = φ.

We choose an increasing sequence of bounded Lipschitz domain ΩN ⊂ X
such that o ∈ Ω0 and ΩN contains the 1 neighborhood of ΩN−1. We denote
by hN : ΩN → Y the harmonic extension of the function ψN := ψ|∂Ω

N
given

by Proposition 4.3. We claim that

∀ε > 0, ∃n0 > 0, ∀N > n > n0, ∀x ∈ Ωn, d(hN(x), hn(x)) ≤ ε . (4.2)
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Since the function x 7→ d(hn(x), hN(x)) is subharmonic, by the maximum
principle it is enough to check (4.2) for x in ∂Ωn, that is :

∀ε > 0,∃n0 > 0,∀N > n > n0, ∀x ∈ ∂Ωn, d(hN(x), ψ(x)) ≤ ε . (4.3)

Let ε > 0. According to Lemma 2.15, there exists t0 > 0 such that for all
x in ΩN ,

σΩN
x (Ht0

x (o)) ≤ ε/(2δY ). (4.4)

By uniform continuity of ψ there exists t1 > 0 such that, for all x in X :

d(ψ(x), ψ(y)) ≤ ε/2 for all y in Ht1
o (x). (4.5)

We choose n0 ≥ t0+t1 and let N ≥ n ≥ n0. We fix x in ∂Ωn and introduce
the subharmonic function z 7→ u(z) := d(hN(z), ψ(x)) on ΩN . We want to
prove that u(x) ≤ ε. We observe that

u(x) ≤
∫
∂ΩN

u(y) dσΩN
x (y). (4.6)

Since d(o, x) ≥ n ≥ t0 + t1, by (2.3), one has

X = Ht0
x (o) ∪Ht1

o (x),

and we can bound this integral (4.6) by the sum I ′ + I ′′ where :
- I ′ is the integral on the half-space Ht0

x (o), which by (4.4) has small volume,
- I ′′ is the integral on Ht1

o (x) on which by (4.5) the function u is small. Hence

u(x) ≤ δY σ
ΩN
x (Ht0

x (o)) +
ε

2
σΩN
x (Ht1

o (x)) ≤ ε

2
+
ε

2
= ε ,

which proves our claim (4.2).
Now the claim (4.2) proves that the sequence of maps (hN) converges

uniformly to a harmonic map h : X → Y that extends continuously φ.
The proof of uniqueness is as for Proposition 4.3.

4.3 Construction of the Poisson transform

The construction uses the following classical “continuous extension theorem”.

Lemma 4.4. Let E be a metric space, D ⊂ E a dense subset and F a
complete metric space. Then every uniformly continuous map P : D → F
admits a unique continuous extension P : E → F .

Proof of Lemma 4.4. This is classical.
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Proof of Proposition 1.17. Remember that Y is assumed to be bounded. We
use Lemma 4.4 with E = L∞(∂X, Y ), D = C(∂X, Y ) and F = Hb(X, Y ).
Note that F is a complete metric space since a uniform limit of harmonic
maps is harmonic.

We want to prove that the map P : C(∂X, Y ) → Hb(X, Y ) given by
Proposition 1.16 has a unique continuous extension to L∞(∂X, Y ). By Lem-
mas 4.4 and 4.2, it suffices to prove that this map P is uniformly continuous.
We fix a compact K ⊂ X and a point o ∈ K, and we set

CK = sup
ξ∈∂X, x∈K

Pξ(x) < ∞ ,

where Pξ(x) is the Poisson kernel.
Let 0 < ε ≤ 1 and φ, φ′ be two continuous maps from ∂X to Y such that

d(φ, φ′) ≤ ε. This means that the function ψ on ∂X defined, for ξ in ∂X, by
ψ(ξ) := d(φ(ξ), φ′(ξ)) satisfies

σo({ξ ∈ ∂X | ψ(ξ) ≥ ε}) ≤ ε, where σo = σXo . (4.7)

Note that this function ψ is bounded by the diameter δY of Y .
Let h = Pφ and h′ = Pφ′ be their harmonic extensions to X.
By Lemma 3.2, the continuous function u on X given, for x in X, by

u(x) := d(h(x), h′(x)) is subharmonic on X. This function is a continuous
extension of ψ. Therefore it satisfies, for all x in X,

u(x) ≤
∫
∂X

ψ(ξ)Pξ(x) dσo(ξ) .

