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Abstract

We give a short proof of an elementary classical result: any rational
symplectic matrix can be put in diagonal form after right and left
multiplication by integral symplectic matrices. We also give a short
proof for its extension to Chevalley groups due to Steinberg by using
the Cartan-Bruhat-Tits decomposition over p-adic fields.

1 Introduction

In this expository paper I present a short proof of a classical theorem I
needed in [1]: a decomposition of the group Sp(n,Q) of symplectic matrices
with rational coefficients that gives a parametrization of the double quotient
Sp(n,Z)\Sp(n,Q)/Sp(n,Z) where Sp(n,Z) is the subgroup of symplectic ma-
trices with integral coefficients.

This decomposition which can already be found in [15] is a symplectic
version of the “adapted basis theorem” for Z-modules, or of the “Smith
normal form” for integral matrices.

In Section 2 we state precisely this decomposition that we call the “sym-
plectic Smith normal form”.

In Section 3 we explain the analogy with the Cartan-Bruhat-Tits decom-
position.

In Section 4 we recall the relevance of Bruhat-Tits buildings in this kind
of decomposition.
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In Section 5 we give an elementary proof of the symplectic Smith normal
form.

In Section 6 we give a non-elementary proof of the symplectic Smith
normal form that will be applied to other simply-connected split semisimple
algebraic groups G defined over Q in the last section. Indeed we explain how
this symplectic Smith normal form can be deduced from the Cartan-Bruhat-
Tits decomposition together with the strong approximation theorem.

In Section 7 we explain the extension due to Steinberg of the Smith normal
form to the simply-connected Q-split groups, see Theorem 7.1.

The last two sections are a concrete illustration of a classical strategy: if
you want to prove a theorem over a global field, prove it first over local fields
and then use a local-global principle.

I would like to thank Hee Oh for a very helpful comment on a first draft
of this note.

2 The symplectic Smith normal form

For any commutative ring R with a unity element, we denote by Sp(n,R)
the symplectic group with coefficients in R. This group is the stabilizer of
the symplectic form ω on R2n given by, for all x, y in R2n,

ω(x, y) = tx J y

where J =
(

0 1n

−1n 0

)
. Equivalently, one has

Sp(n,R) := {g ∈ GL(2n,R) | tgJg = J},

If we write the elements of the symplectic group as block matrices with
blocks of size n, one has

Sp(n,R) = {g =
(

α β
γ δ

)
| tαγ = tγα, tβδ = tδβ, tαδ − tγβ = 1n}.

Theorem 2.1. Let g ∈ Sp(n,Q). Then there exist two matrices σ and σ′

in Sp(n,Z) and a positive integral diagonal matrix d = diag(d1, . . . , dn) with
d1|d2| . . . |dn, and such that

g = σ

(
d 0
0 d−1

)
σ′.
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The condition that the coefficients dj are positive integers with d1 dividing
d2, with d2 dividing d3, . . ., and dn−1 dividing dn ensures that the diagonal
matrix d is unique.

I use this precise Theorem 2.1 as a key tool for an apparently completely
unrelated problem in my paper [1]. This problem is the construction of
functions f on the cyclic group Z/dZ of odd order whose convolution square
is proportional to their square. Indeed the construction relies on an auxiliary
abelian variety endowed with a unitary Q-endomorphism ν, the symplectic
form ω shows up as a polarization of the abelian variety, and the rational
symplectic matrix g shows up as the “holonomy” of ν.

The first reference to Theorem 2.1 that I know is Shimura’s paper [15,
Prop. 1.6]. Moreover in [16], Shimura points out the relevance of this theorem
to show the commutativity of a Hecke algebra and hence to better understand
the modular forms on Siegel upper halfspace. This theorem is also in [9,
p.232] and is also used by Clozel, Oh and Ullmo in [8, p.23].

As we have seen, there is a version of Theorem 2.1 for the linear group
SL(n,Q), see for instance Proposition 5.1. More generally, there is also a
version of Theorem 2.1 for any simply-connected split semisimple algebraic
group G defined over Q, if one chooses suitably the Z-form, see Section 7.

3 The symplectic group over local fields

Before going on I would like to emphasize the analogy of this theorem with
two classical theorems. These two classical theorems are valid for all algebraic
semisimple groups G and are due respectively to E. Cartan and to F. Bruhat
and J. Tits. I will not quote here their general formulation. The first one
can be found in [12]. The second one can be found in [4, Prop.4.4.3] together
with [5, Prop. 5.2.10]. I will only quote here the special case where G is the
symplectic group.

