On the rational symplectic group

Yves Benoist

Abstract

We give a short proof of an elementary classical result: any rational symplectic matrix can be put in diagonal form after right and left multiplication by integral symplectic matrices. We also give a short proof for its extension to Chevalley groups due to Steinberg by using the Cartan-Bruhat-Tits decomposition over p-adic fields.

1 Introduction

In this expository paper I present a short proof of a classical theorem I needed in [1]: a decomposition of the group $\operatorname{Sp}(n, \mathbb{Q})$ of symplectic matrices with rational coefficients that gives a parametrization of the double quotient $\operatorname{Sp}(n, \mathbb{Z}) \backslash \operatorname{Sp}(n, \mathbb{Q}) / \operatorname{Sp}(n, \mathbb{Z})$ where $\operatorname{Sp}(n, \mathbb{Z})$ is the subgroup of symplectic matrices with integral coefficients.

This decomposition which can already be found in [15] is a symplectic version of the "adapted basis theorem" for \mathbb{Z}-modules, or of the "Smith normal form" for integral matrices.

In Section 2 we state precisely this decomposition that we call the "symplectic Smith normal form".

In Section 3 we explain the analogy with the Cartan-Bruhat-Tits decomposition.

In Section 4 we recall the relevance of Bruhat-Tits buildings in this kind of decomposition.

[^0]In Section 5 we give an elementary proof of the symplectic Smith normal form.

In Section 6 we give a non-elementary proof of the symplectic Smith normal form that will be applied to other simply-connected split semisimple algebraic groups \mathbf{G} defined over \mathbb{Q} in the last section. Indeed we explain how this symplectic Smith normal form can be deduced from the Cartan-BruhatTits decomposition together with the strong approximation theorem.

In Section 7 we explain the extension due to Steinberg of the Smith normal form to the simply-connected \mathbb{Q}-split groups, see Theorem 7.1.

The last two sections are a concrete illustration of a classical strategy: if you want to prove a theorem over a global field, prove it first over local fields and then use a local-global principle.

I would like to thank Hee Oh for a very helpful comment on a first draft of this note.

2 The symplectic Smith normal form

For any commutative ring R with a unity element, we denote by $\operatorname{Sp}(n, R)$ the symplectic group with coefficients in R. This group is the stabilizer of the symplectic form ω on $R^{2 n}$ given by, for all x, y in $R^{2 n}$,

$$
\omega(x, y)={ }^{t} x J y
$$

where $J=\left(\begin{array}{cc}0 & \mathbb{1}_{n} \\ -\mathbb{1}_{n} & 0\end{array}\right)$. Equivalently, one has

$$
\mathrm{Sp}(n, R):=\left\{g \in \mathrm{GL}(2 n, R) \mid{ }^{t} g J g=J\right\}
$$

If we write the elements of the symplectic group as block matrices with blocks of size n, one has

$$
\operatorname{Sp}(n, R)=\left\{g=\left.\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\right|^{t} \alpha \gamma={ }^{t} \gamma \alpha,{ }^{t} \beta \delta={ }^{t} \delta \beta, \quad{ }^{t} \alpha \delta-{ }^{t} \gamma \beta=\mathbb{1}_{n}\right\} .
$$

Theorem 2.1. Let $g \in \operatorname{Sp}(n, \mathbb{Q})$. Then there exist two matrices σ and σ^{\prime} in $\operatorname{Sp}(n, \mathbb{Z})$ and a positive integral diagonal matrix $\mathbf{d}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ with $d_{1}\left|d_{2}\right| \ldots \mid d_{n}$, and such that

$$
g=\sigma\left(\begin{array}{cc}
\mathbf{d} & \mathbf{0} \\
\mathbf{0} & \mathbf{d}^{-1}
\end{array}\right) \sigma^{\prime}
$$

The condition that the coefficients d_{j} are positive integers with d_{1} dividing d_{2}, with d_{2} dividing d_{3}, \ldots, and d_{n-1} dividing d_{n} ensures that the diagonal matrix \mathbf{d} is unique.