Plugging (4.7) in this inequality, one gets for every x in K :

u(x) ≤ ε

∫
∂X

Pξ(x) dσo(ξ) + δY

∫
{ψ(ξ)≥ε}

Pξ(x) dσo(ξ)

≤ ε+ CKδY ε.

This proves, for any φ, φ′ in C(∂X, Y ) and any compact subset K ⊂ X, the
inequality :

sup
x∈K

d(h(x), h′(x)) ≤ (1 + CKδY )d(φ, φ
′) .

This is the uniform continuity of the map P .

5 The boundary and the Poisson transform

In this chapter, we prove that the Poisson transform P is the
inverse of the boundary transform β.
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5.1 The Lebesgue density theorem

We recall here the generalized Lebesgue density theorem. See [7, Section 4.6]
for a short and complete proof.

Definition 5.1. A quasi-distance on a space S is a map d0 : S×S → [0,∞[
for which there exists b > 0
such that d0(ξ1, ξ3) ≤ b(d0(ξ1, ξ2) + d0(ξ2, ξ3)) , ∀ξ1, ξ2, ξ3 ∈ S,
such that d0(ξ1, ξ2) = d0(ξ2, ξ1) and
such that d0(ξ1, ξ2) = 0 ⇔ ξ1 = ξ2.

- In this case, one says that S is a quasi-metric space. Then, there exists
a topology on S for which the balls B(ξ, ε) := {η ∈ S | d0(ξ, η) ≤ ε}, with
ξ ∈ S and ε > 0, form a basis of neighborhood of the points ξ.
- One then has the inclusion B(ξ, ε) ⊂ B(ξ, bε).

Let (S, d0) be a compact quasi-metric space and σ be a finite Borel mea-
sure on S. One says that σ is doubling if there exists C > 0 such that, for
all ξ ∈ S and r > 0, one has σ(B(ξ, 2r)) ≤ C σ(B(ξ, r)).

Let F ⊂ S be a measurable subset. A point ξ ∈ S is called a density
point if

lim
ε→0

σ(B(ξ, ε) ∩ F )
σ(B(ξ, ε))

= 1.

Fact 5.2. (Lebesgue) Let (S, d0) be a compact quasi-metric space, σ be a
doubling finite Borel measure on S, and let F be a measurable subset of S.
Then σ-almost every point of F is a density point.

In the next section, we will apply Fact 5.2 with S = ∂X and with σ = σo.
We will use the quasi-distance on ∂X defined, for two points η1 and η2,

by the exponential inverse of the Gromov product :

d0(η1, η2) = e−(η1|η2)o . (5.1)

This formula defines indeed a quasi-distance on ∂X, because of (1.1). Note
that one can modify this formula so that d0 is actually a distance, see [18].

The balls for this quasi-distance in ∂X are the trace at infinity of the
half-spaces of X. The doubling property for σo is proven in Lemma 2.17.

5.2 Limit of subharmonic functions

In this section we prove the technical lemma 5.3 that plays
a crucial role in the proof of the surjectivity of the boundary
transform.
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We fix a point o in X. For all ξ ∈ ∂X we define Nξ as the union of the
geodesic rays oξ from o to ξ. We define then the tube NF over a compact set
F ⊂ ∂X as the union

NF :=
⋃
ξ∈F

Nξ ⊂ X. (5.2)

Lemma 5.3. Let X be a GGG Riemannian manifold, and fix a point o ∈ X.
Let ψn :∂X→ [0, 1] be a sequence of continuous functions that converges σo-
almost surely to 0. Let un :X→ [0, 1] be non-negative subharmonic functions
on X that extend continuously ψn. Then, for all ε > 0, there exists a compact
subset Fε ⊂ ∂X with σo(F

c
ε ) ≤ ε, such that the sequence (un) converges

uniformly to 0 on the tube NFε.