The first theorem is a decomposition theorem over the real field R due to
E. Cartan which is called either the “polar decomposition” or the “Cartan
decomposition”. We set

SO(2n) := {g ∈ GL(2n,R) | tgg = 12n} and

Sp(n) := Sp(n,R) ∩ SO(2n).

3



Note that the group Sp(n) is a maximal compact subgroup of the group
Sp(n,R).

Theorem 3.1. (Cartan) Let g ∈ Sp(n,R). Then there exist two matrices
σ and σ′ in Sp(n) and a positive real diagonal matrix d = diag(d1, . . . , dn)
with d1 ≤ d2 ≤ . . . ≤ dn ≤ 1 such that

g = σ

(
d 0
0 d−1

)
σ′.

The second theorem is a decomposition theorem over a local non archi-
medean field k due to F. Bruhat and J. Tits. We denote by Ok the ring of
integers of k and choose a uniformizer π in k, i.e. a generator of the maximal
ideal of Ok.

Note again that the group Sp(n,Ok) is a maximal compact subgroup of
the group Sp(n, k).

Theorem 3.2. (Bruhat, Tits) Let g ∈ Sp(n, k). Then there exist two
matrices σ and σ′ in Sp(n,Ok) and a diagonal matrix d = diag(πp1 , . . . , πpn)
with p1 ≥ p2 ≥ . . . ≥ pn ≥ 0 integers such that

g = σ

(
d 0
0 d−1

)
σ′.

The analogy between these three theorems is striking. It extends the
analogy between the Smith normal form of an integral matrix and the singular
value decomposition of a real matrix.

In this analogy the group of integers points of a group defined over the
rational should be handled as the maximal compact subgroup of a group de-
fined over the real. This rough analogy is an equality when dealing with non
archimedean local field. Indeed, when k is a non-archimedean local field, the
group of integer points is an open compact subgroup.

4 Bruhat-Tits buildings

F. Bruhat and J. Tits have described the analog of the Cartan decomposition
for semisimple groups over non-archimedean local fields, in [4], [5], [6] and
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[7], by introducing new geometric spaces that are nowaday called Bruhat-
Tits buildings. In the case where G = GL(n, k) or SL(n, k) these spaces are
the space of p-adic norms studied by Goldman and Iwahori in [10].

As explained in the book [13], these Bruhat-Tits buildings are very useful.
One of the reason is that they are K(π, 1)-spaces for the lattices in

semisimple p-adic groups.
Another reason is that they played the role of a model to follow in order

to understand other finitely generated groups, like Coxeter groups, Artin
groups, Baumslag-Solitar groups or Mapping class groups.

The relevance of the Bruhat-Tits buildings became even clearer to me
when I used them with Hee Oh to prove a general polar decomposition for p-
adic symmetric spaces in [2]. This polar decomposition was a key ingredient
in our proof of equidistribution of S-integral points on rational symmetric
spaces in [3].

5 The symplectic adapted basis

In this section we come back to elementary consideration and we discuss the
structure of the rational symplectic group Sp(n,Q), and its relation with the
integral symplectic group Sp(n,Z).

We first recall the well-known undergraduate “adapted basis theorem” for
Z-modules or, equivalently, the “Smith normal form” for integral matrices.
We denote by M(n,Z) the ring of n× n integral matrices.

Proposition 5.1. (Smith) Let g ∈ M(n,Z). Then there exist σ and
σ′ in SL(n,Z) and an integral diagonal matrix a = diag(a1, . . . , an) with
a1|a2| . . . |an, and such that

g = σ a σ′. (5.1)

Theorem 2.1 follows from the following proposition. This proposition
is a variation of the “adapted basis theorem” which takes into account the
existence of a symplectic form. We introduce the set Mp(n,Z) of nonzero
integral matrices which are proportional to elements of Sp(n,R),

Mp(n,Z) := {g ∈ M(2n,Z) | tgJg = λ2J for some λ in R∗}.
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Proposition 5.2. Let g ∈ Mp(n,Z). Then there exist two matrices σ and
σ′ in Sp(n,Z) and a positive integral diagonal matrix a = diag(a1, . . . , a2n)
with a1|a2| . . . |an, with an|a2n and such that

g = σ a σ′.

Note that the matrix a is also in Mp(n,Z) and hence the products ajan+j

do not depend on the positive integer j ≤ n. Indeed it is equal to λ2. In
particular, one has a2n|a2n−1| . . . |an+1.

For the proof of Proposition 5.2, we need the following lemma. We recall
that a nonzero vector v of Zk is primitive if it spans the Z-module Rv ∩ Zk.

Lemma 5.3. The group Sp(n,Z) acts transitively on the set of primitive
vectors in Z2n.