I use this precise Theorem 2.1 as a key tool for an apparently completely unrelated problem in my paper [1]. This problem is the construction of functions f on the cyclic group $\mathbb{Z} / d \mathbb{Z}$ of odd order whose convolution square is proportional to their square. Indeed the construction relies on an auxiliary abelian variety endowed with a unitary \mathbb{Q}-endomorphism ν, the symplectic form ω shows up as a polarization of the abelian variety, and the rational symplectic matrix g shows up as the "holonomy" of ν.

The first reference to Theorem 2.1 that I know is Shimura's paper [15, Prop. 1.6]. Moreover in [16], Shimura points out the relevance of this theorem to show the commutativity of a Hecke algebra and hence to better understand the modular forms on Siegel upper halfspace. This theorem is also in [9, p.232] and is also used by Clozel, Oh and Ullmo in [8, p.23].

As we have seen, there is a version of Theorem 2.1 for the linear group $\operatorname{SL}(n, \mathbb{Q})$, see for instance Proposition 5.1. More generally, there is also a version of Theorem 2.1 for any simply-connected split semisimple algebraic group \mathbf{G} defined over \mathbb{Q}, if one chooses suitably the \mathbb{Z}-form, see Section 7 .

3 The symplectic group over local fields

Before going on I would like to emphasize the analogy of this theorem with two classical theorems. These two classical theorems are valid for all algebraic semisimple groups G and are due respectively to E. Cartan and to F. Bruhat and J. Tits. I will not quote here their general formulation. The first one can be found in [12]. The second one can be found in [4, Prop.4.4.3] together with [5, Prop. 5.2.10]. I will only quote here the special case where G is the symplectic group.

The first theorem is a decomposition theorem over the real field \mathbb{R} due to E. Cartan which is called either the "polar decomposition" or the "Cartan decomposition". We set

$$
\begin{aligned}
\mathrm{SO}(2 n) & :=\left\{g \in \mathrm{GL}(2 n, \mathbb{R}) \mid{ }^{t} g g=\mathbf{1}_{2 n}\right\} \text { and } \\
\mathrm{Sp}(n) & :=\mathrm{Sp}(n, \mathbb{R}) \cap \mathrm{SO}(2 n) .
\end{aligned}
$$

Note that the group $\operatorname{Sp}(n)$ is a maximal compact subgroup of the group $\operatorname{Sp}(n, \mathbb{R})$.

Theorem 3.1. (Cartan) Let $g \in \operatorname{Sp}(n, \mathbb{R})$. Then there exist two matrices σ and σ^{\prime} in $\operatorname{Sp}(n)$ and a positive real diagonal matrix $\mathbf{d}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ with $d_{1} \leq d_{2} \leq \ldots \leq d_{n} \leq 1$ such that

$$
g=\sigma\left(\begin{array}{cc}
\mathbf{d} & \mathbf{0} \\
\mathbf{0} & \mathbf{d}^{-1}
\end{array}\right) \sigma^{\prime}
$$

The second theorem is a decomposition theorem over a local non archimedean field k due to F . Bruhat and J. Tits. We denote by \mathcal{O}_{k} the ring of integers of k and choose a uniformizer π in k, i.e. a generator of the maximal ideal of \mathcal{O}_{k}.

Note again that the group $\operatorname{Sp}\left(n, \mathcal{O}_{k}\right)$ is a maximal compact subgroup of the group $\operatorname{Sp}(n, k)$.