The arguments of Section 4.3 tell us that the sequence (un) converges to
0 uniformly on the compact subsets K of X. Lemma 5.3 tells us that this
convergence is still uniform on “large radial subsets of X”.

Proof. First step We control the Poisson kernel on tubes.
For ξ in ∂X and m ≥ 0 we denote by

Bm(ξ) := B(ξ, e−m) = {η ∈ ∂X | (η|ξ)o ≥ m}

the balls for the quasidistance d0 in (5.1), and we introduce the annuli

Am(ξ) := Bm(ξ)∖Bm+1(ξ),

so that one has ∪m≥0Am(ξ) = ∂X∖{ξ}.
By Proposition 2.8, there exists C3 > 0 such that, for ξ ∈ ∂X and m ≥ 0,

Pη1 (x)

Pη2 (x)
≤ C3 holds for all x ∈ Nξ and η1, η2 in Am(ξ). (5.3)

Second step We apply the Lebesgue density theorem.
Let ε > 0. Since the sequence (ψn) converges σo-almost surely to 0, there

exist an integer nε ≥ 1 and a compact subset Kε ⊂ ∂X with σo(K
c
ε) ≤ ε/2,

and such that ψn(ξ) ≤ ε for all n ≥ nε and ξ ∈ Kε.
By the Lebesgue density theorem (Fact 5.2), applied to the doubling

measures σo = σXo and the family of balls Bm(ξ), the sequence of functions

fm(ξ) :=
σo(Bm(ξ) ∩Kc

ε)

σo(Bm(ξ))
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converges to zero for σo-almost all ξ ∈ Kε. Since the measure σo is doubling,

the ratios
σo(Bm(ξ))

σo(Bm+1(ξ))
are uniformly bounded, and this implies that the ra-

tios
σo(Bm(ξ))

σo(Am(ξ))
are also uniformly bounded. Hence the sequence of functions

gm(ξ) :=
σo(Am(ξ) ∩Kc

ε)

σo(Am(ξ))
also converges to zero for σo-almost all ξ ∈ Kε.

Therefore, by Egorov theorem, there exist a compact subset Lε ⊂ Kε and
an integer mε ≥ 1 such that σo(L

c
ε) ≤ ε and with

σo(Am(ξ) ∩Kc
ε) ≤ ε σo(Am(ξ)) for all m ≥ mε and ξ ∈ Lε. (5.4)

Third step We bound the functions un by using the Poisson kernel.
Since each function un is subharmonic with boundary value ψn, one has

un(x) ≤
∫
∂X

ψn(η)Pη(x) dσo(η) for all x ∈ X.

We now assume that x belongs to a tube Nξ with ξ ∈ Lε. We write

un(x) ≤
∞∑
m=0

Im,n(x, ξ) where Im,n(x, ξ) :=

∫
Am(ξ)

ψn(η)Pη(x) dσo(η).

We split this sum into two parts, according to whether m < mε or m ≥ mε.
First assume that m < mε. The function (x, η) 7→ Pη(ξ) being continuous

on (X × ∂X)∖∆∂X , there exists a constant C8 = C8(mε) > 0 such that one
has, for all ξ ∈ ∂X :

Pη(x) ≤ C8 for all x ∈ Nξ and η ∈ ∂X ∖Bmε
(ξ).

This gives the bound∑
m<mε

Im,n(x, ξ) ≤ C8

∫
∂X

ψn(η) dσo(η) , (5.5)

where the integral converges to 0 when n → ∞ by the Lebesgue dominated
convergence theorem.