Denote by e1, . . . , en, f1, . . . , fn the canonical basis of Z2n so that our
symplectic form is ω = e∗1 ∧ f ∗

1 + · · ·+ e∗n ∧ f ∗
n.

Proof of Lemma 5.3. Let v = (x1, .., x2n) be a primitive vector in Z2n. We
want to find σ ∈ Sp(n,Z) such that σv = e1.

This is true for n = 1. Using the subgroups Sp(1,Z) for the planes
Zej ⊕ Zfj, with j = 1, . . . , n, we can assume that

xn+1 = · · · = x2n = 0.

In this case the vector (x1, . . . , xn) is primitive in Zn.
Since SL(n,Z) acts transitively on the set of primitive vectors in Zn, we

can find a block diagonal matrix σ = diag(σ0,
tσ−1

0 ), with σ0 ∈ SL(n,Z) such
that σv = e1. This matrix σ belongs to Sp(n,Z).

Proof of Proposition 5.2. Set Γ := Sp(n,Z). The proof is by induction on n.
It relies on a succession of steps, in the spirit of the Smith normal form, in
which one multiplies on the right or on the left the matrix g by an “elemen-
tary” matrix to obtain a simpler matrix g′ ∈ ΓgΓ. We have to pay attention
that at each step the elementary matrix is symplectic.

We can assume that the gcd of the coefficients of g is equal to 1. We
denote by λ the positive real factor such that g/λ belongs to Sp(n,R). Note
that λ2 is a positive integer. At the end of the proof we will see that a1 = 1
and an+1 = λ2.
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1st step: We find g′ ∈ ΓgΓ such that g′e1 = e1.

Since the coefficients of the integral matrix g are relatively prime, by
Proposition 5.1, there exists a primitive vector v in Z2n such that gv is also
primitive. Indeed, by Proposition 5.1, one can write g = σoaoσ

′
o with σo and

σ′
o in SL(n,Z) and ao = diag(ao,1, . . . , ao,2n) with 1 = ao,1|ao,2| . . . |ao,2n. One

can then choose v = σ′
o
−1e1 so that gv = σoe1.

Then, according to lemma 5.3, there exists σ, σ′ in Γ such that σgv = e1
and σ′e1 = v. Then the matrix g′ := σgσ′ satisfies g′e1 = e1.

2nd step: We find g′∈ΓgΓ with g′e1 = e1 and ω(g′ej, f1) = 0 for j>1.

By the first step, we can assume that

g =
(

α β
γ δ

)
with αe1 = e1 and γe1 = 0

In particular the first column of the integral matrix α is (1, 0, . . . , 0). We
would like the first row of α to be also of the form (1, 0, . . . , 0). For that we
choose g′ = gσ′ where σ′ is the symplectic transformation

σ′ = 1n +
∑

1<j≤n α1,j(fj ⊗ f ∗
1 − e1 ⊗ e∗j) ∈ Sp(n,Z),

in which the integers α1,j are the coefficients of the first row of the matrix α.

3rd step: We find g′ ∈ ΓgΓ such that g′e1 = e1 and g′f1 = λ2f1.

By the second step, we can assume, writing g =
(

α β
γ δ

)
that both the

first row and first column of α are (1, 0, . . . , 0), and the first column of γ is
(0, . . . , 0). We would also like the first row of β to be (0, . . . , 0). For that we
choose g′ = gσ′ where σ′ is the symplectic transformation

σ′ = 1n − β1,1e1 ⊗ f ∗
1 −

∑
1<j≤n β1,j(ej ⊗ f ∗

1 + e1 ⊗ f ∗
j ) ∈ Sp(n,Z).

Now by construction one has

ω(g′ej, f1) = 0 for 1 < j ≤ n,

ω(g′e1, f1) = 1 and

ω(g′fj, f1) = 0 for j ≤ n.

Since g′/λ is symplectic, this implies that g′−1f1 = λ−2f1, or equivalently,
g′f1 = λ2 f1 as required.
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4th step: Conclusion.

By the third step, we can assume that ge1 = e1 and gf1 = λ2f1. Therefore
g preserves the symplectic Z-submodule of Z2n orthogonal of Ze1 ⊕ Zf1,
which admits e2, . . . , en, f2, . . . , fn as Z-basis. We conclude by applying the
induction hypothesis to the restriction g′ ∈ Mp(n−1,Z) of g to this Z-
module.

6 The strong approximation theorem

In this section, we give a non elementary proof of the decomposition the-
orem 2.1 for Sp(n,Q). We will deduce this theorem from the Bruhat-Tits
decomposition theorem 3.2 for Sp(n,Qp) thanks to the strong approximation
theorem.