Theorem 3.2. (Bruhat, Tits) Let $g \in \operatorname{Sp}(n, k)$. Then there exist two matrices σ and σ^{\prime} in $\operatorname{Sp}\left(n, \mathcal{O}_{k}\right)$ and a diagonal matrix $\mathbf{d}=\operatorname{diag}\left(\pi^{p_{1}}, \ldots, \pi^{p_{n}}\right)$ with $p_{1} \geq p_{2} \geq \ldots \geq p_{n} \geq 0$ integers such that

$$
g=\sigma\left(\begin{array}{cc}
\mathbf{d} & \mathbf{0} \\
\mathbf{0} & \mathbf{d}^{-1}
\end{array}\right) \sigma^{\prime}
$$

The analogy between these three theorems is striking. It extends the analogy between the Smith normal form of an integral matrix and the singular value decomposition of a real matrix.

In this analogy the group of integers points of a group defined over the rational should be handled as the maximal compact subgroup of a group defined over the real. This rough analogy is an equality when dealing with non archimedean local field. Indeed, when k is a non-archimedean local field, the group of integer points is an open compact subgroup.

4 Bruhat-Tits buildings

F. Bruhat and J. Tits have described the analog of the Cartan decomposition for semisimple groups over non-archimedean local fields, in [4], [5], [6] and
[7], by introducing new geometric spaces that are nowaday called BruhatTits buildings. In the case where $G=\mathrm{GL}(n, k)$ or $\mathrm{SL}(n, k)$ these spaces are the space of p-adic norms studied by Goldman and Iwahori in [10].

As explained in the book [13], these Bruhat-Tits buildings are very useful.
One of the reason is that they are $K(\pi, 1)$-spaces for the lattices in semisimple p-adic groups.

Another reason is that they played the role of a model to follow in order to understand other finitely generated groups, like Coxeter groups, Artin groups, Baumslag-Solitar groups or Mapping class groups.

The relevance of the Bruhat-Tits buildings became even clearer to me when I used them with Hee Oh to prove a general polar decomposition for p adic symmetric spaces in [2]. This polar decomposition was a key ingredient in our proof of equidistribution of S-integral points on rational symmetric spaces in [3].

5 The symplectic adapted basis

In this section we come back to elementary consideration and we discuss the structure of the rational symplectic group $\operatorname{Sp}(n, \mathbb{Q})$, and its relation with the integral symplectic group $\operatorname{Sp}(n, \mathbb{Z})$.

We first recall the well-known undergraduate "adapted basis theorem" for \mathbb{Z}-modules or, equivalently, the "Smith normal form" for integral matrices. We denote by $\mathcal{M}(n, \mathbb{Z})$ the ring of $n \times n$ integral matrices.

Proposition 5.1. (Smith) Let $g \in \mathcal{M}(n, \mathbb{Z})$. Then there exist σ and σ^{\prime} in $\mathrm{SL}(n, \mathbb{Z})$ and an integral diagonal matrix $\mathbf{a}=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ with $a_{1}\left|a_{2}\right| \ldots \mid a_{n}$, and such that

$$
\begin{equation*}
g=\sigma \mathbf{a} \sigma^{\prime} \tag{5.1}
\end{equation*}
$$

Theorem 2.1 follows from the following proposition. This proposition is a variation of the "adapted basis theorem" which takes into account the existence of a symplectic form. We introduce the set $\mathcal{M} p(n, \mathbb{Z})$ of nonzero integral matrices which are proportional to elements of $\operatorname{Sp}(n, \mathbb{R})$,

$$
\mathcal{M} p(n, \mathbb{Z}):=\left\{\left.g \in \mathcal{M}(2 n, \mathbb{Z})\right|^{t} g J g=\lambda^{2} J \text { for some } \lambda \text { in } \mathbb{R}^{*}\right\} .
$$

Proposition 5.2. Let $g \in \mathcal{M} p(n, \mathbb{Z})$. Then there exist two matrices σ and σ^{\prime} in $\operatorname{Sp}(n, \mathbb{Z})$ and a positive integral diagonal matrix $\mathbf{a}=\operatorname{diag}\left(a_{1}, \ldots, a_{2 n}\right)$ with $a_{1}\left|a_{2}\right| \ldots \mid a_{n}$, with $a_{n} \mid a_{2 n}$ and such that

$$
g=\sigma \mathbf{a} \sigma^{\prime}
$$

Note that the matrix \mathbf{a} is also in $\mathcal{M} p(n, \mathbb{Z})$ and hence the products $a_{j} a_{n+j}$ do not depend on the positive integer $j \leq n$. Indeed it is equal to λ^{2}. In particular, one has $a_{2 n}\left|a_{2 n-1}\right| \ldots \mid a_{n+1}$.