Now assume that m ≥ mε. One splits the integral Im,n(x, ξ) as a sum

Im,n(x, ξ) = I ′m,n(x, ξ) + I ′′m,n(x, ξ) where

I ′m,n(x, ξ) :=

∫
Am(ξ)∩Kc

ε

ψn(η)Pη(x) dσo(η),

I ′′m,n(x, ξ) :=

∫
Am(ξ)∩Kε

ψn(η)Pη(x) dσo(η).
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Since m ≥ mε and ξ ∈ Lε, we obtain by using (5.3) and (5.4) and the bound
∥ψn∥∞ ≤ 1 :

I ′m,n(x, ξ) ≤ max
η∈Am(ξ)

Pη(x) σo(Am(ξ) ∩Kc
ε)

≤ C3 min
η∈Am(ξ)

Pη(x) ε σo(Am(ξ))

≤ εC3

∫
Am(ξ)

Pη(x) dσo(η). (5.6)

Assume moreover that n ≥ nε. Using the definition of Kε, we obtain :

I ′′m,n(x, ξ) ≤ ε

∫
Am(ξ)

Pη(x) dσo(η). (5.7)

Combining (5.6) and (5.7) and summing over m ≥ mε, one gets for n ≥ nε :∑
m≥mε

Im,n(x, ξ) ≤ (1 + C3) ε

∫
∂X

Pη(x) dσo(η) = (1 + C3) ε . (5.8)

We now define the compact Fε as the intersection Fε := ∩ℓ≥1Lεℓ with εℓ :=
2−ℓε, so that σo(F

c
ε ) ≤ ε. Combining (5.5) and (5.8) we observe that one

has, for all x in NFε and every integers ℓ ≥ 1 and n ≥ nε
ℓ
:

un(x) ≤ C8

∫
∂X

ψn(η) dσo(η) + (1 + C3) εℓ .

If ℓ is large enough the second term is small. And, as we have already seen by
using the Lebesgue dominated convergence theorem, the first term is small
if n is large enough.

This proves that the sequence (un) converges uniformly to 0 on NFε.

5.3 Surjectivity of the boundary transform

Proof of Proposition 1.18. Let φ ∈ L∞(∂X, Y ). We want to prove the equal-
ity φ = βPφ. The metric space Y has been assumed to be proper so that
we can use the existence of the boundary map β from Proposition 1.13. Let
δY be the diameter of Y .

Let (φn) be a sequence in C0(∂X, Y ) that converges almost surely to φ.
Such a sequence also converges to φ in probability i.e. for the distance (4.1).
Let hn = Pφn and h = Pφ. By construction, one has φn = βhn and the
harmonic map h is the limit of the harmonic maps hn, where the convergence
is uniform on compact sets of X. This is not enough to conclude. But we
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will prove below that, for all ε > 0, this convergence is also uniform on the
tube NFε over a compact set Fε ⊂ ∂X such that σo(F

c
ε ) ≤ ε.

Since the sequence (φn) converges almost surely to φ, the continuous
functions ψm,n : ∂X → [0, δY ] defined, for ξ in ∂X, by

ψm,n(ξ) = d(φm(ξ), φn(ξ))

converge almost surely to 0 when m,n go to ∞.
The functions um,n : X → [0, δY ] defined by

um,n(x) = d(hm(x), hn(x))

for x in X extend continuously the functions ψm,n. By Lemma 3.2, these
functions um,n are subharmonic on X.

Let ε>0. Lemma 5.3 ensures that there exists a compact subset Fε⊂∂X
such that σo(F

c
ε ) ≤ ε, and such that the sequence (um,n) converges uniformly

to 0 on the tube NFε. This tells us that the convergence of the sequence (hn)
to h is uniform on the tube NFε. By Egorov theorem, we may also assume
that the sequence of continuous functions (φn) converges uniformly to φ on
Fε. Therefore the function h : X → Y equal to h on X and equal to φ on
∂X is continuous on NFε ∪ Fε.

This proves that, when ξ is in Fε, the non-tangential limit NTlim
x→ξ

h(x)

given by Proposition 1.13 is equal to φ(ξ). Since the measure of F c
ε is arbi-

trarily small, the map φ is the boundary map of h.

5.4 A concrete example

We give an example of Theorem 1.3 in a situation where X = Y is the
hyperbolic plane H2 and the boundary map φ : ∂H2 → H2 has finite image.