First, I recall the strong approximation theorem. I will not quote here
the general formulation for a simply-connected isotropic Q-simple algebraic
group defined over Q that can be found in [14]. I will only quote the special
case where G is the symplectic group.

For p = 2, 3, 5, . . . a prime number, we denote by Qp the p-adic local field
and by Zp its ring of integers.

We denote by Q̂ =
∏′

p Qp the locally compact ring of finite adèles which
is the restricted product of the Qp with respect to the open compact subrings

Zp. The product Ẑ :=
∏

p Zp is then a maximal open compact subring of Q̂.

Note that, thanks to the diagonal embedding, Q is a dense subring in Q̂.
This means that Q̂ = Q+ Ẑ and that Z is dense in Ẑ.

By construction the symplectic group Sp(n, Q̂) is a locally compact group

that contains Sp(n, Ẑ) as a maximal open compact subgroup. It also contains
the group Sp(n,Q).

Here is the strong approximation theorem for the symplectic group.

Theorem 6.1. The group Sp(n,Q) is dense in Sp(n, Q̂).

This implies that,

Sp(n, Q̂) = Sp(n,Q)Sp(n, Ẑ)
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and that
Sp(n,Z) is dense in Sp(n, Ẑ).

If we collect together the Bruhat-Tits decomposition in Theorem 3.2 for
all p-adic fields k = Qp, one gets

Theorem 6.2. Let g ∈ Sp(n, Q̂). Then there exist two matrices σ and σ′

in Sp(n, Ẑ) and a positive integral diagonal matrix d = diag(d1, . . . , dn) with
d1|d2| . . . |dn such that

g = σ

(
d 0
0 d−1

)
σ′.

We can now give the non-elementary proof of the symplectic Smith normal
form.

Proof of Theorem 2.1. Let g ∈ Sp(n,Q).
According to the combined Bruhat-Tits decomposition theorem 6.2, one

can write
g = σ aσ′

with σ, σ′ in Sp(n, Ẑ) and with a =

(
d 0
0 d−1

)
where d = diag(d1, . . . , dn)

is a positive integral diagonal matrix with d1|d2| . . . |dn.
According to the strong approximation theorem 6.1, one can write

σ = σ0η

with σ0 in Sp(n,Z) and with η in an arbitrarily small neighborhood of 1 in

Sp(n, Ẑ). More precisely we choose η such that the element σ′
0 := a−1η aσ′

belongs to Sp(n, Ẑ). Then one has the equality

g = σ0 aσ
′
0

where both σ0 and σ′
0 = a−1σ−1

0 g belong to Sp(n,Z).

7 Chevalley groups

Let G be a simply-connected Chevalley group. See [17] for a concrete presen-
tation of the group G(Z), and see [11] for other nice examples of Z-models
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of simple algebraic groups over Q. This G is a reductive scheme-group over
Z such that as a Q-group G is a Q-split simply connected quasi-simple alge-
braic group. By construction, this algebraic group contains aQ-split maximal
torus A such that the group of integral points N(Z) of the normalizer of A
surjects onto the Weyl group of (A(C),G(C)).

Since G is simply connected, by strong approximation, the group G(Q) is

dense in G(Q̂). On the other hand, for all prime integers p, one can consider
the simply connected simple p-adic Lie group G := G(Qp), its split maximal
torus A := A(Qp) and its normalizer N := N(Qp). The maximal compact
subgroup K := G(Zp) is a good compact subgroup in the sense that one has
the equality N = (N ∩K)A. Hence, according to Bruhat-Tits, one has the
decomposition G(Qp) = G(Zp)A(Qp)G(Zp).

Therefore the same proof as in Chapter 6 gives the following theorem due
to Steinberg in [17, Theorem 21]

Theorem 7.1. Let G be a simply connected Chevalley group and g ∈ G(Q).
Then there exist two elements σ and σ′ in G(Z) and an element a in A(Q)
such that

g = σ a σ′.

Remark. Such a decomposition is not true when we replace Q by a number
field K whose ring of integer O is not principal. Here is an example with

G(K) := SL(2,K) , G(O) := SL(2,O) ,

A(K) :=

{
a =

(
d 0
0 d−1

)
| d ∈ K∗

}
.

In this case the productG(O)A(K)G(O) is not equal toG(K). For instance,
when K = Q[i

√
5] and O = Z[i

√
5], this product does not contain the matrix

g =

(
(1−i

√
5)/2 i

√
5

−1 2

)
.

Indeed the element d ∈ K∗ should be a unit in all completions Kp except
for the prime ideal p0 = 2Z ⊕ (1+i

√
5)Z in which case it should be a uni-

formizer. Such an element d would be a generator of the ideal p0. This is a
contradiction, since this ideal p0 is not principal.
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