For the proof of Proposition 5.2, we need the following lemma. We recall that a nonzero vector v of \mathbb{Z}^{k} is primitive if it spans the \mathbb{Z}-module $\mathbb{R} v \cap \mathbb{Z}^{k}$.

Lemma 5.3. The group $\operatorname{Sp}(n, \mathbb{Z})$ acts transitively on the set of primitive vectors in $\mathbb{Z}^{2 n}$.

Denote by $e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}$ the canonical basis of $\mathbb{Z}^{2 n}$ so that our symplectic form is $\omega=e_{1}^{*} \wedge f_{1}^{*}+\cdots+e_{n}^{*} \wedge f_{n}^{*}$.

Proof of Lemma 5.3. Let $v=\left(x_{1}, . ., x_{2 n}\right)$ be a primitive vector in $\mathbb{Z}^{2 n}$. We want to find $\sigma \in \operatorname{Sp}(n, \mathbb{Z})$ such that $\sigma v=e_{1}$.

This is true for $n=1$. Using the subgroups $\operatorname{Sp}(1, \mathbb{Z})$ for the planes $\mathbb{Z} e_{j} \oplus \mathbb{Z} f_{j}$, with $j=1, \ldots, n$, we can assume that

$$
x_{n+1}=\cdots=x_{2 n}=0
$$

In this case the vector $\left(x_{1}, \ldots, x_{n}\right)$ is primitive in \mathbb{Z}^{n}.
Since $\operatorname{SL}(n, \mathbb{Z})$ acts transitively on the set of primitive vectors in \mathbb{Z}^{n}, we can find a block diagonal matrix $\sigma=\operatorname{diag}\left(\sigma_{0},{ }^{t} \sigma_{0}^{-1}\right)$, with $\sigma_{0} \in \operatorname{SL}(n, \mathbb{Z})$ such that $\sigma v=e_{1}$. This matrix σ belongs to $\operatorname{Sp}(n, \mathbb{Z})$.

Proof of Proposition 5.2. Set $\Gamma:=\operatorname{Sp}(n, \mathbb{Z})$. The proof is by induction on n. It relies on a succession of steps, in the spirit of the Smith normal form, in which one multiplies on the right or on the left the matrix g by an "elementary" matrix to obtain a simpler matrix $g^{\prime} \in \Gamma g \Gamma$. We have to pay attention that at each step the elementary matrix is symplectic.

We can assume that the gcd of the coefficients of g is equal to 1 . We denote by λ the positive real factor such that g / λ belongs to $\operatorname{Sp}(n, \mathbb{R})$. Note that λ^{2} is a positive integer. At the end of the proof we will see that $a_{1}=1$ and $a_{n+1}=\lambda^{2}$.
$1^{\text {st }}$ step: We find $g^{\prime} \in \Gamma g \Gamma$ such that $g^{\prime} e_{1}=e_{1}$.
Since the coefficients of the integral matrix g are relatively prime, by Proposition 5.1, there exists a primitive vector v in $\mathbb{Z}^{2 n}$ such that $g v$ is also primitive. Indeed, by Proposition 5.1, one can write $g=\sigma_{o} \mathbf{a}_{o} \sigma_{o}^{\prime}$ with σ_{o} and σ_{o}^{\prime} in $\operatorname{SL}(n, \mathbb{Z})$ and $\mathbf{a}_{o}=\operatorname{diag}\left(a_{o, 1}, \ldots, a_{o, 2 n}\right)$ with $1=a_{o, 1}\left|a_{o, 2}\right| \ldots \mid a_{o, 2 n}$. One can then choose $v=\sigma_{o}^{\prime-1} e_{1}$ so that $g v=\sigma_{o} e_{1}$.