Corollary 5.4. Let X := H2 and x1, . . . , xn be n points on ∂H2 cutting
∂H2 into n open arcs I1, . . . , In. Let y1, . . . , yn be n points on Y := H2.
Then there exists a unique bounded harmonic map h : H2 → H2 that extends
continuously to the arcs Ij with h(Ij) = {yj}, for all j.

Proof. By Theorem 1.3 the map h has to be the Poisson transform of the
map φ : ∂H2 → H2 that sends the sides Ij to the point yj, for all j. We only
have to check that this map h extends continuously φ outside the points xj.
This is the content of Proposition 5.5.

Proposition 5.5. Let X be a GGG Riemannian manifold,and Y be a proper
CAT(0)-space. Let h :X→Y be a bounded harmonic map and φ : ∂X → Y
be its boundary map. Let I ⊂ ∂X be an open set on which φ is continuous.
Then, for all ξ∈I, one has φ(ξ) := lim

x→ξ
h(x).
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Proof. The argument is as in the proof of Proposition 1.16 in Section 4.2.

5.5 Bounded Lipschitz domain

A “bounded Lipschitz Riemannian domain” Ω means a connected bounded
open subset of a smooth Riemannian manifold (M, g0) such that Ω is the
interior of a connected compact submanifold Ω of M whose boundary ∂Ω is
a non-empty Lipschitz continuous codimension one submanifold.

The same argument as for Theorem 1.3 will give the following corollary

Corollary 5.6. Let Ω be a bounded Lipschitz Riemannian domain, and Y
be a proper CAT(0)-space.
a) Let h :Ω→Y be a bounded harmonic map. Then, for σ-almost all ξ∈∂Ω,
the map h admits a non-tangential limit φ(ξ) := NTlim

x→ξ
h(x) at the point ξ.

b) The map h 7→ β(h) := φ gives a bijection β : Hb(Ω, Y )
∼−→ L∞(∂Ω, Y ).

In this case, a non-tangential limit means a limit along all sequences xn

such that sup
n≥1

d(xn, ξ)

d(xn, ∂Ω)
<∞.

The measure σ is any finite Borel measure on ∂Ω which is equivalent
to any of the harmonic measures of Ω. Since Ω is a bounded Lipschitz
Riemannian domain, by Dahlberg’s theorem in [14], one can choose σ to be
the Riemannian measure on ∂Ω.

As in Section 1.4, when Y is a Riemannian manifold, Corollary 5.6.a is
due to Aviles, Choi, Micallef in [6, Thm 5.1], and Theorem 5.6.b is expected
to be true as a final observation in [6, Section 1]. The first cases of Corollary
5.6.b that seem to be new is when X is the Euclidean unit ball in Rk and Y
is the hyperbolic space Hℓ.

Proof. Corollary 5.6 is a corollary of the proof of Theorem 1.3. The strategy
is the same, relying on variations of Propositions 2.8 and 2.18 for bounded
Lipschitz Riemannian domains. The proofs of these variations are very sim-
ilar. The only difference is that they rely on [2] instead of [3].

Remark 5.7. The fact that Corollary 5.6 is a special case of Theorem 1.3 can
also be explained thanks to a trick due to Bonk, Heinonen and Koskela in
[10, Chapter 8]. This trick consists in replacing the Riemannian metric g0
on Ω by g = d(x)−2g0 where d is a suitable C∞ function roughly equal to the
distance to the boundary, obtaining this way a GGG Riemannian manifold
(Ω, g). One then sees the harmonic and subharmonic functions on (Ω, g0) as
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L-harmonic and L-subharmonic functions on X where L := d(x)2∆g0 is an
elliptic differential operator of order 2 which is equal to the Laplacian ∆g

up to terms of order 1 and which also has spectral gap. All the arguments
we developed in this paper for the Laplace operator ∆g also apply to the
operator L. This trick could be applied to a much wider class of bounded
Riemannian domains called “inner uniform domains”. See also Aikawa in [1,
Theorem 1.2] for more on these domains.
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