Then, according to lemma 5.3, there exists σ, σ^{\prime} in Γ such that $\sigma g v=e_{1}$ and $\sigma^{\prime} e_{1}=v$. Then the matrix $g^{\prime}:=\sigma g \sigma^{\prime}$ satisfies $g^{\prime} e_{1}=e_{1}$.
$2^{\text {nd }}$ step: We find $g^{\prime} \in \Gamma g \Gamma$ with $g^{\prime} e_{1}=e_{1}$ and $\omega\left(g^{\prime} e_{j}, f_{1}\right)=0$ for $j>1$.
By the first step, we can assume that

$$
g=\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \text { with } \alpha e_{1}=e_{1} \text { and } \gamma e_{1}=0
$$

In particular the first column of the integral matrix α is $(1,0, \ldots, 0)$. We would like the first row of α to be also of the form $(1,0, \ldots, 0)$. For that we choose $g^{\prime}=g \sigma^{\prime}$ where σ^{\prime} is the symplectic transformation

$$
\sigma^{\prime}=\mathbb{1}_{n}+\sum_{1<j \leq n} \alpha_{1, j}\left(f_{j} \otimes f_{1}^{*}-e_{1} \otimes e_{j}^{*}\right) \in \operatorname{Sp}(n, \mathbb{Z})
$$

in which the integers $\alpha_{1, j}$ are the coefficients of the first row of the matrix α.
$3^{\text {rd }}$ step: We find $g^{\prime} \in \Gamma g \Gamma$ such that $g^{\prime} e_{1}=e_{1}$ and $g^{\prime} f_{1}=\lambda^{2} f_{1}$.
By the second step, we can assume, writing $g=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ that both the first row and first column of α are $(1,0, \ldots, 0)$, and the first column of γ is $(0, \ldots, 0)$. We would also like the first row of β to be $(0, \ldots, 0)$. For that we choose $g^{\prime}=g \sigma^{\prime}$ where σ^{\prime} is the symplectic transformation

$$
\sigma^{\prime}=\mathbb{1}_{n}-\beta_{1,1} e_{1} \otimes f_{1}^{*}-\sum_{1<j \leq n} \beta_{1, j}\left(e_{j} \otimes f_{1}^{*}+e_{1} \otimes f_{j}^{*}\right) \in \operatorname{Sp}(n, \mathbb{Z})
$$

Now by construction one has

$$
\begin{aligned}
& \omega\left(g^{\prime} e_{j}, f_{1}\right)=0 \quad \text { for } 1<j \leq n, \\
& \omega\left(g^{\prime} e_{1}, f_{1}\right)=1 \text { and } \\
& \omega\left(g^{\prime} f_{j}, f_{1}\right)=0 \quad \text { for } j \leq n .
\end{aligned}
$$

Since g^{\prime} / λ is symplectic, this implies that $g^{\prime-1} f_{1}=\lambda^{-2} f_{1}$, or equivalently, $g^{\prime} f_{1}=\lambda^{2} f_{1}$ as required.
$4^{\text {th }}$ step: Conclusion.
By the third step, we can assume that $g e_{1}=e_{1}$ and $g f_{1}=\lambda^{2} f_{1}$. Therefore g preserves the symplectic \mathbb{Z}-submodule of $\mathbb{Z}^{2 n}$ orthogonal of $\mathbb{Z} e_{1} \oplus \mathbb{Z} f_{1}$, which admits $e_{2}, \ldots, e_{n}, f_{2}, \ldots, f_{n}$ as \mathbb{Z}-basis. We conclude by applying the induction hypothesis to the restriction $g^{\prime} \in \mathcal{M} p(n-1, \mathbb{Z})$ of g to this \mathbb{Z} module.

6 The strong approximation theorem

In this section, we give a non elementary proof of the decomposition theorem 2.1 for $\operatorname{Sp}(n, \mathbb{Q})$. We will deduce this theorem from the Bruhat-Tits decomposition theorem 3.2 for $\operatorname{Sp}\left(n, \mathbb{Q}_{p}\right)$ thanks to the strong approximation theorem.

First, I recall the strong approximation theorem. I will not quote here the general formulation for a simply-connected isotropic \mathbb{Q}-simple algebraic group defined over \mathbb{Q} that can be found in [14]. I will only quote the special case where \mathbf{G} is the symplectic group.

For $p=2,3,5, \ldots$ a prime number, we denote by \mathbb{Q}_{p} the p-adic local field and by \mathbb{Z}_{p} its ring of integers.

We denote by $\widehat{\mathbb{Q}}=\prod_{p}^{\prime} \mathbb{Q}_{p}$ the locally compact ring of finite adèles which is the restricted product of the \mathbb{Q}_{p} with respect to the open compact subrings \mathbb{Z}_{p}. The product $\widehat{\mathbb{Z}}:=\prod_{p} \mathbb{Z}_{p}$ is then a maximal open compact subring of $\widehat{\mathbb{Q}}$.

Note that, thanks to the diagonal embedding, \mathbb{Q} is a dense subring in $\widehat{\mathbb{Q}}$. This means that $\widehat{\mathbb{Q}}=\mathbb{Q}+\widehat{\mathbb{Z}}$ and that \mathbb{Z} is dense in $\widehat{\mathbb{Z}}$.

By construction the symplectic group $\operatorname{Sp}(n, \widehat{\mathbb{Q}})$ is a locally compact group that contains $\operatorname{Sp}(n, \widehat{\mathbb{Z}})$ as a maximal open compact subgroup. It also contains the group $\operatorname{Sp}(n, \mathbb{Q})$.

Here is the strong approximation theorem for the symplectic group.
Theorem 6.1. The group $\operatorname{Sp}(n, \mathbb{Q})$ is dense in $\operatorname{Sp}(n, \widehat{\mathbb{Q}})$.
This implies that,

$$
\operatorname{Sp}(n, \widehat{\mathbb{Q}})=\operatorname{Sp}(n, \mathbb{Q}) \operatorname{Sp}(n, \widehat{\mathbb{Z}})
$$

and that

$$
\mathrm{Sp}(n, \mathbb{Z}) \text { is dense in } \operatorname{Sp}(n, \widehat{\mathbb{Z}})
$$

If we collect together the Bruhat-Tits decomposition in Theorem 3.2 for all p-adic fields $k=\mathbb{Q}_{p}$, one gets

Theorem 6.2. Let $g \in \operatorname{Sp}(n, \widehat{\mathbb{Q}})$. Then there exist two matrices σ and σ^{\prime} in $\operatorname{Sp}(n, \widehat{\mathbb{Z}})$ and a positive integral diagonal matrix $\mathbf{d}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ with $d_{1}\left|d_{2}\right| \ldots \mid d_{n}$ such that

$$
g=\sigma\left(\begin{array}{cc}
\mathbf{d} & \mathbf{0} \\
\mathbf{0} & \mathbf{d}^{-1}
\end{array}\right) \sigma^{\prime}
$$

We can now give the non-elementary proof of the symplectic Smith normal form.

Proof of Theorem 2.1. Let $g \in \operatorname{Sp}(n, \mathbb{Q})$.
According to the combined Bruhat-Tits decomposition theorem 6.2, one can write

$$
g=\sigma \mathbf{a} \sigma^{\prime}
$$

with σ, σ^{\prime} in $\operatorname{Sp}(n, \widehat{\mathbb{Z}})$ and with $\mathbf{a}=\left(\begin{array}{cc}\mathbf{d} & \mathbf{0} \\ \mathbf{0} & \mathbf{d}^{-1}\end{array}\right)$ where $\mathbf{d}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ is a positive integral diagonal matrix with $d_{1}\left|d_{2}\right| \ldots \mid d_{n}$.

According to the strong approximation theorem 6.1, one can write

$$
\sigma=\sigma_{0} \eta
$$

with σ_{0} in $\operatorname{Sp}(n, \mathbb{Z})$ and with η in an arbitrarily small neighborhood of $\mathbf{1}$ in $\operatorname{Sp}(n, \widehat{\mathbb{Z}})$. More precisely we choose η such that the element $\sigma_{0}^{\prime}:=\mathbf{a}^{-1} \eta \mathbf{a} \sigma^{\prime}$ belongs to $\operatorname{Sp}(n, \widehat{\mathbb{Z}})$. Then one has the equality

$$
g=\sigma_{0} \mathbf{a} \sigma_{0}^{\prime}
$$

where both σ_{0} and $\sigma_{0}^{\prime}=\mathbf{a}^{-1} \sigma_{0}^{-1} g$ belong to $\operatorname{Sp}(n, \mathbb{Z})$.

7 Chevalley groups

Let \mathbf{G} be a simply-connected Chevalley group. See [17] for a concrete presentation of the group $\mathbf{G}(\mathbb{Z})$, and see [11] for other nice examples of \mathbb{Z}-models
of simple algebraic groups over \mathbb{Q}. This \mathbf{G} is a reductive scheme-group over \mathbb{Z} such that as a \mathbb{Q}-group \mathbf{G} is a \mathbb{Q}-split simply connected quasi-simple algebraic group. By construction, this algebraic group contains a \mathbb{Q}-split maximal torus \mathbf{A} such that the group of integral points $\mathbf{N}(\mathbb{Z})$ of the normalizer of \mathbf{A} surjects onto the Weyl group of $(\mathbf{A}(\mathbb{C}), \mathbf{G}(\mathbb{C}))$.

Since \mathbf{G} is simply connected, by strong approximation, the group $\mathbf{G}(\mathbb{Q})$ is dense in $\mathbf{G}(\widehat{\mathbb{Q}})$. On the other hand, for all prime integers p, one can consider the simply connected simple p-adic Lie group $G:=\mathbf{G}\left(\mathbb{Q}_{p}\right)$, its split maximal torus $A:=\mathbf{A}\left(\mathbb{Q}_{p}\right)$ and its normalizer $N:=\mathbf{N}\left(\mathbb{Q}_{p}\right)$. The maximal compact subgroup $K:=\mathbf{G}\left(\mathbb{Z}_{p}\right)$ is a good compact subgroup in the sense that one has the equality $N=(N \cap K) A$. Hence, according to Bruhat-Tits, one has the decomposition $\mathbf{G}\left(\mathbb{Q}_{p}\right)=\mathbf{G}\left(\mathbb{Z}_{p}\right) \mathbf{A}\left(\mathbb{Q}_{p}\right) \mathbf{G}\left(\mathbb{Z}_{p}\right)$.

Therefore the same proof as in Chapter 6 gives the following theorem due to Steinberg in [17, Theorem 21]

Theorem 7.1. Let \mathbf{G} be a simply connected Chevalley group and $g \in \mathbf{G}(\mathbb{Q})$. Then there exist two elements σ and σ^{\prime} in $\mathbf{G}(\mathbb{Z})$ and an element \mathbf{a} in $\mathbf{A}(\mathbb{Q})$ such that

$$
g=\sigma \mathbf{a} \sigma^{\prime}
$$

Remark. Such a decomposition is not true when we replace \mathbb{Q} by a number field \mathbb{K} whose ring of integer \mathcal{O} is not principal. Here is an example with

$$
\begin{aligned}
& \mathbf{G}(\mathbb{K}):=\mathrm{SL}(2, \mathbb{K}), \quad \mathbf{G}(\mathcal{O}):=\mathrm{SL}(2, \mathcal{O}), \\
& \mathbf{A}(\mathbb{K}):=\left\{\left.\mathbf{a}=\left(\begin{array}{cc}
\mathbf{d} & \mathbf{0} \\
\mathbf{0} & \mathbf{d}^{-1}
\end{array}\right) \right\rvert\, \mathbf{d} \in K^{*}\right\} .
\end{aligned}
$$

In this case the product $\mathbf{G}(\mathcal{O}) \mathbf{A}(\mathbb{K}) \mathbf{G}(\mathcal{O})$ is not equal to $\mathbf{G}(\mathbb{K})$. For instance, when $K=\mathbb{Q}[i \sqrt{5}]$ and $\mathcal{O}=\mathbb{Z}[i \sqrt{5}]$, this product does not contain the matrix

$$
g=\left(\begin{array}{cc}
(1-i \sqrt{5}) / 2 & i \sqrt{5} \\
-1 & 2
\end{array}\right)
$$

Indeed the element $\mathbf{d} \in K^{*}$ should be a unit in all completions $K_{\mathfrak{p}}$ except for the prime ideal $\mathfrak{p}_{0}=2 \mathbb{Z} \oplus(1+i \sqrt{5}) \mathbb{Z}$ in which case it should be a uniformizer. Such an element \mathbf{d} would be a generator of the ideal \mathfrak{p}_{0}. This is a contradiction, since this ideal \mathfrak{p}_{0} is not principal.

References

[1] Y. Benoist. Convolution and square in abelian groups II. arXiv/2208.02528 (2022) 60 p .
[2] Y. Benoist and H. Oh. Polar decomposition for p-adic symmetric spaces. Int. Math. Res. Not. 24, (2007):1-20, 2007.
[3] Y. Benoist and H. Oh. Effective equidistribution of S-integral points on symmetric varieties. Ann. Inst. Fourier, 62:1889-1942, 2012.
[4] F. Bruhat and J. Tits. Groupes réductifs sur un corps local. Publ. Math. IHES, 41:5-251, 1972.
[5] F. Bruhat and J. Tits. Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d'une donnée radicielle valuée. Publ. Math. IHES, 60:197376, 1984.
[6] F. Bruhat and J. Tits. Schémas en groupes et immeubles des groupes classiques sur un corps local. Bull. Soc. Math. France, 112:259-301, 1984.
[7] F. Bruhat and J. Tits. Schémas en groupes et immeubles des groupes classiques sur un corps local. II. Groupes unitaires. Bull. Soc. Math. France, 115:141-195, 1987.
[8] L. Clozel, H. Oh, and E. Ullmo. Hecke operators and equidistribution of Hecke points. Invent. Math., 144(2):327-351, 2001.
[9] E. Freitag. Siegelsche Modulfunktionen. Grundlehren Math. 254. Springer, 1983.
[10] O. Goldman and N. Iwahori. The space of p-adic norms. Acta Math., 109:137177, 1963.
[11] B. Gross. Groups over Z. Invent. Math., 124:263-279, 1996.
[12] S. Helgason. Differential geometry, Lie groups, and symmetric spaces. Academic Press, 1978.
[13] T. Kaletha and G. Prasad. Bruhat-Tits buildings: a new approach. Cambridge Univ. Press, 2022.
[14] V. Platonov and A. Rapinchuk. Algebraic groups and number theory. Pure and Applied Mathematics. Academic Press, 1994.
[15] G. Shimura. Arithmetic of alternating forms and quaternion hermitian forms. J. Math. Soc. Japan, 15:33-65, 1963.
[16] G. Shimura. On modular correspondences for $S p(n, Z)$ and their congruence relations. Proc. Nat. Acad. Sci. U.S.A., 49:824-828, 1963.
[17] R. Steinberg. Lectures on Chevalley groups. Yale Univ., 1968.
Y. Benoist: CNRS, Université Paris-Saclay,
yves.benoist@u-psud.fr

[^0]: 2020 Math. subject class. Primary 20G30 ; Secondary 11E57
 Key words Symplectic group, Cartan decomposition, Smith normal form.

